blob: 882866b2a233e4c07f88bbdf05ceb8d87bc2914e [file] [log] [blame]
/* libs/graphics/sgl/SkBlitter_RGB16.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkBlitRow.h"
#include "SkCoreBlitters.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkShader.h"
#include "SkTemplatesPriv.h"
#include "SkUtils.h"
#include "SkXfermode.h"
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
#define SK_USE_NEON
#include <arm_neon.h>
#else
// if we don't have neon, then our black blitter is worth the extra code
#define USE_BLACK_BLITTER
#endif
void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other,
int count) {
if (count > 0) {
// see if we need to write one short before we can cast to an 4byte ptr
// (we do this subtract rather than (unsigned)dst so we don't get warnings
// on 64bit machines)
if (((char*)dst - (char*)0) & 2) {
*dst++ = value;
count -= 1;
SkTSwap(value, other);
}
// fast way to set [value,other] pairs
#ifdef SK_CPU_BENDIAN
sk_memset32((uint32_t*)dst, (value << 16) | other, count >> 1);
#else
sk_memset32((uint32_t*)dst, (other << 16) | value, count >> 1);
#endif
if (count & 1) {
dst[count - 1] = value;
}
}
}
///////////////////////////////////////////////////////////////////////////////
class SkRGB16_Blitter : public SkRasterBlitter {
public:
SkRGB16_Blitter(const SkBitmap& device, const SkPaint& paint);
virtual void blitH(int x, int y, int width);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]);
virtual void blitV(int x, int y, int height, SkAlpha alpha);
virtual void blitRect(int x, int y, int width, int height);
virtual void blitMask(const SkMask&, const SkIRect&);
virtual const SkBitmap* justAnOpaqueColor(uint32_t*);
protected:
SkPMColor fSrcColor32;
uint32_t fExpandedRaw16;
unsigned fScale;
uint16_t fColor16; // already scaled by fScale
uint16_t fRawColor16; // unscaled
uint16_t fRawDither16; // unscaled
SkBool8 fDoDither;
// illegal
SkRGB16_Blitter& operator=(const SkRGB16_Blitter&);
typedef SkRasterBlitter INHERITED;
};
class SkRGB16_Opaque_Blitter : public SkRGB16_Blitter {
public:
SkRGB16_Opaque_Blitter(const SkBitmap& device, const SkPaint& paint);
virtual void blitH(int x, int y, int width);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]);
virtual void blitV(int x, int y, int height, SkAlpha alpha);
virtual void blitRect(int x, int y, int width, int height);
virtual void blitMask(const SkMask&, const SkIRect&);
private:
typedef SkRGB16_Blitter INHERITED;
};
#ifdef USE_BLACK_BLITTER
class SkRGB16_Black_Blitter : public SkRGB16_Opaque_Blitter {
public:
SkRGB16_Black_Blitter(const SkBitmap& device, const SkPaint& paint);
virtual void blitMask(const SkMask&, const SkIRect&);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]);
private:
typedef SkRGB16_Opaque_Blitter INHERITED;
};
#endif
class SkRGB16_Shader_Blitter : public SkShaderBlitter {
public:
SkRGB16_Shader_Blitter(const SkBitmap& device, const SkPaint& paint);
virtual ~SkRGB16_Shader_Blitter();
virtual void blitH(int x, int y, int width);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]);
virtual void blitRect(int x, int y, int width, int height);
protected:
SkPMColor* fBuffer;
SkBlitRow::Proc fOpaqueProc;
SkBlitRow::Proc fAlphaProc;
private:
// illegal
SkRGB16_Shader_Blitter& operator=(const SkRGB16_Shader_Blitter&);
typedef SkShaderBlitter INHERITED;
};
// used only if the shader can perform shadSpan16
class SkRGB16_Shader16_Blitter : public SkRGB16_Shader_Blitter {
public:
SkRGB16_Shader16_Blitter(const SkBitmap& device, const SkPaint& paint);
virtual void blitH(int x, int y, int width);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]);
virtual void blitRect(int x, int y, int width, int height);
private:
typedef SkRGB16_Shader_Blitter INHERITED;
};
class SkRGB16_Shader_Xfermode_Blitter : public SkShaderBlitter {
public:
SkRGB16_Shader_Xfermode_Blitter(const SkBitmap& device, const SkPaint& paint);
virtual ~SkRGB16_Shader_Xfermode_Blitter();
virtual void blitH(int x, int y, int width);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]);
private:
SkXfermode* fXfermode;
SkPMColor* fBuffer;
uint8_t* fAAExpand;
// illegal
SkRGB16_Shader_Xfermode_Blitter& operator=(const SkRGB16_Shader_Xfermode_Blitter&);
typedef SkShaderBlitter INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
#ifdef USE_BLACK_BLITTER
SkRGB16_Black_Blitter::SkRGB16_Black_Blitter(const SkBitmap& device, const SkPaint& paint)
: INHERITED(device, paint) {
SkASSERT(paint.getShader() == NULL);
SkASSERT(paint.getColorFilter() == NULL);
SkASSERT(paint.getXfermode() == NULL);
SkASSERT(paint.getColor() == SK_ColorBLACK);
}
#if 1
#define black_8_pixels(mask, dst) \
do { \
if (mask & 0x80) dst[0] = 0; \
if (mask & 0x40) dst[1] = 0; \
if (mask & 0x20) dst[2] = 0; \
if (mask & 0x10) dst[3] = 0; \
if (mask & 0x08) dst[4] = 0; \
if (mask & 0x04) dst[5] = 0; \
if (mask & 0x02) dst[6] = 0; \
if (mask & 0x01) dst[7] = 0; \
} while (0)
#else
static inline black_8_pixels(U8CPU mask, uint16_t dst[])
{
if (mask & 0x80) dst[0] = 0;
if (mask & 0x40) dst[1] = 0;
if (mask & 0x20) dst[2] = 0;
if (mask & 0x10) dst[3] = 0;
if (mask & 0x08) dst[4] = 0;
if (mask & 0x04) dst[5] = 0;
if (mask & 0x02) dst[6] = 0;
if (mask & 0x01) dst[7] = 0;
}
#endif
#define SK_BLITBWMASK_NAME SkRGB16_Black_BlitBW
#define SK_BLITBWMASK_ARGS
#define SK_BLITBWMASK_BLIT8(mask, dst) black_8_pixels(mask, dst)
#define SK_BLITBWMASK_GETADDR getAddr16
#define SK_BLITBWMASK_DEVTYPE uint16_t
#include "SkBlitBWMaskTemplate.h"
void SkRGB16_Black_Blitter::blitMask(const SkMask& SK_RESTRICT mask,
const SkIRect& SK_RESTRICT clip)
SK_RESTRICT {
if (mask.fFormat == SkMask::kBW_Format) {
SkRGB16_Black_BlitBW(fDevice, mask, clip);
} else {
uint16_t* SK_RESTRICT device = fDevice.getAddr16(clip.fLeft, clip.fTop);
const uint8_t* SK_RESTRICT alpha = mask.getAddr(clip.fLeft, clip.fTop);
unsigned width = clip.width();
unsigned height = clip.height();
unsigned deviceRB = fDevice.rowBytes() - (width << 1);
unsigned maskRB = mask.fRowBytes - width;
SkASSERT((int)height > 0);
SkASSERT((int)width > 0);
SkASSERT((int)deviceRB >= 0);
SkASSERT((int)maskRB >= 0);
do {
unsigned w = width;
do {
unsigned aa = *alpha++;
*device = SkAlphaMulRGB16(*device, SkAlpha255To256(255 - aa));
device += 1;
} while (--w != 0);
device = (uint16_t*)((char*)device + deviceRB);
alpha += maskRB;
} while (--height != 0);
}
}
void SkRGB16_Black_Blitter::blitAntiH(int x, int y,
const SkAlpha* SK_RESTRICT antialias,
const int16_t* SK_RESTRICT runs)
SK_RESTRICT {
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
runs += count;
unsigned aa = antialias[0];
antialias += count;
if (aa) {
if (aa == 255) {
memset(device, 0, count << 1);
} else {
aa = SkAlpha255To256(255 - aa);
do {
*device = SkAlphaMulRGB16(*device, aa);
device += 1;
} while (--count != 0);
continue;
}
}
device += count;
}
}
#endif
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
SkRGB16_Opaque_Blitter::SkRGB16_Opaque_Blitter(const SkBitmap& device,
const SkPaint& paint)
: INHERITED(device, paint) {}
void SkRGB16_Opaque_Blitter::blitH(int x, int y, int width) SK_RESTRICT {
SkASSERT(width > 0);
SkASSERT(x + width <= fDevice.width());
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
uint16_t srcColor = fColor16;
SkASSERT(fRawColor16 == srcColor);
if (fDoDither) {
uint16_t ditherColor = fRawDither16;
if ((x ^ y) & 1) {
SkTSwap(ditherColor, srcColor);
}
sk_dither_memset16(device, srcColor, ditherColor, width);
} else {
sk_memset16(device, srcColor, width);
}
}
// return 1 or 0 from a bool
static inline int Bool2Int(int value) {
return !!value;
}
void SkRGB16_Opaque_Blitter::blitAntiH(int x, int y,
const SkAlpha* SK_RESTRICT antialias,
const int16_t* SK_RESTRICT runs) SK_RESTRICT {
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
uint16_t srcColor = fRawColor16;
uint32_t srcExpanded = fExpandedRaw16;
int ditherInt = Bool2Int(fDoDither);
uint16_t ditherColor = fRawDither16;
// if we have no dithering, this will always fail
if ((x ^ y) & ditherInt) {
SkTSwap(ditherColor, srcColor);
}
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
runs += count;
unsigned aa = antialias[0];
antialias += count;
if (aa) {
if (aa == 255) {
if (ditherInt) {
sk_dither_memset16(device, srcColor,
ditherColor, count);
} else {
sk_memset16(device, srcColor, count);
}
} else {
// TODO: respect fDoDither
unsigned scale5 = SkAlpha255To256(aa) >> 3;
uint32_t src32 = srcExpanded * scale5;
scale5 = 32 - scale5; // now we can use it on the device
int n = count;
do {
uint32_t dst32 = SkExpand_rgb_16(*device) * scale5;
*device++ = SkCompact_rgb_16((src32 + dst32) >> 5);
} while (--n != 0);
goto DONE;
}
}
device += count;
DONE:
// if we have no dithering, this will always fail
if (count & ditherInt) {
SkTSwap(ditherColor, srcColor);
}
}
}
#define solid_8_pixels(mask, dst, color) \
do { \
if (mask & 0x80) dst[0] = color; \
if (mask & 0x40) dst[1] = color; \
if (mask & 0x20) dst[2] = color; \
if (mask & 0x10) dst[3] = color; \
if (mask & 0x08) dst[4] = color; \
if (mask & 0x04) dst[5] = color; \
if (mask & 0x02) dst[6] = color; \
if (mask & 0x01) dst[7] = color; \
} while (0)
#define SK_BLITBWMASK_NAME SkRGB16_BlitBW
#define SK_BLITBWMASK_ARGS , uint16_t color
#define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color)
#define SK_BLITBWMASK_GETADDR getAddr16
#define SK_BLITBWMASK_DEVTYPE uint16_t
#include "SkBlitBWMaskTemplate.h"
static U16CPU blend_compact(uint32_t src32, uint32_t dst32, unsigned scale5) {
return SkCompact_rgb_16(dst32 + ((src32 - dst32) * scale5 >> 5));
}
void SkRGB16_Opaque_Blitter::blitMask(const SkMask& SK_RESTRICT mask,
const SkIRect& SK_RESTRICT clip) SK_RESTRICT {
if (mask.fFormat == SkMask::kBW_Format) {
SkRGB16_BlitBW(fDevice, mask, clip, fColor16);
return;
}
uint16_t* SK_RESTRICT device = fDevice.getAddr16(clip.fLeft, clip.fTop);
const uint8_t* SK_RESTRICT alpha = mask.getAddr(clip.fLeft, clip.fTop);
int width = clip.width();
int height = clip.height();
unsigned deviceRB = fDevice.rowBytes() - (width << 1);
unsigned maskRB = mask.fRowBytes - width;
uint32_t expanded32 = fExpandedRaw16;
#ifdef SK_USE_NEON
#define UNROLL 8
do {
int w = width;
if (w >= UNROLL) {
uint32x4_t color; /* can use same one */
uint32x4_t dev_lo, dev_hi;
uint32x4_t t1, t2;
uint32x4_t wn1, wn2;
uint16x4_t odev_lo, odev_hi;
uint16x4_t alpha_lo, alpha_hi;
uint16x8_t alpha_full;
color = vdupq_n_u32(expanded32);
do {
/* alpha is 8x8, widen and split to get pair of 16x4's */
alpha_full = vmovl_u8(vld1_u8(alpha));
alpha_full = vaddq_u16(alpha_full, vshrq_n_u16(alpha_full,7));
alpha_full = vshrq_n_u16(alpha_full, 3);
alpha_lo = vget_low_u16(alpha_full);
alpha_hi = vget_high_u16(alpha_full);
dev_lo = vmovl_u16(vld1_u16(device));
dev_hi = vmovl_u16(vld1_u16(device+4));
/* unpack in 32 bits */
dev_lo = vorrq_u32(
vandq_u32(dev_lo, vdupq_n_u32(0x0000F81F)),
vshlq_n_u32(vandq_u32(dev_lo,
vdupq_n_u32(0x000007E0)),
16)
);
dev_hi = vorrq_u32(
vandq_u32(dev_hi, vdupq_n_u32(0x0000F81F)),
vshlq_n_u32(vandq_u32(dev_hi,
vdupq_n_u32(0x000007E0)),
16)
);
/* blend the two */
t1 = vmulq_u32(vsubq_u32(color, dev_lo), vmovl_u16(alpha_lo));
t1 = vshrq_n_u32(t1, 5);
dev_lo = vaddq_u32(dev_lo, t1);
t1 = vmulq_u32(vsubq_u32(color, dev_hi), vmovl_u16(alpha_hi));
t1 = vshrq_n_u32(t1, 5);
dev_hi = vaddq_u32(dev_hi, t1);
/* re-compact and store */
wn1 = vandq_u32(dev_lo, vdupq_n_u32(0x0000F81F)),
wn2 = vshrq_n_u32(dev_lo, 16);
wn2 = vandq_u32(wn2, vdupq_n_u32(0x000007E0));
odev_lo = vmovn_u32(vorrq_u32(wn1, wn2));
wn1 = vandq_u32(dev_hi, vdupq_n_u32(0x0000F81F)),
wn2 = vshrq_n_u32(dev_hi, 16);
wn2 = vandq_u32(wn2, vdupq_n_u32(0x000007E0));
odev_hi = vmovn_u32(vorrq_u32(wn1, wn2));
vst1_u16(device, odev_lo);
vst1_u16(device+4, odev_hi);
device += UNROLL;
alpha += UNROLL;
w -= UNROLL;
} while (w >= UNROLL);
}
/* residuals (which is everything if we have no neon) */
while (w > 0) {
*device = blend_compact(expanded32, SkExpand_rgb_16(*device),
SkAlpha255To256(*alpha++) >> 3);
device += 1;
--w;
}
device = (uint16_t*)((char*)device + deviceRB);
alpha += maskRB;
} while (--height != 0);
#undef UNROLL
#else // non-neon code
do {
int w = width;
do {
*device = blend_compact(expanded32, SkExpand_rgb_16(*device),
SkAlpha255To256(*alpha++) >> 3);
device += 1;
} while (--w != 0);
device = (uint16_t*)((char*)device + deviceRB);
alpha += maskRB;
} while (--height != 0);
#endif
}
void SkRGB16_Opaque_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
unsigned deviceRB = fDevice.rowBytes();
// TODO: respect fDoDither
unsigned scale5 = SkAlpha255To256(alpha) >> 3;
uint32_t src32 = fExpandedRaw16 * scale5;
scale5 = 32 - scale5;
do {
uint32_t dst32 = SkExpand_rgb_16(*device) * scale5;
*device = SkCompact_rgb_16((src32 + dst32) >> 5);
device = (uint16_t*)((char*)device + deviceRB);
} while (--height != 0);
}
void SkRGB16_Opaque_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x + width <= fDevice.width() && y + height <= fDevice.height());
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
unsigned deviceRB = fDevice.rowBytes();
uint16_t color16 = fColor16;
if (fDoDither) {
uint16_t ditherColor = fRawDither16;
if ((x ^ y) & 1) {
SkTSwap(ditherColor, color16);
}
while (--height >= 0) {
sk_dither_memset16(device, color16, ditherColor, width);
SkTSwap(ditherColor, color16);
device = (uint16_t*)((char*)device + deviceRB);
}
} else { // no dither
while (--height >= 0) {
sk_memset16(device, color16, width);
device = (uint16_t*)((char*)device + deviceRB);
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkRGB16_Blitter::SkRGB16_Blitter(const SkBitmap& device, const SkPaint& paint)
: INHERITED(device) {
SkColor color = paint.getColor();
fSrcColor32 = SkPreMultiplyColor(color);
fScale = SkAlpha255To256(SkColorGetA(color));
int r = SkColorGetR(color);
int g = SkColorGetG(color);
int b = SkColorGetB(color);
fRawColor16 = fRawDither16 = SkPack888ToRGB16(r, g, b);
// if we're dithered, use fRawDither16 to hold that.
if ((fDoDither = paint.isDither()) != false) {
fRawDither16 = SkDitherPack888ToRGB16(r, g, b);
}
fExpandedRaw16 = SkExpand_rgb_16(fRawColor16);
fColor16 = SkPackRGB16( SkAlphaMul(r, fScale) >> (8 - SK_R16_BITS),
SkAlphaMul(g, fScale) >> (8 - SK_G16_BITS),
SkAlphaMul(b, fScale) >> (8 - SK_B16_BITS));
}
const SkBitmap* SkRGB16_Blitter::justAnOpaqueColor(uint32_t* value) {
if (!fDoDither && 256 == fScale) {
*value = fRawColor16;
return &fDevice;
}
return NULL;
}
static uint32_t pmcolor_to_expand16(SkPMColor c) {
unsigned r = SkGetPackedR32(c);
unsigned g = SkGetPackedG32(c);
unsigned b = SkGetPackedB32(c);
return (g << 24) | (r << 13) | (b << 2);
}
static inline void blend32_16_row(SkPMColor src, uint16_t dst[], int count) {
SkASSERT(count > 0);
uint32_t src_expand = pmcolor_to_expand16(src);
unsigned scale = SkAlpha255To256(0xFF - SkGetPackedA32(src)) >> 3;
do {
uint32_t dst_expand = SkExpand_rgb_16(*dst) * scale;
*dst = SkCompact_rgb_16((src_expand + dst_expand) >> 5);
dst += 1;
} while (--count != 0);
}
void SkRGB16_Blitter::blitH(int x, int y, int width) SK_RESTRICT {
SkASSERT(width > 0);
SkASSERT(x + width <= fDevice.width());
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
// TODO: respect fDoDither
blend32_16_row(fSrcColor32, device, width);
}
void SkRGB16_Blitter::blitAntiH(int x, int y,
const SkAlpha* SK_RESTRICT antialias,
const int16_t* SK_RESTRICT runs) SK_RESTRICT {
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
uint32_t srcExpanded = fExpandedRaw16;
unsigned scale = fScale;
// TODO: respect fDoDither
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
runs += count;
unsigned aa = antialias[0];
antialias += count;
if (aa) {
unsigned scale5 = SkAlpha255To256(aa) * scale >> (8 + 3);
uint32_t src32 = srcExpanded * scale5;
scale5 = 32 - scale5;
do {
uint32_t dst32 = SkExpand_rgb_16(*device) * scale5;
*device++ = SkCompact_rgb_16((src32 + dst32) >> 5);
} while (--count != 0);
continue;
}
device += count;
}
}
static inline void blend_8_pixels(U8CPU bw, uint16_t dst[], unsigned dst_scale,
U16CPU srcColor) {
if (bw & 0x80) dst[0] = srcColor + SkAlphaMulRGB16(dst[0], dst_scale);
if (bw & 0x40) dst[1] = srcColor + SkAlphaMulRGB16(dst[1], dst_scale);
if (bw & 0x20) dst[2] = srcColor + SkAlphaMulRGB16(dst[2], dst_scale);
if (bw & 0x10) dst[3] = srcColor + SkAlphaMulRGB16(dst[3], dst_scale);
if (bw & 0x08) dst[4] = srcColor + SkAlphaMulRGB16(dst[4], dst_scale);
if (bw & 0x04) dst[5] = srcColor + SkAlphaMulRGB16(dst[5], dst_scale);
if (bw & 0x02) dst[6] = srcColor + SkAlphaMulRGB16(dst[6], dst_scale);
if (bw & 0x01) dst[7] = srcColor + SkAlphaMulRGB16(dst[7], dst_scale);
}
#define SK_BLITBWMASK_NAME SkRGB16_BlendBW
#define SK_BLITBWMASK_ARGS , unsigned dst_scale, U16CPU src_color
#define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, dst_scale, src_color)
#define SK_BLITBWMASK_GETADDR getAddr16
#define SK_BLITBWMASK_DEVTYPE uint16_t
#include "SkBlitBWMaskTemplate.h"
void SkRGB16_Blitter::blitMask(const SkMask& SK_RESTRICT mask,
const SkIRect& SK_RESTRICT clip) SK_RESTRICT {
if (mask.fFormat == SkMask::kBW_Format) {
SkRGB16_BlendBW(fDevice, mask, clip, 256 - fScale, fColor16);
return;
}
uint16_t* SK_RESTRICT device = fDevice.getAddr16(clip.fLeft, clip.fTop);
const uint8_t* SK_RESTRICT alpha = mask.getAddr(clip.fLeft, clip.fTop);
int width = clip.width();
int height = clip.height();
unsigned deviceRB = fDevice.rowBytes() - (width << 1);
unsigned maskRB = mask.fRowBytes - width;
uint32_t color32 = fExpandedRaw16;
unsigned scale256 = fScale;
do {
int w = width;
do {
unsigned aa = *alpha++;
unsigned scale = SkAlpha255To256(aa) * scale256 >> (8 + 3);
uint32_t src32 = color32 * scale;
uint32_t dst32 = SkExpand_rgb_16(*device) * (32 - scale);
*device++ = SkCompact_rgb_16((src32 + dst32) >> 5);
} while (--w != 0);
device = (uint16_t*)((char*)device + deviceRB);
alpha += maskRB;
} while (--height != 0);
}
void SkRGB16_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
unsigned deviceRB = fDevice.rowBytes();
// TODO: respect fDoDither
unsigned scale5 = SkAlpha255To256(alpha) * fScale >> (8 + 3);
uint32_t src32 = fExpandedRaw16 * scale5;
scale5 = 32 - scale5;
do {
uint32_t dst32 = SkExpand_rgb_16(*device) * scale5;
*device = SkCompact_rgb_16((src32 + dst32) >> 5);
device = (uint16_t*)((char*)device + deviceRB);
} while (--height != 0);
}
void SkRGB16_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x + width <= fDevice.width() && y + height <= fDevice.height());
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
unsigned deviceRB = fDevice.rowBytes();
SkPMColor src32 = fSrcColor32;
while (--height >= 0) {
blend32_16_row(src32, device, width);
device = (uint16_t*)((char*)device + deviceRB);
}
}
///////////////////////////////////////////////////////////////////////////////
SkRGB16_Shader16_Blitter::SkRGB16_Shader16_Blitter(const SkBitmap& device,
const SkPaint& paint)
: SkRGB16_Shader_Blitter(device, paint) {
SkASSERT(SkShader::CanCallShadeSpan16(fShaderFlags));
}
void SkRGB16_Shader16_Blitter::blitH(int x, int y, int width) SK_RESTRICT {
SkASSERT(x + width <= fDevice.width());
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
SkShader* shader = fShader;
int alpha = shader->getSpan16Alpha();
if (0xFF == alpha) {
shader->shadeSpan16(x, y, device, width);
} else {
uint16_t* span16 = (uint16_t*)fBuffer;
shader->shadeSpan16(x, y, span16, width);
SkBlendRGB16(span16, device, SkAlpha255To256(alpha), width);
}
}
void SkRGB16_Shader16_Blitter::blitRect(int x, int y, int width, int height) {
SkShader* shader = fShader;
uint16_t* dst = fDevice.getAddr16(x, y);
size_t dstRB = fDevice.rowBytes();
int alpha = shader->getSpan16Alpha();
if (0xFF == alpha) {
if (fShaderFlags & SkShader::kConstInY16_Flag) {
// have the shader blit directly into the device the first time
shader->shadeSpan16(x, y, dst, width);
// and now just memcpy that line on the subsequent lines
if (--height > 0) {
const uint16_t* orig = dst;
do {
dst = (uint16_t*)((char*)dst + dstRB);
memcpy(dst, orig, width << 1);
} while (--height);
}
} else { // need to call shadeSpan16 for every line
do {
shader->shadeSpan16(x, y, dst, width);
y += 1;
dst = (uint16_t*)((char*)dst + dstRB);
} while (--height);
}
} else {
int scale = SkAlpha255To256(alpha);
uint16_t* span16 = (uint16_t*)fBuffer;
if (fShaderFlags & SkShader::kConstInY16_Flag) {
shader->shadeSpan16(x, y, span16, width);
do {
SkBlendRGB16(span16, dst, scale, width);
dst = (uint16_t*)((char*)dst + dstRB);
} while (--height);
} else {
do {
shader->shadeSpan16(x, y, span16, width);
SkBlendRGB16(span16, dst, scale, width);
y += 1;
dst = (uint16_t*)((char*)dst + dstRB);
} while (--height);
}
}
}
void SkRGB16_Shader16_Blitter::blitAntiH(int x, int y,
const SkAlpha* SK_RESTRICT antialias,
const int16_t* SK_RESTRICT runs)
SK_RESTRICT {
SkShader* shader = fShader;
SkPMColor* SK_RESTRICT span = fBuffer;
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
int alpha = shader->getSpan16Alpha();
uint16_t* span16 = (uint16_t*)span;
if (0xFF == alpha) {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
SkASSERT(count <= fDevice.width()); // don't overrun fBuffer
int aa = *antialias;
if (aa == 255) {
// go direct to the device!
shader->shadeSpan16(x, y, device, count);
} else if (aa) {
shader->shadeSpan16(x, y, span16, count);
SkBlendRGB16(span16, device, SkAlpha255To256(aa), count);
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else { // span alpha is < 255
alpha = SkAlpha255To256(alpha);
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
SkASSERT(count <= fDevice.width()); // don't overrun fBuffer
int aa = SkAlphaMul(*antialias, alpha);
if (aa) {
shader->shadeSpan16(x, y, span16, count);
SkBlendRGB16(span16, device, SkAlpha255To256(aa), count);
}
device += count;
runs += count;
antialias += count;
x += count;
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkRGB16_Shader_Blitter::SkRGB16_Shader_Blitter(const SkBitmap& device,
const SkPaint& paint)
: INHERITED(device, paint) {
SkASSERT(paint.getXfermode() == NULL);
fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * sizeof(SkPMColor));
// compute SkBlitRow::Procs
unsigned flags = 0;
uint32_t shaderFlags = fShaderFlags;
// shaders take care of global alpha, so we never set it in SkBlitRow
if (!(shaderFlags & SkShader::kOpaqueAlpha_Flag)) {
flags |= SkBlitRow::kSrcPixelAlpha_Flag;
}
// don't dither if the shader is really 16bit
if (paint.isDither() && !(shaderFlags & SkShader::kIntrinsicly16_Flag)) {
flags |= SkBlitRow::kDither_Flag;
}
// used when we know our global alpha is 0xFF
fOpaqueProc = SkBlitRow::Factory(flags, SkBitmap::kRGB_565_Config);
// used when we know our global alpha is < 0xFF
fAlphaProc = SkBlitRow::Factory(flags | SkBlitRow::kGlobalAlpha_Flag,
SkBitmap::kRGB_565_Config);
}
SkRGB16_Shader_Blitter::~SkRGB16_Shader_Blitter() {
sk_free(fBuffer);
}
void SkRGB16_Shader_Blitter::blitH(int x, int y, int width) {
SkASSERT(x + width <= fDevice.width());
fShader->shadeSpan(x, y, fBuffer, width);
// shaders take care of global alpha, so we pass 0xFF (should be ignored)
fOpaqueProc(fDevice.getAddr16(x, y), fBuffer, width, 0xFF, x, y);
}
void SkRGB16_Shader_Blitter::blitRect(int x, int y, int width, int height) {
SkShader* shader = fShader;
SkBlitRow::Proc proc = fOpaqueProc;
SkPMColor* buffer = fBuffer;
uint16_t* dst = fDevice.getAddr16(x, y);
size_t dstRB = fDevice.rowBytes();
if (fShaderFlags & SkShader::kConstInY32_Flag) {
shader->shadeSpan(x, y, buffer, width);
do {
proc(dst, buffer, width, 0xFF, x, y);
y += 1;
dst = (uint16_t*)((char*)dst + dstRB);
} while (--height);
} else {
do {
shader->shadeSpan(x, y, buffer, width);
proc(dst, buffer, width, 0xFF, x, y);
y += 1;
dst = (uint16_t*)((char*)dst + dstRB);
} while (--height);
}
}
static inline int count_nonzero_span(const int16_t runs[], const SkAlpha aa[]) {
int count = 0;
for (;;) {
int n = *runs;
if (n == 0 || *aa == 0) {
break;
}
runs += n;
aa += n;
count += n;
}
return count;
}
void SkRGB16_Shader_Blitter::blitAntiH(int x, int y,
const SkAlpha* SK_RESTRICT antialias,
const int16_t* SK_RESTRICT runs)
SK_RESTRICT {
SkShader* shader = fShader;
SkPMColor* SK_RESTRICT span = fBuffer;
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (0 == aa) {
device += count;
runs += count;
antialias += count;
x += count;
continue;
}
int nonZeroCount = count + count_nonzero_span(runs + count, antialias + count);
SkASSERT(nonZeroCount <= fDevice.width()); // don't overrun fBuffer
shader->shadeSpan(x, y, span, nonZeroCount);
SkPMColor* localSpan = span;
for (;;) {
SkBlitRow::Proc proc = (aa == 0xFF) ? fOpaqueProc : fAlphaProc;
proc(device, localSpan, count, aa, x, y);
x += count;
device += count;
runs += count;
antialias += count;
nonZeroCount -= count;
if (nonZeroCount == 0) {
break;
}
localSpan += count;
SkASSERT(nonZeroCount > 0);
count = *runs;
SkASSERT(count > 0);
aa = *antialias;
}
}
}
///////////////////////////////////////////////////////////////////////
SkRGB16_Shader_Xfermode_Blitter::SkRGB16_Shader_Xfermode_Blitter(
const SkBitmap& device, const SkPaint& paint)
: INHERITED(device, paint) {
fXfermode = paint.getXfermode();
SkASSERT(fXfermode);
fXfermode->ref();
int width = device.width();
fBuffer = (SkPMColor*)sk_malloc_throw((width + (SkAlign4(width) >> 2)) * sizeof(SkPMColor));
fAAExpand = (uint8_t*)(fBuffer + width);
}
SkRGB16_Shader_Xfermode_Blitter::~SkRGB16_Shader_Xfermode_Blitter() {
fXfermode->unref();
sk_free(fBuffer);
}
void SkRGB16_Shader_Xfermode_Blitter::blitH(int x, int y, int width) {
SkASSERT(x + width <= fDevice.width());
uint16_t* device = fDevice.getAddr16(x, y);
SkPMColor* span = fBuffer;
fShader->shadeSpan(x, y, span, width);
fXfermode->xfer16(device, span, width, NULL);
}
void SkRGB16_Shader_Xfermode_Blitter::blitAntiH(int x, int y,
const SkAlpha* SK_RESTRICT antialias,
const int16_t* SK_RESTRICT runs) SK_RESTRICT {
SkShader* shader = fShader;
SkXfermode* mode = fXfermode;
SkPMColor* SK_RESTRICT span = fBuffer;
uint8_t* SK_RESTRICT aaExpand = fAAExpand;
uint16_t* SK_RESTRICT device = fDevice.getAddr16(x, y);
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (0 == aa) {
device += count;
runs += count;
antialias += count;
x += count;
continue;
}
int nonZeroCount = count + count_nonzero_span(runs + count,
antialias + count);
SkASSERT(nonZeroCount <= fDevice.width()); // don't overrun fBuffer
shader->shadeSpan(x, y, span, nonZeroCount);
x += nonZeroCount;
SkPMColor* localSpan = span;
for (;;) {
if (aa == 0xFF) {
mode->xfer16(device, localSpan, count, NULL);
} else {
SkASSERT(aa);
memset(aaExpand, aa, count);
mode->xfer16(device, localSpan, count, aaExpand);
}
device += count;
runs += count;
antialias += count;
nonZeroCount -= count;
if (nonZeroCount == 0) {
break;
}
localSpan += count;
SkASSERT(nonZeroCount > 0);
count = *runs;
SkASSERT(count > 0);
aa = *antialias;
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkBlitter* SkBlitter_ChooseD565(const SkBitmap& device, const SkPaint& paint,
void* storage, size_t storageSize) {
SkBlitter* blitter;
SkShader* shader = paint.getShader();
SkXfermode* mode = paint.getXfermode();
// we require a shader if there is an xfermode, handled by our caller
SkASSERT(NULL == mode || NULL != shader);
if (shader) {
if (mode) {
SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader_Xfermode_Blitter,
storage, storageSize, (device, paint));
} else if (shader->canCallShadeSpan16()) {
SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader16_Blitter,
storage, storageSize, (device, paint));
} else {
SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Shader_Blitter,
storage, storageSize, (device, paint));
}
} else {
// no shader, no xfermode, (and we always ignore colorfilter)
SkColor color = paint.getColor();
if (0 == SkColorGetA(color)) {
SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize);
#ifdef USE_BLACK_BLITTER
} else if (SK_ColorBLACK == color) {
SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Black_Blitter, storage,
storageSize, (device, paint));
#endif
} else if (0xFF == SkColorGetA(color)) {
SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Opaque_Blitter, storage,
storageSize, (device, paint));
} else {
SK_PLACEMENT_NEW_ARGS(blitter, SkRGB16_Blitter, storage,
storageSize, (device, paint));
}
}
return blitter;
}