blob: 355851924b3aa9de171f4edf8a5a06f16a82f215 [file] [log] [blame]
#include "SkFlattenable.h"
#include "SkTypeface.h"
void SkFlattenable::flatten(SkFlattenableWriteBuffer&)
{
/* we don't write anything at the moment, but this allows our subclasses
to not know that, since we want them to always call INHERITED::flatten()
in their code.
*/
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
SkFlattenableReadBuffer::SkFlattenableReadBuffer() {
fRCArray = NULL;
fRCCount = 0;
fTFArray = NULL;
fTFCount = 0;
fFactoryArray = NULL;
fFactoryCount = 0;
}
SkFlattenableReadBuffer::SkFlattenableReadBuffer(const void* data) :
INHERITED(data, 1024 * 1024) {
fRCArray = NULL;
fRCCount = 0;
fTFArray = NULL;
fTFCount = 0;
fFactoryArray = NULL;
fFactoryCount = 0;
}
SkFlattenableReadBuffer::SkFlattenableReadBuffer(const void* data, size_t size)
: INHERITED(data, size) {
fRCArray = NULL;
fRCCount = 0;
fTFArray = NULL;
fTFCount = 0;
fFactoryArray = NULL;
fFactoryCount = 0;
}
SkTypeface* SkFlattenableReadBuffer::readTypeface() {
uint32_t index = this->readU32();
if (0 == index || index > (unsigned)fTFCount) {
if (index) {
SkDebugf("====== typeface index %d\n", index);
}
return NULL;
} else {
SkASSERT(fTFArray);
return fTFArray[index - 1];
}
}
SkRefCnt* SkFlattenableReadBuffer::readRefCnt() {
uint32_t index = this->readU32();
if (0 == index || index > (unsigned)fRCCount) {
return NULL;
} else {
SkASSERT(fRCArray);
return fRCArray[index - 1];
}
}
SkFlattenable* SkFlattenableReadBuffer::readFlattenable() {
SkFlattenable::Factory factory = NULL;
if (fFactoryCount > 0) {
uint32_t index = this->readU32();
if (index > 0) {
index -= 1;
SkASSERT(index < (unsigned)fFactoryCount);
factory = fFactoryArray[index];
// if we recorded an index, but failed to get a factory, we need
// to skip the flattened data in the buffer
if (NULL == factory) {
uint32_t size = this->readU32();
this->skip(size);
// fall through and return NULL for the object
}
}
} else {
factory = (SkFlattenable::Factory)readFunctionPtr();
}
SkFlattenable* obj = NULL;
if (factory) {
uint32_t sizeRecorded = this->readU32();
uint32_t offset = this->offset();
obj = (*factory)(*this);
// check that we read the amount we expected
uint32_t sizeRead = this->offset() - offset;
if (sizeRecorded != sizeRead) {
// we could try to fix up the offset...
sk_throw();
}
}
return obj;
}
void* SkFlattenableReadBuffer::readFunctionPtr() {
void* proc;
this->read(&proc, sizeof(proc));
return proc;
}
///////////////////////////////////////////////////////////////////////////////
SkFlattenableWriteBuffer::SkFlattenableWriteBuffer(size_t minSize) :
INHERITED(minSize) {
fFlags = (Flags)0;
fRCRecorder = NULL;
fTFRecorder = NULL;
fFactoryRecorder = NULL;
}
SkFlattenableWriteBuffer::~SkFlattenableWriteBuffer() {
fRCRecorder->safeUnref();
fTFRecorder->safeUnref();
fFactoryRecorder->safeUnref();
}
SkRefCntRecorder* SkFlattenableWriteBuffer::setRefCntRecorder(
SkRefCntRecorder* rec) {
SkRefCnt_SafeAssign(fRCRecorder, rec);
return rec;
}
SkRefCntRecorder* SkFlattenableWriteBuffer::setTypefaceRecorder(
SkRefCntRecorder* rec) {
SkRefCnt_SafeAssign(fTFRecorder, rec);
return rec;
}
SkFactoryRecorder* SkFlattenableWriteBuffer::setFactoryRecorder(
SkFactoryRecorder* rec) {
SkRefCnt_SafeAssign(fFactoryRecorder, rec);
return rec;
}
void SkFlattenableWriteBuffer::writeTypeface(SkTypeface* obj) {
if (NULL == obj || NULL == fTFRecorder) {
this->write32(0);
} else {
this->write32(fTFRecorder->record(obj));
}
}
void SkFlattenableWriteBuffer::writeRefCnt(SkRefCnt* obj) {
if (NULL == obj || NULL == fRCRecorder) {
this->write32(0);
} else {
this->write32(fRCRecorder->record(obj));
}
}
void SkFlattenableWriteBuffer::writeFlattenable(SkFlattenable* flattenable) {
SkFlattenable::Factory factory = NULL;
if (flattenable) {
factory = flattenable->getFactory();
}
if (fFactoryRecorder) {
this->write32(fFactoryRecorder->record(factory));
} else {
this->writeFunctionPtr((void*)factory);
}
if (factory) {
// make room for the size of the flatttened object
(void)this->reserve(sizeof(uint32_t));
// record the current size, so we can subtract after the object writes.
uint32_t offset = this->size();
// now flatten the object
flattenable->flatten(*this);
uint32_t objSize = this->size() - offset;
// record the obj's size
*this->peek32(offset - sizeof(uint32_t)) = objSize;
}
}
void SkFlattenableWriteBuffer::writeFunctionPtr(void* proc) {
*(void**)this->reserve(sizeof(void*)) = proc;
}
///////////////////////////////////////////////////////////////////////////////
SkRefCntRecorder::~SkRefCntRecorder() {
// call this now, while our decPtr() is sill in scope
this->reset();
}
void SkRefCntRecorder::incPtr(void* ptr) {
((SkRefCnt*)ptr)->ref();
}
void SkRefCntRecorder::decPtr(void* ptr) {
((SkRefCnt*)ptr)->unref();
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#define MAX_PAIR_COUNT 64
struct Pair {
const char* fName;
SkFlattenable::Factory fFactory;
};
static int gCount;
static Pair gPairs[MAX_PAIR_COUNT];
void SkFlattenable::Register(const char name[], Factory factory) {
SkASSERT(name);
SkASSERT(factory);
static bool gOnce;
if (!gOnce) {
gCount = 0;
gOnce = true;
}
SkASSERT(gCount < MAX_PAIR_COUNT);
gPairs[gCount].fName = name;
gPairs[gCount].fFactory = factory;
gCount += 1;
}
SkFlattenable::Factory SkFlattenable::NameToFactory(const char name[]) {
const Pair* pairs = gPairs;
for (int i = gCount - 1; i >= 0; --i) {
if (strcmp(pairs[i].fName, name) == 0) {
return pairs[i].fFactory;
}
}
return NULL;
}
const char* SkFlattenable::FactoryToName(Factory fact) {
const Pair* pairs = gPairs;
for (int i = gCount - 1; i >= 0; --i) {
if (pairs[i].fFactory == fact) {
return pairs[i].fName;
}
}
return NULL;
}
bool SkFlattenable::toDumpString(SkString* str) const {
return false;
}