| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrGpuGL.h" |
| |
| #include "GrEffect.h" |
| #include "GrGLEffect.h" |
| #include "GrGpuVertex.h" |
| |
| typedef GrGLUniformManager::UniformHandle UniformHandle; |
| static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle; |
| |
| #define SKIP_CACHE_CHECK true |
| #define GR_UINT32_MAX static_cast<uint32_t>(-1) |
| |
| GrGpuGL::ProgramCache::ProgramCache(const GrGLContextInfo& gl) |
| : fCount(0) |
| , fCurrLRUStamp(0) |
| , fGL(gl) { |
| } |
| |
| void GrGpuGL::ProgramCache::abandon() { |
| for (int i = 0; i < fCount; ++i) { |
| GrAssert(NULL != fEntries[i].fProgram.get()); |
| fEntries[i].fProgram->abandon(); |
| fEntries[i].fProgram.reset(NULL); |
| } |
| fCount = 0; |
| } |
| |
| GrGLProgram* GrGpuGL::ProgramCache::getProgram(const ProgramDesc& desc, |
| const GrEffectStage* stages[]) { |
| Entry newEntry; |
| newEntry.fKey.setKeyData(desc.asKey()); |
| |
| Entry* entry = fHashCache.find(newEntry.fKey); |
| if (NULL == entry) { |
| newEntry.fProgram.reset(GrGLProgram::Create(fGL, desc, stages)); |
| if (NULL == newEntry.fProgram.get()) { |
| return NULL; |
| } |
| if (fCount < kMaxEntries) { |
| entry = fEntries + fCount; |
| ++fCount; |
| } else { |
| GrAssert(kMaxEntries == fCount); |
| entry = fEntries; |
| for (int i = 1; i < kMaxEntries; ++i) { |
| if (fEntries[i].fLRUStamp < entry->fLRUStamp) { |
| entry = fEntries + i; |
| } |
| } |
| fHashCache.remove(entry->fKey, entry); |
| } |
| *entry = newEntry; |
| fHashCache.insert(entry->fKey, entry); |
| } |
| |
| entry->fLRUStamp = fCurrLRUStamp; |
| if (GR_UINT32_MAX == fCurrLRUStamp) { |
| // wrap around! just trash our LRU, one time hit. |
| for (int i = 0; i < fCount; ++i) { |
| fEntries[i].fLRUStamp = 0; |
| } |
| } |
| ++fCurrLRUStamp; |
| return entry->fProgram; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGpuGL::abandonResources(){ |
| INHERITED::abandonResources(); |
| fProgramCache->abandon(); |
| fHWProgramID = 0; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| |
| void GrGpuGL::flushViewMatrix(DrawType type) { |
| const GrGLRenderTarget* rt = static_cast<const GrGLRenderTarget*>(this->getDrawState().getRenderTarget()); |
| SkISize viewportSize; |
| const GrGLIRect& viewport = rt->getViewport(); |
| viewportSize.set(viewport.fWidth, viewport.fHeight); |
| |
| const SkMatrix& vm = this->getDrawState().getViewMatrix(); |
| |
| if (kStencilPath_DrawType == type) { |
| if (fHWPathMatrixState.fViewMatrix != vm || |
| fHWPathMatrixState.fRTSize != viewportSize) { |
| // rescale the coords from skia's "device" coords to GL's normalized coords, |
| // and perform a y-flip. |
| SkMatrix m; |
| m.setScale(SkIntToScalar(2) / rt->width(), SkIntToScalar(-2) / rt->height()); |
| m.postTranslate(-SK_Scalar1, SK_Scalar1); |
| m.preConcat(vm); |
| |
| // GL wants a column-major 4x4. |
| GrGLfloat mv[] = { |
| // col 0 |
| SkScalarToFloat(m[SkMatrix::kMScaleX]), |
| SkScalarToFloat(m[SkMatrix::kMSkewY]), |
| 0, |
| SkScalarToFloat(m[SkMatrix::kMPersp0]), |
| |
| // col 1 |
| SkScalarToFloat(m[SkMatrix::kMSkewX]), |
| SkScalarToFloat(m[SkMatrix::kMScaleY]), |
| 0, |
| SkScalarToFloat(m[SkMatrix::kMPersp1]), |
| |
| // col 2 |
| 0, 0, 0, 0, |
| |
| // col3 |
| SkScalarToFloat(m[SkMatrix::kMTransX]), |
| SkScalarToFloat(m[SkMatrix::kMTransY]), |
| 0.0f, |
| SkScalarToFloat(m[SkMatrix::kMPersp2]) |
| }; |
| GL_CALL(MatrixMode(GR_GL_PROJECTION)); |
| GL_CALL(LoadMatrixf(mv)); |
| fHWPathMatrixState.fViewMatrix = vm; |
| fHWPathMatrixState.fRTSize = viewportSize; |
| } |
| } else if (!fCurrentProgram->fViewMatrix.cheapEqualTo(vm) || |
| fCurrentProgram->fViewportSize != viewportSize) { |
| SkMatrix m; |
| m.setAll( |
| SkIntToScalar(2) / viewportSize.fWidth, 0, -SK_Scalar1, |
| 0,-SkIntToScalar(2) / viewportSize.fHeight, SK_Scalar1, |
| 0, 0, SkMatrix::I()[8]); |
| m.setConcat(m, vm); |
| |
| // ES doesn't allow you to pass true to the transpose param, |
| // so do our own transpose |
| GrGLfloat mt[] = { |
| SkScalarToFloat(m[SkMatrix::kMScaleX]), |
| SkScalarToFloat(m[SkMatrix::kMSkewY]), |
| SkScalarToFloat(m[SkMatrix::kMPersp0]), |
| SkScalarToFloat(m[SkMatrix::kMSkewX]), |
| SkScalarToFloat(m[SkMatrix::kMScaleY]), |
| SkScalarToFloat(m[SkMatrix::kMPersp1]), |
| SkScalarToFloat(m[SkMatrix::kMTransX]), |
| SkScalarToFloat(m[SkMatrix::kMTransY]), |
| SkScalarToFloat(m[SkMatrix::kMPersp2]) |
| }; |
| fCurrentProgram->fUniformManager.setMatrix3f( |
| fCurrentProgram->fUniformHandles.fViewMatrixUni, |
| mt); |
| fCurrentProgram->fViewMatrix = vm; |
| fCurrentProgram->fViewportSize = viewportSize; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGpuGL::flushColor(GrColor color) { |
| const ProgramDesc& desc = fCurrentProgram->getDesc(); |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| if (this->getVertexLayout() & GrDrawState::kColor_VertexLayoutBit) { |
| // color will be specified per-vertex as an attribute |
| // invalidate the const vertex attrib color |
| fHWConstAttribColor = GrColor_ILLEGAL; |
| } else { |
| switch (desc.fColorInput) { |
| case ProgramDesc::kAttribute_ColorInput: |
| if (fHWConstAttribColor != color) { |
| // OpenGL ES only supports the float varieties of glVertexAttrib |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(color, c); |
| GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(), c)); |
| fHWConstAttribColor = color; |
| } |
| break; |
| case ProgramDesc::kUniform_ColorInput: |
| if (fCurrentProgram->fColor != color) { |
| // OpenGL ES doesn't support unsigned byte varieties of glUniform |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(color, c); |
| GrAssert(kInvalidUniformHandle != fCurrentProgram->fUniformHandles.fColorUni); |
| fCurrentProgram->fUniformManager.set4fv( |
| fCurrentProgram->fUniformHandles.fColorUni, |
| 0, 1, c); |
| fCurrentProgram->fColor = color; |
| } |
| break; |
| case ProgramDesc::kSolidWhite_ColorInput: |
| case ProgramDesc::kTransBlack_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown color type."); |
| } |
| } |
| UniformHandle filterColorUni = fCurrentProgram->fUniformHandles.fColorFilterUni; |
| if (kInvalidUniformHandle != filterColorUni && |
| fCurrentProgram->fColorFilterColor != drawState.getColorFilterColor()) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(drawState.getColorFilterColor(), c); |
| fCurrentProgram->fUniformManager.set4fv(filterColorUni, 0, 1, c); |
| fCurrentProgram->fColorFilterColor = drawState.getColorFilterColor(); |
| } |
| } |
| |
| void GrGpuGL::flushCoverage(GrColor coverage) { |
| const ProgramDesc& desc = fCurrentProgram->getDesc(); |
| // const GrDrawState& drawState = this->getDrawState(); |
| |
| |
| if (this->getVertexLayout() & GrDrawState::kCoverage_VertexLayoutBit) { |
| // coverage will be specified per-vertex as an attribute |
| // invalidate the const vertex attrib coverage |
| fHWConstAttribCoverage = GrColor_ILLEGAL; |
| } else { |
| switch (desc.fCoverageInput) { |
| case ProgramDesc::kAttribute_ColorInput: |
| if (fHWConstAttribCoverage != coverage) { |
| // OpenGL ES only supports the float varieties of |
| // glVertexAttrib |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(coverage, c); |
| GL_CALL(VertexAttrib4fv(GrGLProgram::CoverageAttributeIdx(), |
| c)); |
| fHWConstAttribCoverage = coverage; |
| } |
| break; |
| case ProgramDesc::kUniform_ColorInput: |
| if (fCurrentProgram->fCoverage != coverage) { |
| // OpenGL ES doesn't support unsigned byte varieties of |
| // glUniform |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(coverage, c); |
| GrAssert(kInvalidUniformHandle != |
| fCurrentProgram->fUniformHandles.fCoverageUni); |
| fCurrentProgram->fUniformManager.set4fv( |
| fCurrentProgram->fUniformHandles.fCoverageUni, |
| 0, 1, c); |
| fCurrentProgram->fCoverage = coverage; |
| } |
| break; |
| case ProgramDesc::kSolidWhite_ColorInput: |
| case ProgramDesc::kTransBlack_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown coverage type."); |
| } |
| } |
| } |
| |
| bool GrGpuGL::flushGraphicsState(DrawType type) { |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| // GrGpu::setupClipAndFlushState should have already checked this |
| // and bailed if not true. |
| GrAssert(NULL != drawState.getRenderTarget()); |
| |
| if (kStencilPath_DrawType != type) { |
| this->flushMiscFixedFunctionState(); |
| |
| GrBlendCoeff srcCoeff; |
| GrBlendCoeff dstCoeff; |
| BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff); |
| if (kSkipDraw_BlendOptFlag & blendOpts) { |
| return false; |
| } |
| |
| const GrEffectStage* stages[GrDrawState::kNumStages]; |
| for (int i = 0; i < GrDrawState::kNumStages; ++i) { |
| stages[i] = drawState.isStageEnabled(i) ? &drawState.getStage(i) : NULL; |
| } |
| GrGLProgram::Desc desc; |
| this->buildProgram(kDrawPoints_DrawType == type, blendOpts, dstCoeff, &desc); |
| |
| fCurrentProgram.reset(fProgramCache->getProgram(desc, stages)); |
| if (NULL == fCurrentProgram.get()) { |
| GrAssert(!"Failed to create program!"); |
| return false; |
| } |
| fCurrentProgram.get()->ref(); |
| |
| if (fHWProgramID != fCurrentProgram->fProgramID) { |
| GL_CALL(UseProgram(fCurrentProgram->fProgramID)); |
| fHWProgramID = fCurrentProgram->fProgramID; |
| } |
| fCurrentProgram->overrideBlend(&srcCoeff, &dstCoeff); |
| this->flushBlend(kDrawLines_DrawType == type, srcCoeff, dstCoeff); |
| |
| GrColor color; |
| GrColor coverage; |
| if (blendOpts & kEmitTransBlack_BlendOptFlag) { |
| color = 0; |
| coverage = 0; |
| } else if (blendOpts & kEmitCoverage_BlendOptFlag) { |
| color = 0xffffffff; |
| coverage = drawState.getCoverage(); |
| } else { |
| color = drawState.getColor(); |
| coverage = drawState.getCoverage(); |
| } |
| this->flushColor(color); |
| this->flushCoverage(coverage); |
| |
| fCurrentProgram->setData(this); |
| } |
| this->flushStencil(type); |
| this->flushViewMatrix(type); |
| this->flushScissor(); |
| this->flushAAState(type); |
| |
| GrIRect* devRect = NULL; |
| GrIRect devClipBounds; |
| if (drawState.isClipState()) { |
| this->getClip()->getConservativeBounds(drawState.getRenderTarget(), &devClipBounds); |
| devRect = &devClipBounds; |
| } |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(devRect); |
| |
| return true; |
| } |
| |
| #if GR_TEXT_SCALAR_IS_USHORT |
| #define TEXT_COORDS_GL_TYPE GR_GL_UNSIGNED_SHORT |
| #define TEXT_COORDS_ARE_NORMALIZED 1 |
| #elif GR_TEXT_SCALAR_IS_FLOAT |
| #define TEXT_COORDS_GL_TYPE GR_GL_FLOAT |
| #define TEXT_COORDS_ARE_NORMALIZED 0 |
| #elif GR_TEXT_SCALAR_IS_FIXED |
| #define TEXT_COORDS_GL_TYPE GR_GL_FIXED |
| #define TEXT_COORDS_ARE_NORMALIZED 0 |
| #else |
| #error "unknown GR_TEXT_SCALAR type" |
| #endif |
| |
| void GrGpuGL::setupGeometry(const DrawInfo& info, int* startIndexOffset) { |
| |
| int newColorOffset; |
| int newCoverageOffset; |
| int newTexCoordOffsets[GrDrawState::kMaxTexCoords]; |
| int newEdgeOffset; |
| |
| GrVertexLayout currLayout = this->getVertexLayout(); |
| |
| GrGLsizei newStride = GrDrawState::VertexSizeAndOffsetsByIdx(currLayout, |
| newTexCoordOffsets, |
| &newColorOffset, |
| &newCoverageOffset, |
| &newEdgeOffset); |
| int oldColorOffset; |
| int oldCoverageOffset; |
| int oldTexCoordOffsets[GrDrawState::kMaxTexCoords]; |
| int oldEdgeOffset; |
| |
| GrGLsizei oldStride = GrDrawState::VertexSizeAndOffsetsByIdx(fHWGeometryState.fVertexLayout, |
| oldTexCoordOffsets, |
| &oldColorOffset, |
| &oldCoverageOffset, |
| &oldEdgeOffset); |
| |
| int extraVertexOffset; |
| this->setBuffers(info.isIndexed(), &extraVertexOffset, startIndexOffset); |
| |
| GrGLenum scalarType; |
| bool texCoordNorm; |
| if (currLayout & GrDrawState::kTextFormat_VertexLayoutBit) { |
| scalarType = TEXT_COORDS_GL_TYPE; |
| texCoordNorm = SkToBool(TEXT_COORDS_ARE_NORMALIZED); |
| } else { |
| scalarType = GR_GL_FLOAT; |
| texCoordNorm = false; |
| } |
| |
| size_t vertexOffset = (info.startVertex() + extraVertexOffset) * newStride; |
| |
| // all the Pointers must be set if any of these are true |
| bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty || |
| vertexOffset != fHWGeometryState.fVertexOffset || |
| newStride != oldStride; |
| |
| // position and tex coord offsets change if above conditions are true |
| // or the type/normalization changed based on text vs nontext type coords. |
| bool posAndTexChange = allOffsetsChange || |
| (((TEXT_COORDS_GL_TYPE != GR_GL_FLOAT) || TEXT_COORDS_ARE_NORMALIZED) && |
| (GrDrawState::kTextFormat_VertexLayoutBit & |
| (fHWGeometryState.fVertexLayout ^ currLayout))); |
| |
| if (posAndTexChange) { |
| int idx = GrGLProgram::PositionAttributeIdx(); |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride, |
| (GrGLvoid*)vertexOffset)); |
| fHWGeometryState.fVertexOffset = vertexOffset; |
| } |
| |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (newTexCoordOffsets[t] > 0) { |
| GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]); |
| int idx = GrGLProgram::TexCoordAttributeIdx(t); |
| if (oldTexCoordOffsets[t] <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, |
| newStride, texCoordOffset)); |
| } else if (posAndTexChange || |
| newTexCoordOffsets[t] != oldTexCoordOffsets[t]) { |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, |
| newStride, texCoordOffset)); |
| } |
| } else if (oldTexCoordOffsets[t] > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t))); |
| } |
| } |
| |
| if (newColorOffset > 0) { |
| GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset); |
| int idx = GrGLProgram::ColorAttributeIdx(); |
| if (oldColorOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, colorOffset)); |
| } else if (allOffsetsChange || newColorOffset != oldColorOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, colorOffset)); |
| } |
| } else if (oldColorOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx())); |
| } |
| |
| if (newCoverageOffset > 0) { |
| GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset); |
| int idx = GrGLProgram::CoverageAttributeIdx(); |
| if (oldCoverageOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, coverageOffset)); |
| } else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, coverageOffset)); |
| } |
| } else if (oldCoverageOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx())); |
| } |
| |
| if (newEdgeOffset > 0) { |
| GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset); |
| int idx = GrGLProgram::EdgeAttributeIdx(); |
| if (oldEdgeOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, scalarType, |
| false, newStride, edgeOffset)); |
| } else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, scalarType, |
| false, newStride, edgeOffset)); |
| } |
| } else if (oldEdgeOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx())); |
| } |
| |
| fHWGeometryState.fVertexLayout = currLayout; |
| fHWGeometryState.fArrayPtrsDirty = false; |
| } |
| |
| void GrGpuGL::buildProgram(bool isPoints, |
| BlendOptFlags blendOpts, |
| GrBlendCoeff dstCoeff, |
| ProgramDesc* desc) { |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| // This should already have been caught |
| GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts)); |
| |
| bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); |
| |
| bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag | |
| kEmitCoverage_BlendOptFlag)); |
| |
| // The descriptor is used as a cache key. Thus when a field of the |
| // descriptor will not affect program generation (because of the vertex |
| // layout in use or other descriptor field settings) it should be set |
| // to a canonical value to avoid duplicate programs with different keys. |
| |
| // Must initialize all fields or cache will have false negatives! |
| desc->fVertexLayout = this->getVertexLayout(); |
| |
| desc->fEmitsPointSize = isPoints; |
| |
| bool requiresAttributeColors = !skipColor && |
| SkToBool(desc->fVertexLayout & GrDrawState::kColor_VertexLayoutBit); |
| bool requiresAttributeCoverage = !skipCoverage && |
| SkToBool(desc->fVertexLayout & GrDrawState::kCoverage_VertexLayoutBit); |
| |
| // fColorInput/fCoverageInput records how colors are specified for the. |
| // program. So we strip the bits from the layout to avoid false negatives |
| // when searching for an existing program in the cache. |
| desc->fVertexLayout &= ~(GrDrawState::kColor_VertexLayoutBit | GrDrawState::kCoverage_VertexLayoutBit); |
| |
| desc->fColorFilterXfermode = skipColor ? |
| SkXfermode::kDst_Mode : |
| drawState.getColorFilterMode(); |
| |
| // no reason to do edge aa or look at per-vertex coverage if coverage is |
| // ignored |
| if (skipCoverage) { |
| desc->fVertexLayout &= ~(GrDrawState::kEdge_VertexLayoutBit | GrDrawState::kCoverage_VertexLayoutBit); |
| } |
| |
| bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); |
| bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) || |
| (!requiresAttributeColors && 0xffffffff == drawState.getColor()); |
| if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) { |
| desc->fColorInput = ProgramDesc::kTransBlack_ColorInput; |
| } else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) { |
| desc->fColorInput = ProgramDesc::kSolidWhite_ColorInput; |
| } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) { |
| desc->fColorInput = ProgramDesc::kUniform_ColorInput; |
| } else { |
| desc->fColorInput = ProgramDesc::kAttribute_ColorInput; |
| } |
| |
| bool covIsSolidWhite = !requiresAttributeCoverage && 0xffffffff == drawState.getCoverage(); |
| |
| if (skipCoverage) { |
| desc->fCoverageInput = ProgramDesc::kTransBlack_ColorInput; |
| } else if (covIsSolidWhite) { |
| desc->fCoverageInput = ProgramDesc::kSolidWhite_ColorInput; |
| } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeCoverage) { |
| desc->fCoverageInput = ProgramDesc::kUniform_ColorInput; |
| } else { |
| desc->fCoverageInput = ProgramDesc::kAttribute_ColorInput; |
| } |
| |
| int lastEnabledStage = -1; |
| |
| if (!skipCoverage && (desc->fVertexLayout &GrDrawState::kEdge_VertexLayoutBit)) { |
| desc->fVertexEdgeType = drawState.getVertexEdgeType(); |
| desc->fDiscardIfOutsideEdge = drawState.getStencil().doesWrite(); |
| } else { |
| // Use canonical values when edge-aa is not enabled to avoid program cache misses. |
| desc->fVertexEdgeType = GrDrawState::kHairLine_EdgeType; |
| desc->fDiscardIfOutsideEdge = false; |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| |
| bool skip = s < drawState.getFirstCoverageStage() ? skipColor : skipCoverage; |
| if (!skip && drawState.isStageEnabled(s)) { |
| lastEnabledStage = s; |
| const GrEffectRef& effect = *drawState.getStage(s).getEffect(); |
| const GrBackendEffectFactory& factory = effect->getFactory(); |
| desc->fEffectKeys[s] = factory.glEffectKey(drawState.getStage(s), this->glCaps()); |
| } else { |
| desc->fEffectKeys[s] = 0; |
| } |
| } |
| |
| desc->fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput; |
| |
| // Currently the experimental GS will only work with triangle prims (and it doesn't do anything |
| // other than pass through values from the VS to the FS anyway). |
| #if 0 && GR_GL_EXPERIMENTAL_GS |
| desc->fExperimentalGS = this->getCaps().fGeometryShaderSupport; |
| #endif |
| |
| // We want to avoid generating programs with different "first cov stage" values when they would |
| // compute the same result. We set field in the desc to kNumStages when either there are no |
| // coverage stages or the distinction between coverage and color is immaterial. |
| int firstCoverageStage = GrDrawState::kNumStages; |
| desc->fFirstCoverageStage = GrDrawState::kNumStages; |
| bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage; |
| if (hasCoverage) { |
| firstCoverageStage = drawState.getFirstCoverageStage(); |
| } |
| |
| // other coverage inputs |
| if (!hasCoverage) { |
| hasCoverage = requiresAttributeCoverage || |
| (desc->fVertexLayout & GrDrawState::kEdge_VertexLayoutBit); |
| } |
| |
| if (hasCoverage) { |
| // color filter is applied between color/coverage computation |
| if (SkXfermode::kDst_Mode != desc->fColorFilterXfermode) { |
| desc->fFirstCoverageStage = firstCoverageStage; |
| } |
| |
| if (this->getCaps().dualSourceBlendingSupport() && |
| !(blendOpts & (kEmitCoverage_BlendOptFlag | kCoverageAsAlpha_BlendOptFlag))) { |
| if (kZero_GrBlendCoeff == dstCoeff) { |
| // write the coverage value to second color |
| desc->fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput; |
| desc->fFirstCoverageStage = firstCoverageStage; |
| } else if (kSA_GrBlendCoeff == dstCoeff) { |
| // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered. |
| desc->fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput; |
| desc->fFirstCoverageStage = firstCoverageStage; |
| } else if (kSC_GrBlendCoeff == dstCoeff) { |
| // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered. |
| desc->fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput; |
| desc->fFirstCoverageStage = firstCoverageStage; |
| } |
| } |
| } |
| } |