blob: d0bc8d814c21cfee9d5b3ada91a5c0906e0c25b9 [file] [log] [blame]
/* NEON optimized code (C) COPYRIGHT 2009 Motorola */
#include "SkBitmapProcState.h"
#include "SkPerspIter.h"
#include "SkShader.h"
#include "SkUtils.h"
/* returns 0...(n-1) given any x (positive or negative).
As an example, if n (which is always positive) is 5...
x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3
*/
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count);
void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count);
#define MAKENAME(suffix) ClampX_ClampY ## suffix
#define TILEX_PROCF(fx, max) SkClampMax((fx) >> 16, max)
#define TILEY_PROCF(fy, max) SkClampMax((fy) >> 16, max)
#define TILEX_LOW_BITS(fx, max) (((fx) >> 12) & 0xF)
#define TILEY_LOW_BITS(fy, max) (((fy) >> 12) & 0xF)
#define CHECK_FOR_DECAL
#if defined(__ARM_HAVE_NEON)
#include "SkBitmapProcState_matrix_clamp.h"
#else
#include "SkBitmapProcState_matrix.h"
#endif
#define MAKENAME(suffix) RepeatX_RepeatY ## suffix
#define TILEX_PROCF(fx, max) (((fx) & 0xFFFF) * ((max) + 1) >> 16)
#define TILEY_PROCF(fy, max) (((fy) & 0xFFFF) * ((max) + 1) >> 16)
#define TILEX_LOW_BITS(fx, max) ((((fx) & 0xFFFF) * ((max) + 1) >> 12) & 0xF)
#define TILEY_LOW_BITS(fy, max) ((((fy) & 0xFFFF) * ((max) + 1) >> 12) & 0xF)
#if defined(__ARM_HAVE_NEON)
#include "SkBitmapProcState_matrix_repeat.h"
#else
#include "SkBitmapProcState_matrix.h"
#endif
#define MAKENAME(suffix) GeneralXY ## suffix
#define PREAMBLE(state) SkBitmapProcState::FixedTileProc tileProcX = (state).fTileProcX; \
SkBitmapProcState::FixedTileProc tileProcY = (state).fTileProcY
#define PREAMBLE_PARAM_X , SkBitmapProcState::FixedTileProc tileProcX
#define PREAMBLE_PARAM_Y , SkBitmapProcState::FixedTileProc tileProcY
#define PREAMBLE_ARG_X , tileProcX
#define PREAMBLE_ARG_Y , tileProcY
#define TILEX_PROCF(fx, max) (tileProcX(fx) * ((max) + 1) >> 16)
#define TILEY_PROCF(fy, max) (tileProcY(fy) * ((max) + 1) >> 16)
#define TILEX_LOW_BITS(fx, max) ((tileProcX(fx) * ((max) + 1) >> 12) & 0xF)
#define TILEY_LOW_BITS(fy, max) ((tileProcY(fy) * ((max) + 1) >> 12) & 0xF)
#include "SkBitmapProcState_matrix.h"
static inline U16CPU fixed_clamp(SkFixed x)
{
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (x >> 16)
x = 0xFFFF;
if (x < 0)
x = 0;
#else
if (x >> 16)
{
if (x < 0)
x = 0;
else
x = 0xFFFF;
}
#endif
return x;
}
static inline U16CPU fixed_repeat(SkFixed x)
{
return x & 0xFFFF;
}
static inline U16CPU fixed_mirror(SkFixed x)
{
SkFixed s = x << 15 >> 31;
// s is FFFFFFFF if we're on an odd interval, or 0 if an even interval
return (x ^ s) & 0xFFFF;
}
static SkBitmapProcState::FixedTileProc choose_tile_proc(unsigned m)
{
if (SkShader::kClamp_TileMode == m)
return fixed_clamp;
if (SkShader::kRepeat_TileMode == m)
return fixed_repeat;
SkASSERT(SkShader::kMirror_TileMode == m);
return fixed_mirror;
}
static inline U16CPU int_clamp(int x, int n) {
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (x >= n)
x = n - 1;
if (x < 0)
x = 0;
#else
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = 0;
} else {
x = n - 1;
}
}
#endif
return x;
}
static inline U16CPU int_repeat(int x, int n) {
return sk_int_mod(x, n);
}
static inline U16CPU int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
#if 0
static void test_int_tileprocs() {
for (int i = -8; i <= 8; i++) {
SkDebugf(" int_mirror(%2d, 3) = %d\n", i, int_mirror(i, 3));
}
}
#endif
static SkBitmapProcState::IntTileProc choose_int_tile_proc(unsigned tm) {
if (SkShader::kClamp_TileMode == tm)
return int_clamp;
if (SkShader::kRepeat_TileMode == tm)
return int_repeat;
SkASSERT(SkShader::kMirror_TileMode == tm);
return int_mirror;
}
//////////////////////////////////////////////////////////////////////////////
void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count)
{
int i;
#if defined(__ARM_HAVE_NEON)
if (count >= 8) {
/* SkFixed is 16.16 fixed point */
SkFixed dx2 = dx+dx;
SkFixed dx4 = dx2+dx2;
SkFixed dx8 = dx4+dx4;
/* now build fx/fx+dx/fx+2dx/fx+3dx */
SkFixed fx1, fx2, fx3;
int32x2_t lower, upper;
int32x4_t lbase, hbase;
uint16_t *dst16 = (uint16_t *)dst;
fx1 = fx+dx;
fx2 = fx1+dx;
fx3 = fx2+dx;
/* avoid an 'lbase unitialized' warning */
lbase = vdupq_n_s32(fx);
lbase = vsetq_lane_s32(fx1, lbase, 1);
lbase = vsetq_lane_s32(fx2, lbase, 2);
lbase = vsetq_lane_s32(fx3, lbase, 3);
hbase = vaddq_s32(lbase, vdupq_n_s32(dx4));
/* take upper 16 of each, store, and bump everything */
do {
int32x4_t lout, hout;
uint16x8_t hi16;
lout = lbase;
hout = hbase;
/* gets hi's of all louts then hi's of all houts */
asm ("vuzpq.16 %q0, %q1" : "+w" (lout), "+w" (hout));
hi16 = vreinterpretq_u16_s32(hout);
vst1q_u16(dst16, hi16);
/* on to the next */
lbase = vaddq_s32 (lbase, vdupq_n_s32(dx8));
hbase = vaddq_s32 (hbase, vdupq_n_s32(dx8));
dst16 += 8;
count -= 8;
fx += dx8;
} while (count >= 8);
dst = (uint32_t *) dst16;
}
#else
for (i = (count >> 2); i > 0; --i)
{
*dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += dx+dx;
*dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += dx+dx;
}
count &= 3;
#endif
uint16_t* xx = (uint16_t*)dst;
for (i = count; i > 0; --i) {
*xx++ = SkToU16(fx >> 16); fx += dx;
}
}
void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count)
{
#if defined(__ARM_HAVE_NEON)
if (count >= 8) {
int32x4_t wide_fx;
int32x4_t wide_fx2;
int32x4_t wide_dx8 = vdupq_n_s32(dx*8);
wide_fx = vdupq_n_s32(fx);
wide_fx = vsetq_lane_s32(fx+dx, wide_fx, 1);
wide_fx = vsetq_lane_s32(fx+dx+dx, wide_fx, 2);
wide_fx = vsetq_lane_s32(fx+dx+dx+dx, wide_fx, 3);
wide_fx2 = vaddq_s32(wide_fx, vdupq_n_s32(dx+dx+dx+dx));
while (count >= 8) {
int32x4_t wide_out;
int32x4_t wide_out2;
wide_out = vshlq_n_s32(vshrq_n_s32(wide_fx, 12), 14);
wide_out = vorrq_s32(wide_out,
vaddq_s32(vshrq_n_s32(wide_fx,16), vdupq_n_s32(1)));
wide_out2 = vshlq_n_s32(vshrq_n_s32(wide_fx2, 12), 14);
wide_out2 = vorrq_s32(wide_out2,
vaddq_s32(vshrq_n_s32(wide_fx2,16), vdupq_n_s32(1)));
vst1q_u32(dst, vreinterpretq_u32_s32(wide_out));
vst1q_u32(dst+4, vreinterpretq_u32_s32(wide_out2));
dst += 8;
fx += dx*8;
wide_fx = vaddq_s32(wide_fx, wide_dx8);
wide_fx2 = vaddq_s32(wide_fx2, wide_dx8);
count -= 8;
}
}
#endif
if (count & 1)
{
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
while ((count -= 2) >= 0)
{
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
}
///////////////////////////////////////////////////////////////////////////////
// stores the same as SCALE, but is cheaper to compute. Also since there is no
// scale, we don't need/have a FILTER version
static void fill_sequential(uint16_t xptr[], int start, int count) {
#if 1
if (reinterpret_cast<intptr_t>(xptr) & 0x2) {
*xptr++ = start++;
count -= 1;
}
if (count > 3) {
uint32_t* xxptr = reinterpret_cast<uint32_t*>(xptr);
uint32_t pattern0 = PACK_TWO_SHORTS(start + 0, start + 1);
uint32_t pattern1 = PACK_TWO_SHORTS(start + 2, start + 3);
start += count & ~3;
int qcount = count >> 2;
do {
*xxptr++ = pattern0;
pattern0 += 0x40004;
*xxptr++ = pattern1;
pattern1 += 0x40004;
} while (--qcount != 0);
xptr = reinterpret_cast<uint16_t*>(xxptr);
count &= 3;
}
while (--count >= 0) {
*xptr++ = start++;
}
#else
for (int i = 0; i < count; i++) {
*xptr++ = start++;
}
#endif
}
static int nofilter_trans_preamble(const SkBitmapProcState& s, uint32_t** xy,
int x, int y) {
SkPoint pt;
s.fInvProc(*s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &pt);
**xy = s.fIntTileProcY(SkScalarToFixed(pt.fY) >> 16,
s.fBitmap->height());
*xy += 1; // bump the ptr
// return our starting X position
return SkScalarToFixed(pt.fX) >> 16;
}
static void clampx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fBitmap->width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int n;
// fill before 0 as needed
if (xpos < 0) {
n = -xpos;
if (n > count) {
n = count;
}
memset(xptr, 0, n * sizeof(uint16_t));
count -= n;
if (0 == count) {
return;
}
xptr += n;
xpos = 0;
}
// fill in 0..width-1 if needed
if (xpos < width) {
n = width - xpos;
if (n > count) {
n = count;
}
fill_sequential(xptr, xpos, n);
count -= n;
if (0 == count) {
return;
}
xptr += n;
}
// fill the remaining with the max value
sk_memset16(xptr, width - 1, count);
}
static void repeatx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fBitmap->width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int start = sk_int_mod(xpos, width);
int n = width - start;
if (n > count) {
n = count;
}
fill_sequential(xptr, start, n);
xptr += n;
count -= n;
while (count >= width) {
fill_sequential(xptr, 0, width);
xptr += width;
count -= width;
}
if (count > 0) {
fill_sequential(xptr, 0, count);
}
}
static void fill_backwards(uint16_t xptr[], int pos, int count) {
for (int i = 0; i < count; i++) {
SkASSERT(pos >= 0);
xptr[i] = pos--;
}
}
static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fBitmap->width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
// need to know our start, and our initial phase (forward or backward)
bool forward;
int n;
int start = sk_int_mod(xpos, 2 * width);
if (start >= width) {
start = width + ~(start - width);
forward = false;
n = start + 1; // [start .. 0]
} else {
forward = true;
n = width - start; // [start .. width)
}
if (n > count) {
n = count;
}
if (forward) {
fill_sequential(xptr, start, n);
} else {
fill_backwards(xptr, start, n);
}
forward = !forward;
xptr += n;
count -= n;
while (count >= width) {
if (forward) {
fill_sequential(xptr, 0, width);
} else {
fill_backwards(xptr, width - 1, width);
}
forward = !forward;
xptr += width;
count -= width;
}
if (count > 0) {
if (forward) {
fill_sequential(xptr, 0, count);
} else {
fill_backwards(xptr, width - 1, count);
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkBitmapProcState::MatrixProc
SkBitmapProcState::chooseMatrixProc(bool trivial_matrix) {
// test_int_tileprocs();
// check for our special case when there is no scale/affine/perspective
if (trivial_matrix) {
SkASSERT(!fDoFilter);
fIntTileProcY = choose_int_tile_proc(fTileModeY);
switch (fTileModeX) {
case SkShader::kClamp_TileMode:
return clampx_nofilter_trans;
case SkShader::kRepeat_TileMode:
return repeatx_nofilter_trans;
case SkShader::kMirror_TileMode:
return mirrorx_nofilter_trans;
}
}
int index = 0;
if (fDoFilter) {
index = 1;
}
if (fInvType & SkMatrix::kPerspective_Mask) {
index += 4;
} else if (fInvType & SkMatrix::kAffine_Mask) {
index += 2;
}
if (SkShader::kClamp_TileMode == fTileModeX &&
SkShader::kClamp_TileMode == fTileModeY)
{
// clamp gets special version of filterOne
fFilterOneX = SK_Fixed1;
fFilterOneY = SK_Fixed1;
return ClampX_ClampY_Procs[index];
}
// all remaining procs use this form for filterOne
fFilterOneX = SK_Fixed1 / fBitmap->width();
fFilterOneY = SK_Fixed1 / fBitmap->height();
if (SkShader::kRepeat_TileMode == fTileModeX &&
SkShader::kRepeat_TileMode == fTileModeY)
{
return RepeatX_RepeatY_Procs[index];
}
fTileProcX = choose_tile_proc(fTileModeX);
fTileProcY = choose_tile_proc(fTileModeY);
return GeneralXY_Procs[index];
}