blob: 4709d228716cc6e9b27e987338eb17f898208f26 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrReducedClip.h"
#endif
#include "SkClipStack.h"
#include "SkPath.h"
#include "SkRandom.h"
#include "SkRect.h"
#include "SkRegion.h"
static void test_assign_and_comparison(skiatest::Reporter* reporter) {
SkClipStack s;
bool doAA = false;
REPORTER_ASSERT(reporter, 0 == s.getSaveCount());
// Build up a clip stack with a path, an empty clip, and a rect.
s.save();
REPORTER_ASSERT(reporter, 1 == s.getSaveCount());
SkPath p;
p.moveTo(5, 6);
p.lineTo(7, 8);
p.lineTo(5, 9);
p.close();
s.clipDevPath(p, SkRegion::kIntersect_Op, doAA);
s.save();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
SkRect r = SkRect::MakeLTRB(1, 2, 3, 4);
s.clipDevRect(r, SkRegion::kIntersect_Op, doAA);
r = SkRect::MakeLTRB(10, 11, 12, 13);
s.clipDevRect(r, SkRegion::kIntersect_Op, doAA);
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(14, 15, 16, 17);
s.clipDevRect(r, SkRegion::kUnion_Op, doAA);
// Test that assignment works.
SkClipStack copy = s;
REPORTER_ASSERT(reporter, s == copy);
// Test that different save levels triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
REPORTER_ASSERT(reporter, s != copy);
// Test that an equal, but not copied version is equal.
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(14, 15, 16, 17);
s.clipDevRect(r, SkRegion::kUnion_Op, doAA);
REPORTER_ASSERT(reporter, s == copy);
// Test that a different op on one level triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(14, 15, 16, 17);
s.clipDevRect(r, SkRegion::kIntersect_Op, doAA);
REPORTER_ASSERT(reporter, s != copy);
// Test that different state (clip type) triggers not equal.
// NO LONGER VALID: if a path contains only a rect, we turn
// it into a bare rect for performance reasons (working
// around Chromium/JavaScript bad pattern).
/*
s.restore();
s.save();
SkPath rp;
rp.addRect(r);
s.clipDevPath(rp, SkRegion::kUnion_Op, doAA);
REPORTER_ASSERT(reporter, s != copy);
*/
// Test that different rects triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(24, 25, 26, 27);
s.clipDevRect(r, SkRegion::kUnion_Op, doAA);
REPORTER_ASSERT(reporter, s != copy);
// Sanity check
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
copy.restore();
REPORTER_ASSERT(reporter, 2 == copy.getSaveCount());
REPORTER_ASSERT(reporter, s == copy);
s.restore();
REPORTER_ASSERT(reporter, 1 == s.getSaveCount());
copy.restore();
REPORTER_ASSERT(reporter, 1 == copy.getSaveCount());
REPORTER_ASSERT(reporter, s == copy);
// Test that different paths triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 0 == s.getSaveCount());
s.save();
REPORTER_ASSERT(reporter, 1 == s.getSaveCount());
p.addRect(r);
s.clipDevPath(p, SkRegion::kIntersect_Op, doAA);
REPORTER_ASSERT(reporter, s != copy);
}
static void assert_count(skiatest::Reporter* reporter, const SkClipStack& stack,
int count) {
SkClipStack::B2TIter iter(stack);
int counter = 0;
while (iter.next()) {
counter += 1;
}
REPORTER_ASSERT(reporter, count == counter);
}
// Exercise the SkClipStack's bottom to top and bidirectional iterators
// (including the skipToTopmost functionality)
static void test_iterators(skiatest::Reporter* reporter) {
SkClipStack stack;
static const SkRect gRects[] = {
{ 0, 0, 40, 40 },
{ 60, 0, 100, 40 },
{ 0, 60, 40, 100 },
{ 60, 60, 100, 100 }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRects); i++) {
// the union op will prevent these from being fused together
stack.clipDevRect(gRects[i], SkRegion::kUnion_Op, false);
}
assert_count(reporter, stack, 4);
// bottom to top iteration
{
const SkClipStack::Element* element = NULL;
SkClipStack::B2TIter iter(stack);
int i;
for (i = 0, element = iter.next(); element; ++i, element = iter.next()) {
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, element->getRect() == gRects[i]);
}
SkASSERT(i == 4);
}
// top to bottom iteration
{
const SkClipStack::Element* element = NULL;
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
int i;
for (i = 3, element = iter.prev(); element; --i, element = iter.prev()) {
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, element->getRect() == gRects[i]);
}
SkASSERT(i == -1);
}
// skipToTopmost
{
const SkClipStack::Element* element = NULL;
SkClipStack::Iter iter(stack, SkClipStack::Iter::kBottom_IterStart);
element = iter.skipToTopmost(SkRegion::kUnion_Op);
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, element->getRect() == gRects[3]);
}
}
// Exercise the SkClipStack's getConservativeBounds computation
static void test_bounds(skiatest::Reporter* reporter, bool useRects) {
static const int gNumCases = 20;
static const SkRect gAnswerRectsBW[gNumCases] = {
// A op B
{ 40, 40, 50, 50 },
{ 10, 10, 50, 50 },
{ 10, 10, 80, 80 },
{ 10, 10, 80, 80 },
{ 40, 40, 80, 80 },
// invA op B
{ 40, 40, 80, 80 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
{ 40, 40, 50, 50 },
// A op invB
{ 10, 10, 50, 50 },
{ 40, 40, 50, 50 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
// invA op invB
{ 0, 0, 100, 100 },
{ 40, 40, 80, 80 },
{ 0, 0, 100, 100 },
{ 10, 10, 80, 80 },
{ 10, 10, 50, 50 },
};
static const SkRegion::Op gOps[] = {
SkRegion::kIntersect_Op,
SkRegion::kDifference_Op,
SkRegion::kUnion_Op,
SkRegion::kXOR_Op,
SkRegion::kReverseDifference_Op
};
SkRect rectA, rectB;
rectA.iset(10, 10, 50, 50);
rectB.iset(40, 40, 80, 80);
SkPath clipA, clipB;
clipA.addRoundRect(rectA, SkIntToScalar(5), SkIntToScalar(5));
clipB.addRoundRect(rectB, SkIntToScalar(5), SkIntToScalar(5));
SkClipStack stack;
SkRect devClipBound;
bool isIntersectionOfRects = false;
int testCase = 0;
int numBitTests = useRects ? 1 : 4;
for (int invBits = 0; invBits < numBitTests; ++invBits) {
for (size_t op = 0; op < SK_ARRAY_COUNT(gOps); ++op) {
stack.save();
bool doInvA = SkToBool(invBits & 1);
bool doInvB = SkToBool(invBits & 2);
clipA.setFillType(doInvA ? SkPath::kInverseEvenOdd_FillType :
SkPath::kEvenOdd_FillType);
clipB.setFillType(doInvB ? SkPath::kInverseEvenOdd_FillType :
SkPath::kEvenOdd_FillType);
if (useRects) {
stack.clipDevRect(rectA, SkRegion::kIntersect_Op, false);
stack.clipDevRect(rectB, gOps[op], false);
} else {
stack.clipDevPath(clipA, SkRegion::kIntersect_Op, false);
stack.clipDevPath(clipB, gOps[op], false);
}
REPORTER_ASSERT(reporter, !stack.isWideOpen());
stack.getConservativeBounds(0, 0, 100, 100, &devClipBound,
&isIntersectionOfRects);
if (useRects) {
REPORTER_ASSERT(reporter, isIntersectionOfRects ==
(gOps[op] == SkRegion::kIntersect_Op));
} else {
REPORTER_ASSERT(reporter, !isIntersectionOfRects);
}
SkASSERT(testCase < gNumCases);
REPORTER_ASSERT(reporter, devClipBound == gAnswerRectsBW[testCase]);
++testCase;
stack.restore();
}
}
}
// Test out 'isWideOpen' entry point
static void test_isWideOpen(skiatest::Reporter* reporter) {
SkRect rectA, rectB;
rectA.iset(10, 10, 40, 40);
rectB.iset(50, 50, 80, 80);
// Stack should initially be wide open
{
SkClipStack stack;
REPORTER_ASSERT(reporter, stack.isWideOpen());
}
// Test out case where the user specifies a union that includes everything
{
SkClipStack stack;
SkPath clipA, clipB;
clipA.addRoundRect(rectA, SkIntToScalar(5), SkIntToScalar(5));
clipA.setFillType(SkPath::kInverseEvenOdd_FillType);
clipB.addRoundRect(rectB, SkIntToScalar(5), SkIntToScalar(5));
clipB.setFillType(SkPath::kInverseEvenOdd_FillType);
stack.clipDevPath(clipA, SkRegion::kReplace_Op, false);
stack.clipDevPath(clipB, SkRegion::kUnion_Op, false);
REPORTER_ASSERT(reporter, stack.isWideOpen());
}
// Test out union w/ a wide open clip
{
SkClipStack stack;
stack.clipDevRect(rectA, SkRegion::kUnion_Op, false);
REPORTER_ASSERT(reporter, stack.isWideOpen());
}
// Test out empty difference from a wide open clip
{
SkClipStack stack;
SkRect emptyRect;
emptyRect.setEmpty();
stack.clipDevRect(emptyRect, SkRegion::kDifference_Op, false);
REPORTER_ASSERT(reporter, stack.isWideOpen());
}
// Test out return to wide open
{
SkClipStack stack;
stack.save();
stack.clipDevRect(rectA, SkRegion::kReplace_Op, false);
REPORTER_ASSERT(reporter, !stack.isWideOpen());
stack.restore();
REPORTER_ASSERT(reporter, stack.isWideOpen());
}
}
static int count(const SkClipStack& stack) {
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
const SkClipStack::Element* element = NULL;
int count = 0;
for (element = iter.prev(); element; element = iter.prev(), ++count) {
;
}
return count;
}
static void test_rect_inverse_fill(skiatest::Reporter* reporter) {
// non-intersecting rectangles
SkRect rect = SkRect::MakeLTRB(0, 0, 10, 10);
SkPath path;
path.addRect(rect);
path.toggleInverseFillType();
SkClipStack stack;
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
SkRect bounds;
SkClipStack::BoundsType boundsType;
stack.getBounds(&bounds, &boundsType);
REPORTER_ASSERT(reporter, SkClipStack::kInsideOut_BoundsType == boundsType);
REPORTER_ASSERT(reporter, bounds == rect);
}
// Test out SkClipStack's merging of rect clips. In particular exercise
// merging of aa vs. bw rects.
static void test_rect_merging(skiatest::Reporter* reporter) {
SkRect overlapLeft = SkRect::MakeLTRB(10, 10, 50, 50);
SkRect overlapRight = SkRect::MakeLTRB(40, 40, 80, 80);
SkRect nestedParent = SkRect::MakeLTRB(10, 10, 90, 90);
SkRect nestedChild = SkRect::MakeLTRB(40, 40, 60, 60);
SkRect bound;
SkClipStack::BoundsType type;
bool isIntersectionOfRects;
// all bw overlapping - should merge
{
SkClipStack stack;
stack.clipDevRect(overlapLeft, SkRegion::kReplace_Op, false);
stack.clipDevRect(overlapRight, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// all aa overlapping - should merge
{
SkClipStack stack;
stack.clipDevRect(overlapLeft, SkRegion::kReplace_Op, true);
stack.clipDevRect(overlapRight, SkRegion::kIntersect_Op, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// mixed overlapping - should _not_ merge
{
SkClipStack stack;
stack.clipDevRect(overlapLeft, SkRegion::kReplace_Op, true);
stack.clipDevRect(overlapRight, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, !isIntersectionOfRects);
}
// mixed nested (bw inside aa) - should merge
{
SkClipStack stack;
stack.clipDevRect(nestedParent, SkRegion::kReplace_Op, true);
stack.clipDevRect(nestedChild, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// mixed nested (aa inside bw) - should merge
{
SkClipStack stack;
stack.clipDevRect(nestedParent, SkRegion::kReplace_Op, false);
stack.clipDevRect(nestedChild, SkRegion::kIntersect_Op, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// reverse nested (aa inside bw) - should _not_ merge
{
SkClipStack stack;
stack.clipDevRect(nestedChild, SkRegion::kReplace_Op, false);
stack.clipDevRect(nestedParent, SkRegion::kIntersect_Op, true);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, !isIntersectionOfRects);
}
}
static void test_quickContains(skiatest::Reporter* reporter) {
SkRect testRect = SkRect::MakeLTRB(10, 10, 40, 40);
SkRect insideRect = SkRect::MakeLTRB(20, 20, 30, 30);
SkRect intersectingRect = SkRect::MakeLTRB(25, 25, 50, 50);
SkRect outsideRect = SkRect::MakeLTRB(0, 0, 50, 50);
SkRect nonIntersectingRect = SkRect::MakeLTRB(100, 100, 110, 110);
SkPath insideCircle;
insideCircle.addCircle(25, 25, 5);
SkPath intersectingCircle;
intersectingCircle.addCircle(25, 40, 10);
SkPath outsideCircle;
outsideCircle.addCircle(25, 25, 50);
SkPath nonIntersectingCircle;
nonIntersectingCircle.addCircle(100, 100, 5);
{
SkClipStack stack;
stack.clipDevRect(outsideRect, SkRegion::kDifference_Op, false);
// return false because quickContains currently does not care for kDifference_Op
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Replace Op tests
{
SkClipStack stack;
stack.clipDevRect(outsideRect, SkRegion::kReplace_Op, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevRect(insideRect, SkRegion::kIntersect_Op, false);
stack.save(); // To prevent in-place substitution by replace OP
stack.clipDevRect(outsideRect, SkRegion::kReplace_Op, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
stack.restore();
}
{
SkClipStack stack;
stack.clipDevRect(outsideRect, SkRegion::kIntersect_Op, false);
stack.save(); // To prevent in-place substitution by replace OP
stack.clipDevRect(insideRect, SkRegion::kReplace_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
stack.restore();
}
// Verify proper traversal of multi-element clip
{
SkClipStack stack;
stack.clipDevRect(insideRect, SkRegion::kIntersect_Op, false);
// Use a path for second clip to prevent in-place intersection
stack.clipDevPath(outsideCircle, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Intersect Op tests with rectangles
{
SkClipStack stack;
stack.clipDevRect(outsideRect, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevRect(insideRect, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevRect(intersectingRect, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevRect(nonIntersectingRect, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Intersect Op tests with circle paths
{
SkClipStack stack;
stack.clipDevPath(outsideCircle, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevPath(insideCircle, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevPath(intersectingCircle, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipDevPath(nonIntersectingCircle, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Intersect Op tests with inverse filled rectangles
{
SkClipStack stack;
SkPath path;
path.addRect(outsideRect);
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path;
path.addRect(insideRect);
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path;
path.addRect(intersectingRect);
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path;
path.addRect(nonIntersectingRect);
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
// Intersect Op tests with inverse filled circles
{
SkClipStack stack;
SkPath path = outsideCircle;
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path = insideCircle;
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path = intersectingCircle;
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path = nonIntersectingCircle;
path.toggleInverseFillType();
stack.clipDevPath(path, SkRegion::kIntersect_Op, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
// Functions that add a shape to the clip stack. The shape is computed from a rectangle.
// AA is always disabled since the clip stack reducer can cause changes in aa rasterization of the
// stack. A fractional edge repeated in different elements may be rasterized fewer times using the
// reduced stack.
typedef void (*AddElementFunc) (const SkRect& rect,
bool invert,
SkRegion::Op op,
SkClipStack* stack);
static void add_round_rect(const SkRect& rect, bool invert, SkRegion::Op op, SkClipStack* stack) {
SkPath path;
SkScalar rx = rect.width() / 10;
SkScalar ry = rect.height() / 20;
path.addRoundRect(rect, rx, ry);
if (invert) {
path.setFillType(SkPath::kInverseWinding_FillType);
}
stack->clipDevPath(path, op, false);
};
static void add_rect(const SkRect& rect, bool invert, SkRegion::Op op, SkClipStack* stack) {
if (invert) {
SkPath path;
path.addRect(rect);
path.setFillType(SkPath::kInverseWinding_FillType);
stack->clipDevPath(path, op, false);
} else {
stack->clipDevRect(rect, op, false);
}
};
static void add_oval(const SkRect& rect, bool invert, SkRegion::Op op, SkClipStack* stack) {
SkPath path;
path.addOval(rect);
if (invert) {
path.setFillType(SkPath::kInverseWinding_FillType);
}
stack->clipDevPath(path, op, false);
};
static void add_elem_to_stack(const SkClipStack::Element& element, SkClipStack* stack) {
switch (element.getType()) {
case SkClipStack::Element::kRect_Type:
stack->clipDevRect(element.getRect(), element.getOp(), element.isAA());
break;
case SkClipStack::Element::kPath_Type:
stack->clipDevPath(element.getPath(), element.getOp(), element.isAA());
break;
case SkClipStack::Element::kEmpty_Type:
SkDEBUGFAIL("Why did the reducer produce an explicit empty.");
stack->clipEmpty();
break;
}
}
static void add_elem_to_region(const SkClipStack::Element& element,
const SkIRect& bounds,
SkRegion* region) {
SkRegion elemRegion;
SkRegion boundsRgn(bounds);
switch (element.getType()) {
case SkClipStack::Element::kRect_Type: {
SkPath path;
path.addRect(element.getRect());
elemRegion.setPath(path, boundsRgn);
break;
}
case SkClipStack::Element::kPath_Type:
elemRegion.setPath(element.getPath(), boundsRgn);
break;
case SkClipStack::Element::kEmpty_Type:
//
region->setEmpty();
return;
}
region->op(elemRegion, element.getOp());
}
// This can assist with debugging the clip stack reduction code when the test below fails.
static inline void print_clip(const SkClipStack::Element& element) {
static const char* kOpStrs[] = {
"DF",
"IS",
"UN",
"XR",
"RD",
"RP",
};
if (SkClipStack::Element::kEmpty_Type != element.getType()) {
const SkRect& bounds = element.getBounds();
bool isRect = SkClipStack::Element::kRect_Type == element.getType();
SkDebugf("%s %s %s [%f %f] x [%f %f]\n",
kOpStrs[element.getOp()],
(isRect ? "R" : "P"),
(element.isInverseFilled() ? "I" : " "),
bounds.fLeft, bounds.fRight, bounds.fTop, bounds.fBottom);
} else {
SkDebugf("EM\n");
}
}
static void test_reduced_clip_stack(skiatest::Reporter* reporter) {
// We construct random clip stacks, reduce them, and then rasterize both versions to verify that
// they are equal.
// All the clip elements will be contained within these bounds.
static const SkRect kBounds = SkRect::MakeWH(100, 100);
enum {
kNumTests = 200,
kMinElemsPerTest = 1,
kMaxElemsPerTest = 50,
};
// min/max size of a clip element as a fraction of kBounds.
static const SkScalar kMinElemSizeFrac = SK_Scalar1 / 5;
static const SkScalar kMaxElemSizeFrac = SK_Scalar1;
static const SkRegion::Op kOps[] = {
SkRegion::kDifference_Op,
SkRegion::kIntersect_Op,
SkRegion::kUnion_Op,
SkRegion::kXOR_Op,
SkRegion::kReverseDifference_Op,
SkRegion::kReplace_Op,
};
// Replace operations short-circuit the optimizer. We want to make sure that we test this code
// path a little bit but we don't want it to prevent us from testing many longer traversals in
// the optimizer.
static const int kReplaceDiv = 4 * kMaxElemsPerTest;
// We want to test inverse fills. However, they are quite rare in practice so don't over do it.
static const SkScalar kFractionInverted = SK_Scalar1 / kMaxElemsPerTest;
static const AddElementFunc kElementFuncs[] = {
add_rect,
add_round_rect,
add_oval,
};
SkRandom r;
for (int i = 0; i < kNumTests; ++i) {
// Randomly generate a clip stack.
SkClipStack stack;
int numElems = r.nextRangeU(kMinElemsPerTest, kMaxElemsPerTest);
for (int e = 0; e < numElems; ++e) {
SkRegion::Op op = kOps[r.nextULessThan(SK_ARRAY_COUNT(kOps))];
if (op == SkRegion::kReplace_Op) {
if (r.nextU() % kReplaceDiv) {
--e;
continue;
}
}
// saves can change the clip stack behavior when an element is added.
bool doSave = r.nextBool();
SkSize size = SkSize::Make(
SkScalarFloorToScalar(SkScalarMul(kBounds.width(), r.nextRangeScalar(kMinElemSizeFrac, kMaxElemSizeFrac))),
SkScalarFloorToScalar(SkScalarMul(kBounds.height(), r.nextRangeScalar(kMinElemSizeFrac, kMaxElemSizeFrac))));
SkPoint xy = {SkScalarFloorToScalar(r.nextRangeScalar(kBounds.fLeft, kBounds.fRight - size.fWidth)),
SkScalarFloorToScalar(r.nextRangeScalar(kBounds.fTop, kBounds.fBottom - size.fHeight))};
SkRect rect = SkRect::MakeXYWH(xy.fX, xy.fY, size.fWidth, size.fHeight);
bool invert = r.nextBiasedBool(kFractionInverted);
kElementFuncs[r.nextULessThan(SK_ARRAY_COUNT(kElementFuncs))](rect, invert, op, &stack);
if (doSave) {
stack.save();
}
}
SkRect inflatedBounds = kBounds;
inflatedBounds.outset(kBounds.width() / 2, kBounds.height() / 2);
SkIRect inflatedIBounds;
inflatedBounds.roundOut(&inflatedIBounds);
typedef GrReducedClip::ElementList ElementList;
// Get the reduced version of the stack.
ElementList reducedClips;
GrReducedClip::InitialState initial;
SkIRect tBounds;
SkIRect* tightBounds = r.nextBool() ? &tBounds : NULL;
GrReducedClip::ReduceClipStack(stack,
inflatedIBounds,
&reducedClips,
&initial,
tightBounds);
// Build a new clip stack based on the reduced clip elements
SkClipStack reducedStack;
if (GrReducedClip::kAllOut_InitialState == initial) {
// whether the result is bounded or not, the whole plane should start outside the clip.
reducedStack.clipEmpty();
}
for (ElementList::Iter iter = reducedClips.headIter(); NULL != iter.get(); iter.next()) {
add_elem_to_stack(*iter.get(), &reducedStack);
}
// GrReducedClipStack assumes that the final result is clipped to the returned bounds
if (NULL != tightBounds) {
reducedStack.clipDevRect(*tightBounds, SkRegion::kIntersect_Op);
}
// convert both the original stack and reduced stack to SkRegions and see if they're equal
SkRegion region;
SkRegion reducedRegion;
region.setRect(inflatedIBounds);
const SkClipStack::Element* element;
SkClipStack::Iter iter(stack, SkClipStack::Iter::kBottom_IterStart);
while ((element = iter.next())) {
add_elem_to_region(*element, inflatedIBounds, &region);
}
reducedRegion.setRect(inflatedIBounds);
iter.reset(reducedStack, SkClipStack::Iter::kBottom_IterStart);
while ((element = iter.next())) {
add_elem_to_region(*element, inflatedIBounds, &reducedRegion);
}
REPORTER_ASSERT(reporter, region == reducedRegion);
}
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
static void TestClipStack(skiatest::Reporter* reporter) {
SkClipStack stack;
REPORTER_ASSERT(reporter, 0 == stack.getSaveCount());
assert_count(reporter, stack, 0);
static const SkIRect gRects[] = {
{ 0, 0, 100, 100 },
{ 25, 25, 125, 125 },
{ 0, 0, 1000, 1000 },
{ 0, 0, 75, 75 }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRects); i++) {
stack.clipDevRect(gRects[i], SkRegion::kIntersect_Op);
}
// all of the above rects should have been intersected, leaving only 1 rect
SkClipStack::B2TIter iter(stack);
const SkClipStack::Element* element = iter.next();
SkRect answer;
answer.iset(25, 25, 75, 75);
REPORTER_ASSERT(reporter, NULL != element);
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, SkRegion::kIntersect_Op == element->getOp());
REPORTER_ASSERT(reporter, element->getRect() == answer);
// now check that we only had one in our iterator
REPORTER_ASSERT(reporter, !iter.next());
stack.reset();
REPORTER_ASSERT(reporter, 0 == stack.getSaveCount());
assert_count(reporter, stack, 0);
test_assign_and_comparison(reporter);
test_iterators(reporter);
test_bounds(reporter, true); // once with rects
test_bounds(reporter, false); // once with paths
test_isWideOpen(reporter);
test_rect_merging(reporter);
test_rect_inverse_fill(reporter);
test_quickContains(reporter);
#if SK_SUPPORT_GPU
test_reduced_clip_stack(reporter);
#endif
}
#include "TestClassDef.h"
DEFINE_TESTCLASS("ClipStack", TestClipStackClass, TestClipStack)