blob: 0a0b0da33d725702db7fbfae6a843a84d642da9d [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrDrawState_DEFINED
#define GrDrawState_DEFINED
#include "GrBackendEffectFactory.h"
#include "GrColor.h"
#include "GrEffectStage.h"
#include "GrRefCnt.h"
#include "GrRenderTarget.h"
#include "GrStencil.h"
#include "GrTemplates.h"
#include "GrTexture.h"
#include "effects/GrSimpleTextureEffect.h"
#include "SkMatrix.h"
#include "SkXfermode.h"
class GrPaint;
class GrDrawState : public GrRefCnt {
public:
SK_DECLARE_INST_COUNT(GrDrawState)
/**
* Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a
* GrEffect. The effect produces an output color in the fragment shader. It's inputs are the
* output from the previous enabled stage and a position. The position is either derived from
* the interpolated vertex positions or explicit per-vertex coords, depending upon the
* GrVertexLayout used to draw.
*
* The stages are divided into two sets, color-computing and coverage-computing. The final color
* stage produces the final pixel color. The coverage-computing stages function exactly as the
* color-computing but the output of the final coverage stage is treated as a fractional pixel
* coverage rather than as input to the src/dst color blend step.
*
* The input color to the first enabled color-stage is either the constant color or interpolated
* per-vertex colors, depending upon GrVertexLayout. The input to the first coverage stage is
* either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or
* edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a
* GrEffect).
*
* See the documentation of kCoverageDrawing_StateBit for information about disabling the
* the color / coverage distinction.
*
* Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's
* GrPaint. Stages GrPaint::kTotalStages through kNumStages-2 are earmarked for use by
* GrTextContext and GrPathRenderer-derived classes. kNumStages-1 is earmarked for clipping
* by GrClipMaskManager.
*/
enum {
kNumStages = 5,
kMaxTexCoords = kNumStages
};
GrDrawState() {
#if GR_DEBUG
VertexLayoutUnitTest();
#endif
this->reset();
}
GrDrawState(const GrDrawState& state) {
*this = state;
}
virtual ~GrDrawState() {
this->disableStages();
}
/**
* Resets to the default state.
* GrEffects will be removed from all stages.
*/
void reset() {
this->disableStages();
fRenderTarget.reset(NULL);
fCommon.fColor = 0xffffffff;
fCommon.fViewMatrix.reset();
fCommon.fSrcBlend = kOne_GrBlendCoeff;
fCommon.fDstBlend = kZero_GrBlendCoeff;
fCommon.fBlendConstant = 0x0;
fCommon.fFlagBits = 0x0;
fCommon.fVertexEdgeType = kHairLine_EdgeType;
fCommon.fStencilSettings.setDisabled();
fCommon.fFirstCoverageStage = kNumStages;
fCommon.fCoverage = 0xffffffff;
fCommon.fColorFilterMode = SkXfermode::kDst_Mode;
fCommon.fColorFilterColor = 0x0;
fCommon.fDrawFace = kBoth_DrawFace;
}
/**
* Initializes the GrDrawState based on a GrPaint. Note that GrDrawState
* encompasses more than GrPaint. Aspects of GrDrawState that have no
* GrPaint equivalents are not modified. GrPaint has fewer stages than
* GrDrawState. The extra GrDrawState stages are disabled.
*/
void setFromPaint(const GrPaint& paint);
///////////////////////////////////////////////////////////////////////////
/// @name Vertex Format
////
/**
* The format of vertices is represented as a bitfield of flags.
* Flags that indicate the layout of vertex data. Vertices always contain
* positions and may also contain up to GrDrawState::kMaxTexCoords sets
* of 2D texture coordinates, per-vertex colors, and per-vertex coverage.
* Each stage can
* use any of the texture coordinates as its input texture coordinates or it
* may use the positions as texture coordinates.
*
* If no texture coordinates are specified for a stage then the stage is
* disabled.
*
* Only one type of texture coord can be specified per stage. For
* example StageTexCoordVertexLayoutBit(0, 2) and
* StagePosAsTexCoordVertexLayoutBit(0) cannot both be specified.
*
* The order in memory is always (position, texture coord 0, ..., color,
* coverage) with any unused fields omitted. Note that this means that if
* only texture coordinates 1 is referenced then there is no texture
* coordinates 0 and the order would be (position, texture coordinate 1
* [, color][, coverage]).
*/
/**
* Generates a bit indicating that a texture stage uses texture coordinates
*
* @param stageIdx the stage that will use texture coordinates.
* @param texCoordIdx the index of the texture coordinates to use
*
* @return the bit to add to a GrVertexLayout bitfield.
*/
static int StageTexCoordVertexLayoutBit(int stageIdx, int texCoordIdx) {
GrAssert(stageIdx < kNumStages);
GrAssert(texCoordIdx < kMaxTexCoords);
return 1 << (stageIdx + (texCoordIdx * kNumStages));
}
static bool StageUsesTexCoords(GrVertexLayout layout, int stageIdx);
private:
// non-stage bits start at this index.
static const int STAGE_BIT_CNT = kNumStages * kMaxTexCoords;
public:
/**
* Additional Bits that can be specified in GrVertexLayout.
*/
enum VertexLayoutBits {
/* vertices have colors (GrColor) */
kColor_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 0),
/* vertices have coverage (GrColor)
*/
kCoverage_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 1),
/* Use text vertices. (Pos and tex coords may be a different type for
* text [GrGpuTextVertex vs GrPoint].)
*/
kTextFormat_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 2),
/* Each vertex specificies an edge. Distance to the edge is used to
* compute a coverage. See GrDrawState::setVertexEdgeType().
*/
kEdge_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 3),
// for below assert
kDummyVertexLayoutBit,
kHighVertexLayoutBit = kDummyVertexLayoutBit - 1
};
// make sure we haven't exceeded the number of bits in GrVertexLayout.
GR_STATIC_ASSERT(kHighVertexLayoutBit < ((uint64_t)1 << 8*sizeof(GrVertexLayout)));
////////////////////////////////////////////////////////////////////////////
// Helpers for picking apart vertex layouts
/**
* Helper function to compute the size of a vertex from a vertex layout
* @return size of a single vertex.
*/
static size_t VertexSize(GrVertexLayout vertexLayout);
/**
* Helper function for determining the index of texture coordinates that
* is input for a texture stage. Note that a stage may instead use positions
* as texture coordinates, in which case the result of the function is
* indistinguishable from the case when the stage is disabled.
*
* @param stageIdx the stage to query
* @param vertexLayout layout to query
*
* @return the texture coordinate index or -1 if the stage doesn't use
* separate (non-position) texture coordinates.
*/
static int VertexTexCoordsForStage(int stageIdx, GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of texture coordinates in a vertex
* @return offset of texture coordinates in vertex layout or -1 if the
* layout has no texture coordinates. Will be 0 if positions are
* used as texture coordinates for the stage.
*/
static int VertexStageCoordOffset(int stageIdx, GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of the color in a vertex
* @return offset of color in vertex layout or -1 if the
* layout has no color.
*/
static int VertexColorOffset(GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of the coverage in a vertex
* @return offset of coverage in vertex layout or -1 if the
* layout has no coverage.
*/
static int VertexCoverageOffset(GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of the edge pts in a vertex
* @return offset of edge in vertex layout or -1 if the
* layout has no edge.
*/
static int VertexEdgeOffset(GrVertexLayout vertexLayout);
/**
* Helper function to determine if vertex layout contains explicit texture
* coordinates of some index.
*
* @param coordIndex the tex coord index to query
* @param vertexLayout layout to query
*
* @return true if vertex specifies texture coordinates for the index,
* false otherwise.
*/
static bool VertexUsesTexCoordIdx(int coordIndex,
GrVertexLayout vertexLayout);
/**
* Helper function to compute the size of each vertex and the offsets of
* texture coordinates and color. Determines tex coord offsets by tex coord
* index rather than by stage. (Each stage can be mapped to any t.c. index
* by StageTexCoordVertexLayoutBit.)
*
* @param vertexLayout the layout to query
* @param texCoordOffsetsByIdx after return it is the offset of each
* tex coord index in the vertex or -1 if
* index isn't used. (optional)
* @param colorOffset after return it is the offset of the
* color field in each vertex, or -1 if
* there aren't per-vertex colors. (optional)
* @param coverageOffset after return it is the offset of the
* coverage field in each vertex, or -1 if
* there aren't per-vertex coeverages.
* (optional)
* @param edgeOffset after return it is the offset of the
* edge eq field in each vertex, or -1 if
* there aren't per-vertex edge equations.
* (optional)
* @return size of a single vertex
*/
static int VertexSizeAndOffsetsByIdx(GrVertexLayout vertexLayout,
int texCoordOffsetsByIdx[kMaxTexCoords],
int *colorOffset,
int *coverageOffset,
int* edgeOffset);
/**
* Helper function to compute the size of each vertex and the offsets of
* texture coordinates and color. Determines tex coord offsets by stage
* rather than by index. (Each stage can be mapped to any t.c. index
* by StageTexCoordVertexLayoutBit.) If a stage uses positions for
* tex coords then that stage's offset will be 0 (positions are always at 0).
*
* @param vertexLayout the layout to query
* @param texCoordOffsetsByStage after return it is the offset of each
* tex coord index in the vertex or -1 if
* index isn't used. (optional)
* @param colorOffset after return it is the offset of the
* color field in each vertex, or -1 if
* there aren't per-vertex colors.
* (optional)
* @param coverageOffset after return it is the offset of the
* coverage field in each vertex, or -1 if
* there aren't per-vertex coeverages.
* (optional)
* @param edgeOffset after return it is the offset of the
* edge eq field in each vertex, or -1 if
* there aren't per-vertex edge equations.
* (optional)
* @return size of a single vertex
*/
static int VertexSizeAndOffsetsByStage(GrVertexLayout vertexLayout,
int texCoordOffsetsByStage[kNumStages],
int* colorOffset,
int* coverageOffset,
int* edgeOffset);
/**
* Determines whether src alpha is guaranteed to be one for all src pixels
*/
bool srcAlphaWillBeOne(GrVertexLayout) const;
/**
* Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
*/
bool hasSolidCoverage(GrVertexLayout) const;
/**
* Accessing positions, texture coords, or colors, of a vertex within an
* array is a hassle involving casts and simple math. These helpers exist
* to keep GrDrawTarget clients' code a bit nicer looking.
*/
/**
* Gets a pointer to a GrPoint of a vertex's position or texture
* coordinate.
* @param vertices the vetex array
* @param vertexIndex the index of the vertex in the array
* @param vertexSize the size of each vertex in the array
* @param offset the offset in bytes of the vertex component.
* Defaults to zero (corresponding to vertex position)
* @return pointer to the vertex component as a GrPoint
*/
static GrPoint* GetVertexPoint(void* vertices,
int vertexIndex,
int vertexSize,
int offset = 0) {
intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<GrPoint*>(start + offset +
vertexIndex * vertexSize);
}
static const GrPoint* GetVertexPoint(const void* vertices,
int vertexIndex,
int vertexSize,
int offset = 0) {
intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<const GrPoint*>(start + offset +
vertexIndex * vertexSize);
}
/**
* Gets a pointer to a GrColor inside a vertex within a vertex array.
* @param vertices the vetex array
* @param vertexIndex the index of the vertex in the array
* @param vertexSize the size of each vertex in the array
* @param offset the offset in bytes of the vertex color
* @return pointer to the vertex component as a GrColor
*/
static GrColor* GetVertexColor(void* vertices,
int vertexIndex,
int vertexSize,
int offset) {
intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<GrColor*>(start + offset +
vertexIndex * vertexSize);
}
static const GrColor* GetVertexColor(const void* vertices,
int vertexIndex,
int vertexSize,
int offset) {
const intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<const GrColor*>(start + offset +
vertexIndex * vertexSize);
}
static void VertexLayoutUnitTest();
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Color
////
/**
* Sets color for next draw to a premultiplied-alpha color.
*
* @param color the color to set.
*/
void setColor(GrColor color) { fCommon.fColor = color; }
GrColor getColor() const { return fCommon.fColor; }
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
*
* @param alpha The alpha value to set as the color.
*/
void setAlpha(uint8_t a) {
this->setColor((a << 24) | (a << 16) | (a << 8) | a);
}
/**
* Add a color filter that can be represented by a color and a mode. Applied
* after color-computing texture stages.
*/
void setColorFilter(GrColor c, SkXfermode::Mode mode) {
fCommon.fColorFilterColor = c;
fCommon.fColorFilterMode = mode;
}
GrColor getColorFilterColor() const { return fCommon.fColorFilterColor; }
SkXfermode::Mode getColorFilterMode() const { return fCommon.fColorFilterMode; }
/**
* Constructor sets the color to be 'color' which is undone by the destructor.
*/
class AutoColorRestore : public ::GrNoncopyable {
public:
AutoColorRestore() : fDrawState(NULL) {}
AutoColorRestore(GrDrawState* drawState, GrColor color) {
fDrawState = NULL;
this->set(drawState, color);
}
void reset() {
if (NULL != fDrawState) {
fDrawState->setColor(fOldColor);
fDrawState = NULL;
}
}
void set(GrDrawState* drawState, GrColor color) {
this->reset();
fDrawState = drawState;
fOldColor = fDrawState->getColor();
fDrawState->setColor(color);
}
~AutoColorRestore() { this->reset(); }
private:
GrDrawState* fDrawState;
GrColor fOldColor;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage
////
/**
* Sets a constant fractional coverage to be applied to the draw. The
* initial value (after construction or reset()) is 0xff. The constant
* coverage is ignored when per-vertex coverage is provided.
*/
void setCoverage(uint8_t coverage) {
fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage);
}
/**
* Version of above that specifies 4 channel per-vertex color. The value
* should be premultiplied.
*/
void setCoverage4(GrColor coverage) {
fCommon.fCoverage = coverage;
}
GrColor getCoverage() const {
return fCommon.fCoverage;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Effect Stages
////
const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect) {
fStages[stageIdx].setEffect(effect);
return effect;
}
/**
* Creates a GrSimpleTextureEffect.
*/
void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix) {
GrAssert(!this->getStage(stageIdx).getEffect());
GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
this->setEffect(stageIdx, effect)->unref();
}
void createTextureEffect(int stageIdx,
GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params) {
GrAssert(!this->getStage(stageIdx).getEffect());
GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
this->setEffect(stageIdx, effect)->unref();
}
bool stagesDisabled() {
for (int i = 0; i < kNumStages; ++i) {
if (NULL != fStages[i].getEffect()) {
return false;
}
}
return true;
}
void disableStage(int stageIdx) { this->setEffect(stageIdx, NULL); }
/**
* Release all the GrEffects referred to by this draw state.
*/
void disableStages() {
for (int i = 0; i < kNumStages; ++i) {
this->disableStage(i);
}
}
class AutoStageDisable : public ::GrNoncopyable {
public:
AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {}
~AutoStageDisable() {
if (NULL != fDrawState) {
fDrawState->disableStages();
}
}
private:
GrDrawState* fDrawState;
};
/**
* Returns the current stage by index.
*/
const GrEffectStage& getStage(int stageIdx) const {
GrAssert((unsigned)stageIdx < kNumStages);
return fStages[stageIdx];
}
/**
* Called when the source coord system is changing. preConcat gives the transformation from the
* old coord system to the new coord system.
*/
void preConcatStageMatrices(const SkMatrix& preConcat) {
this->preConcatStageMatrices(~0U, preConcat);
}
/**
* Version of above that applies the update matrix selectively to stages via a mask.
*/
void preConcatStageMatrices(uint32_t stageMask, const SkMatrix& preConcat) {
for (int i = 0; i < kNumStages; ++i) {
if (((1 << i) & stageMask) && this->isStageEnabled(i)) {
fStages[i].preConcatCoordChange(preConcat);
}
}
}
/**
* Called when the source coord system is changing. preConcatInverse is the inverse of the
* transformation from the old coord system to the new coord system. Returns false if the matrix
* cannot be inverted.
*/
bool preConcatStageMatricesWithInverse(const SkMatrix& preConcatInverse) {
SkMatrix inv;
bool computed = false;
for (int i = 0; i < kNumStages; ++i) {
if (this->isStageEnabled(i)) {
if (!computed && !preConcatInverse.invert(&inv)) {
return false;
} else {
computed = true;
}
fStages[i].preConcatCoordChange(preConcatInverse);
}
}
return true;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage / Color Stages
////
/**
* A common pattern is to compute a color with the initial stages and then
* modulate that color by a coverage value in later stage(s) (AA, mask-
* filters, glyph mask, etc). Color-filters, xfermodes, etc should be
* computed based on the pre-coverage-modulated color. The division of
* stages between color-computing and coverage-computing is specified by
* this method. Initially this is kNumStages (all stages
* are color-computing).
*/
void setFirstCoverageStage(int firstCoverageStage) {
GrAssert((unsigned)firstCoverageStage <= kNumStages);
fCommon.fFirstCoverageStage = firstCoverageStage;
}
/**
* Gets the index of the first coverage-computing stage.
*/
int getFirstCoverageStage() const {
return fCommon.fFirstCoverageStage;
}
///@}
///////////////////////////////////////////////////////////////////////////
/// @name Blending
////
/**
* Sets the blending function coefficients.
*
* The blend function will be:
* D' = sat(S*srcCoef + D*dstCoef)
*
* where D is the existing destination color, S is the incoming source
* color, and D' is the new destination color that will be written. sat()
* is the saturation function.
*
* @param srcCoef coefficient applied to the src color.
* @param dstCoef coefficient applied to the dst color.
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
fCommon.fSrcBlend = srcCoeff;
fCommon.fDstBlend = dstCoeff;
#if GR_DEBUG
switch (dstCoeff) {
case kDC_GrBlendCoeff:
case kIDC_GrBlendCoeff:
case kDA_GrBlendCoeff:
case kIDA_GrBlendCoeff:
GrPrintf("Unexpected dst blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
switch (srcCoeff) {
case kSC_GrBlendCoeff:
case kISC_GrBlendCoeff:
case kSA_GrBlendCoeff:
case kISA_GrBlendCoeff:
GrPrintf("Unexpected src blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
#endif
}
GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; }
GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; }
void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
GrBlendCoeff* dstBlendCoeff) const {
*srcBlendCoeff = fCommon.fSrcBlend;
*dstBlendCoeff = fCommon.fDstBlend;
}
/**
* Sets the blending function constant referenced by the following blending
* coefficients:
* kConstC_GrBlendCoeff
* kIConstC_GrBlendCoeff
* kConstA_GrBlendCoeff
* kIConstA_GrBlendCoeff
*
* @param constant the constant to set
*/
void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; }
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fCommon.fBlendConstant; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name View Matrix
////
/**
* Sets the matrix applied to vertex positions.
*
* In the post-view-matrix space the rectangle [0,w]x[0,h]
* fully covers the render target. (w and h are the width and height of the
* the render-target.)
*/
void setViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix = m; }
/**
* Gets a writable pointer to the view matrix.
*/
SkMatrix* viewMatrix() { return &fCommon.fViewMatrix; }
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = V*m where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void preConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.preConcat(m); }
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = m*V where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void postConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.postConcat(m); }
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; }
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(SkMatrix* matrix) const {
// TODO: determine whether we really need to leave matrix unmodified
// at call sites when inversion fails.
SkMatrix inverse;
if (fCommon.fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
////////////////////////////////////////////////////////////////////////////
/**
* Preconcats the current view matrix and restores the previous view matrix in the destructor.
* Effect matrices are automatically adjusted to compensate.
*/
class AutoViewMatrixRestore : public ::GrNoncopyable {
public:
AutoViewMatrixRestore() : fDrawState(NULL) {}
AutoViewMatrixRestore(GrDrawState* ds,
const SkMatrix& preconcatMatrix,
uint32_t explicitCoordStageMask = 0) {
fDrawState = NULL;
this->set(ds, preconcatMatrix, explicitCoordStageMask);
}
~AutoViewMatrixRestore() { this->restore(); }
/**
* Can be called prior to destructor to restore the original matrix.
*/
void restore();
void set(GrDrawState* drawState,
const SkMatrix& preconcatMatrix,
uint32_t explicitCoordStageMask = 0);
bool isSet() const { return NULL != fDrawState; }
private:
GrDrawState* fDrawState;
SkMatrix fViewMatrix;
GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages];
uint32_t fRestoreMask;
};
////////////////////////////////////////////////////////////////////////////
/**
* This sets the view matrix to identity and adjusts stage matrices to compensate. The
* destructor undoes the changes, restoring the view matrix that was set before the
* constructor. It is similar to passing the inverse of the current view matrix to
* AutoViewMatrixRestore, but lazily computes the inverse only if necessary.
*/
class AutoDeviceCoordDraw : ::GrNoncopyable {
public:
AutoDeviceCoordDraw() : fDrawState(NULL) {}
/**
* If a stage's texture matrix is applied to explicit per-vertex coords, rather than to
* positions, then we don't want to modify its matrix. The explicitCoordStageMask is used
* to specify such stages.
*/
AutoDeviceCoordDraw(GrDrawState* drawState,
uint32_t explicitCoordStageMask = 0) {
fDrawState = NULL;
this->set(drawState, explicitCoordStageMask);
}
~AutoDeviceCoordDraw() { this->restore(); }
bool set(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0);
/**
* Returns true if this object was successfully initialized on to a GrDrawState. It may
* return false because a non-default constructor or set() were never called or because
* the view matrix was not invertible.
*/
bool succeeded() const { return NULL != fDrawState; }
/**
* Returns the matrix that was set previously set on the drawState. This is only valid
* if succeeded returns true.
*/
const SkMatrix& getOriginalMatrix() const {
GrAssert(this->succeeded());
return fViewMatrix;
}
/**
* Can be called prior to destructor to restore the original matrix.
*/
void restore();
private:
GrDrawState* fDrawState;
SkMatrix fViewMatrix;
GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages];
uint32_t fRestoreMask;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Render Target
////
/**
* Sets the render-target used at the next drawing call
*
* @param target The render target to set.
*/
void setRenderTarget(GrRenderTarget* target) {
fRenderTarget.reset(SkSafeRef(target));
}
/**
* Retrieves the currently set render-target.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
class AutoRenderTargetRestore : public ::GrNoncopyable {
public:
AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
fDrawState = NULL;
fSavedTarget = NULL;
this->set(ds, newTarget);
}
~AutoRenderTargetRestore() { this->restore(); }
void restore() {
if (NULL != fDrawState) {
fDrawState->setRenderTarget(fSavedTarget);
fDrawState = NULL;
}
GrSafeSetNull(fSavedTarget);
}
void set(GrDrawState* ds, GrRenderTarget* newTarget) {
this->restore();
if (NULL != ds) {
GrAssert(NULL == fSavedTarget);
fSavedTarget = ds->getRenderTarget();
SkSafeRef(fSavedTarget);
ds->setRenderTarget(newTarget);
fDrawState = ds;
}
}
private:
GrDrawState* fDrawState;
GrRenderTarget* fSavedTarget;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Stencil
////
/**
* Sets the stencil settings to use for the next draw.
* Changing the clip has the side-effect of possibly zeroing
* out the client settable stencil bits. So multipass algorithms
* using stencil should not change the clip between passes.
* @param settings the stencil settings to use.
*/
void setStencil(const GrStencilSettings& settings) {
fCommon.fStencilSettings = settings;
}
/**
* Shortcut to disable stencil testing and ops.
*/
void disableStencil() {
fCommon.fStencilSettings.setDisabled();
}
const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; }
GrStencilSettings* stencil() { return &fCommon.fStencilSettings; }
/// @}
///////////////////////////////////////////////////////////////////////////
// @name Edge AA
// Edge equations can be specified to perform anti-aliasing. Because the
// edges are specified as per-vertex data, vertices that are shared by
// multiple edges must be split.
//
////
/**
* When specifying edges as vertex data this enum specifies what type of
* edges are in use. The edges are always 4 SkScalars in memory, even when
* the edge type requires fewer than 4.
*
* TODO: Fix the fact that HairLine and Circle edge types use y-down coords.
* (either adjust in VS or use origin_upper_left in GLSL)
*/
enum VertexEdgeType {
/* 1-pixel wide line
2D implicit line eq (a*x + b*y +c = 0). 4th component unused */
kHairLine_EdgeType,
/* Quadratic specified by u^2-v canonical coords (only 2
components used). Coverage based on signed distance with negative
being inside, positive outside. Edge specified in window space
(y-down) */
kQuad_EdgeType,
/* Same as above but for hairline quadratics. Uses unsigned distance.
Coverage is min(0, 1-distance). */
kHairQuad_EdgeType,
/* Circle specified as center_x, center_y, outer_radius, inner_radius
all in window space (y-down). */
kCircle_EdgeType,
/* Axis-aligned ellipse specified as center_x, center_y, x_radius, x_radius/y_radius
all in window space (y-down). */
kEllipse_EdgeType,
kVertexEdgeTypeCnt
};
/**
* Determines the interpretation per-vertex edge data when the
* kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges
* are not specified the value of this setting has no effect.
*/
void setVertexEdgeType(VertexEdgeType type) {
GrAssert(type >=0 && type < kVertexEdgeTypeCnt);
fCommon.fVertexEdgeType = type;
}
VertexEdgeType getVertexEdgeType() const { return fCommon.fVertexEdgeType; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name State Flags
////
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
* or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
* the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Usually coverage is applied after color blending. The color is blended using the coeffs
* specified by setBlendFunc(). The blended color is then combined with dst using coeffs
* of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
* this case there is no distinction between coverage and color and the caller needs direct
* control over the blend coeffs. When set, there will be a single blend step controlled by
* setBlendFunc() which will use coverage*color as the src color.
*/
kCoverageDrawing_StateBit = 0x10,
// Users of the class may add additional bits to the vector
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1,
};
void resetStateFlags() {
fCommon.fFlagBits = 0;
}
/**
* Enable render state settings.
*
* @param stateBits bitfield of StateBits specifying the states to enable
*/
void enableState(uint32_t stateBits) {
fCommon.fFlagBits |= stateBits;
}
/**
* Disable render state settings.
*
* @param stateBits bitfield of StateBits specifying the states to disable
*/
void disableState(uint32_t stateBits) {
fCommon.fFlagBits &= ~(stateBits);
}
/**
* Enable or disable stateBits based on a boolean.
*
* @param stateBits bitfield of StateBits to enable or disable
* @param enable if true enable stateBits, otherwise disable
*/
void setState(uint32_t stateBits, bool enable) {
if (enable) {
this->enableState(stateBits);
} else {
this->disableState(stateBits);
}
}
bool isDitherState() const {
return 0 != (fCommon.fFlagBits & kDither_StateBit);
}
bool isHWAntialiasState() const {
return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit);
}
bool isClipState() const {
return 0 != (fCommon.fFlagBits & kClip_StateBit);
}
bool isColorWriteDisabled() const {
return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit);
}
bool isCoverageDrawing() const {
return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit);
}
bool isStateFlagEnabled(uint32_t stateBit) const {
return 0 != (stateBit & fCommon.fFlagBits);
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
enum DrawFace {
kInvalid_DrawFace = -1,
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
};
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
*/
void setDrawFace(DrawFace face) {
GrAssert(kInvalid_DrawFace != face);
fCommon.fDrawFace = face;
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
DrawFace getDrawFace() const { return fCommon.fDrawFace; }
/// @}
///////////////////////////////////////////////////////////////////////////
bool isStageEnabled(int s) const {
GrAssert((unsigned)s < kNumStages);
return (NULL != fStages[s].getEffect());
}
// Most stages are usually not used, so conditionals here
// reduce the expected number of bytes touched by 50%.
bool operator ==(const GrDrawState& s) const {
if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) {
return false;
}
for (int i = 0; i < kNumStages; i++) {
bool enabled = this->isStageEnabled(i);
if (enabled != s.isStageEnabled(i)) {
return false;
}
if (enabled && this->fStages[i] != s.fStages[i]) {
return false;
}
}
return true;
}
bool operator !=(const GrDrawState& s) const { return !(*this == s); }
GrDrawState& operator= (const GrDrawState& s) {
this->setRenderTarget(s.fRenderTarget.get());
fCommon = s.fCommon;
for (int i = 0; i < kNumStages; i++) {
if (s.isStageEnabled(i)) {
this->fStages[i] = s.fStages[i];
}
}
return *this;
}
private:
/** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */
struct CommonState {
// These fields are roughly sorted by decreasing likelihood of being different in op==
GrColor fColor;
SkMatrix fViewMatrix;
GrBlendCoeff fSrcBlend;
GrBlendCoeff fDstBlend;
GrColor fBlendConstant;
uint32_t fFlagBits;
VertexEdgeType fVertexEdgeType;
GrStencilSettings fStencilSettings;
int fFirstCoverageStage;
GrColor fCoverage;
SkXfermode::Mode fColorFilterMode;
GrColor fColorFilterColor;
DrawFace fDrawFace;
bool operator== (const CommonState& other) const {
return fColor == other.fColor &&
fViewMatrix.cheapEqualTo(other.fViewMatrix) &&
fSrcBlend == other.fSrcBlend &&
fDstBlend == other.fDstBlend &&
fBlendConstant == other.fBlendConstant &&
fFlagBits == other.fFlagBits &&
fVertexEdgeType == other.fVertexEdgeType &&
fStencilSettings == other.fStencilSettings &&
fFirstCoverageStage == other.fFirstCoverageStage &&
fCoverage == other.fCoverage &&
fColorFilterMode == other.fColorFilterMode &&
fColorFilterColor == other.fColorFilterColor &&
fDrawFace == other.fDrawFace;
}
bool operator!= (const CommonState& other) const { return !(*this == other); }
};
/** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef.
DeferredState must directly reference GrEffects, however. */
struct SavedEffectStage {
SavedEffectStage() : fEffect(NULL) {}
const GrEffect* fEffect;
GrEffectStage::SavedCoordChange fCoordChange;
};
public:
/**
* DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource
* objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal
* dispose mechanism returns them to the cache. This allows recycling resources through the
* the cache while they are in a deferred draw queue.
*/
class DeferredState {
public:
DeferredState() : fRenderTarget(NULL) {
GR_DEBUGCODE(fInitialized = false;)
}
// TODO: Remove this when DeferredState no longer holds a ref to the RT
~DeferredState() { SkSafeUnref(fRenderTarget); }
void saveFrom(const GrDrawState& drawState) {
fCommon = drawState.fCommon;
// TODO: Here we will copy the GrRenderTarget pointer without taking a ref.
fRenderTarget = drawState.fRenderTarget.get();
SkSafeRef(fRenderTarget);
// Here we ref the effects directly rather than the effect-refs. TODO: When the effect-
// ref gets fully unref'ed it will cause the underlying effect to unref its resources
// and recycle them to the cache (if no one else is holding a ref to the resources).
for (int i = 0; i < kNumStages; ++i) {
fStages[i].saveFrom(drawState.fStages[i]);
}
GR_DEBUGCODE(fInitialized = true;)
}
void restoreTo(GrDrawState* drawState) {
GrAssert(fInitialized);
drawState->fCommon = fCommon;
drawState->setRenderTarget(fRenderTarget);
for (int i = 0; i < kNumStages; ++i) {
fStages[i].restoreTo(&drawState->fStages[i]);
}
}
bool isEqual(const GrDrawState& state) const {
if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) {
return false;
}
for (int i = 0; i < kNumStages; ++i) {
if (!fStages[i].isEqual(state.fStages[i])) {
return false;
}
}
return true;
}
private:
GrRenderTarget* fRenderTarget;
CommonState fCommon;
GrEffectStage::DeferredStage fStages[kNumStages];
GR_DEBUGCODE(bool fInitialized;)
};
private:
SkAutoTUnref<GrRenderTarget> fRenderTarget;
CommonState fCommon;
GrEffectStage fStages[kNumStages];
typedef GrRefCnt INHERITED;
};
#endif