| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrGLProgram.h" |
| |
| #include "../GrAllocator.h" |
| #include "GrGLShaderVar.h" |
| #include "SkTrace.h" |
| #include "SkXfermode.h" |
| |
| namespace { |
| |
| enum { |
| /// Used to mark a StageUniLocation field that should be bound |
| /// to a uniform during getUniformLocationsAndInitCache(). |
| kUseUniform = 2000 |
| }; |
| |
| } // namespace |
| |
| #define PRINT_SHADERS 0 |
| |
| typedef GrTAllocator<GrGLShaderVar> VarArray; |
| |
| // number of each input/output type in a single allocation block |
| static const int gVarsPerBlock = 8; |
| // except FS outputs where we expect 2 at most. |
| static const int gMaxFSOutputs = 2; |
| |
| struct ShaderCodeSegments { |
| ShaderCodeSegments() |
| : fVSUnis(gVarsPerBlock) |
| , fVSAttrs(gVarsPerBlock) |
| , fVSOutputs(gVarsPerBlock) |
| , fGSInputs(gVarsPerBlock) |
| , fGSOutputs(gVarsPerBlock) |
| , fFSInputs(gVarsPerBlock) |
| , fFSUnis(gVarsPerBlock) |
| , fFSOutputs(gMaxFSOutputs) |
| , fUsesGS(false) {} |
| GrStringBuilder fHeader; // VS+FS, GLSL version, etc |
| VarArray fVSUnis; |
| VarArray fVSAttrs; |
| VarArray fVSOutputs; |
| VarArray fGSInputs; |
| VarArray fGSOutputs; |
| VarArray fFSInputs; |
| GrStringBuilder fGSHeader; // layout qualifiers specific to GS |
| VarArray fFSUnis; |
| VarArray fFSOutputs; |
| GrStringBuilder fFSFunctions; |
| GrStringBuilder fVSCode; |
| GrStringBuilder fGSCode; |
| GrStringBuilder fFSCode; |
| |
| bool fUsesGS; |
| }; |
| |
| typedef GrGLProgram::ProgramDesc::StageDesc StageDesc; |
| |
| #if GR_GL_ATTRIBUTE_MATRICES |
| #define VIEW_MATRIX_NAME "aViewM" |
| #else |
| #define VIEW_MATRIX_NAME "uViewM" |
| #endif |
| |
| #define POS_ATTR_NAME "aPosition" |
| #define COL_ATTR_NAME "aColor" |
| #define COV_ATTR_NAME "aCoverage" |
| #define EDGE_ATTR_NAME "aEdge" |
| #define COL_UNI_NAME "uColor" |
| #define COV_UNI_NAME "uCoverage" |
| #define EDGES_UNI_NAME "uEdges" |
| #define COL_FILTER_UNI_NAME "uColorFilter" |
| #define COL_MATRIX_UNI_NAME "uColorMatrix" |
| #define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec" |
| |
| namespace { |
| inline void tex_attr_name(int coordIdx, GrStringBuilder* s) { |
| *s = "aTexCoord"; |
| s->appendS32(coordIdx); |
| } |
| |
| inline GrGLShaderVar::Type float_vector_type(int count) { |
| GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0); |
| GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1); |
| GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2); |
| GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3); |
| GrAssert(count > 0 && count <= 4); |
| return (GrGLShaderVar::Type)(count - 1); |
| } |
| |
| inline const char* float_vector_type_str(int count) { |
| return GrGLShaderVar::TypeString(float_vector_type(count)); |
| } |
| |
| inline const char* vector_homog_coord(int count) { |
| static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"}; |
| GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS)); |
| return HOMOGS[count]; |
| } |
| |
| inline const char* vector_nonhomog_coords(int count) { |
| static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"}; |
| GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS)); |
| return NONHOMOGS[count]; |
| } |
| |
| inline const char* vector_all_coords(int count) { |
| static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"}; |
| GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL)); |
| return ALL[count]; |
| } |
| |
| inline const char* all_ones_vec(int count) { |
| static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)", |
| "vec3(1,1,1)", "vec4(1,1,1,1)"}; |
| GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC)); |
| return ONESVEC[count]; |
| } |
| |
| inline const char* all_zeros_vec(int count) { |
| static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)", |
| "vec3(0,0,0)", "vec4(0,0,0,0)"}; |
| GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC)); |
| return ZEROSVEC[count]; |
| } |
| |
| inline const char* declared_color_output_name() { return "fsColorOut"; } |
| inline const char* dual_source_output_name() { return "dualSourceOut"; } |
| |
| inline void tex_matrix_name(int stage, GrStringBuilder* s) { |
| #if GR_GL_ATTRIBUTE_MATRICES |
| *s = "aTexM"; |
| #else |
| *s = "uTexM"; |
| #endif |
| s->appendS32(stage); |
| } |
| |
| inline void normalized_texel_size_name(int stage, GrStringBuilder* s) { |
| *s = "uTexelSize"; |
| s->appendS32(stage); |
| } |
| |
| inline void sampler_name(int stage, GrStringBuilder* s) { |
| *s = "uSampler"; |
| s->appendS32(stage); |
| } |
| |
| inline void radial2_param_name(int stage, GrStringBuilder* s) { |
| *s = "uRadial2Params"; |
| s->appendS32(stage); |
| } |
| |
| inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) { |
| *k = "uKernel"; |
| k->appendS32(stage); |
| *i = "uImageIncrement"; |
| i->appendS32(stage); |
| } |
| |
| inline void image_increment_param_name(int stage, GrStringBuilder* i) { |
| *i = "uImageIncrement"; |
| i->appendS32(stage); |
| } |
| |
| inline void tex_domain_name(int stage, GrStringBuilder* s) { |
| *s = "uTexDom"; |
| s->appendS32(stage); |
| } |
| } |
| |
| GrGLProgram::GrGLProgram() { |
| } |
| |
| GrGLProgram::~GrGLProgram() { |
| } |
| |
| void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff, |
| GrBlendCoeff* dstCoeff) const { |
| switch (fProgramDesc.fDualSrcOutput) { |
| case ProgramDesc::kNone_DualSrcOutput: |
| break; |
| // the prog will write a coverage value to the secondary |
| // output and the dst is blended by one minus that value. |
| case ProgramDesc::kCoverage_DualSrcOutput: |
| case ProgramDesc::kCoverageISA_DualSrcOutput: |
| case ProgramDesc::kCoverageISC_DualSrcOutput: |
| *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff; |
| break; |
| default: |
| GrCrash("Unexpected dual source blend output"); |
| break; |
| } |
| } |
| |
| // assigns modulation of two vars to an output var |
| // vars can be vec4s or floats (or one of each) |
| // result is always vec4 |
| // if either var is "" then assign to the other var |
| // if both are "" then assign all ones |
| static inline void modulate_helper(const char* outputVar, |
| const char* var0, |
| const char* var1, |
| GrStringBuilder* code) { |
| GrAssert(NULL != outputVar); |
| GrAssert(NULL != var0); |
| GrAssert(NULL != var1); |
| GrAssert(NULL != code); |
| |
| bool has0 = '\0' != *var0; |
| bool has1 = '\0' != *var1; |
| |
| if (!has0 && !has1) { |
| code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4)); |
| } else if (!has0) { |
| code->appendf("\t%s = vec4(%s);\n", outputVar, var1); |
| } else if (!has1) { |
| code->appendf("\t%s = vec4(%s);\n", outputVar, var0); |
| } else { |
| code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1); |
| } |
| } |
| |
| // assigns addition of two vars to an output var |
| // vars can be vec4s or floats (or one of each) |
| // result is always vec4 |
| // if either var is "" then assign to the other var |
| // if both are "" then assign all zeros |
| static inline void add_helper(const char* outputVar, |
| const char* var0, |
| const char* var1, |
| GrStringBuilder* code) { |
| GrAssert(NULL != outputVar); |
| GrAssert(NULL != var0); |
| GrAssert(NULL != var1); |
| GrAssert(NULL != code); |
| |
| bool has0 = '\0' != *var0; |
| bool has1 = '\0' != *var1; |
| |
| if (!has0 && !has1) { |
| code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4)); |
| } else if (!has0) { |
| code->appendf("\t%s = vec4(%s);\n", outputVar, var1); |
| } else if (!has1) { |
| code->appendf("\t%s = vec4(%s);\n", outputVar, var0); |
| } else { |
| code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1); |
| } |
| } |
| |
| // given two blend coeffecients determine whether the src |
| // and/or dst computation can be omitted. |
| static inline void needBlendInputs(SkXfermode::Coeff srcCoeff, |
| SkXfermode::Coeff dstCoeff, |
| bool* needSrcValue, |
| bool* needDstValue) { |
| if (SkXfermode::kZero_Coeff == srcCoeff) { |
| switch (dstCoeff) { |
| // these all read the src |
| case SkXfermode::kSC_Coeff: |
| case SkXfermode::kISC_Coeff: |
| case SkXfermode::kSA_Coeff: |
| case SkXfermode::kISA_Coeff: |
| *needSrcValue = true; |
| break; |
| default: |
| *needSrcValue = false; |
| break; |
| } |
| } else { |
| *needSrcValue = true; |
| } |
| if (SkXfermode::kZero_Coeff == dstCoeff) { |
| switch (srcCoeff) { |
| // these all read the dst |
| case SkXfermode::kDC_Coeff: |
| case SkXfermode::kIDC_Coeff: |
| case SkXfermode::kDA_Coeff: |
| case SkXfermode::kIDA_Coeff: |
| *needDstValue = true; |
| break; |
| default: |
| *needDstValue = false; |
| break; |
| } |
| } else { |
| *needDstValue = true; |
| } |
| } |
| |
| /** |
| * Create a blend_coeff * value string to be used in shader code. Sets empty |
| * string if result is trivially zero. |
| */ |
| static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff, |
| const char* src, const char* dst, |
| const char* value) { |
| switch (coeff) { |
| case SkXfermode::kZero_Coeff: /** 0 */ |
| *str = ""; |
| break; |
| case SkXfermode::kOne_Coeff: /** 1 */ |
| *str = value; |
| break; |
| case SkXfermode::kSC_Coeff: |
| str->printf("(%s * %s)", src, value); |
| break; |
| case SkXfermode::kISC_Coeff: |
| str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value); |
| break; |
| case SkXfermode::kDC_Coeff: |
| str->printf("(%s * %s)", dst, value); |
| break; |
| case SkXfermode::kIDC_Coeff: |
| str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value); |
| break; |
| case SkXfermode::kSA_Coeff: /** src alpha */ |
| str->printf("(%s.a * %s)", src, value); |
| break; |
| case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */ |
| str->printf("((1.0 - %s.a) * %s)", src, value); |
| break; |
| case SkXfermode::kDA_Coeff: /** dst alpha */ |
| str->printf("(%s.a * %s)", dst, value); |
| break; |
| case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */ |
| str->printf("((1.0 - %s.a) * %s)", dst, value); |
| break; |
| default: |
| GrCrash("Unexpected xfer coeff."); |
| break; |
| } |
| } |
| /** |
| * Adds a line to the fragment shader code which modifies the color by |
| * the specified color filter. |
| */ |
| static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar, |
| SkXfermode::Coeff uniformCoeff, |
| SkXfermode::Coeff colorCoeff, |
| const char* inColor) { |
| GrStringBuilder colorStr, constStr; |
| blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME, |
| inColor, inColor); |
| blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME, |
| inColor, COL_FILTER_UNI_NAME); |
| |
| add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode); |
| } |
| /** |
| * Adds code to the fragment shader code which modifies the color by |
| * the specified color matrix. |
| */ |
| static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar, |
| const char* inColor) { |
| fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME); |
| fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar); |
| } |
| |
| namespace { |
| |
| // Adds a var that is computed in the VS and read in FS. |
| // If there is a GS it will just pass it through. |
| void append_varying(GrGLShaderVar::Type type, |
| const char* name, |
| ShaderCodeSegments* segments, |
| const char** vsOutName = NULL, |
| const char** fsInName = NULL) { |
| segments->fVSOutputs.push_back(); |
| segments->fVSOutputs.back().setType(type); |
| segments->fVSOutputs.back().setTypeModifier( |
| GrGLShaderVar::kOut_TypeModifier); |
| segments->fVSOutputs.back().accessName()->printf("v%s", name); |
| if (vsOutName) { |
| *vsOutName = segments->fVSOutputs.back().getName().c_str(); |
| } |
| // input to FS comes either from VS or GS |
| const GrStringBuilder* fsName; |
| if (segments->fUsesGS) { |
| // if we have a GS take each varying in as an array |
| // and output as non-array. |
| segments->fGSInputs.push_back(); |
| segments->fGSInputs.back().setType(type); |
| segments->fGSInputs.back().setTypeModifier( |
| GrGLShaderVar::kIn_TypeModifier); |
| segments->fGSInputs.back().setUnsizedArray(); |
| *segments->fGSInputs.back().accessName() = |
| segments->fVSOutputs.back().getName(); |
| segments->fGSOutputs.push_back(); |
| segments->fGSOutputs.back().setType(type); |
| segments->fGSOutputs.back().setTypeModifier( |
| GrGLShaderVar::kOut_TypeModifier); |
| segments->fGSOutputs.back().accessName()->printf("g%s", name); |
| fsName = segments->fGSOutputs.back().accessName(); |
| } else { |
| fsName = segments->fVSOutputs.back().accessName(); |
| } |
| segments->fFSInputs.push_back(); |
| segments->fFSInputs.back().setType(type); |
| segments->fFSInputs.back().setTypeModifier( |
| GrGLShaderVar::kIn_TypeModifier); |
| segments->fFSInputs.back().setName(*fsName); |
| if (fsInName) { |
| *fsInName = fsName->c_str(); |
| } |
| } |
| |
| // version of above that adds a stage number to the |
| // the var name (for uniqueness) |
| void append_varying(GrGLShaderVar::Type type, |
| const char* name, |
| int stageNum, |
| ShaderCodeSegments* segments, |
| const char** vsOutName = NULL, |
| const char** fsInName = NULL) { |
| GrStringBuilder nameWithStage(name); |
| nameWithStage.appendS32(stageNum); |
| append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName); |
| } |
| } |
| |
| void GrGLProgram::genEdgeCoverage(const GrGLContextInfo& gl, |
| GrVertexLayout layout, |
| CachedData* programData, |
| GrStringBuilder* coverageVar, |
| ShaderCodeSegments* segments) const { |
| if (fProgramDesc.fEdgeAANumEdges > 0) { |
| segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, |
| EDGES_UNI_NAME, |
| fProgramDesc.fEdgeAANumEdges); |
| programData->fUniLocations.fEdgesUni = kUseUniform; |
| int count = fProgramDesc.fEdgeAANumEdges; |
| segments->fFSCode.append( |
| "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n"); |
| for (int i = 0; i < count; i++) { |
| segments->fFSCode.append("\tfloat a"); |
| segments->fFSCode.appendS32(i); |
| segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "["); |
| segments->fFSCode.appendS32(i); |
| segments->fFSCode.append("], pos), 0.0, 1.0);\n"); |
| } |
| if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) { |
| // For concave polys, we consider the edges in pairs. |
| segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n"); |
| segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n"); |
| segments->fFSFunctions.append("}\n"); |
| for (int i = 0; i < count; i += 2) { |
| segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2); |
| segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1); |
| segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1); |
| segments->fFSCode.append("\t} else {\n"); |
| segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1); |
| segments->fFSCode.append("\t}\n"); |
| } |
| segments->fFSCode.append("\tfloat edgeAlpha = "); |
| for (int i = 0; i < count / 2 - 1; i++) { |
| segments->fFSCode.appendf("min(eb%d, ", i); |
| } |
| segments->fFSCode.appendf("eb%d", count / 2 - 1); |
| for (int i = 0; i < count / 2 - 1; i++) { |
| segments->fFSCode.append(")"); |
| } |
| segments->fFSCode.append(";\n"); |
| } else { |
| segments->fFSCode.append("\tfloat edgeAlpha = "); |
| for (int i = 0; i < count - 1; i++) { |
| segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1); |
| } |
| segments->fFSCode.appendf("a%d * a0", count - 1); |
| for (int i = 0; i < count - 1; i++) { |
| segments->fFSCode.append(")"); |
| } |
| segments->fFSCode.append(";\n"); |
| } |
| *coverageVar = "edgeAlpha"; |
| } else if (layout & GrDrawTarget::kEdge_VertexLayoutBit) { |
| const char *vsName, *fsName; |
| append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments, |
| &vsName, &fsName); |
| segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME); |
| segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName); |
| if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) { |
| segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName); |
| segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); |
| } else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) { |
| segments->fFSCode.append("\tfloat edgeAlpha;\n"); |
| // keep the derivative instructions outside the conditional |
| segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); |
| // today we know z and w are in device space. We could use derivatives |
| segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName); |
| segments->fFSCode.append ("\t} else {\n"); |
| segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" |
| "\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", |
| fsName, fsName); |
| segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); |
| segments->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n" |
| "\t}\n"); |
| if (kES2_GrGLBinding == gl.binding()) { |
| segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); |
| } |
| } else { |
| GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType); |
| segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); |
| segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" |
| "\t 2.0*%s.x*duvdy.x - duvdy.y);\n", |
| fsName, fsName); |
| segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); |
| segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n"); |
| segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); |
| if (kES2_GrGLBinding == gl.binding()) { |
| segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); |
| } |
| } |
| *coverageVar = "edgeAlpha"; |
| } else { |
| coverageVar->reset(); |
| } |
| } |
| |
| namespace { |
| |
| void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput, |
| GrGLProgram::CachedData* programData, |
| ShaderCodeSegments* segments, |
| GrStringBuilder* inColor) { |
| switch (colorInput) { |
| case GrGLProgram::ProgramDesc::kAttribute_ColorInput: { |
| segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| COL_ATTR_NAME); |
| const char *vsName, *fsName; |
| append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName); |
| segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName); |
| *inColor = fsName; |
| } break; |
| case GrGLProgram::ProgramDesc::kUniform_ColorInput: |
| segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, |
| COL_UNI_NAME); |
| programData->fUniLocations.fColorUni = kUseUniform; |
| *inColor = COL_UNI_NAME; |
| break; |
| case GrGLProgram::ProgramDesc::kTransBlack_ColorInput: |
| GrAssert(!"needComputedColor should be false."); |
| break; |
| case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown color type."); |
| break; |
| } |
| } |
| |
| void genAttributeCoverage(ShaderCodeSegments* segments, |
| GrStringBuilder* inOutCoverage) { |
| segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| COV_ATTR_NAME); |
| const char *vsName, *fsName; |
| append_varying(GrGLShaderVar::kVec4f_Type, "Coverage", |
| segments, &vsName, &fsName); |
| segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName); |
| if (inOutCoverage->size()) { |
| segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n", |
| fsName, inOutCoverage->c_str()); |
| *inOutCoverage = "attrCoverage"; |
| } else { |
| *inOutCoverage = fsName; |
| } |
| } |
| |
| void genUniformCoverage(ShaderCodeSegments* segments, |
| GrGLProgram::CachedData* programData, |
| GrStringBuilder* inOutCoverage) { |
| segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, |
| COV_UNI_NAME); |
| programData->fUniLocations.fCoverageUni = kUseUniform; |
| if (inOutCoverage->size()) { |
| segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n", |
| COV_UNI_NAME, inOutCoverage->c_str()); |
| *inOutCoverage = "uniCoverage"; |
| } else { |
| *inOutCoverage = COV_UNI_NAME; |
| } |
| } |
| |
| } |
| |
| void GrGLProgram::genGeometryShader(const GrGLContextInfo& gl, |
| ShaderCodeSegments* segments) const { |
| #if GR_GL_EXPERIMENTAL_GS |
| if (fProgramDesc.fExperimentalGS) { |
| GrAssert(gl.glslGeneration() >= k150_GrGLSLGeneration); |
| segments->fGSHeader.append("layout(triangles) in;\n" |
| "layout(triangle_strip, max_vertices = 6) out;\n"); |
| segments->fGSCode.append("void main() {\n" |
| "\tfor (int i = 0; i < 3; ++i) {\n" |
| "\t\tgl_Position = gl_in[i].gl_Position;\n"); |
| if (this->fProgramDesc.fEmitsPointSize) { |
| segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n"); |
| } |
| GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count()); |
| int count = segments->fGSInputs.count(); |
| for (int i = 0; i < count; ++i) { |
| segments->fGSCode.appendf("\t\t%s = %s[i];\n", |
| segments->fGSOutputs[i].getName().c_str(), |
| segments->fGSInputs[i].getName().c_str()); |
| } |
| segments->fGSCode.append("\t\tEmitVertex();\n" |
| "\t}\n" |
| "\tEndPrimitive();\n" |
| "}\n"); |
| } |
| #endif |
| } |
| |
| const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const { |
| if (inColor.size()) { |
| return inColor.c_str(); |
| } else { |
| if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) { |
| return all_ones_vec(4); |
| } else { |
| return all_zeros_vec(4); |
| } |
| } |
| } |
| |
| |
| bool GrGLProgram::genProgram(const GrGLContextInfo& gl, |
| GrGLProgram::CachedData* programData) const { |
| |
| ShaderCodeSegments segments; |
| const uint32_t& layout = fProgramDesc.fVertexLayout; |
| |
| programData->fUniLocations.reset(); |
| |
| #if GR_GL_EXPERIMENTAL_GS |
| segments.fUsesGS = fProgramDesc.fExperimentalGS; |
| #endif |
| |
| SkXfermode::Coeff colorCoeff, uniformCoeff; |
| bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled); |
| // The rest of transfer mode color filters have not been implemented |
| if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) { |
| GR_DEBUGCODE(bool success =) |
| SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode> |
| (fProgramDesc.fColorFilterXfermode), |
| &uniformCoeff, &colorCoeff); |
| GR_DEBUGASSERT(success); |
| } else { |
| colorCoeff = SkXfermode::kOne_Coeff; |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| } |
| |
| // no need to do the color filter / matrix at all if coverage is 0. The |
| // output color is scaled by the coverage. All the dual source outputs are |
| // scaled by the coverage as well. |
| if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) { |
| colorCoeff = SkXfermode::kZero_Coeff; |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| applyColorMatrix = false; |
| } |
| |
| // If we know the final color is going to be all zeros then we can |
| // simplify the color filter coeffecients. needComputedColor will then |
| // come out false below. |
| if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) { |
| colorCoeff = SkXfermode::kZero_Coeff; |
| if (SkXfermode::kDC_Coeff == uniformCoeff || |
| SkXfermode::kDA_Coeff == uniformCoeff) { |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| } else if (SkXfermode::kIDC_Coeff == uniformCoeff || |
| SkXfermode::kIDA_Coeff == uniformCoeff) { |
| uniformCoeff = SkXfermode::kOne_Coeff; |
| } |
| } |
| |
| bool needColorFilterUniform; |
| bool needComputedColor; |
| needBlendInputs(uniformCoeff, colorCoeff, |
| &needColorFilterUniform, &needComputedColor); |
| |
| // the dual source output has no canonical var name, have to |
| // declare an output, which is incompatible with gl_FragColor/gl_FragData. |
| bool dualSourceOutputWritten = false; |
| segments.fHeader.printf(GrGetGLSLVersionDecl(gl.binding(), |
| gl.glslGeneration())); |
| |
| GrGLShaderVar colorOutput; |
| bool isColorDeclared = GrGLSLSetupFSColorOuput(gl.glslGeneration(), |
| declared_color_output_name(), |
| &colorOutput); |
| if (isColorDeclared) { |
| segments.fFSOutputs.push_back(colorOutput); |
| } |
| |
| #if GR_GL_ATTRIBUTE_MATRICES |
| segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type, |
| GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME); |
| programData->fUniLocations.fViewMatrixUni = kSetAsAttribute; |
| #else |
| segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME); |
| programData->fUniLocations.fViewMatrixUni = kUseUniform; |
| #endif |
| segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type, |
| GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME); |
| |
| segments.fVSCode.append( |
| "void main() {\n" |
| "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n" |
| "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n"); |
| |
| // incoming color to current stage being processed. |
| GrStringBuilder inColor; |
| |
| if (needComputedColor) { |
| genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput, |
| programData, &segments, &inColor); |
| } |
| |
| // we output point size in the GS if present |
| if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){ |
| segments.fVSCode.append("\tgl_PointSize = 1.0;\n"); |
| } |
| |
| segments.fFSCode.append("void main() {\n"); |
| |
| // add texture coordinates that are used to the list of vertex attr decls |
| GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords]; |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) { |
| tex_attr_name(t, texCoordAttrs + t); |
| segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type, |
| GrGLShaderVar::kAttribute_TypeModifier, |
| texCoordAttrs[t].c_str()); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // compute the final color |
| |
| // if we have color stages string them together, feeding the output color |
| // of each to the next and generating code for each stage. |
| if (needComputedColor) { |
| GrStringBuilder outColor; |
| for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) { |
| if (fProgramDesc.fStages[s].isEnabled()) { |
| // create var to hold stage result |
| outColor = "color"; |
| outColor.appendS32(s); |
| segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str()); |
| |
| const char* inCoords; |
| // figure out what our input coords are |
| if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) & |
| layout) { |
| inCoords = POS_ATTR_NAME; |
| } else { |
| int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); |
| // we better have input tex coordinates if stage is enabled. |
| GrAssert(tcIdx >= 0); |
| GrAssert(texCoordAttrs[tcIdx].size()); |
| inCoords = texCoordAttrs[tcIdx].c_str(); |
| } |
| |
| this->genStageCode(gl, |
| s, |
| fProgramDesc.fStages[s], |
| inColor.size() ? inColor.c_str() : NULL, |
| outColor.c_str(), |
| inCoords, |
| &segments, |
| &programData->fUniLocations.fStages[s]); |
| inColor = outColor; |
| } |
| } |
| } |
| |
| // if have all ones or zeros for the "dst" input to the color filter then we |
| // may be able to make additional optimizations. |
| if (needColorFilterUniform && needComputedColor && !inColor.size()) { |
| GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput); |
| bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff || |
| SkXfermode::kIDA_Coeff == uniformCoeff; |
| if (uniformCoeffIsZero) { |
| uniformCoeff = SkXfermode::kZero_Coeff; |
| bool bogus; |
| needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff, |
| &needColorFilterUniform, &bogus); |
| } |
| } |
| if (needColorFilterUniform) { |
| segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, |
| COL_FILTER_UNI_NAME); |
| programData->fUniLocations.fColorFilterUni = kUseUniform; |
| } |
| bool wroteFragColorZero = false; |
| if (SkXfermode::kZero_Coeff == uniformCoeff && |
| SkXfermode::kZero_Coeff == colorCoeff && |
| !applyColorMatrix) { |
| segments.fFSCode.appendf("\t%s = %s;\n", |
| colorOutput.getName().c_str(), |
| all_zeros_vec(4)); |
| wroteFragColorZero = true; |
| } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) { |
| segments.fFSCode.append("\tvec4 filteredColor;\n"); |
| const char* color = adjustInColor(inColor); |
| addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff, |
| colorCoeff, color); |
| inColor = "filteredColor"; |
| } |
| if (applyColorMatrix) { |
| segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, |
| COL_MATRIX_UNI_NAME); |
| segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, |
| COL_MATRIX_VEC_UNI_NAME); |
| programData->fUniLocations.fColorMatrixUni = kUseUniform; |
| programData->fUniLocations.fColorMatrixVecUni = kUseUniform; |
| segments.fFSCode.append("\tvec4 matrixedColor;\n"); |
| const char* color = adjustInColor(inColor); |
| addColorMatrix(&segments.fFSCode, "matrixedColor", color); |
| inColor = "matrixedColor"; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // compute the partial coverage (coverage stages and edge aa) |
| |
| GrStringBuilder inCoverage; |
| bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput == |
| fProgramDesc.fCoverageInput; |
| // we don't need to compute coverage at all if we know the final shader |
| // output will be zero and we don't have a dual src blend output. |
| if (!wroteFragColorZero || |
| ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) { |
| |
| if (!coverageIsZero) { |
| this->genEdgeCoverage(gl, |
| layout, |
| programData, |
| &inCoverage, |
| &segments); |
| |
| switch (fProgramDesc.fCoverageInput) { |
| case ProgramDesc::kSolidWhite_ColorInput: |
| // empty string implies solid white |
| break; |
| case ProgramDesc::kAttribute_ColorInput: |
| genAttributeCoverage(&segments, &inCoverage); |
| break; |
| case ProgramDesc::kUniform_ColorInput: |
| genUniformCoverage(&segments, programData, &inCoverage); |
| break; |
| default: |
| GrCrash("Unexpected input coverage."); |
| } |
| |
| GrStringBuilder outCoverage; |
| const int& startStage = fProgramDesc.fFirstCoverageStage; |
| for (int s = startStage; s < GrDrawState::kNumStages; ++s) { |
| if (fProgramDesc.fStages[s].isEnabled()) { |
| // create var to hold stage output |
| outCoverage = "coverage"; |
| outCoverage.appendS32(s); |
| segments.fFSCode.appendf("\tvec4 %s;\n", |
| outCoverage.c_str()); |
| |
| const char* inCoords; |
| // figure out what our input coords are |
| if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) & |
| layout) { |
| inCoords = POS_ATTR_NAME; |
| } else { |
| int tcIdx = |
| GrDrawTarget::VertexTexCoordsForStage(s, layout); |
| // we better have input tex coordinates if stage is |
| // enabled. |
| GrAssert(tcIdx >= 0); |
| GrAssert(texCoordAttrs[tcIdx].size()); |
| inCoords = texCoordAttrs[tcIdx].c_str(); |
| } |
| |
| genStageCode(gl, s, |
| fProgramDesc.fStages[s], |
| inCoverage.size() ? inCoverage.c_str() : NULL, |
| outCoverage.c_str(), |
| inCoords, |
| &segments, |
| &programData->fUniLocations.fStages[s]); |
| inCoverage = outCoverage; |
| } |
| } |
| } |
| if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) { |
| segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kOut_TypeModifier, |
| dual_source_output_name()); |
| bool outputIsZero = coverageIsZero; |
| GrStringBuilder coeff; |
| if (!outputIsZero && |
| ProgramDesc::kCoverage_DualSrcOutput != |
| fProgramDesc.fDualSrcOutput && !wroteFragColorZero) { |
| if (!inColor.size()) { |
| outputIsZero = true; |
| } else { |
| if (fProgramDesc.fDualSrcOutput == |
| ProgramDesc::kCoverageISA_DualSrcOutput) { |
| coeff.printf("(1 - %s.a)", inColor.c_str()); |
| } else { |
| coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str()); |
| } |
| } |
| } |
| if (outputIsZero) { |
| segments.fFSCode.appendf("\t%s = %s;\n", |
| dual_source_output_name(), |
| all_zeros_vec(4)); |
| } else { |
| modulate_helper(dual_source_output_name(), |
| coeff.c_str(), |
| inCoverage.c_str(), |
| &segments.fFSCode); |
| } |
| dualSourceOutputWritten = true; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // combine color and coverage as frag color |
| |
| if (!wroteFragColorZero) { |
| if (coverageIsZero) { |
| segments.fFSCode.appendf("\t%s = %s;\n", |
| colorOutput.getName().c_str(), |
| all_zeros_vec(4)); |
| } else { |
| modulate_helper(colorOutput.getName().c_str(), |
| inColor.c_str(), |
| inCoverage.c_str(), |
| &segments.fFSCode); |
| } |
| if (ProgramDesc::kUnpremultiplied_RoundDown_OutputConfig == |
| fProgramDesc.fOutputConfig) { |
| segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n", |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str()); |
| } else if (ProgramDesc::kUnpremultiplied_RoundUp_OutputConfig == |
| fProgramDesc.fOutputConfig) { |
| segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n", |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str(), |
| colorOutput.getName().c_str()); |
| } |
| } |
| |
| segments.fVSCode.append("}\n"); |
| segments.fFSCode.append("}\n"); |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // insert GS |
| #if GR_DEBUG |
| this->genGeometryShader(gl, &segments); |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // compile and setup attribs and unis |
| |
| if (!CompileShaders(gl, segments, programData)) { |
| return false; |
| } |
| |
| if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs, |
| isColorDeclared, |
| dualSourceOutputWritten, |
| programData)) { |
| return false; |
| } |
| |
| this->getUniformLocationsAndInitCache(gl, programData); |
| |
| return true; |
| } |
| |
| namespace { |
| |
| inline void expand_decls(const VarArray& vars, |
| const GrGLContextInfo& gl, |
| GrStringBuilder* string) { |
| const int count = vars.count(); |
| for (int i = 0; i < count; ++i) { |
| vars[i].appendDecl(gl, string); |
| } |
| } |
| |
| inline void print_shader(int stringCnt, |
| const char** strings, |
| int* stringLengths) { |
| for (int i = 0; i < stringCnt; ++i) { |
| if (NULL == stringLengths || stringLengths[i] < 0) { |
| GrPrintf(strings[i]); |
| } else { |
| GrPrintf("%.*s", stringLengths[i], strings[i]); |
| } |
| } |
| } |
| |
| typedef SkTArray<const char*, true> StrArray; |
| #define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true> |
| |
| typedef SkTArray<int, true> LengthArray; |
| #define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true> |
| |
| // these shouldn't relocate |
| typedef GrTAllocator<GrStringBuilder> TempArray; |
| #define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder> |
| |
| inline void append_string(const GrStringBuilder& str, |
| StrArray* strings, |
| LengthArray* lengths) { |
| int length = (int) str.size(); |
| if (length) { |
| strings->push_back(str.c_str()); |
| lengths->push_back(length); |
| } |
| GrAssert(strings->count() == lengths->count()); |
| } |
| |
| inline void append_decls(const VarArray& vars, |
| const GrGLContextInfo& gl, |
| StrArray* strings, |
| LengthArray* lengths, |
| TempArray* temp) { |
| expand_decls(vars, gl, &temp->push_back()); |
| append_string(temp->back(), strings, lengths); |
| } |
| |
| } |
| |
| bool GrGLProgram::CompileShaders(const GrGLContextInfo& gl, |
| const ShaderCodeSegments& segments, |
| CachedData* programData) { |
| enum { kPreAllocStringCnt = 8 }; |
| |
| PREALLOC_STR_ARRAY(kPreAllocStringCnt) strs; |
| PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths; |
| PREALLOC_TEMP_ARRAY(kPreAllocStringCnt) temps; |
| |
| GrStringBuilder unis; |
| GrStringBuilder inputs; |
| GrStringBuilder outputs; |
| |
| append_string(segments.fHeader, &strs, &lengths); |
| append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps); |
| append_decls(segments.fVSAttrs, gl, &strs, &lengths, &temps); |
| append_decls(segments.fVSOutputs, gl, &strs, &lengths, &temps); |
| append_string(segments.fVSCode, &strs, &lengths); |
| |
| #if PRINT_SHADERS |
| print_shader(strs.count(), &strs[0], &lengths[0]); |
| GrPrintf("\n"); |
| #endif |
| |
| programData->fVShaderID = |
| CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(), |
| &strs[0], &lengths[0]); |
| |
| if (!programData->fVShaderID) { |
| return false; |
| } |
| if (segments.fUsesGS) { |
| strs.reset(); |
| lengths.reset(); |
| temps.reset(); |
| append_string(segments.fHeader, &strs, &lengths); |
| append_string(segments.fGSHeader, &strs, &lengths); |
| append_decls(segments.fGSInputs, gl, &strs, &lengths, &temps); |
| append_decls(segments.fGSOutputs, gl, &strs, &lengths, &temps); |
| append_string(segments.fGSCode, &strs, &lengths); |
| #if PRINT_SHADERS |
| print_shader(strs.count(), &strs[0], &lengths[0]); |
| GrPrintf("\n"); |
| #endif |
| programData->fGShaderID = |
| CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(), |
| &strs[0], &lengths[0]); |
| } else { |
| programData->fGShaderID = 0; |
| } |
| |
| strs.reset(); |
| lengths.reset(); |
| temps.reset(); |
| |
| append_string(segments.fHeader, &strs, &lengths); |
| GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl.binding())); |
| append_string(precisionStr, &strs, &lengths); |
| append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps); |
| append_decls(segments.fFSInputs, gl, &strs, &lengths, &temps); |
| // We shouldn't have declared outputs on 1.10 |
| GrAssert(k110_GrGLSLGeneration != gl.glslGeneration() || |
| segments.fFSOutputs.empty()); |
| append_decls(segments.fFSOutputs, gl, &strs, &lengths, &temps); |
| append_string(segments.fFSFunctions, &strs, &lengths); |
| append_string(segments.fFSCode, &strs, &lengths); |
| |
| #if PRINT_SHADERS |
| print_shader(strs.count(), &strs[0], &lengths[0]); |
| GrPrintf("\n"); |
| #endif |
| |
| programData->fFShaderID = |
| CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(), |
| &strs[0], &lengths[0]); |
| |
| if (!programData->fFShaderID) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #define GL_CALL(X) GR_GL_CALL(gl.interface(), X) |
| #define GL_CALL_RET(R, X) GR_GL_CALL_RET(gl.interface(), R, X) |
| |
| GrGLuint GrGLProgram::CompileShader(const GrGLContextInfo& gl, |
| GrGLenum type, |
| int stringCnt, |
| const char** strings, |
| int* stringLengths) { |
| SK_TRACE_EVENT1("GrGLProgram::CompileShader", |
| "stringCount", SkStringPrintf("%i", stringCnt).c_str()); |
| |
| GrGLuint shader; |
| GL_CALL_RET(shader, CreateShader(type)); |
| if (0 == shader) { |
| return 0; |
| } |
| |
| GrGLint compiled = GR_GL_INIT_ZERO; |
| GL_CALL(ShaderSource(shader, stringCnt, strings, stringLengths)); |
| GL_CALL(CompileShader(shader)); |
| GL_CALL(GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled)); |
| |
| if (!compiled) { |
| GrGLint infoLen = GR_GL_INIT_ZERO; |
| GL_CALL(GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen)); |
| SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger |
| if (infoLen > 0) { |
| // retrieve length even though we don't need it to workaround |
| // bug in chrome cmd buffer param validation. |
| GrGLsizei length = GR_GL_INIT_ZERO; |
| GL_CALL(GetShaderInfoLog(shader, infoLen+1, |
| &length, (char*)log.get())); |
| print_shader(stringCnt, strings, stringLengths); |
| GrPrintf("\n%s", log.get()); |
| } |
| GrAssert(!"Shader compilation failed!"); |
| GL_CALL(DeleteShader(shader)); |
| return 0; |
| } |
| return shader; |
| } |
| |
| bool GrGLProgram::bindOutputsAttribsAndLinkProgram( |
| const GrGLContextInfo& gl, |
| GrStringBuilder texCoordAttrNames[], |
| bool bindColorOut, |
| bool bindDualSrcOut, |
| CachedData* programData) const { |
| GL_CALL_RET(programData->fProgramID, CreateProgram()); |
| if (!programData->fProgramID) { |
| return false; |
| } |
| const GrGLint& progID = programData->fProgramID; |
| |
| GL_CALL(AttachShader(progID, programData->fVShaderID)); |
| if (programData->fGShaderID) { |
| GL_CALL(AttachShader(progID, programData->fGShaderID)); |
| } |
| GL_CALL(AttachShader(progID, programData->fFShaderID)); |
| |
| if (bindColorOut) { |
| GL_CALL(BindFragDataLocation(programData->fProgramID, |
| 0, declared_color_output_name())); |
| } |
| if (bindDualSrcOut) { |
| GL_CALL(BindFragDataLocationIndexed(programData->fProgramID, |
| 0, 1, dual_source_output_name())); |
| } |
| |
| // Bind the attrib locations to same values for all shaders |
| GL_CALL(BindAttribLocation(progID, PositionAttributeIdx(), POS_ATTR_NAME)); |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (texCoordAttrNames[t].size()) { |
| GL_CALL(BindAttribLocation(progID, |
| TexCoordAttributeIdx(t), |
| texCoordAttrNames[t].c_str())); |
| } |
| } |
| |
| if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) { |
| GL_CALL(BindAttribLocation(progID, |
| ViewMatrixAttributeIdx(), |
| VIEW_MATRIX_NAME)); |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| const StageUniLocations& unis = programData->fUniLocations.fStages[s]; |
| if (kSetAsAttribute == unis.fTextureMatrixUni) { |
| GrStringBuilder matName; |
| tex_matrix_name(s, &matName); |
| GL_CALL(BindAttribLocation(progID, |
| TextureMatrixAttributeIdx(s), |
| matName.c_str())); |
| } |
| } |
| |
| GL_CALL(BindAttribLocation(progID, ColorAttributeIdx(), COL_ATTR_NAME)); |
| GL_CALL(BindAttribLocation(progID, CoverageAttributeIdx(), COV_ATTR_NAME)); |
| GL_CALL(BindAttribLocation(progID, EdgeAttributeIdx(), EDGE_ATTR_NAME)); |
| |
| GL_CALL(LinkProgram(progID)); |
| |
| GrGLint linked = GR_GL_INIT_ZERO; |
| GL_CALL(GetProgramiv(progID, GR_GL_LINK_STATUS, &linked)); |
| if (!linked) { |
| GrGLint infoLen = GR_GL_INIT_ZERO; |
| GL_CALL(GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen)); |
| SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger |
| if (infoLen > 0) { |
| // retrieve length even though we don't need it to workaround |
| // bug in chrome cmd buffer param validation. |
| GrGLsizei length = GR_GL_INIT_ZERO; |
| GL_CALL(GetProgramInfoLog(progID, |
| infoLen+1, |
| &length, |
| (char*)log.get())); |
| GrPrintf((char*)log.get()); |
| } |
| GrAssert(!"Error linking program"); |
| GL_CALL(DeleteProgram(progID)); |
| programData->fProgramID = 0; |
| return false; |
| } |
| return true; |
| } |
| |
| void GrGLProgram::getUniformLocationsAndInitCache(const GrGLContextInfo& gl, |
| CachedData* programData) const { |
| const GrGLint& progID = programData->fProgramID; |
| |
| if (kUseUniform == programData->fUniLocations.fViewMatrixUni) { |
| GL_CALL_RET(programData->fUniLocations.fViewMatrixUni, |
| GetUniformLocation(progID, VIEW_MATRIX_NAME)); |
| GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni); |
| } |
| if (kUseUniform == programData->fUniLocations.fColorUni) { |
| GL_CALL_RET(programData->fUniLocations.fColorUni, |
| GetUniformLocation(progID, COL_UNI_NAME)); |
| GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni); |
| } |
| if (kUseUniform == programData->fUniLocations.fColorFilterUni) { |
| GL_CALL_RET(programData->fUniLocations.fColorFilterUni, |
| GetUniformLocation(progID, COL_FILTER_UNI_NAME)); |
| GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni); |
| } |
| |
| if (kUseUniform == programData->fUniLocations.fColorMatrixUni) { |
| GL_CALL_RET(programData->fUniLocations.fColorMatrixUni, |
| GetUniformLocation(progID, COL_MATRIX_UNI_NAME)); |
| } |
| |
| if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) { |
| GL_CALL_RET(programData->fUniLocations.fColorMatrixVecUni, |
| GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME)); |
| } |
| if (kUseUniform == programData->fUniLocations.fCoverageUni) { |
| GL_CALL_RET(programData->fUniLocations.fCoverageUni, |
| GetUniformLocation(progID, COV_UNI_NAME)); |
| GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni); |
| } |
| |
| if (kUseUniform == programData->fUniLocations.fEdgesUni) { |
| GL_CALL_RET(programData->fUniLocations.fEdgesUni, |
| GetUniformLocation(progID, EDGES_UNI_NAME)); |
| GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni); |
| } else { |
| programData->fUniLocations.fEdgesUni = kUnusedUniform; |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| StageUniLocations& locations = programData->fUniLocations.fStages[s]; |
| if (fProgramDesc.fStages[s].isEnabled()) { |
| if (kUseUniform == locations.fTextureMatrixUni) { |
| GrStringBuilder texMName; |
| tex_matrix_name(s, &texMName); |
| GL_CALL_RET(locations.fTextureMatrixUni, |
| GetUniformLocation(progID, texMName.c_str())); |
| GrAssert(kUnusedUniform != locations.fTextureMatrixUni); |
| } |
| |
| if (kUseUniform == locations.fSamplerUni) { |
| GrStringBuilder samplerName; |
| sampler_name(s, &samplerName); |
| GL_CALL_RET(locations.fSamplerUni, |
| GetUniformLocation(progID,samplerName.c_str())); |
| GrAssert(kUnusedUniform != locations.fSamplerUni); |
| } |
| |
| if (kUseUniform == locations.fNormalizedTexelSizeUni) { |
| GrStringBuilder texelSizeName; |
| normalized_texel_size_name(s, &texelSizeName); |
| GL_CALL_RET(locations.fNormalizedTexelSizeUni, |
| GetUniformLocation(progID, texelSizeName.c_str())); |
| GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni); |
| } |
| |
| if (kUseUniform == locations.fRadial2Uni) { |
| GrStringBuilder radial2ParamName; |
| radial2_param_name(s, &radial2ParamName); |
| GL_CALL_RET(locations.fRadial2Uni, |
| GetUniformLocation(progID, radial2ParamName.c_str())); |
| GrAssert(kUnusedUniform != locations.fRadial2Uni); |
| } |
| |
| if (kUseUniform == locations.fTexDomUni) { |
| GrStringBuilder texDomName; |
| tex_domain_name(s, &texDomName); |
| GL_CALL_RET(locations.fTexDomUni, |
| GetUniformLocation(progID, texDomName.c_str())); |
| GrAssert(kUnusedUniform != locations.fTexDomUni); |
| } |
| |
| GrStringBuilder kernelName, imageIncrementName; |
| convolve_param_names(s, &kernelName, &imageIncrementName); |
| if (kUseUniform == locations.fKernelUni) { |
| GL_CALL_RET(locations.fKernelUni, |
| GetUniformLocation(progID, kernelName.c_str())); |
| GrAssert(kUnusedUniform != locations.fKernelUni); |
| } |
| |
| if (kUseUniform == locations.fImageIncrementUni) { |
| GL_CALL_RET(locations.fImageIncrementUni, |
| GetUniformLocation(progID, |
| imageIncrementName.c_str())); |
| GrAssert(kUnusedUniform != locations.fImageIncrementUni); |
| } |
| } |
| } |
| GL_CALL(UseProgram(progID)); |
| |
| // init sampler unis and set bogus values for state tracking |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) { |
| GL_CALL(Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s)); |
| } |
| programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix(); |
| programData->fRadial2CenterX1[s] = GR_ScalarMax; |
| programData->fRadial2Radius0[s] = -GR_ScalarMax; |
| programData->fTextureWidth[s] = -1; |
| programData->fTextureHeight[s] = -1; |
| } |
| programData->fViewMatrix = GrMatrix::InvalidMatrix(); |
| programData->fColor = GrColor_ILLEGAL; |
| programData->fColorFilterColor = GrColor_ILLEGAL; |
| } |
| |
| //============================================================================ |
| // Stage code generation |
| //============================================================================ |
| |
| namespace { |
| |
| bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) { |
| return |
| (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping || |
| GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping); |
| } |
| |
| GrGLShaderVar* genRadialVS(int stageNum, |
| ShaderCodeSegments* segments, |
| GrGLProgram::StageUniLocations* locations, |
| const char** radial2VaryingVSName, |
| const char** radial2VaryingFSName, |
| const char* varyingVSName, |
| int varyingDims, int coordDims) { |
| |
| GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back(); |
| radial2FSParams->setType(GrGLShaderVar::kFloat_Type); |
| radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); |
| radial2FSParams->setArrayCount(6); |
| radial2_param_name(stageNum, radial2FSParams->accessName()); |
| segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true); |
| |
| locations->fRadial2Uni = kUseUniform; |
| |
| // for radial grads without perspective we can pass the linear |
| // part of the quadratic as a varying. |
| if (varyingDims == coordDims) { |
| GrAssert(2 == coordDims); |
| append_varying(GrGLShaderVar::kFloat_Type, |
| "Radial2BCoeff", |
| stageNum, |
| segments, |
| radial2VaryingVSName, |
| radial2VaryingFSName); |
| |
| GrStringBuilder radial2p2; |
| GrStringBuilder radial2p3; |
| radial2FSParams->appendArrayAccess(2, &radial2p2); |
| radial2FSParams->appendArrayAccess(3, &radial2p3); |
| |
| // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3]) |
| const char* r2ParamName = radial2FSParams->getName().c_str(); |
| segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n", |
| *radial2VaryingVSName, radial2p2.c_str(), |
| varyingVSName, radial2p3.c_str()); |
| } |
| |
| return radial2FSParams; |
| } |
| |
| bool genRadial2GradientCoordMapping(int stageNum, |
| ShaderCodeSegments* segments, |
| const char* radial2VaryingFSName, |
| GrGLShaderVar* radial2Params, |
| GrStringBuilder& sampleCoords, |
| GrStringBuilder& fsCoordName, |
| int varyingDims, |
| int coordDims) { |
| GrStringBuilder cName("c"); |
| GrStringBuilder ac4Name("ac4"); |
| GrStringBuilder rootName("root"); |
| |
| cName.appendS32(stageNum); |
| ac4Name.appendS32(stageNum); |
| rootName.appendS32(stageNum); |
| |
| GrStringBuilder radial2p0; |
| GrStringBuilder radial2p1; |
| GrStringBuilder radial2p2; |
| GrStringBuilder radial2p3; |
| GrStringBuilder radial2p4; |
| GrStringBuilder radial2p5; |
| radial2Params->appendArrayAccess(0, &radial2p0); |
| radial2Params->appendArrayAccess(1, &radial2p1); |
| radial2Params->appendArrayAccess(2, &radial2p2); |
| radial2Params->appendArrayAccess(3, &radial2p3); |
| radial2Params->appendArrayAccess(4, &radial2p4); |
| radial2Params->appendArrayAccess(5, &radial2p5); |
| |
| // if we were able to interpolate the linear component bVar is the varying |
| // otherwise compute it |
| GrStringBuilder bVar; |
| if (coordDims == varyingDims) { |
| bVar = radial2VaryingFSName; |
| GrAssert(2 == varyingDims); |
| } else { |
| GrAssert(3 == varyingDims); |
| bVar = "b"; |
| bVar.appendS32(stageNum); |
| segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n", |
| bVar.c_str(), radial2p2.c_str(), |
| fsCoordName.c_str(), radial2p3.c_str()); |
| } |
| |
| // c = (x^2)+(y^2) - params[4] |
| segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n", |
| cName.c_str(), fsCoordName.c_str(), |
| fsCoordName.c_str(), |
| radial2p4.c_str()); |
| // ac4 = 4.0 * params[0] * c |
| segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n", |
| ac4Name.c_str(), radial2p0.c_str(), |
| cName.c_str()); |
| |
| // root = sqrt(b^2-4ac) |
| // (abs to avoid exception due to fp precision) |
| segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", |
| rootName.c_str(), bVar.c_str(), bVar.c_str(), |
| ac4Name.c_str()); |
| |
| // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] |
| // y coord is 0.5 (texture is effectively 1D) |
| sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)", |
| bVar.c_str(), radial2p5.c_str(), |
| rootName.c_str(), radial2p1.c_str()); |
| return true; |
| } |
| |
| bool genRadial2GradientDegenerateCoordMapping(int stageNum, |
| ShaderCodeSegments* segments, |
| const char* radial2VaryingFSName, |
| GrGLShaderVar* radial2Params, |
| GrStringBuilder& sampleCoords, |
| GrStringBuilder& fsCoordName, |
| int varyingDims, |
| int coordDims) { |
| GrStringBuilder cName("c"); |
| |
| cName.appendS32(stageNum); |
| |
| GrStringBuilder radial2p2; |
| GrStringBuilder radial2p3; |
| GrStringBuilder radial2p4; |
| radial2Params->appendArrayAccess(2, &radial2p2); |
| radial2Params->appendArrayAccess(3, &radial2p3); |
| radial2Params->appendArrayAccess(4, &radial2p4); |
| |
| // if we were able to interpolate the linear component bVar is the varying |
| // otherwise compute it |
| GrStringBuilder bVar; |
| if (coordDims == varyingDims) { |
| bVar = radial2VaryingFSName; |
| GrAssert(2 == varyingDims); |
| } else { |
| GrAssert(3 == varyingDims); |
| bVar = "b"; |
| bVar.appendS32(stageNum); |
| segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n", |
| bVar.c_str(), radial2p2.c_str(), |
| fsCoordName.c_str(), radial2p3.c_str()); |
| } |
| |
| // c = (x^2)+(y^2) - params[4] |
| segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n", |
| cName.c_str(), fsCoordName.c_str(), |
| fsCoordName.c_str(), |
| radial2p4.c_str()); |
| |
| // x coord is: -c/b |
| // y coord is 0.5 (texture is effectively 1D) |
| sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str()); |
| return true; |
| } |
| |
| void gen2x2FS(int stageNum, |
| ShaderCodeSegments* segments, |
| GrGLProgram::StageUniLocations* locations, |
| GrStringBuilder* sampleCoords, |
| const char* samplerName, |
| const char* texelSizeName, |
| const char* swizzle, |
| const char* fsOutColor, |
| GrStringBuilder& texFunc, |
| GrStringBuilder& modulate, |
| bool complexCoord, |
| int coordDims) { |
| locations->fNormalizedTexelSizeUni = kUseUniform; |
| if (complexCoord) { |
| // assign the coord to a var rather than compute 4x. |
| GrStringBuilder coordVar("tCoord"); |
| coordVar.appendS32(stageNum); |
| segments->fFSCode.appendf("\t%s %s = %s;\n", |
| float_vector_type_str(coordDims), |
| coordVar.c_str(), sampleCoords->c_str()); |
| *sampleCoords = coordVar; |
| } |
| GrAssert(2 == coordDims); |
| GrStringBuilder accumVar("accum"); |
| accumVar.appendS32(stageNum); |
| segments->fFSCode.appendf("\tvec4 %s = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); |
| segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); |
| segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); |
| segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle); |
| segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str()); |
| |
| } |
| |
| void genConvolutionVS(int stageNum, |
| const StageDesc& desc, |
| ShaderCodeSegments* segments, |
| GrGLProgram::StageUniLocations* locations, |
| GrGLShaderVar** kernel, |
| const char** imageIncrementName, |
| const char* varyingVSName) { |
| //GrGLShaderVar* kernel = &segments->fFSUnis.push_back(); |
| *kernel = &segments->fFSUnis.push_back(); |
| (*kernel)->setType(GrGLShaderVar::kFloat_Type); |
| (*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); |
| (*kernel)->setArrayCount(desc.fKernelWidth); |
| GrGLShaderVar* imgInc = &segments->fFSUnis.push_back(); |
| imgInc->setType(GrGLShaderVar::kVec2f_Type); |
| imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); |
| |
| convolve_param_names(stageNum, |
| (*kernel)->accessName(), |
| imgInc->accessName()); |
| *imageIncrementName = imgInc->getName().c_str(); |
| |
| // need image increment in both VS and FS |
| segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true); |
| |
| locations->fKernelUni = kUseUniform; |
| locations->fImageIncrementUni = kUseUniform; |
| float scale = (desc.fKernelWidth - 1) * 0.5f; |
| segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n", |
| varyingVSName, scale, scale, |
| *imageIncrementName); |
| } |
| |
| void genConvolutionFS(int stageNum, |
| const StageDesc& desc, |
| ShaderCodeSegments* segments, |
| const char* samplerName, |
| GrGLShaderVar* kernel, |
| const char* swizzle, |
| const char* imageIncrementName, |
| const char* fsOutColor, |
| GrStringBuilder& sampleCoords, |
| GrStringBuilder& texFunc, |
| GrStringBuilder& modulate) { |
| GrStringBuilder sumVar("sum"); |
| sumVar.appendS32(stageNum); |
| GrStringBuilder coordVar("coord"); |
| coordVar.appendS32(stageNum); |
| |
| GrStringBuilder kernelIndex; |
| kernel->appendArrayAccess("i", &kernelIndex); |
| |
| segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n", |
| sumVar.c_str()); |
| segments->fFSCode.appendf("\tvec2 %s = %s;\n", |
| coordVar.c_str(), |
| sampleCoords.c_str()); |
| segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n", |
| desc.fKernelWidth); |
| segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n", |
| sumVar.c_str(), texFunc.c_str(), |
| samplerName, coordVar.c_str(), swizzle, |
| kernelIndex.c_str()); |
| segments->fFSCode.appendf("\t\t%s += %s;\n", |
| coordVar.c_str(), |
| imageIncrementName); |
| segments->fFSCode.append("\t}\n"); |
| segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor, |
| sumVar.c_str(), modulate.c_str()); |
| } |
| |
| void genMorphologyVS(int stageNum, |
| const StageDesc& desc, |
| ShaderCodeSegments* segments, |
| GrGLProgram::StageUniLocations* locations, |
| const char** imageIncrementName, |
| const char* varyingVSName) { |
| GrGLShaderVar* imgInc = &segments->fFSUnis.push_back(); |
| imgInc->setType(GrGLShaderVar::kVec2f_Type); |
| imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); |
| |
| image_increment_param_name(stageNum, imgInc->accessName()); |
| *imageIncrementName = imgInc->getName().c_str(); |
| |
| // need image increment in both VS and FS |
| segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true); |
| |
| locations->fImageIncrementUni = kUseUniform; |
| segments->fVSCode.appendf("\t%s -= vec2(%d, %d) * %s;\n", |
| varyingVSName, desc.fKernelWidth, |
| desc.fKernelWidth, *imageIncrementName); |
| } |
| |
| void genMorphologyFS(int stageNum, |
| const StageDesc& desc, |
| ShaderCodeSegments* segments, |
| const char* samplerName, |
| const char* swizzle, |
| const char* imageIncrementName, |
| const char* fsOutColor, |
| GrStringBuilder& sampleCoords, |
| GrStringBuilder& texFunc, |
| GrStringBuilder& modulate) { |
| GrStringBuilder valueVar("value"); |
| valueVar.appendS32(stageNum); |
| GrStringBuilder coordVar("coord"); |
| coordVar.appendS32(stageNum); |
| bool isDilate = StageDesc::kDilate_FetchMode == desc.fFetchMode; |
| |
| if (isDilate) { |
| segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n", |
| valueVar.c_str()); |
| } else { |
| segments->fFSCode.appendf("\tvec4 %s = vec4(1, 1, 1, 1);\n", |
| valueVar.c_str()); |
| } |
| segments->fFSCode.appendf("\tvec2 %s = %s;\n", |
| coordVar.c_str(), |
| sampleCoords.c_str()); |
| segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n", |
| desc.fKernelWidth * 2 + 1); |
| segments->fFSCode.appendf("\t\t%s = %s(%s, %s(%s, %s)%s);\n", |
| valueVar.c_str(), isDilate ? "max" : "min", |
| valueVar.c_str(), texFunc.c_str(), |
| samplerName, coordVar.c_str(), swizzle); |
| segments->fFSCode.appendf("\t\t%s += %s;\n", |
| coordVar.c_str(), |
| imageIncrementName); |
| segments->fFSCode.appendf("\t}\n"); |
| segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor, |
| valueVar.c_str(), modulate.c_str()); |
| } |
| |
| } |
| |
| void GrGLProgram::genStageCode(const GrGLContextInfo& gl, |
| int stageNum, |
| const GrGLProgram::StageDesc& desc, |
| const char* fsInColor, // NULL means no incoming color |
| const char* fsOutColor, |
| const char* vsInCoord, |
| ShaderCodeSegments* segments, |
| StageUniLocations* locations) const { |
| |
| GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages); |
| GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) == |
| desc.fInConfigFlags); |
| |
| // First decide how many coords are needed to access the texture |
| // Right now it's always 2 but we could start using 1D textures for |
| // gradients. |
| static const int coordDims = 2; |
| int varyingDims; |
| /// Vertex Shader Stuff |
| |
| // decide whether we need a matrix to transform texture coords |
| // and whether the varying needs a perspective coord. |
| const char* matName = NULL; |
| if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) { |
| varyingDims = coordDims; |
| } else { |
| GrGLShaderVar* mat; |
| #if GR_GL_ATTRIBUTE_MATRICES |
| mat = &segments->fVSAttrs.push_back(); |
| mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier); |
| locations->fTextureMatrixUni = kSetAsAttribute; |
| #else |
| mat = &segments->fVSUnis.push_back(); |
| mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier); |
| locations->fTextureMatrixUni = kUseUniform; |
| #endif |
| tex_matrix_name(stageNum, mat->accessName()); |
| mat->setType(GrGLShaderVar::kMat33f_Type); |
| matName = mat->getName().c_str(); |
| |
| if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) { |
| varyingDims = coordDims; |
| } else { |
| varyingDims = coordDims + 1; |
| } |
| } |
| |
| segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type, |
| GrGLShaderVar::kUniform_TypeModifier, ""); |
| sampler_name(stageNum, segments->fFSUnis.back().accessName()); |
| locations->fSamplerUni = kUseUniform; |
| const char* samplerName = segments->fFSUnis.back().getName().c_str(); |
| |
| const char* texelSizeName = NULL; |
| if (StageDesc::k2x2_FetchMode == desc.fFetchMode) { |
| segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, ""); |
| normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName()); |
| texelSizeName = segments->fFSUnis.back().getName().c_str(); |
| } |
| |
| const char *varyingVSName, *varyingFSName; |
| append_varying(float_vector_type(varyingDims), |
| "Stage", |
| stageNum, |
| segments, |
| &varyingVSName, |
| &varyingFSName); |
| |
| if (!matName) { |
| GrAssert(varyingDims == coordDims); |
| segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord); |
| } else { |
| // varying = texMatrix * texCoord |
| segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n", |
| varyingVSName, matName, vsInCoord, |
| vector_all_coords(varyingDims)); |
| } |
| |
| GrGLShaderVar* radial2Params = NULL; |
| const char* radial2VaryingVSName = NULL; |
| const char* radial2VaryingFSName = NULL; |
| |
| if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) { |
| radial2Params = genRadialVS(stageNum, segments, |
| locations, |
| &radial2VaryingVSName, |
| &radial2VaryingFSName, |
| varyingVSName, |
| varyingDims, coordDims); |
| } |
| |
| GrGLShaderVar* kernel = NULL; |
| const char* imageIncrementName = NULL; |
| if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) { |
| genConvolutionVS(stageNum, desc, segments, locations, |
| &kernel, &imageIncrementName, varyingVSName); |
| } else if (StageDesc::kDilate_FetchMode == desc.fFetchMode || |
| StageDesc::kErode_FetchMode == desc.fFetchMode) { |
| genMorphologyVS(stageNum, desc, segments, locations, |
| &imageIncrementName, varyingVSName); |
| } |
| |
| /// Fragment Shader Stuff |
| GrStringBuilder fsCoordName; |
| // function used to access the shader, may be made projective |
| GrStringBuilder texFunc("texture2D"); |
| if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit | |
| StageDesc::kNoPerspective_OptFlagBit)) { |
| GrAssert(varyingDims == coordDims); |
| fsCoordName = varyingFSName; |
| } else { |
| // if we have to do some special op on the varyings to get |
| // our final tex coords then when in perspective we have to |
| // do an explicit divide. Otherwise, we can use a Proj func. |
| if (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping && |
| StageDesc::kSingle_FetchMode == desc.fFetchMode) { |
| texFunc.append("Proj"); |
| fsCoordName = varyingFSName; |
| } else { |
| fsCoordName = "inCoord"; |
| fsCoordName.appendS32(stageNum); |
| segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n", |
| GrGLShaderVar::TypeString(float_vector_type(coordDims)), |
| fsCoordName.c_str(), |
| varyingFSName, |
| vector_nonhomog_coords(varyingDims), |
| varyingFSName, |
| vector_homog_coord(varyingDims)); |
| } |
| } |
| |
| GrStringBuilder sampleCoords; |
| bool complexCoord = false; |
| switch (desc.fCoordMapping) { |
| case StageDesc::kIdentity_CoordMapping: |
| sampleCoords = fsCoordName; |
| break; |
| case StageDesc::kSweepGradient_CoordMapping: |
| sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str()); |
| complexCoord = true; |
| break; |
| case StageDesc::kRadialGradient_CoordMapping: |
| sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str()); |
| complexCoord = true; |
| break; |
| case StageDesc::kRadial2Gradient_CoordMapping: |
| complexCoord = genRadial2GradientCoordMapping( |
| stageNum, segments, |
| radial2VaryingFSName, radial2Params, |
| sampleCoords, fsCoordName, |
| varyingDims, coordDims); |
| |
| break; |
| case StageDesc::kRadial2GradientDegenerate_CoordMapping: |
| complexCoord = genRadial2GradientDegenerateCoordMapping( |
| stageNum, segments, |
| radial2VaryingFSName, radial2Params, |
| sampleCoords, fsCoordName, |
| varyingDims, coordDims); |
| break; |
| |
| }; |
| |
| static const uint32_t kMulByAlphaMask = |
| (StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag | |
| StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag); |
| |
| const char* swizzle = ""; |
| if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) { |
| GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag)); |
| swizzle = ".bgra"; |
| } else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) { |
| GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask)); |
| swizzle = ".aaaa"; |
| } |
| |
| GrStringBuilder modulate; |
| if (NULL != fsInColor) { |
| modulate.printf(" * %s", fsInColor); |
| } |
| |
| if (desc.fOptFlags & |
| StageDesc::kCustomTextureDomain_OptFlagBit) { |
| GrStringBuilder texDomainName; |
| tex_domain_name(stageNum, &texDomainName); |
| segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type, |
| GrGLShaderVar::kUniform_TypeModifier, texDomainName); |
| GrStringBuilder coordVar("clampCoord"); |
| segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n", |
| float_vector_type_str(coordDims), |
| coordVar.c_str(), |
| sampleCoords.c_str(), |
| texDomainName.c_str(), |
| texDomainName.c_str()); |
| sampleCoords = coordVar; |
| locations->fTexDomUni = kUseUniform; |
| } |
| |
| switch (desc.fFetchMode) { |
| case StageDesc::k2x2_FetchMode: |
| GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask)); |
| gen2x2FS(stageNum, segments, locations, &sampleCoords, |
| samplerName, texelSizeName, swizzle, fsOutColor, |
| texFunc, modulate, complexCoord, coordDims); |
| break; |
| case StageDesc::kConvolution_FetchMode: |
| GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask)); |
| genConvolutionFS(stageNum, desc, segments, |
| samplerName, kernel, swizzle, imageIncrementName, fsOutColor, |
| sampleCoords, texFunc, modulate); |
| break; |
| case StageDesc::kDilate_FetchMode: |
| case StageDesc::kErode_FetchMode: |
| GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask)); |
| genMorphologyFS(stageNum, desc, segments, |
| samplerName, swizzle, imageIncrementName, fsOutColor, |
| sampleCoords, texFunc, modulate); |
| break; |
| default: |
| if (desc.fInConfigFlags & kMulByAlphaMask) { |
| // only one of the mul by alpha flags should be set |
| GrAssert(GrIsPow2(kMulByAlphaMask & desc.fInConfigFlags)); |
| GrAssert(!(desc.fInConfigFlags & |
| StageDesc::kSmearAlpha_InConfigFlag)); |
| segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n", |
| fsOutColor, texFunc.c_str(), |
| samplerName, sampleCoords.c_str(), |
| swizzle); |
| if (desc.fInConfigFlags & |
| StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag) { |
| segments->fFSCode.appendf("\t%s = vec4(ceil(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n", |
| fsOutColor, fsOutColor, fsOutColor, |
| fsOutColor, modulate.c_str()); |
| } else { |
| segments->fFSCode.appendf("\t%s = vec4(floor(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n", |
| fsOutColor, fsOutColor, fsOutColor, |
| fsOutColor, modulate.c_str()); |
| } |
| } else { |
| segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n", |
| fsOutColor, texFunc.c_str(), |
| samplerName, sampleCoords.c_str(), |
| swizzle, modulate.c_str()); |
| } |
| } |
| } |
| |
| |