blob: d5e8fbdd79d708a186db43d8e595dc6285a384a9 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGpuGL.h"
#include "GrEffect.h"
#include "GrGLEffect.h"
#include "GrGpuVertex.h"
typedef GrGLUniformManager::UniformHandle UniformHandle;
static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
#define SKIP_CACHE_CHECK true
#define GR_UINT32_MAX static_cast<uint32_t>(-1)
GrGpuGL::ProgramCache::ProgramCache(const GrGLContextInfo& gl)
: fCount(0)
, fCurrLRUStamp(0)
, fGL(gl) {
}
void GrGpuGL::ProgramCache::abandon() {
for (int i = 0; i < fCount; ++i) {
GrAssert(NULL != fEntries[i].fProgram.get());
fEntries[i].fProgram->abandon();
fEntries[i].fProgram.reset(NULL);
}
fCount = 0;
}
GrGLProgram* GrGpuGL::ProgramCache::getProgram(const ProgramDesc& desc,
const GrEffectStage* stages[]) {
Entry newEntry;
newEntry.fKey.setKeyData(desc.asKey());
Entry* entry = fHashCache.find(newEntry.fKey);
if (NULL == entry) {
newEntry.fProgram.reset(GrGLProgram::Create(fGL, desc, stages));
if (NULL == newEntry.fProgram.get()) {
return NULL;
}
if (fCount < kMaxEntries) {
entry = fEntries + fCount;
++fCount;
} else {
GrAssert(kMaxEntries == fCount);
entry = fEntries;
for (int i = 1; i < kMaxEntries; ++i) {
if (fEntries[i].fLRUStamp < entry->fLRUStamp) {
entry = fEntries + i;
}
}
fHashCache.remove(entry->fKey, entry);
}
*entry = newEntry;
fHashCache.insert(entry->fKey, entry);
}
entry->fLRUStamp = fCurrLRUStamp;
if (GR_UINT32_MAX == fCurrLRUStamp) {
// wrap around! just trash our LRU, one time hit.
for (int i = 0; i < fCount; ++i) {
fEntries[i].fLRUStamp = 0;
}
}
++fCurrLRUStamp;
return entry->fProgram;
}
////////////////////////////////////////////////////////////////////////////////
void GrGpuGL::abandonResources(){
INHERITED::abandonResources();
fProgramCache->abandon();
fHWProgramID = 0;
}
////////////////////////////////////////////////////////////////////////////////
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
void GrGpuGL::flushViewMatrix(DrawType type) {
const GrGLRenderTarget* rt = static_cast<const GrGLRenderTarget*>(this->getDrawState().getRenderTarget());
SkISize viewportSize;
const GrGLIRect& viewport = rt->getViewport();
viewportSize.set(viewport.fWidth, viewport.fHeight);
const SkMatrix& vm = this->getDrawState().getViewMatrix();
if (kStencilPath_DrawType == type) {
if (fHWPathMatrixState.fViewMatrix != vm ||
fHWPathMatrixState.fRTSize != viewportSize) {
// rescale the coords from skia's "device" coords to GL's normalized coords,
// and perform a y-flip.
SkMatrix m;
m.setScale(SkIntToScalar(2) / rt->width(), SkIntToScalar(-2) / rt->height());
m.postTranslate(-SK_Scalar1, SK_Scalar1);
m.preConcat(vm);
// GL wants a column-major 4x4.
GrGLfloat mv[] = {
// col 0
SkScalarToFloat(m[SkMatrix::kMScaleX]),
SkScalarToFloat(m[SkMatrix::kMSkewY]),
0,
SkScalarToFloat(m[SkMatrix::kMPersp0]),
// col 1
SkScalarToFloat(m[SkMatrix::kMSkewX]),
SkScalarToFloat(m[SkMatrix::kMScaleY]),
0,
SkScalarToFloat(m[SkMatrix::kMPersp1]),
// col 2
0, 0, 0, 0,
// col3
SkScalarToFloat(m[SkMatrix::kMTransX]),
SkScalarToFloat(m[SkMatrix::kMTransY]),
0.0f,
SkScalarToFloat(m[SkMatrix::kMPersp2])
};
GL_CALL(MatrixMode(GR_GL_PROJECTION));
GL_CALL(LoadMatrixf(mv));
fHWPathMatrixState.fViewMatrix = vm;
fHWPathMatrixState.fRTSize = viewportSize;
}
} else if (!fCurrentProgram->fViewMatrix.cheapEqualTo(vm) ||
fCurrentProgram->fViewportSize != viewportSize) {
SkMatrix m;
m.setAll(
SkIntToScalar(2) / viewportSize.fWidth, 0, -SK_Scalar1,
0,-SkIntToScalar(2) / viewportSize.fHeight, SK_Scalar1,
0, 0, SkMatrix::I()[8]);
m.setConcat(m, vm);
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
SkScalarToFloat(m[SkMatrix::kMScaleX]),
SkScalarToFloat(m[SkMatrix::kMSkewY]),
SkScalarToFloat(m[SkMatrix::kMPersp0]),
SkScalarToFloat(m[SkMatrix::kMSkewX]),
SkScalarToFloat(m[SkMatrix::kMScaleY]),
SkScalarToFloat(m[SkMatrix::kMPersp1]),
SkScalarToFloat(m[SkMatrix::kMTransX]),
SkScalarToFloat(m[SkMatrix::kMTransY]),
SkScalarToFloat(m[SkMatrix::kMPersp2])
};
fCurrentProgram->fUniformManager.setMatrix3f(
fCurrentProgram->fUniformHandles.fViewMatrixUni,
mt);
fCurrentProgram->fViewMatrix = vm;
fCurrentProgram->fViewportSize = viewportSize;
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGpuGL::flushColor(GrColor color) {
const ProgramDesc& desc = fCurrentProgram->getDesc();
const GrDrawState& drawState = this->getDrawState();
if (this->getVertexLayout() & GrDrawState::kColor_VertexLayoutBit) {
// color will be specified per-vertex as an attribute
// invalidate the const vertex attrib color
fHWConstAttribColor = GrColor_ILLEGAL;
} else {
switch (desc.fColorInput) {
case ProgramDesc::kAttribute_ColorInput:
if (fHWConstAttribColor != color) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(), c));
fHWConstAttribColor = color;
}
break;
case ProgramDesc::kUniform_ColorInput:
if (fCurrentProgram->fColor != color) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GrAssert(kInvalidUniformHandle != fCurrentProgram->fUniformHandles.fColorUni);
fCurrentProgram->fUniformManager.set4fv(
fCurrentProgram->fUniformHandles.fColorUni,
0, 1, c);
fCurrentProgram->fColor = color;
}
break;
case ProgramDesc::kSolidWhite_ColorInput:
case ProgramDesc::kTransBlack_ColorInput:
break;
default:
GrCrash("Unknown color type.");
}
}
UniformHandle filterColorUni = fCurrentProgram->fUniformHandles.fColorFilterUni;
if (kInvalidUniformHandle != filterColorUni &&
fCurrentProgram->fColorFilterColor != drawState.getColorFilterColor()) {
GrGLfloat c[4];
GrColorToRGBAFloat(drawState.getColorFilterColor(), c);
fCurrentProgram->fUniformManager.set4fv(filterColorUni, 0, 1, c);
fCurrentProgram->fColorFilterColor = drawState.getColorFilterColor();
}
}
void GrGpuGL::flushCoverage(GrColor coverage) {
const ProgramDesc& desc = fCurrentProgram->getDesc();
// const GrDrawState& drawState = this->getDrawState();
if (this->getVertexLayout() & GrDrawState::kCoverage_VertexLayoutBit) {
// coverage will be specified per-vertex as an attribute
// invalidate the const vertex attrib coverage
fHWConstAttribCoverage = GrColor_ILLEGAL;
} else {
switch (desc.fCoverageInput) {
case ProgramDesc::kAttribute_ColorInput:
if (fHWConstAttribCoverage != coverage) {
// OpenGL ES only supports the float varieties of
// glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GL_CALL(VertexAttrib4fv(GrGLProgram::CoverageAttributeIdx(),
c));
fHWConstAttribCoverage = coverage;
}
break;
case ProgramDesc::kUniform_ColorInput:
if (fCurrentProgram->fCoverage != coverage) {
// OpenGL ES doesn't support unsigned byte varieties of
// glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GrAssert(kInvalidUniformHandle !=
fCurrentProgram->fUniformHandles.fCoverageUni);
fCurrentProgram->fUniformManager.set4fv(
fCurrentProgram->fUniformHandles.fCoverageUni,
0, 1, c);
fCurrentProgram->fCoverage = coverage;
}
break;
case ProgramDesc::kSolidWhite_ColorInput:
case ProgramDesc::kTransBlack_ColorInput:
break;
default:
GrCrash("Unknown coverage type.");
}
}
}
bool GrGpuGL::flushGraphicsState(DrawType type) {
const GrDrawState& drawState = this->getDrawState();
// GrGpu::setupClipAndFlushState should have already checked this
// and bailed if not true.
GrAssert(NULL != drawState.getRenderTarget());
if (kStencilPath_DrawType != type) {
this->flushMiscFixedFunctionState();
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff);
if (kSkipDraw_BlendOptFlag & blendOpts) {
return false;
}
const GrEffectStage* stages[GrDrawState::kNumStages];
for (int i = 0; i < GrDrawState::kNumStages; ++i) {
stages[i] = drawState.isStageEnabled(i) ? &drawState.getStage(i) : NULL;
}
GrGLProgram::Desc desc;
this->buildProgram(kDrawPoints_DrawType == type, blendOpts, dstCoeff, &desc);
fCurrentProgram.reset(fProgramCache->getProgram(desc, stages));
if (NULL == fCurrentProgram.get()) {
GrAssert(!"Failed to create program!");
return false;
}
fCurrentProgram.get()->ref();
if (fHWProgramID != fCurrentProgram->fProgramID) {
GL_CALL(UseProgram(fCurrentProgram->fProgramID));
fHWProgramID = fCurrentProgram->fProgramID;
}
fCurrentProgram->overrideBlend(&srcCoeff, &dstCoeff);
this->flushBlend(kDrawLines_DrawType == type, srcCoeff, dstCoeff);
GrColor color;
GrColor coverage;
if (blendOpts & kEmitTransBlack_BlendOptFlag) {
color = 0;
coverage = 0;
} else if (blendOpts & kEmitCoverage_BlendOptFlag) {
color = 0xffffffff;
coverage = drawState.getCoverage();
} else {
color = drawState.getColor();
coverage = drawState.getCoverage();
}
this->flushColor(color);
this->flushCoverage(coverage);
fCurrentProgram->setData(this);
}
this->flushStencil(type);
this->flushViewMatrix(type);
this->flushScissor();
this->flushAAState(type);
GrIRect* devRect = NULL;
GrIRect devClipBounds;
if (drawState.isClipState()) {
this->getClip()->getConservativeBounds(drawState.getRenderTarget(), &devClipBounds);
devRect = &devClipBounds;
}
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(devRect);
return true;
}
#if GR_TEXT_SCALAR_IS_USHORT
#define TEXT_COORDS_GL_TYPE GR_GL_UNSIGNED_SHORT
#define TEXT_COORDS_ARE_NORMALIZED 1
#elif GR_TEXT_SCALAR_IS_FLOAT
#define TEXT_COORDS_GL_TYPE GR_GL_FLOAT
#define TEXT_COORDS_ARE_NORMALIZED 0
#elif GR_TEXT_SCALAR_IS_FIXED
#define TEXT_COORDS_GL_TYPE GR_GL_FIXED
#define TEXT_COORDS_ARE_NORMALIZED 0
#else
#error "unknown GR_TEXT_SCALAR type"
#endif
void GrGpuGL::setupGeometry(const DrawInfo& info, int* startIndexOffset) {
int newColorOffset;
int newCoverageOffset;
int newTexCoordOffsets[GrDrawState::kMaxTexCoords];
int newEdgeOffset;
GrVertexLayout currLayout = this->getVertexLayout();
GrGLsizei newStride = GrDrawState::VertexSizeAndOffsetsByIdx(currLayout,
newTexCoordOffsets,
&newColorOffset,
&newCoverageOffset,
&newEdgeOffset);
int oldColorOffset;
int oldCoverageOffset;
int oldTexCoordOffsets[GrDrawState::kMaxTexCoords];
int oldEdgeOffset;
GrGLsizei oldStride = GrDrawState::VertexSizeAndOffsetsByIdx(fHWGeometryState.fVertexLayout,
oldTexCoordOffsets,
&oldColorOffset,
&oldCoverageOffset,
&oldEdgeOffset);
int extraVertexOffset;
this->setBuffers(info.isIndexed(), &extraVertexOffset, startIndexOffset);
GrGLenum scalarType;
bool texCoordNorm;
if (currLayout & GrDrawState::kTextFormat_VertexLayoutBit) {
scalarType = TEXT_COORDS_GL_TYPE;
texCoordNorm = SkToBool(TEXT_COORDS_ARE_NORMALIZED);
} else {
scalarType = GR_GL_FLOAT;
texCoordNorm = false;
}
size_t vertexOffset = (info.startVertex() + extraVertexOffset) * newStride;
// all the Pointers must be set if any of these are true
bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty ||
vertexOffset != fHWGeometryState.fVertexOffset ||
newStride != oldStride;
// position and tex coord offsets change if above conditions are true
// or the type/normalization changed based on text vs nontext type coords.
bool posAndTexChange = allOffsetsChange ||
(((TEXT_COORDS_GL_TYPE != GR_GL_FLOAT) || TEXT_COORDS_ARE_NORMALIZED) &&
(GrDrawState::kTextFormat_VertexLayoutBit &
(fHWGeometryState.fVertexLayout ^ currLayout)));
if (posAndTexChange) {
int idx = GrGLProgram::PositionAttributeIdx();
GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride,
(GrGLvoid*)vertexOffset));
fHWGeometryState.fVertexOffset = vertexOffset;
}
for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
if (newTexCoordOffsets[t] > 0) {
GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]);
int idx = GrGLProgram::TexCoordAttributeIdx(t);
if (oldTexCoordOffsets[t] <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm,
newStride, texCoordOffset));
} else if (posAndTexChange ||
newTexCoordOffsets[t] != oldTexCoordOffsets[t]) {
GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm,
newStride, texCoordOffset));
}
} else if (oldTexCoordOffsets[t] > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t)));
}
}
if (newColorOffset > 0) {
GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset);
int idx = GrGLProgram::ColorAttributeIdx();
if (oldColorOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, colorOffset));
} else if (allOffsetsChange || newColorOffset != oldColorOffset) {
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, colorOffset));
}
} else if (oldColorOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx()));
}
if (newCoverageOffset > 0) {
GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset);
int idx = GrGLProgram::CoverageAttributeIdx();
if (oldCoverageOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, coverageOffset));
} else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) {
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, coverageOffset));
}
} else if (oldCoverageOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx()));
}
if (newEdgeOffset > 0) {
GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset);
int idx = GrGLProgram::EdgeAttributeIdx();
if (oldEdgeOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, scalarType,
false, newStride, edgeOffset));
} else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) {
GL_CALL(VertexAttribPointer(idx, 4, scalarType,
false, newStride, edgeOffset));
}
} else if (oldEdgeOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx()));
}
fHWGeometryState.fVertexLayout = currLayout;
fHWGeometryState.fArrayPtrsDirty = false;
}
void GrGpuGL::buildProgram(bool isPoints,
BlendOptFlags blendOpts,
GrBlendCoeff dstCoeff,
ProgramDesc* desc) {
const GrDrawState& drawState = this->getDrawState();
// This should already have been caught
GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts));
bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag |
kEmitCoverage_BlendOptFlag));
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the vertex
// layout in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
// Must initialize all fields or cache will have false negatives!
desc->fVertexLayout = this->getVertexLayout();
desc->fEmitsPointSize = isPoints;
bool requiresAttributeColors = !skipColor &&
SkToBool(desc->fVertexLayout & GrDrawState::kColor_VertexLayoutBit);
bool requiresAttributeCoverage = !skipCoverage &&
SkToBool(desc->fVertexLayout & GrDrawState::kCoverage_VertexLayoutBit);
// fColorInput/fCoverageInput records how colors are specified for the.
// program. So we strip the bits from the layout to avoid false negatives
// when searching for an existing program in the cache.
desc->fVertexLayout &= ~(GrDrawState::kColor_VertexLayoutBit | GrDrawState::kCoverage_VertexLayoutBit);
desc->fColorFilterXfermode = skipColor ?
SkXfermode::kDst_Mode :
drawState.getColorFilterMode();
// no reason to do edge aa or look at per-vertex coverage if coverage is
// ignored
if (skipCoverage) {
desc->fVertexLayout &= ~(GrDrawState::kEdge_VertexLayoutBit | GrDrawState::kCoverage_VertexLayoutBit);
}
bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) ||
(!requiresAttributeColors && 0xffffffff == drawState.getColor());
if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) {
desc->fColorInput = ProgramDesc::kTransBlack_ColorInput;
} else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) {
desc->fColorInput = ProgramDesc::kSolidWhite_ColorInput;
} else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) {
desc->fColorInput = ProgramDesc::kUniform_ColorInput;
} else {
desc->fColorInput = ProgramDesc::kAttribute_ColorInput;
}
bool covIsSolidWhite = !requiresAttributeCoverage && 0xffffffff == drawState.getCoverage();
if (skipCoverage) {
desc->fCoverageInput = ProgramDesc::kTransBlack_ColorInput;
} else if (covIsSolidWhite) {
desc->fCoverageInput = ProgramDesc::kSolidWhite_ColorInput;
} else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeCoverage) {
desc->fCoverageInput = ProgramDesc::kUniform_ColorInput;
} else {
desc->fCoverageInput = ProgramDesc::kAttribute_ColorInput;
}
int lastEnabledStage = -1;
if (!skipCoverage && (desc->fVertexLayout &GrDrawState::kEdge_VertexLayoutBit)) {
desc->fVertexEdgeType = drawState.getVertexEdgeType();
desc->fDiscardIfOutsideEdge = drawState.getStencil().doesWrite();
} else {
// Use canonical values when edge-aa is not enabled to avoid program cache misses.
desc->fVertexEdgeType = GrDrawState::kHairLine_EdgeType;
desc->fDiscardIfOutsideEdge = false;
}
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
bool skip = s < drawState.getFirstCoverageStage() ? skipColor : skipCoverage;
if (!skip && drawState.isStageEnabled(s)) {
lastEnabledStage = s;
const GrEffectRef& effect = *drawState.getStage(s).getEffect();
const GrBackendEffectFactory& factory = effect->getFactory();
desc->fEffectKeys[s] = factory.glEffectKey(drawState.getStage(s), this->glCaps());
} else {
desc->fEffectKeys[s] = 0;
}
}
desc->fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput;
// Currently the experimental GS will only work with triangle prims (and it doesn't do anything
// other than pass through values from the VS to the FS anyway).
#if 0 && GR_GL_EXPERIMENTAL_GS
desc->fExperimentalGS = this->getCaps().fGeometryShaderSupport;
#endif
// We want to avoid generating programs with different "first cov stage" values when they would
// compute the same result. We set field in the desc to kNumStages when either there are no
// coverage stages or the distinction between coverage and color is immaterial.
int firstCoverageStage = GrDrawState::kNumStages;
desc->fFirstCoverageStage = GrDrawState::kNumStages;
bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage;
if (hasCoverage) {
firstCoverageStage = drawState.getFirstCoverageStage();
}
// other coverage inputs
if (!hasCoverage) {
hasCoverage = requiresAttributeCoverage ||
(desc->fVertexLayout & GrDrawState::kEdge_VertexLayoutBit);
}
if (hasCoverage) {
// color filter is applied between color/coverage computation
if (SkXfermode::kDst_Mode != desc->fColorFilterXfermode) {
desc->fFirstCoverageStage = firstCoverageStage;
}
if (this->getCaps().dualSourceBlendingSupport() &&
!(blendOpts & (kEmitCoverage_BlendOptFlag | kCoverageAsAlpha_BlendOptFlag))) {
if (kZero_GrBlendCoeff == dstCoeff) {
// write the coverage value to second color
desc->fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput;
desc->fFirstCoverageStage = firstCoverageStage;
} else if (kSA_GrBlendCoeff == dstCoeff) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
desc->fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput;
desc->fFirstCoverageStage = firstCoverageStage;
} else if (kSC_GrBlendCoeff == dstCoeff) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
desc->fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput;
desc->fFirstCoverageStage = firstCoverageStage;
}
}
}
}