blob: dec355a1e4a9bcae5f7af29542561f6192dc2e70 [file] [log] [blame]
/* libs/graphics/sgl/SkBlitter_ARGB32.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkCoreBlitters.h"
#include "SkColorPriv.h"
#include "SkShader.h"
#include "SkUtils.h"
#include "SkXfermode.h"
#if defined(SK_SUPPORT_LCDTEXT)
namespace skia_blitter_support {
// subpixel helper functions from SkBlitter_ARGB32_Subpixel.cpp
uint32_t* adjustForSubpixelClip(const SkMask& mask,
const SkIRect& clip, const SkBitmap& device,
int* widthAdjustment, int* heightAdjustment,
const uint32_t** alpha32);
extern uint32_t BlendLCDPixelWithColor(const uint32_t alphaPixel, const uint32_t originalPixel,
const uint32_t sourcePixel);
extern uint32_t BlendLCDPixelWithOpaqueColor(const uint32_t alphaPixel, const uint32_t originalPixel,
const uint32_t sourcePixel);
extern uint32_t BlendLCDPixelWithBlack(const uint32_t alphaPixel, const uint32_t originalPixel);
}
using namespace skia_blitter_support;
#endif
///////////////////////////////////////////////////////////////////////////////
static inline int upscale31To32(int value) {
SkASSERT((unsigned)value <= 31);
return value + (value >> 4);
}
static inline int blend32(int src, int dst, int scale) {
SkASSERT((unsigned)src <= 0xFF);
SkASSERT((unsigned)dst <= 0xFF);
SkASSERT((unsigned)scale <= 32);
return dst + ((src - dst) * scale >> 5);
}
static void blit_lcd16_opaque(SkPMColor dst[], const uint16_t src[],
SkPMColor color, int width) {
int srcR = SkGetPackedR32(color);
int srcG = SkGetPackedG32(color);
int srcB = SkGetPackedB32(color);
for (int i = 0; i < width; i++) {
uint16_t mask = src[i];
if (0 == mask) {
continue;
}
SkPMColor d = dst[i];
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..256, so we can use SkAlphaBlend
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
int maskA = SkMax32(SkMax32(maskR, maskG), maskB);
int dstA = SkGetPackedA32(d);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
dst[i] = SkPackARGB32(blend32(0xFF, dstA, maskA),
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
}
}
static void blitmask_lcd16(const SkBitmap& device, const SkMask& mask,
const SkIRect& clip, SkPMColor srcColor) {
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
SkPMColor* dstRow = device.getAddr32(x, y);
const uint16_t* srcRow = mask.getAddrLCD16(x, y);
do {
blit_lcd16_opaque(dstRow, srcRow, srcColor, width);
dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes());
srcRow = (const uint16_t*)((const char*)srcRow + mask.fRowBytes);
} while (--height != 0);
}
//////////////////////////////////////////////////////////////////////////////////////
static void SkARGB32_Blit32(const SkBitmap& device, const SkMask& mask,
const SkIRect& clip, SkPMColor srcColor) {
U8CPU alpha = SkGetPackedA32(srcColor);
unsigned flags = SkBlitRow::kSrcPixelAlpha_Flag32;
if (alpha != 255) {
flags |= SkBlitRow::kGlobalAlpha_Flag32;
}
SkBlitRow::Proc32 proc = SkBlitRow::Factory32(flags);
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
SkPMColor* dstRow = device.getAddr32(x, y);
const SkPMColor* srcRow = reinterpret_cast<const SkPMColor*>(mask.getAddr(x, y));
do {
proc(dstRow, srcRow, width, alpha);
dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes());
srcRow = (const SkPMColor*)((const char*)srcRow + mask.fRowBytes);
} while (--height != 0);
}
//////////////////////////////////////////////////////////////////////////////////////
SkARGB32_Blitter::SkARGB32_Blitter(const SkBitmap& device, const SkPaint& paint)
: INHERITED(device) {
SkColor color = paint.getColor();
fColor = color;
fSrcA = SkColorGetA(color);
unsigned scale = SkAlpha255To256(fSrcA);
fSrcR = SkAlphaMul(SkColorGetR(color), scale);
fSrcG = SkAlphaMul(SkColorGetG(color), scale);
fSrcB = SkAlphaMul(SkColorGetB(color), scale);
fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB);
fColor32Proc = SkBlitRow::ColorProcFactory();
// init the pro for blitmask
fBlitMaskProc = SkBlitMask::Factory(SkBitmap::kARGB_8888_Config, color);
}
const SkBitmap* SkARGB32_Blitter::justAnOpaqueColor(uint32_t* value) {
if (255 == fSrcA) {
*value = fPMColor;
return &fDevice;
}
return NULL;
}
#if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif
void SkARGB32_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.getAddr32(x, y);
fColor32Proc(device, device, width, fPMColor);
}
void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
if (fSrcA == 0) {
return;
}
uint32_t color = fPMColor;
uint32_t* device = fDevice.getAddr32(x, y);
unsigned opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if ((opaqueMask & aa) == 255) {
sk_memset32(device, color, count);
} else {
uint32_t sc = SkAlphaMulQ(color, SkAlpha255To256(aa));
fColor32Proc(device, device, count, sc);
}
}
runs += count;
antialias += count;
device += count;
}
}
//////////////////////////////////////////////////////////////////////////////////////
#define solid_8_pixels(mask, dst, color) \
do { \
if (mask & 0x80) dst[0] = color; \
if (mask & 0x40) dst[1] = color; \
if (mask & 0x20) dst[2] = color; \
if (mask & 0x10) dst[3] = color; \
if (mask & 0x08) dst[4] = color; \
if (mask & 0x04) dst[5] = color; \
if (mask & 0x02) dst[6] = color; \
if (mask & 0x01) dst[7] = color; \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlitBW
#define SK_BLITBWMASK_ARGS , SkPMColor color
#define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color)
#define SK_BLITBWMASK_GETADDR getAddr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "SkBlitBWMaskTemplate.h"
#define blend_8_pixels(mask, dst, sc, dst_scale) \
do { \
if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); } \
if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); } \
if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); } \
if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); } \
if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); } \
if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); } \
if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); } \
if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); } \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlendBW
#define SK_BLITBWMASK_ARGS , uint32_t sc, unsigned dst_scale
#define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sc, dst_scale)
#define SK_BLITBWMASK_GETADDR getAddr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "SkBlitBWMaskTemplate.h"
void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkASSERT(fSrcA != 0xFF);
if (fSrcA == 0) {
return;
}
if (mask.fFormat == SkMask::kBW_Format) {
SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA));
return;
} else if (SkMask::kARGB32_Format == mask.fFormat) {
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
return;
} else if (SkMask::kLCD16_Format == mask.fFormat) {
blitmask_lcd16(fDevice, mask, clip, fPMColor);
return;
}
int x = clip.fLeft;
int y = clip.fTop;
fBlitMaskProc(fDevice.getAddr32(x, y), fDevice.rowBytes(),
SkBitmap::kARGB_8888_Config,
mask.getAddr(x, y), mask.fRowBytes,
fColor, clip.width(), clip.height());
}
void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask,
const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (mask.fFormat == SkMask::kBW_Format) {
SkARGB32_BlitBW(fDevice, mask, clip, fPMColor);
return;
} else if (SkMask::kARGB32_Format == mask.fFormat) {
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
return;
} else if (SkMask::kLCD16_Format == mask.fFormat) {
blitmask_lcd16(fDevice, mask, clip, fPMColor);
return;
}
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
#if defined(SK_SUPPORT_LCDTEXT)
const bool lcdMode = mask.fFormat == SkMask::kHorizontalLCD_Format;
const bool verticalLCDMode = mask.fFormat == SkMask::kVerticalLCD_Format;
// In LCD mode the masks have either an extra couple of rows or columns on the edges.
if (lcdMode || verticalLCDMode) {
int widthAdjustment, heightAdjustment;
const uint32_t* alpha32;
uint32_t* device = adjustForSubpixelClip(mask, clip, fDevice, &widthAdjustment, &heightAdjustment, &alpha32);
width += widthAdjustment;
height += heightAdjustment;
unsigned devRB = fDevice.rowBytes() - (width << 2);
unsigned alphaExtraRowWords = mask.rowWordsLCD() - width;
SkPMColor srcColor = fPMColor;
do {
unsigned w = width;
do {
const uint32_t alphaPixel = *alpha32++;
const uint32_t originalPixel = *device;
*device++ = BlendLCDPixelWithOpaqueColor(alphaPixel, originalPixel, srcColor);
} while (--w != 0);
device = (uint32_t*)((char*)device + devRB);
alpha32 += alphaExtraRowWords;
} while (--height != 0);
return;
}
#endif
fBlitMaskProc(fDevice.getAddr32(x, y), fDevice.rowBytes(),
SkBitmap::kARGB_8888_Config,
mask.getAddr(x, y), mask.fRowBytes, fColor, width, height);
}
//////////////////////////////////////////////////////////////////////////////////////
void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
if (alpha == 0 || fSrcA == 0) {
return;
}
uint32_t* device = fDevice.getAddr32(x, y);
uint32_t color = fPMColor;
if (alpha != 255) {
color = SkAlphaMulQ(color, SkAlpha255To256(alpha));
}
unsigned dst_scale = 255 - SkGetPackedA32(color);
uint32_t prevDst = ~device[0];
uint32_t result SK_INIT_TO_AVOID_WARNING;
uint32_t rowBytes = fDevice.rowBytes();
while (--height >= 0) {
uint32_t dst = device[0];
if (dst != prevDst) {
result = color + SkAlphaMulQ(dst, dst_scale);
prevDst = dst;
}
device[0] = result;
device = (uint32_t*)((char*)device + rowBytes);
}
}
void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height());
if (fSrcA == 0) {
return;
}
uint32_t* device = fDevice.getAddr32(x, y);
uint32_t color = fPMColor;
size_t rowBytes = fDevice.rowBytes();
while (--height >= 0) {
fColor32Proc(device, device, width, color);
device = (uint32_t*)((char*)device + rowBytes);
}
}
#if defined _WIN32 && _MSC_VER >= 1300
#pragma warning ( pop )
#endif
///////////////////////////////////////////////////////////////////////
void SkARGB32_Black_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (mask.fFormat == SkMask::kBW_Format) {
SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);
SkARGB32_BlitBW(fDevice, mask, clip, black);
} else if (SkMask::kARGB32_Format == mask.fFormat) {
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
} else if (SkMask::kLCD16_Format == mask.fFormat) {
blitmask_lcd16(fDevice, mask, clip, fPMColor);
} else {
#if defined(SK_SUPPORT_LCDTEXT)
const bool lcdMode = mask.fFormat == SkMask::kHorizontalLCD_Format;
const bool verticalLCDMode = mask.fFormat == SkMask::kVerticalLCD_Format;
#endif
// In LCD mode the masks have either an extra couple of rows or columns on the edges.
unsigned width = clip.width();
unsigned height = clip.height();
SkASSERT((int)height > 0);
SkASSERT((int)width > 0);
#if defined(SK_SUPPORT_LCDTEXT)
if (lcdMode || verticalLCDMode) {
int widthAdjustment, heightAdjustment;
const uint32_t* alpha32;
uint32_t* device = adjustForSubpixelClip(mask, clip, fDevice, &widthAdjustment, &heightAdjustment, &alpha32);
width += widthAdjustment;
height += heightAdjustment;
unsigned deviceRB = fDevice.rowBytes() - (width << 2);
unsigned alphaExtraRowWords = mask.rowWordsLCD() - width;
do {
unsigned w = width;
do {
const uint32_t alphaPixel = *alpha32++;
const uint32_t originalPixel = *device;
*device++ = BlendLCDPixelWithBlack(alphaPixel, originalPixel);
} while (--w != 0);
device = (uint32_t*)((char*)device + deviceRB);
alpha32 += alphaExtraRowWords;
} while (--height != 0);
return;
}
#endif
uint32_t* device = fDevice.getAddr32(clip.fLeft, clip.fTop);
unsigned maskRB = mask.fRowBytes - width;
unsigned deviceRB = fDevice.rowBytes() - (width << 2);
const uint8_t* alpha = mask.getAddr(clip.fLeft, clip.fTop);
do {
unsigned w = width;
do {
unsigned aa = *alpha++;
*device = (aa << SK_A32_SHIFT) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + deviceRB);
alpha += maskRB;
} while (--height != 0);
}
}
void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
uint32_t* device = fDevice.getAddr32(x, y);
SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if (aa == 255) {
sk_memset32(device, black, count);
} else {
SkPMColor src = aa << SK_A32_SHIFT;
unsigned dst_scale = 256 - aa;
int n = count;
do {
--n;
device[n] = src + SkAlphaMulQ(device[n], dst_scale);
} while (n > 0);
}
}
runs += count;
antialias += count;
device += count;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkBitmap& device,
const SkPaint& paint) : INHERITED(device, paint) {
fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor)));
fXfermode = paint.getXfermode();
SkSafeRef(fXfermode);
int flags = 0;
if (!(fShader->getFlags() & SkShader::kOpaqueAlpha_Flag)) {
flags |= SkBlitRow::kSrcPixelAlpha_Flag32;
}
// we call this on the output from the shader
fProc32 = SkBlitRow::Factory32(flags);
// we call this on the output from the shader + alpha from the aa buffer
fProc32Blend = SkBlitRow::Factory32(flags | SkBlitRow::kGlobalAlpha_Flag32);
}
SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() {
SkSafeUnref(fXfermode);
sk_free(fBuffer);
}
void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.getAddr32(x, y);
if (fXfermode == NULL && (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag)) {
fShader->shadeSpan(x, y, device, width);
} else {
SkPMColor* span = fBuffer;
fShader->shadeSpan(x, y, span, width);
if (fXfermode) {
fXfermode->xfer32(device, span, width, NULL);
} else {
fProc32(device, span, width, 255);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkPMColor* span = fBuffer;
uint32_t* device = fDevice.getAddr32(x, y);
SkShader* shader = fShader;
if (fXfermode) {
for (;;) {
SkXfermode* xfer = fXfermode;
int count = *runs;
if (count <= 0)
break;
int aa = *antialias;
if (aa) {
shader->shadeSpan(x, y, span, count);
if (aa == 255) {
xfer->xfer32(device, span, count, NULL);
} else {
// count is almost always 1
for (int i = count - 1; i >= 0; --i) {
xfer->xfer32(&device[i], &span[i], 1, antialias);
}
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else if (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag) {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
if (aa == 255) {
// cool, have the shader draw right into the device
shader->shadeSpan(x, y, device, count);
} else {
shader->shadeSpan(x, y, span, count);
fProc32Blend(device, span, count, aa);
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else { // no xfermode but the shader not opaque
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
fShader->shadeSpan(x, y, span, count);
if (aa == 255) {
fProc32(device, span, count, 255);
} else {
fProc32Blend(device, span, count, aa);
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
}
}