| /* |
| ** License Applicability. Except to the extent portions of this file are |
| ** made subject to an alternative license as permitted in the SGI Free |
| ** Software License B, Version 1.1 (the "License"), the contents of this |
| ** file are subject only to the provisions of the License. You may not use |
| ** this file except in compliance with the License. You may obtain a copy |
| ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 |
| ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: |
| ** |
| ** http://oss.sgi.com/projects/FreeB |
| ** |
| ** Note that, as provided in the License, the Software is distributed on an |
| ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS |
| ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND |
| ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A |
| ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. |
| ** |
| ** Original Code. The Original Code is: OpenGL Sample Implementation, |
| ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, |
| ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. |
| ** Copyright in any portions created by third parties is as indicated |
| ** elsewhere herein. All Rights Reserved. |
| ** |
| ** Additional Notice Provisions: The application programming interfaces |
| ** established by SGI in conjunction with the Original Code are The |
| ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released |
| ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version |
| ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X |
| ** Window System(R) (Version 1.3), released October 19, 1998. This software |
| ** was created using the OpenGL(R) version 1.2.1 Sample Implementation |
| ** published by SGI, but has not been independently verified as being |
| ** compliant with the OpenGL(R) version 1.2.1 Specification. |
| ** |
| */ |
| /* |
| ** Author: Eric Veach, July 1994. |
| ** |
| ** $Date$ $Revision$ |
| ** $Header: //depot/main/gfx/lib/glu/libtess/normal.c#5 $ |
| */ |
| |
| #include "gluos.h" |
| #include "mesh.h" |
| #include "tess.h" |
| #include "normal.h" |
| #include <math.h> |
| #include <assert.h> |
| |
| #define TRUE 1 |
| #define FALSE 0 |
| |
| #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2]) |
| |
| #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) |
| static void Normalize( GLdouble v[3] ) |
| { |
| GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; |
| |
| assert( len > 0 ); |
| len = sqrt( len ); |
| v[0] /= len; |
| v[1] /= len; |
| v[2] /= len; |
| } |
| #endif |
| |
| #define ABS(x) ((x) < 0 ? -(x) : (x)) |
| |
| static int LongAxis( GLdouble v[3] ) |
| { |
| int i = 0; |
| |
| if( ABS(v[1]) > ABS(v[0]) ) { i = 1; } |
| if( ABS(v[2]) > ABS(v[i]) ) { i = 2; } |
| return i; |
| } |
| |
| static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] ) |
| { |
| GLUvertex *v, *v1, *v2; |
| GLdouble c, tLen2, maxLen2; |
| GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3]; |
| GLUvertex *maxVert[3], *minVert[3]; |
| GLUvertex *vHead = &tess->mesh->vHead; |
| int i; |
| |
| maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD; |
| minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD; |
| |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| for( i = 0; i < 3; ++i ) { |
| c = v->coords[i]; |
| if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; } |
| if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; } |
| } |
| } |
| |
| /* Find two vertices separated by at least 1/sqrt(3) of the maximum |
| * distance between any two vertices |
| */ |
| i = 0; |
| if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; } |
| if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; } |
| if( minVal[i] >= maxVal[i] ) { |
| /* All vertices are the same -- normal doesn't matter */ |
| norm[0] = 0; norm[1] = 0; norm[2] = 1; |
| return; |
| } |
| |
| /* Look for a third vertex which forms the triangle with maximum area |
| * (Length of normal == twice the triangle area) |
| */ |
| maxLen2 = 0; |
| v1 = minVert[i]; |
| v2 = maxVert[i]; |
| d1[0] = v1->coords[0] - v2->coords[0]; |
| d1[1] = v1->coords[1] - v2->coords[1]; |
| d1[2] = v1->coords[2] - v2->coords[2]; |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| d2[0] = v->coords[0] - v2->coords[0]; |
| d2[1] = v->coords[1] - v2->coords[1]; |
| d2[2] = v->coords[2] - v2->coords[2]; |
| tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1]; |
| tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2]; |
| tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0]; |
| tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2]; |
| if( tLen2 > maxLen2 ) { |
| maxLen2 = tLen2; |
| norm[0] = tNorm[0]; |
| norm[1] = tNorm[1]; |
| norm[2] = tNorm[2]; |
| } |
| } |
| |
| if( maxLen2 <= 0 ) { |
| /* All points lie on a single line -- any decent normal will do */ |
| norm[0] = norm[1] = norm[2] = 0; |
| norm[LongAxis(d1)] = 1; |
| } |
| } |
| |
| |
| static void CheckOrientation( GLUtesselator *tess ) |
| { |
| GLdouble area; |
| GLUface *f, *fHead = &tess->mesh->fHead; |
| GLUvertex *v, *vHead = &tess->mesh->vHead; |
| GLUhalfEdge *e; |
| |
| /* When we compute the normal automatically, we choose the orientation |
| * so that the the sum of the signed areas of all contours is non-negative. |
| */ |
| area = 0; |
| for( f = fHead->next; f != fHead; f = f->next ) { |
| e = f->anEdge; |
| if( e->winding <= 0 ) continue; |
| do { |
| area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t); |
| e = e->Lnext; |
| } while( e != f->anEdge ); |
| } |
| if( area < 0 ) { |
| /* Reverse the orientation by flipping all the t-coordinates */ |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| v->t = - v->t; |
| } |
| tess->tUnit[0] = - tess->tUnit[0]; |
| tess->tUnit[1] = - tess->tUnit[1]; |
| tess->tUnit[2] = - tess->tUnit[2]; |
| } |
| } |
| |
| #ifdef FOR_TRITE_TEST_PROGRAM |
| #include <stdlib.h> |
| extern int RandomSweep; |
| #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0) |
| #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0) |
| #else |
| #if defined(SLANTED_SWEEP) |
| /* The "feature merging" is not intended to be complete. There are |
| * special cases where edges are nearly parallel to the sweep line |
| * which are not implemented. The algorithm should still behave |
| * robustly (ie. produce a reasonable tesselation) in the presence |
| * of such edges, however it may miss features which could have been |
| * merged. We could minimize this effect by choosing the sweep line |
| * direction to be something unusual (ie. not parallel to one of the |
| * coordinate axes). |
| */ |
| #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */ |
| #define S_UNIT_Y 0.86052074622010633 |
| #else |
| #define S_UNIT_X 1.0 |
| #define S_UNIT_Y 0.0 |
| #endif |
| #endif |
| |
| /* Determine the polygon normal and project vertices onto the plane |
| * of the polygon. |
| */ |
| void __gl_projectPolygon( GLUtesselator *tess ) |
| { |
| GLUvertex *v, *vHead = &tess->mesh->vHead; |
| GLdouble norm[3]; |
| GLdouble *sUnit, *tUnit; |
| int i, computedNormal = FALSE; |
| |
| norm[0] = tess->normal[0]; |
| norm[1] = tess->normal[1]; |
| norm[2] = tess->normal[2]; |
| if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) { |
| ComputeNormal( tess, norm ); |
| computedNormal = TRUE; |
| } |
| sUnit = tess->sUnit; |
| tUnit = tess->tUnit; |
| i = LongAxis( norm ); |
| |
| #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) |
| /* Choose the initial sUnit vector to be approximately perpendicular |
| * to the normal. |
| */ |
| Normalize( norm ); |
| |
| sUnit[i] = 0; |
| sUnit[(i+1)%3] = S_UNIT_X; |
| sUnit[(i+2)%3] = S_UNIT_Y; |
| |
| /* Now make it exactly perpendicular */ |
| w = Dot( sUnit, norm ); |
| sUnit[0] -= w * norm[0]; |
| sUnit[1] -= w * norm[1]; |
| sUnit[2] -= w * norm[2]; |
| Normalize( sUnit ); |
| |
| /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */ |
| tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1]; |
| tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2]; |
| tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0]; |
| Normalize( tUnit ); |
| #else |
| /* Project perpendicular to a coordinate axis -- better numerically */ |
| sUnit[i] = 0; |
| sUnit[(i+1)%3] = S_UNIT_X; |
| sUnit[(i+2)%3] = S_UNIT_Y; |
| |
| tUnit[i] = 0; |
| tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y; |
| tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X; |
| #endif |
| |
| /* Project the vertices onto the sweep plane */ |
| for( v = vHead->next; v != vHead; v = v->next ) { |
| v->s = Dot( v->coords, sUnit ); |
| v->t = Dot( v->coords, tUnit ); |
| } |
| if( computedNormal ) { |
| CheckOrientation( tess ); |
| } |
| } |