| /* libs/graphics/sgl/SkGeometry.h |
| ** |
| ** Copyright 2006, The Android Open Source Project |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| #ifndef SkGeometry_DEFINED |
| #define SkGeometry_DEFINED |
| |
| #include "SkMatrix.h" |
| |
| /** An XRay is a half-line that runs from the specific point/origin to |
| +infinity in the X direction. e.g. XRay(3,5) is the half-line |
| (3,5)....(infinity, 5) |
| */ |
| typedef SkPoint SkXRay; |
| |
| /** Given a line segment from pts[0] to pts[1], and an xray, return true if |
| they intersect. Optional outgoing "ambiguous" argument indicates |
| whether the answer is ambiguous because the query occurred exactly at |
| one of the endpoints' y coordinates, indicating that another query y |
| coordinate is preferred for robustness. |
| */ |
| bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], |
| bool* ambiguous = NULL); |
| |
| /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
| equation. |
| */ |
| int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Set pt to the point on the src quadratic specified by t. t must be |
| 0 <= t <= 1.0 |
| */ |
| void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, |
| SkVector* tangent = NULL); |
| void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, |
| SkVector* tangent = NULL); |
| |
| /** Given a src quadratic bezier, chop it at the specified t value, |
| where 0 < t < 1, and return the two new quadratics in dst: |
| dst[0..2] and dst[2..4] |
| */ |
| void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
| |
| /** Given a src quadratic bezier, chop it at the specified t == 1/2, |
| The new quads are returned in dst[0..2] and dst[2..4] |
| */ |
| void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
| |
| /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
| for extrema, and return the number of t-values that are found that represent |
| these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
| function returns 0. |
| Returned count tValues[] |
| 0 ignored |
| 1 0 < tValues[0] < 1 |
| */ |
| int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
| |
| /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
| the resulting beziers are monotonic in Y. This is called by the scan converter. |
| Depending on what is returned, dst[] is treated as follows |
| 0 dst[0..2] is the original quad |
| 1 dst[0..2] and dst[2..4] are the two new quads |
| */ |
| int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
| int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); |
| |
| /** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
| if the point of maximum curvature exists on the quad segment. |
| Depending on what is returned, dst[] is treated as follows |
| 1 dst[0..2] is the original quad |
| 2 dst[0..2] and dst[2..4] are the two new quads |
| If dst == null, it is ignored and only the count is returned. |
| */ |
| int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
| |
| /** Given 3 points on a quadratic bezier, use degree elevation to |
| convert it into the cubic fitting the same curve. The new cubic |
| curve is returned in dst[0..3]. |
| */ |
| SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Convert from parametric from (pts) to polynomial coefficients |
| coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] |
| */ |
| void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]); |
| |
| /** Set pt to the point on the src cubic specified by t. t must be |
| 0 <= t <= 1.0 |
| */ |
| void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, |
| SkVector* tangentOrNull, SkVector* curvatureOrNull); |
| |
| /** Given a src cubic bezier, chop it at the specified t value, |
| where 0 < t < 1, and return the two new cubics in dst: |
| dst[0..3] and dst[3..6] |
| */ |
| void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
| void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], |
| int t_count); |
| |
| /** Given a src cubic bezier, chop it at the specified t == 1/2, |
| The new cubics are returned in dst[0..3] and dst[3..6] |
| */ |
| void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
| |
| /** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
| for extrema, and return the number of t-values that are found that represent |
| these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
| function returns 0. |
| Returned count tValues[] |
| 0 ignored |
| 1 0 < tValues[0] < 1 |
| 2 0 < tValues[0] < tValues[1] < 1 |
| */ |
| int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
| SkScalar tValues[2]); |
| |
| /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
| the resulting beziers are monotonic in Y. This is called by the scan converter. |
| Depending on what is returned, dst[] is treated as follows |
| 0 dst[0..3] is the original cubic |
| 1 dst[0..3] and dst[3..6] are the two new cubics |
| 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
| If dst == null, it is ignored and only the count is returned. |
| */ |
| int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
| int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); |
| |
| /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
| inflection points. |
| */ |
| int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
| |
| /** Return 1 for no chop, or 2 for having chopped the cubic at its |
| inflection point. |
| */ |
| int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
| |
| int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
| int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
| SkScalar tValues[3] = NULL); |
| |
| /** Given a monotonic cubic bezier, determine whether an xray intersects the |
| cubic. |
| By definition the cubic is open at the starting point; in other |
| words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the |
| left of the curve, the line is not considered to cross the curve, |
| but if it is equal to cubic[3].fY then it is considered to |
| cross. |
| Optional outgoing "ambiguous" argument indicates whether the answer is |
| ambiguous because the query occurred exactly at one of the endpoints' y |
| coordinates, indicating that another query y coordinate is preferred |
| for robustness. |
| */ |
| bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], |
| bool* ambiguous = NULL); |
| |
| /** Given an arbitrary cubic bezier, return the number of times an xray crosses |
| the cubic. Valid return values are [0..3] |
| By definition the cubic is open at the starting point; in other |
| words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the |
| left of the curve, the line is not considered to cross the curve, |
| but if it is equal to cubic[3].fY then it is considered to |
| cross. |
| Optional outgoing "ambiguous" argument indicates whether the answer is |
| ambiguous because the query occurred exactly at one of the endpoints' y |
| coordinates or at a tangent point, indicating that another query y |
| coordinate is preferred for robustness. |
| */ |
| int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], |
| bool* ambiguous = NULL); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| enum SkRotationDirection { |
| kCW_SkRotationDirection, |
| kCCW_SkRotationDirection |
| }; |
| |
| /** Maximum number of points needed in the quadPoints[] parameter for |
| SkBuildQuadArc() |
| */ |
| #define kSkBuildQuadArcStorage 17 |
| |
| /** Given 2 unit vectors and a rotation direction, fill out the specified |
| array of points with quadratic segments. Return is the number of points |
| written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage } |
| |
| matrix, if not null, is appled to the points before they are returned. |
| */ |
| int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, |
| SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]); |
| |
| #endif |