| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkMatrix_DEFINED |
| #define SkMatrix_DEFINED |
| |
| #include "SkRect.h" |
| |
| class SkString; |
| |
| #ifdef SK_SCALAR_IS_FLOAT |
| typedef SkScalar SkPersp; |
| #define SkScalarToPersp(x) (x) |
| #define SkPerspToScalar(x) (x) |
| #else |
| typedef SkFract SkPersp; |
| #define SkScalarToPersp(x) SkFixedToFract(x) |
| #define SkPerspToScalar(x) SkFractToFixed(x) |
| #endif |
| |
| /** \class SkMatrix |
| |
| The SkMatrix class holds a 3x3 matrix for transforming coordinates. |
| SkMatrix does not have a constructor, so it must be explicitly initialized |
| using either reset() - to construct an identity matrix, or one of the set |
| functions (e.g. setTranslate, setRotate, etc.). |
| */ |
| class SK_API SkMatrix { |
| public: |
| /** Enum of bit fields for the mask return by getType(). |
| Use this to identify the complexity of the matrix. |
| */ |
| enum TypeMask { |
| kIdentity_Mask = 0, |
| kTranslate_Mask = 0x01, //!< set if the matrix has translation |
| kScale_Mask = 0x02, //!< set if the matrix has X or Y scale |
| kAffine_Mask = 0x04, //!< set if the matrix skews or rotates |
| kPerspective_Mask = 0x08 //!< set if the matrix is in perspective |
| }; |
| |
| /** Returns a mask bitfield describing the types of transformations |
| that the matrix will perform. This information is used by routines |
| like mapPoints, to optimize its inner loops to only perform as much |
| arithmetic as is necessary. |
| */ |
| TypeMask getType() const { |
| if (fTypeMask & kUnknown_Mask) { |
| fTypeMask = this->computeTypeMask(); |
| } |
| // only return the public masks |
| return (TypeMask)(fTypeMask & 0xF); |
| } |
| |
| /** Returns true if the matrix is identity. |
| */ |
| bool isIdentity() const { |
| return this->getType() == 0; |
| } |
| |
| /** Returns true if will map a rectangle to another rectangle. This can be |
| true if the matrix is identity, scale-only, or rotates a multiple of |
| 90 degrees. |
| */ |
| bool rectStaysRect() const { |
| if (fTypeMask & kUnknown_Mask) { |
| fTypeMask = this->computeTypeMask(); |
| } |
| return (fTypeMask & kRectStaysRect_Mask) != 0; |
| } |
| // alias for rectStaysRect() |
| bool preservesAxisAlignment() const { return this->rectStaysRect(); } |
| |
| /** |
| * Returns true if the matrix contains perspective elements. |
| */ |
| bool hasPerspective() const { |
| return SkToBool(this->getPerspectiveTypeMaskOnly() & |
| kPerspective_Mask); |
| } |
| |
| enum { |
| kMScaleX, |
| kMSkewX, |
| kMTransX, |
| kMSkewY, |
| kMScaleY, |
| kMTransY, |
| kMPersp0, |
| kMPersp1, |
| kMPersp2 |
| }; |
| |
| /** Affine arrays are in column major order |
| because that's how PDF and XPS like it. |
| */ |
| enum { |
| kAScaleX, |
| kASkewY, |
| kASkewX, |
| kAScaleY, |
| kATransX, |
| kATransY |
| }; |
| |
| SkScalar operator[](int index) const { |
| SkASSERT((unsigned)index < 9); |
| return fMat[index]; |
| } |
| |
| SkScalar get(int index) const { |
| SkASSERT((unsigned)index < 9); |
| return fMat[index]; |
| } |
| |
| SkScalar getScaleX() const { return fMat[kMScaleX]; } |
| SkScalar getScaleY() const { return fMat[kMScaleY]; } |
| SkScalar getSkewY() const { return fMat[kMSkewY]; } |
| SkScalar getSkewX() const { return fMat[kMSkewX]; } |
| SkScalar getTranslateX() const { return fMat[kMTransX]; } |
| SkScalar getTranslateY() const { return fMat[kMTransY]; } |
| SkPersp getPerspX() const { return fMat[kMPersp0]; } |
| SkPersp getPerspY() const { return fMat[kMPersp1]; } |
| |
| SkScalar& operator[](int index) { |
| SkASSERT((unsigned)index < 9); |
| this->setTypeMask(kUnknown_Mask); |
| return fMat[index]; |
| } |
| |
| void set(int index, SkScalar value) { |
| SkASSERT((unsigned)index < 9); |
| fMat[index] = value; |
| this->setTypeMask(kUnknown_Mask); |
| } |
| |
| void setScaleX(SkScalar v) { this->set(kMScaleX, v); } |
| void setScaleY(SkScalar v) { this->set(kMScaleY, v); } |
| void setSkewY(SkScalar v) { this->set(kMSkewY, v); } |
| void setSkewX(SkScalar v) { this->set(kMSkewX, v); } |
| void setTranslateX(SkScalar v) { this->set(kMTransX, v); } |
| void setTranslateY(SkScalar v) { this->set(kMTransY, v); } |
| void setPerspX(SkPersp v) { this->set(kMPersp0, v); } |
| void setPerspY(SkPersp v) { this->set(kMPersp1, v); } |
| |
| void setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
| SkScalar skewY, SkScalar scaleY, SkScalar transY, |
| SkPersp persp0, SkPersp persp1, SkPersp persp2) { |
| fMat[kMScaleX] = scaleX; |
| fMat[kMSkewX] = skewX; |
| fMat[kMTransX] = transX; |
| fMat[kMSkewY] = skewY; |
| fMat[kMScaleY] = scaleY; |
| fMat[kMTransY] = transY; |
| fMat[kMPersp0] = persp0; |
| fMat[kMPersp1] = persp1; |
| fMat[kMPersp2] = persp2; |
| this->setTypeMask(kUnknown_Mask); |
| } |
| |
| /** Set the matrix to identity |
| */ |
| void reset(); |
| // alias for reset() |
| void setIdentity() { this->reset(); } |
| |
| /** Set the matrix to translate by (dx, dy). |
| */ |
| void setTranslate(SkScalar dx, SkScalar dy); |
| /** Set the matrix to scale by sx and sy, with a pivot point at (px, py). |
| The pivot point is the coordinate that should remain unchanged by the |
| specified transformation. |
| */ |
| void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
| /** Set the matrix to scale by sx and sy. |
| */ |
| void setScale(SkScalar sx, SkScalar sy); |
| /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't |
| touch the matrix if either divx or divy is zero. |
| */ |
| bool setIDiv(int divx, int divy); |
| /** Set the matrix to rotate by the specified number of degrees, with a |
| pivot point at (px, py). The pivot point is the coordinate that should |
| remain unchanged by the specified transformation. |
| */ |
| void setRotate(SkScalar degrees, SkScalar px, SkScalar py); |
| /** Set the matrix to rotate about (0,0) by the specified number of degrees. |
| */ |
| void setRotate(SkScalar degrees); |
| /** Set the matrix to rotate by the specified sine and cosine values, with |
| a pivot point at (px, py). The pivot point is the coordinate that |
| should remain unchanged by the specified transformation. |
| */ |
| void setSinCos(SkScalar sinValue, SkScalar cosValue, |
| SkScalar px, SkScalar py); |
| /** Set the matrix to rotate by the specified sine and cosine values. |
| */ |
| void setSinCos(SkScalar sinValue, SkScalar cosValue); |
| /** Set the matrix to skew by sx and sy, with a pivot point at (px, py). |
| The pivot point is the coordinate that should remain unchanged by the |
| specified transformation. |
| */ |
| void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
| /** Set the matrix to skew by sx and sy. |
| */ |
| void setSkew(SkScalar kx, SkScalar ky); |
| /** Set the matrix to the concatenation of the two specified matrices, |
| returning true if the the result can be represented. Either of the |
| two matrices may also be the target matrix. *this = a * b; |
| */ |
| bool setConcat(const SkMatrix& a, const SkMatrix& b); |
| |
| /** Preconcats the matrix with the specified translation. |
| M' = M * T(dx, dy) |
| */ |
| bool preTranslate(SkScalar dx, SkScalar dy); |
| /** Preconcats the matrix with the specified scale. |
| M' = M * S(sx, sy, px, py) |
| */ |
| bool preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
| /** Preconcats the matrix with the specified scale. |
| M' = M * S(sx, sy) |
| */ |
| bool preScale(SkScalar sx, SkScalar sy); |
| /** Preconcats the matrix with the specified rotation. |
| M' = M * R(degrees, px, py) |
| */ |
| bool preRotate(SkScalar degrees, SkScalar px, SkScalar py); |
| /** Preconcats the matrix with the specified rotation. |
| M' = M * R(degrees) |
| */ |
| bool preRotate(SkScalar degrees); |
| /** Preconcats the matrix with the specified skew. |
| M' = M * K(kx, ky, px, py) |
| */ |
| bool preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
| /** Preconcats the matrix with the specified skew. |
| M' = M * K(kx, ky) |
| */ |
| bool preSkew(SkScalar kx, SkScalar ky); |
| /** Preconcats the matrix with the specified matrix. |
| M' = M * other |
| */ |
| bool preConcat(const SkMatrix& other); |
| |
| /** Postconcats the matrix with the specified translation. |
| M' = T(dx, dy) * M |
| */ |
| bool postTranslate(SkScalar dx, SkScalar dy); |
| /** Postconcats the matrix with the specified scale. |
| M' = S(sx, sy, px, py) * M |
| */ |
| bool postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
| /** Postconcats the matrix with the specified scale. |
| M' = S(sx, sy) * M |
| */ |
| bool postScale(SkScalar sx, SkScalar sy); |
| /** Postconcats the matrix by dividing it by the specified integers. |
| M' = S(1/divx, 1/divy, 0, 0) * M |
| */ |
| bool postIDiv(int divx, int divy); |
| /** Postconcats the matrix with the specified rotation. |
| M' = R(degrees, px, py) * M |
| */ |
| bool postRotate(SkScalar degrees, SkScalar px, SkScalar py); |
| /** Postconcats the matrix with the specified rotation. |
| M' = R(degrees) * M |
| */ |
| bool postRotate(SkScalar degrees); |
| /** Postconcats the matrix with the specified skew. |
| M' = K(kx, ky, px, py) * M |
| */ |
| bool postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
| /** Postconcats the matrix with the specified skew. |
| M' = K(kx, ky) * M |
| */ |
| bool postSkew(SkScalar kx, SkScalar ky); |
| /** Postconcats the matrix with the specified matrix. |
| M' = other * M |
| */ |
| bool postConcat(const SkMatrix& other); |
| |
| enum ScaleToFit { |
| /** |
| * Scale in X and Y independently, so that src matches dst exactly. |
| * This may change the aspect ratio of the src. |
| */ |
| kFill_ScaleToFit, |
| /** |
| * Compute a scale that will maintain the original src aspect ratio, |
| * but will also ensure that src fits entirely inside dst. At least one |
| * axis (X or Y) will fit exactly. kStart aligns the result to the |
| * left and top edges of dst. |
| */ |
| kStart_ScaleToFit, |
| /** |
| * Compute a scale that will maintain the original src aspect ratio, |
| * but will also ensure that src fits entirely inside dst. At least one |
| * axis (X or Y) will fit exactly. The result is centered inside dst. |
| */ |
| kCenter_ScaleToFit, |
| /** |
| * Compute a scale that will maintain the original src aspect ratio, |
| * but will also ensure that src fits entirely inside dst. At least one |
| * axis (X or Y) will fit exactly. kEnd aligns the result to the |
| * right and bottom edges of dst. |
| */ |
| kEnd_ScaleToFit |
| }; |
| |
| /** Set the matrix to the scale and translate values that map the source |
| rectangle to the destination rectangle, returning true if the the result |
| can be represented. |
| @param src the source rectangle to map from. |
| @param dst the destination rectangle to map to. |
| @param stf the ScaleToFit option |
| @return true if the matrix can be represented by the rectangle mapping. |
| */ |
| bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); |
| |
| /** Set the matrix such that the specified src points would map to the |
| specified dst points. count must be within [0..4]. |
| @param src The array of src points |
| @param dst The array of dst points |
| @param count The number of points to use for the transformation |
| @return true if the matrix was set to the specified transformation |
| */ |
| bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); |
| |
| /** If this matrix can be inverted, return true and if inverse is not null, |
| set inverse to be the inverse of this matrix. If this matrix cannot be |
| inverted, ignore inverse and return false |
| */ |
| bool invert(SkMatrix* inverse) const; |
| |
| /** Fills the passed array with affine identity values |
| in column major order. |
| @param affine The array to fill with affine identity values. |
| Must not be NULL. |
| */ |
| static void SetAffineIdentity(SkScalar affine[6]); |
| |
| /** Fills the passed array with the affine values in column major order. |
| If the matrix is a perspective transform, returns false |
| and does not change the passed array. |
| @param affine The array to fill with affine values. Ignored if NULL. |
| */ |
| bool asAffine(SkScalar affine[6]) const; |
| |
| /** Apply this matrix to the array of points specified by src, and write |
| the transformed points into the array of points specified by dst. |
| dst[] = M * src[] |
| @param dst Where the transformed coordinates are written. It must |
| contain at least count entries |
| @param src The original coordinates that are to be transformed. It |
| must contain at least count entries |
| @param count The number of points in src to read, and then transform |
| into dst. |
| */ |
| void mapPoints(SkPoint dst[], const SkPoint src[], int count) const; |
| |
| /** Apply this matrix to the array of points, overwriting it with the |
| transformed values. |
| dst[] = M * pts[] |
| @param pts The points to be transformed. It must contain at least |
| count entries |
| @param count The number of points in pts. |
| */ |
| void mapPoints(SkPoint pts[], int count) const { |
| this->mapPoints(pts, pts, count); |
| } |
| |
| /** Like mapPoints but with custom byte stride between the points. Stride |
| * should be a multiple of sizeof(SkScalar). |
| */ |
| void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const { |
| SkASSERT(stride >= sizeof(SkPoint)); |
| SkASSERT(0 == stride % sizeof(SkScalar)); |
| for (int i = 0; i < count; ++i) { |
| this->mapPoints(pts, pts, 1); |
| pts = (SkPoint*)((intptr_t)pts + stride); |
| } |
| } |
| |
| /** Like mapPoints but with custom byte stride between the points. |
| */ |
| void mapPointsWithStride(SkPoint dst[], SkPoint src[], |
| size_t stride, int count) const { |
| SkASSERT(stride >= sizeof(SkPoint)); |
| SkASSERT(0 == stride % sizeof(SkScalar)); |
| for (int i = 0; i < count; ++i) { |
| this->mapPoints(dst, src, 1); |
| src = (SkPoint*)((intptr_t)src + stride); |
| dst = (SkPoint*)((intptr_t)dst + stride); |
| } |
| } |
| |
| void mapXY(SkScalar x, SkScalar y, SkPoint* result) const { |
| SkASSERT(result); |
| this->getMapXYProc()(*this, x, y, result); |
| } |
| |
| /** Apply this matrix to the array of vectors specified by src, and write |
| the transformed vectors into the array of vectors specified by dst. |
| This is similar to mapPoints, but ignores any translation in the matrix. |
| @param dst Where the transformed coordinates are written. It must |
| contain at least count entries |
| @param src The original coordinates that are to be transformed. It |
| must contain at least count entries |
| @param count The number of vectors in src to read, and then transform |
| into dst. |
| */ |
| void mapVectors(SkVector dst[], const SkVector src[], int count) const; |
| |
| /** Apply this matrix to the array of vectors specified by src, and write |
| the transformed vectors into the array of vectors specified by dst. |
| This is similar to mapPoints, but ignores any translation in the matrix. |
| @param vecs The vectors to be transformed. It must contain at least |
| count entries |
| @param count The number of vectors in vecs. |
| */ |
| void mapVectors(SkVector vecs[], int count) const { |
| this->mapVectors(vecs, vecs, count); |
| } |
| |
| /** Apply this matrix to the src rectangle, and write the transformed |
| rectangle into dst. This is accomplished by transforming the 4 corners |
| of src, and then setting dst to the bounds of those points. |
| @param dst Where the transformed rectangle is written. |
| @param src The original rectangle to be transformed. |
| @return the result of calling rectStaysRect() |
| */ |
| bool mapRect(SkRect* dst, const SkRect& src) const; |
| |
| /** Apply this matrix to the rectangle, and write the transformed rectangle |
| back into it. This is accomplished by transforming the 4 corners of |
| rect, and then setting it to the bounds of those points |
| @param rect The rectangle to transform. |
| @return the result of calling rectStaysRect() |
| */ |
| bool mapRect(SkRect* rect) const { |
| return this->mapRect(rect, *rect); |
| } |
| |
| /** Return the mean radius of a circle after it has been mapped by |
| this matrix. NOTE: in perspective this value assumes the circle |
| has its center at the origin. |
| */ |
| SkScalar mapRadius(SkScalar radius) const; |
| |
| typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, |
| SkPoint* result); |
| |
| static MapXYProc GetMapXYProc(TypeMask mask) { |
| SkASSERT((mask & ~kAllMasks) == 0); |
| return gMapXYProcs[mask & kAllMasks]; |
| } |
| |
| MapXYProc getMapXYProc() const { |
| return GetMapXYProc(this->getType()); |
| } |
| |
| typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], |
| const SkPoint src[], int count); |
| |
| static MapPtsProc GetMapPtsProc(TypeMask mask) { |
| SkASSERT((mask & ~kAllMasks) == 0); |
| return gMapPtsProcs[mask & kAllMasks]; |
| } |
| |
| MapPtsProc getMapPtsProc() const { |
| return GetMapPtsProc(this->getType()); |
| } |
| |
| /** If the matrix can be stepped in X (not complex perspective) |
| then return true and if step[XY] is not null, return the step[XY] value. |
| If it cannot, return false and ignore step. |
| */ |
| bool fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const; |
| |
| #ifdef SK_SCALAR_IS_FIXED |
| friend bool operator==(const SkMatrix& a, const SkMatrix& b) { |
| return memcmp(a.fMat, b.fMat, sizeof(a.fMat)) == 0; |
| } |
| |
| friend bool operator!=(const SkMatrix& a, const SkMatrix& b) { |
| return memcmp(a.fMat, b.fMat, sizeof(a.fMat)) != 0; |
| } |
| #else |
| friend bool operator==(const SkMatrix& a, const SkMatrix& b); |
| friend bool operator!=(const SkMatrix& a, const SkMatrix& b) { |
| return !(a == b); |
| } |
| #endif |
| |
| enum { |
| // flatten/unflatten will never return a value larger than this |
| kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t) |
| }; |
| // return the number of bytes written, whether or not buffer is null |
| uint32_t flatten(void* buffer) const; |
| // return the number of bytes read |
| uint32_t unflatten(const void* buffer); |
| |
| void dump() const; |
| void toDumpString(SkString*) const; |
| |
| /** |
| * Calculates the maximum stretching factor of the matrix. If the matrix has |
| * perspective -1 is returned. |
| * |
| * @return maximum strecthing factor |
| */ |
| SkScalar getMaxStretch() const; |
| |
| /** |
| * Return a reference to a const identity matrix |
| */ |
| static const SkMatrix& I(); |
| |
| /** |
| * Return a reference to a const matrix that is "invalid", one that could |
| * never be used. |
| */ |
| static const SkMatrix& InvalidMatrix(); |
| |
| /** |
| * Testing routine; the matrix's type cache should never need to be |
| * manually invalidated during normal use. |
| */ |
| void dirtyMatrixTypeCache() { |
| this->setTypeMask(kUnknown_Mask); |
| } |
| |
| private: |
| enum { |
| /** Set if the matrix will map a rectangle to another rectangle. This |
| can be true if the matrix is scale-only, or rotates a multiple of |
| 90 degrees. This bit is not set if the matrix is identity. |
| |
| This bit will be set on identity matrices |
| */ |
| kRectStaysRect_Mask = 0x10, |
| |
| /** Set if the perspective bit is valid even though the rest of |
| the matrix is Unknown. |
| */ |
| kOnlyPerspectiveValid_Mask = 0x40, |
| |
| kUnknown_Mask = 0x80, |
| |
| kORableMasks = kTranslate_Mask | |
| kScale_Mask | |
| kAffine_Mask | |
| kPerspective_Mask, |
| |
| kAllMasks = kTranslate_Mask | |
| kScale_Mask | |
| kAffine_Mask | |
| kPerspective_Mask | |
| kRectStaysRect_Mask |
| }; |
| |
| SkScalar fMat[9]; |
| mutable uint8_t fTypeMask; |
| |
| uint8_t computeTypeMask() const; |
| uint8_t computePerspectiveTypeMask() const; |
| |
| void setTypeMask(int mask) { |
| // allow kUnknown or a valid mask |
| SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || |
| ((kUnknown_Mask | kOnlyPerspectiveValid_Mask | kPerspective_Mask) & mask) |
| == mask); |
| fTypeMask = SkToU8(mask); |
| } |
| |
| void orTypeMask(int mask) { |
| SkASSERT((mask & kORableMasks) == mask); |
| fTypeMask = SkToU8(fTypeMask | mask); |
| } |
| |
| void clearTypeMask(int mask) { |
| // only allow a valid mask |
| SkASSERT((mask & kAllMasks) == mask); |
| fTypeMask &= ~mask; |
| } |
| |
| TypeMask getPerspectiveTypeMaskOnly() const { |
| if ((fTypeMask & kUnknown_Mask) && |
| !(fTypeMask & kOnlyPerspectiveValid_Mask)) { |
| fTypeMask = this->computePerspectiveTypeMask(); |
| } |
| return (TypeMask)(fTypeMask & 0xF); |
| } |
| |
| /** Returns true if we already know that the matrix is identity; |
| false otherwise. |
| */ |
| bool isTriviallyIdentity() const { |
| if (fTypeMask & kUnknown_Mask) { |
| return false; |
| } |
| return ((fTypeMask & 0xF) == 0); |
| } |
| |
| static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale); |
| static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale); |
| static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale); |
| |
| static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
| |
| static const MapXYProc gMapXYProcs[]; |
| |
| static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); |
| static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], |
| int count); |
| static void Rot_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| static void RotTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], |
| int count); |
| static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
| |
| static const MapPtsProc gMapPtsProcs[]; |
| |
| friend class SkPerspIter; |
| }; |
| |
| #endif |