| #include "Test.h" |
| #include "SkPath.h" |
| #include "SkParse.h" |
| #include "SkSize.h" |
| |
| static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, |
| SkPath::Convexity expected) { |
| SkPath::Convexity c = SkPath::ComputeConvexity(path); |
| REPORTER_ASSERT(reporter, c == expected); |
| } |
| |
| static void test_convexity2(skiatest::Reporter* reporter) { |
| SkPath pt; |
| pt.moveTo(0, 0); |
| pt.close(); |
| check_convexity(reporter, pt, SkPath::kConvex_Convexity); |
| |
| SkPath line; |
| line.moveTo(12, 20); |
| line.lineTo(-12, -20); |
| line.close(); |
| check_convexity(reporter, pt, SkPath::kConvex_Convexity); |
| |
| SkPath triLeft; |
| triLeft.moveTo(0, 0); |
| triLeft.lineTo(1, 0); |
| triLeft.lineTo(1, 1); |
| triLeft.close(); |
| check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); |
| |
| SkPath triRight; |
| triRight.moveTo(0, 0); |
| triRight.lineTo(-1, 0); |
| triRight.lineTo(1, 1); |
| triRight.close(); |
| check_convexity(reporter, triRight, SkPath::kConvex_Convexity); |
| |
| SkPath square; |
| square.moveTo(0, 0); |
| square.lineTo(1, 0); |
| square.lineTo(1, 1); |
| square.lineTo(0, 1); |
| square.close(); |
| check_convexity(reporter, square, SkPath::kConvex_Convexity); |
| |
| SkPath redundantSquare; |
| redundantSquare.moveTo(0, 0); |
| redundantSquare.lineTo(0, 0); |
| redundantSquare.lineTo(0, 0); |
| redundantSquare.lineTo(1, 0); |
| redundantSquare.lineTo(1, 0); |
| redundantSquare.lineTo(1, 0); |
| redundantSquare.lineTo(1, 1); |
| redundantSquare.lineTo(1, 1); |
| redundantSquare.lineTo(1, 1); |
| redundantSquare.lineTo(0, 1); |
| redundantSquare.lineTo(0, 1); |
| redundantSquare.lineTo(0, 1); |
| redundantSquare.close(); |
| check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); |
| |
| SkPath bowTie; |
| bowTie.moveTo(0, 0); |
| bowTie.lineTo(0, 0); |
| bowTie.lineTo(0, 0); |
| bowTie.lineTo(1, 1); |
| bowTie.lineTo(1, 1); |
| bowTie.lineTo(1, 1); |
| bowTie.lineTo(1, 0); |
| bowTie.lineTo(1, 0); |
| bowTie.lineTo(1, 0); |
| bowTie.lineTo(0, 1); |
| bowTie.lineTo(0, 1); |
| bowTie.lineTo(0, 1); |
| bowTie.close(); |
| check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); |
| |
| SkPath spiral; |
| spiral.moveTo(0, 0); |
| spiral.lineTo(100, 0); |
| spiral.lineTo(100, 100); |
| spiral.lineTo(0, 100); |
| spiral.lineTo(0, 50); |
| spiral.lineTo(50, 50); |
| spiral.lineTo(50, 75); |
| spiral.close(); |
| check_convexity(reporter, spiral, SkPath::kConcave_Convexity); |
| |
| SkPath dent; |
| dent.moveTo(SkIntToScalar(0), SkIntToScalar(0)); |
| dent.lineTo(SkIntToScalar(100), SkIntToScalar(100)); |
| dent.lineTo(SkIntToScalar(0), SkIntToScalar(100)); |
| dent.lineTo(SkIntToScalar(-50), SkIntToScalar(200)); |
| dent.lineTo(SkIntToScalar(-200), SkIntToScalar(100)); |
| dent.close(); |
| check_convexity(reporter, dent, SkPath::kConcave_Convexity); |
| } |
| |
| static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, |
| const SkRect& bounds) { |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.getBounds() == bounds); |
| |
| SkPath p2(p); |
| REPORTER_ASSERT(reporter, p2.isConvex()); |
| REPORTER_ASSERT(reporter, p2.getBounds() == bounds); |
| |
| SkPath other; |
| other.swap(p2); |
| REPORTER_ASSERT(reporter, other.isConvex()); |
| REPORTER_ASSERT(reporter, other.getBounds() == bounds); |
| } |
| |
| static void setFromString(SkPath* path, const char str[]) { |
| bool first = true; |
| while (str) { |
| SkScalar x, y; |
| str = SkParse::FindScalar(str, &x); |
| if (NULL == str) { |
| break; |
| } |
| str = SkParse::FindScalar(str, &y); |
| SkASSERT(str); |
| if (first) { |
| path->moveTo(x, y); |
| first = false; |
| } else { |
| path->lineTo(x, y); |
| } |
| } |
| } |
| |
| static void test_convexity(skiatest::Reporter* reporter) { |
| static const SkPath::Convexity C = SkPath::kConcave_Convexity; |
| static const SkPath::Convexity V = SkPath::kConvex_Convexity; |
| |
| SkPath path; |
| |
| REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); |
| path.addCircle(0, 0, 10); |
| REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); |
| path.addCircle(0, 0, 10); // 2nd circle |
| REPORTER_ASSERT(reporter, C == SkPath::ComputeConvexity(path)); |
| path.reset(); |
| path.addRect(0, 0, 10, 10, SkPath::kCCW_Direction); |
| REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); |
| path.reset(); |
| path.addRect(0, 0, 10, 10, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); |
| |
| static const struct { |
| const char* fPathStr; |
| SkPath::Convexity fExpectedConvexity; |
| } gRec[] = { |
| { "", SkPath::kConvex_Convexity }, |
| { "0 0", SkPath::kConvex_Convexity }, |
| { "0 0 10 10", SkPath::kConvex_Convexity }, |
| { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity }, |
| { "0 0 10 10 10 20", SkPath::kConvex_Convexity }, |
| { "0 0 10 10 10 0", SkPath::kConvex_Convexity }, |
| { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity }, |
| { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity }, |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { |
| SkPath path; |
| setFromString(&path, gRec[i].fPathStr); |
| SkPath::Convexity c = SkPath::ComputeConvexity(path); |
| REPORTER_ASSERT(reporter, c == gRec[i].fExpectedConvexity); |
| } |
| } |
| |
| void TestPath(skiatest::Reporter* reporter); |
| void TestPath(skiatest::Reporter* reporter) { |
| { |
| SkSize size; |
| size.fWidth = 3.4f; |
| size.width(); |
| size = SkSize::Make(3,4); |
| SkISize isize = SkISize::Make(3,4); |
| } |
| |
| SkTSize<SkScalar>::Make(3,4); |
| |
| SkPath p, p2; |
| SkRect bounds, bounds2; |
| |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); |
| REPORTER_ASSERT(reporter, !p.isInverseFillType()); |
| REPORTER_ASSERT(reporter, p == p2); |
| REPORTER_ASSERT(reporter, !(p != p2)); |
| |
| REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); |
| |
| bounds.set(0, 0, SK_Scalar1, SK_Scalar1); |
| |
| p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); |
| check_convex_bounds(reporter, p, bounds); |
| |
| p.reset(); |
| p.addOval(bounds); |
| check_convex_bounds(reporter, p, bounds); |
| |
| p.reset(); |
| p.addRect(bounds); |
| check_convex_bounds(reporter, p, bounds); |
| |
| REPORTER_ASSERT(reporter, p != p2); |
| REPORTER_ASSERT(reporter, !(p == p2)); |
| |
| // does getPoints return the right result |
| REPORTER_ASSERT(reporter, p.getPoints(NULL, 5) == 4); |
| SkPoint pts[4]; |
| int count = p.getPoints(pts, 4); |
| REPORTER_ASSERT(reporter, count == 4); |
| bounds2.set(pts, 4); |
| REPORTER_ASSERT(reporter, bounds == bounds2); |
| |
| bounds.offset(SK_Scalar1*3, SK_Scalar1*4); |
| p.offset(SK_Scalar1*3, SK_Scalar1*4); |
| REPORTER_ASSERT(reporter, bounds == p.getBounds()); |
| |
| #if 0 // isRect needs to be implemented |
| REPORTER_ASSERT(reporter, p.isRect(NULL)); |
| bounds.setEmpty(); |
| REPORTER_ASSERT(reporter, p.isRect(&bounds2)); |
| REPORTER_ASSERT(reporter, bounds == bounds2); |
| |
| // now force p to not be a rect |
| bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); |
| p.addRect(bounds); |
| REPORTER_ASSERT(reporter, !p.isRect(NULL)); |
| #endif |
| |
| SkPoint pt; |
| |
| p.moveTo(SK_Scalar1, 0); |
| p.getLastPt(&pt); |
| REPORTER_ASSERT(reporter, pt.fX == SK_Scalar1); |
| |
| test_convexity(reporter); |
| test_convexity2(reporter); |
| } |
| |
| #include "TestClassDef.h" |
| DEFINE_TESTCLASS("Path", PathTestClass, TestPath) |