| /* NEON optimized code (C) COPYRIGHT 2009 Motorola |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkBitmapProcState.h" |
| #include "SkPerspIter.h" |
| #include "SkShader.h" |
| #include "SkUtils.h" |
| |
| /* returns 0...(n-1) given any x (positive or negative). |
| |
| As an example, if n (which is always positive) is 5... |
| |
| x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 |
| returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 |
| */ |
| static inline int sk_int_mod(int x, int n) { |
| SkASSERT(n > 0); |
| if ((unsigned)x >= (unsigned)n) { |
| if (x < 0) { |
| x = n + ~(~x % n); |
| } else { |
| x = x % n; |
| } |
| } |
| return x; |
| } |
| |
| void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count); |
| void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count); |
| |
| #define MAKENAME(suffix) ClampX_ClampY ## suffix |
| #define TILEX_PROCF(fx, max) SkClampMax((fx) >> 16, max) |
| #define TILEY_PROCF(fy, max) SkClampMax((fy) >> 16, max) |
| #define TILEX_LOW_BITS(fx, max) (((fx) >> 12) & 0xF) |
| #define TILEY_LOW_BITS(fy, max) (((fy) >> 12) & 0xF) |
| #define CHECK_FOR_DECAL |
| #if defined(__ARM_HAVE_NEON) |
| #include "SkBitmapProcState_matrix_clamp.h" |
| #else |
| #include "SkBitmapProcState_matrix.h" |
| #endif |
| |
| #define MAKENAME(suffix) RepeatX_RepeatY ## suffix |
| #define TILEX_PROCF(fx, max) (((fx) & 0xFFFF) * ((max) + 1) >> 16) |
| #define TILEY_PROCF(fy, max) (((fy) & 0xFFFF) * ((max) + 1) >> 16) |
| #define TILEX_LOW_BITS(fx, max) ((((fx) & 0xFFFF) * ((max) + 1) >> 12) & 0xF) |
| #define TILEY_LOW_BITS(fy, max) ((((fy) & 0xFFFF) * ((max) + 1) >> 12) & 0xF) |
| #if defined(__ARM_HAVE_NEON) |
| #include "SkBitmapProcState_matrix_repeat.h" |
| #else |
| #include "SkBitmapProcState_matrix.h" |
| #endif |
| |
| #define MAKENAME(suffix) GeneralXY ## suffix |
| #define PREAMBLE(state) SkBitmapProcState::FixedTileProc tileProcX = (state).fTileProcX; \ |
| SkBitmapProcState::FixedTileProc tileProcY = (state).fTileProcY |
| #define PREAMBLE_PARAM_X , SkBitmapProcState::FixedTileProc tileProcX |
| #define PREAMBLE_PARAM_Y , SkBitmapProcState::FixedTileProc tileProcY |
| #define PREAMBLE_ARG_X , tileProcX |
| #define PREAMBLE_ARG_Y , tileProcY |
| #define TILEX_PROCF(fx, max) (tileProcX(fx) * ((max) + 1) >> 16) |
| #define TILEY_PROCF(fy, max) (tileProcY(fy) * ((max) + 1) >> 16) |
| #define TILEX_LOW_BITS(fx, max) ((tileProcX(fx) * ((max) + 1) >> 12) & 0xF) |
| #define TILEY_LOW_BITS(fy, max) ((tileProcY(fy) * ((max) + 1) >> 12) & 0xF) |
| #include "SkBitmapProcState_matrix.h" |
| |
| static inline U16CPU fixed_clamp(SkFixed x) |
| { |
| #ifdef SK_CPU_HAS_CONDITIONAL_INSTR |
| if (x >> 16) |
| x = 0xFFFF; |
| if (x < 0) |
| x = 0; |
| #else |
| if (x >> 16) |
| { |
| if (x < 0) |
| x = 0; |
| else |
| x = 0xFFFF; |
| } |
| #endif |
| return x; |
| } |
| |
| static inline U16CPU fixed_repeat(SkFixed x) |
| { |
| return x & 0xFFFF; |
| } |
| |
| static inline U16CPU fixed_mirror(SkFixed x) |
| { |
| SkFixed s = x << 15 >> 31; |
| // s is FFFFFFFF if we're on an odd interval, or 0 if an even interval |
| return (x ^ s) & 0xFFFF; |
| } |
| |
| static SkBitmapProcState::FixedTileProc choose_tile_proc(unsigned m) |
| { |
| if (SkShader::kClamp_TileMode == m) |
| return fixed_clamp; |
| if (SkShader::kRepeat_TileMode == m) |
| return fixed_repeat; |
| SkASSERT(SkShader::kMirror_TileMode == m); |
| return fixed_mirror; |
| } |
| |
| static inline U16CPU int_clamp(int x, int n) { |
| #ifdef SK_CPU_HAS_CONDITIONAL_INSTR |
| if (x >= n) |
| x = n - 1; |
| if (x < 0) |
| x = 0; |
| #else |
| if ((unsigned)x >= (unsigned)n) { |
| if (x < 0) { |
| x = 0; |
| } else { |
| x = n - 1; |
| } |
| } |
| #endif |
| return x; |
| } |
| |
| static inline U16CPU int_repeat(int x, int n) { |
| return sk_int_mod(x, n); |
| } |
| |
| static inline U16CPU int_mirror(int x, int n) { |
| x = sk_int_mod(x, 2 * n); |
| if (x >= n) { |
| x = n + ~(x - n); |
| } |
| return x; |
| } |
| |
| #if 0 |
| static void test_int_tileprocs() { |
| for (int i = -8; i <= 8; i++) { |
| SkDebugf(" int_mirror(%2d, 3) = %d\n", i, int_mirror(i, 3)); |
| } |
| } |
| #endif |
| |
| static SkBitmapProcState::IntTileProc choose_int_tile_proc(unsigned tm) { |
| if (SkShader::kClamp_TileMode == tm) |
| return int_clamp; |
| if (SkShader::kRepeat_TileMode == tm) |
| return int_repeat; |
| SkASSERT(SkShader::kMirror_TileMode == tm); |
| return int_mirror; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) |
| { |
| int i; |
| |
| #if defined(__ARM_HAVE_NEON) |
| if (count >= 8) { |
| /* SkFixed is 16.16 fixed point */ |
| SkFixed dx2 = dx+dx; |
| SkFixed dx4 = dx2+dx2; |
| SkFixed dx8 = dx4+dx4; |
| |
| /* now build fx/fx+dx/fx+2dx/fx+3dx */ |
| SkFixed fx1, fx2, fx3; |
| int32x2_t lower, upper; |
| int32x4_t lbase, hbase; |
| uint16_t *dst16 = (uint16_t *)dst; |
| |
| fx1 = fx+dx; |
| fx2 = fx1+dx; |
| fx3 = fx2+dx; |
| |
| /* avoid an 'lbase unitialized' warning */ |
| lbase = vdupq_n_s32(fx); |
| lbase = vsetq_lane_s32(fx1, lbase, 1); |
| lbase = vsetq_lane_s32(fx2, lbase, 2); |
| lbase = vsetq_lane_s32(fx3, lbase, 3); |
| hbase = vaddq_s32(lbase, vdupq_n_s32(dx4)); |
| |
| /* take upper 16 of each, store, and bump everything */ |
| do { |
| int32x4_t lout, hout; |
| uint16x8_t hi16; |
| |
| lout = lbase; |
| hout = hbase; |
| /* gets hi's of all louts then hi's of all houts */ |
| asm ("vuzpq.16 %q0, %q1" : "+w" (lout), "+w" (hout)); |
| hi16 = vreinterpretq_u16_s32(hout); |
| vst1q_u16(dst16, hi16); |
| |
| /* on to the next */ |
| lbase = vaddq_s32 (lbase, vdupq_n_s32(dx8)); |
| hbase = vaddq_s32 (hbase, vdupq_n_s32(dx8)); |
| dst16 += 8; |
| count -= 8; |
| fx += dx8; |
| } while (count >= 8); |
| dst = (uint32_t *) dst16; |
| } |
| #else |
| for (i = (count >> 2); i > 0; --i) |
| { |
| *dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16); |
| fx += dx+dx; |
| *dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16); |
| fx += dx+dx; |
| } |
| count &= 3; |
| #endif |
| |
| uint16_t* xx = (uint16_t*)dst; |
| for (i = count; i > 0; --i) { |
| *xx++ = SkToU16(fx >> 16); fx += dx; |
| } |
| } |
| |
| void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) |
| { |
| |
| #if defined(__ARM_HAVE_NEON) |
| if (count >= 8) { |
| int32x4_t wide_fx; |
| int32x4_t wide_fx2; |
| int32x4_t wide_dx8 = vdupq_n_s32(dx*8); |
| |
| wide_fx = vdupq_n_s32(fx); |
| wide_fx = vsetq_lane_s32(fx+dx, wide_fx, 1); |
| wide_fx = vsetq_lane_s32(fx+dx+dx, wide_fx, 2); |
| wide_fx = vsetq_lane_s32(fx+dx+dx+dx, wide_fx, 3); |
| |
| wide_fx2 = vaddq_s32(wide_fx, vdupq_n_s32(dx+dx+dx+dx)); |
| |
| while (count >= 8) { |
| int32x4_t wide_out; |
| int32x4_t wide_out2; |
| |
| wide_out = vshlq_n_s32(vshrq_n_s32(wide_fx, 12), 14); |
| wide_out = vorrq_s32(wide_out, |
| vaddq_s32(vshrq_n_s32(wide_fx,16), vdupq_n_s32(1))); |
| |
| wide_out2 = vshlq_n_s32(vshrq_n_s32(wide_fx2, 12), 14); |
| wide_out2 = vorrq_s32(wide_out2, |
| vaddq_s32(vshrq_n_s32(wide_fx2,16), vdupq_n_s32(1))); |
| |
| vst1q_u32(dst, vreinterpretq_u32_s32(wide_out)); |
| vst1q_u32(dst+4, vreinterpretq_u32_s32(wide_out2)); |
| |
| dst += 8; |
| fx += dx*8; |
| wide_fx = vaddq_s32(wide_fx, wide_dx8); |
| wide_fx2 = vaddq_s32(wide_fx2, wide_dx8); |
| count -= 8; |
| } |
| } |
| #endif |
| |
| if (count & 1) |
| { |
| SkASSERT((fx >> (16 + 14)) == 0); |
| *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1); |
| fx += dx; |
| } |
| while ((count -= 2) >= 0) |
| { |
| SkASSERT((fx >> (16 + 14)) == 0); |
| *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1); |
| fx += dx; |
| |
| *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1); |
| fx += dx; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // stores the same as SCALE, but is cheaper to compute. Also since there is no |
| // scale, we don't need/have a FILTER version |
| |
| static void fill_sequential(uint16_t xptr[], int start, int count) { |
| #if 1 |
| if (reinterpret_cast<intptr_t>(xptr) & 0x2) { |
| *xptr++ = start++; |
| count -= 1; |
| } |
| if (count > 3) { |
| uint32_t* xxptr = reinterpret_cast<uint32_t*>(xptr); |
| uint32_t pattern0 = PACK_TWO_SHORTS(start + 0, start + 1); |
| uint32_t pattern1 = PACK_TWO_SHORTS(start + 2, start + 3); |
| start += count & ~3; |
| int qcount = count >> 2; |
| do { |
| *xxptr++ = pattern0; |
| pattern0 += 0x40004; |
| *xxptr++ = pattern1; |
| pattern1 += 0x40004; |
| } while (--qcount != 0); |
| xptr = reinterpret_cast<uint16_t*>(xxptr); |
| count &= 3; |
| } |
| while (--count >= 0) { |
| *xptr++ = start++; |
| } |
| #else |
| for (int i = 0; i < count; i++) { |
| *xptr++ = start++; |
| } |
| #endif |
| } |
| |
| static int nofilter_trans_preamble(const SkBitmapProcState& s, uint32_t** xy, |
| int x, int y) { |
| SkPoint pt; |
| s.fInvProc(*s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf, |
| SkIntToScalar(y) + SK_ScalarHalf, &pt); |
| **xy = s.fIntTileProcY(SkScalarToFixed(pt.fY) >> 16, |
| s.fBitmap->height()); |
| *xy += 1; // bump the ptr |
| // return our starting X position |
| return SkScalarToFixed(pt.fX) >> 16; |
| } |
| |
| static void clampx_nofilter_trans(const SkBitmapProcState& s, |
| uint32_t xy[], int count, int x, int y) { |
| SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0); |
| |
| int xpos = nofilter_trans_preamble(s, &xy, x, y); |
| const int width = s.fBitmap->width(); |
| if (1 == width) { |
| // all of the following X values must be 0 |
| memset(xy, 0, count * sizeof(uint16_t)); |
| return; |
| } |
| |
| uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); |
| int n; |
| |
| // fill before 0 as needed |
| if (xpos < 0) { |
| n = -xpos; |
| if (n > count) { |
| n = count; |
| } |
| memset(xptr, 0, n * sizeof(uint16_t)); |
| count -= n; |
| if (0 == count) { |
| return; |
| } |
| xptr += n; |
| xpos = 0; |
| } |
| |
| // fill in 0..width-1 if needed |
| if (xpos < width) { |
| n = width - xpos; |
| if (n > count) { |
| n = count; |
| } |
| fill_sequential(xptr, xpos, n); |
| count -= n; |
| if (0 == count) { |
| return; |
| } |
| xptr += n; |
| } |
| |
| // fill the remaining with the max value |
| sk_memset16(xptr, width - 1, count); |
| } |
| |
| static void repeatx_nofilter_trans(const SkBitmapProcState& s, |
| uint32_t xy[], int count, int x, int y) { |
| SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0); |
| |
| int xpos = nofilter_trans_preamble(s, &xy, x, y); |
| const int width = s.fBitmap->width(); |
| if (1 == width) { |
| // all of the following X values must be 0 |
| memset(xy, 0, count * sizeof(uint16_t)); |
| return; |
| } |
| |
| uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); |
| int start = sk_int_mod(xpos, width); |
| int n = width - start; |
| if (n > count) { |
| n = count; |
| } |
| fill_sequential(xptr, start, n); |
| xptr += n; |
| count -= n; |
| |
| while (count >= width) { |
| fill_sequential(xptr, 0, width); |
| xptr += width; |
| count -= width; |
| } |
| |
| if (count > 0) { |
| fill_sequential(xptr, 0, count); |
| } |
| } |
| |
| static void fill_backwards(uint16_t xptr[], int pos, int count) { |
| for (int i = 0; i < count; i++) { |
| SkASSERT(pos >= 0); |
| xptr[i] = pos--; |
| } |
| } |
| |
| static void mirrorx_nofilter_trans(const SkBitmapProcState& s, |
| uint32_t xy[], int count, int x, int y) { |
| SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0); |
| |
| int xpos = nofilter_trans_preamble(s, &xy, x, y); |
| const int width = s.fBitmap->width(); |
| if (1 == width) { |
| // all of the following X values must be 0 |
| memset(xy, 0, count * sizeof(uint16_t)); |
| return; |
| } |
| |
| uint16_t* xptr = reinterpret_cast<uint16_t*>(xy); |
| // need to know our start, and our initial phase (forward or backward) |
| bool forward; |
| int n; |
| int start = sk_int_mod(xpos, 2 * width); |
| if (start >= width) { |
| start = width + ~(start - width); |
| forward = false; |
| n = start + 1; // [start .. 0] |
| } else { |
| forward = true; |
| n = width - start; // [start .. width) |
| } |
| if (n > count) { |
| n = count; |
| } |
| if (forward) { |
| fill_sequential(xptr, start, n); |
| } else { |
| fill_backwards(xptr, start, n); |
| } |
| forward = !forward; |
| xptr += n; |
| count -= n; |
| |
| while (count >= width) { |
| if (forward) { |
| fill_sequential(xptr, 0, width); |
| } else { |
| fill_backwards(xptr, width - 1, width); |
| } |
| forward = !forward; |
| xptr += width; |
| count -= width; |
| } |
| |
| if (count > 0) { |
| if (forward) { |
| fill_sequential(xptr, 0, count); |
| } else { |
| fill_backwards(xptr, width - 1, count); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBitmapProcState::MatrixProc |
| SkBitmapProcState::chooseMatrixProc(bool trivial_matrix) { |
| // test_int_tileprocs(); |
| // check for our special case when there is no scale/affine/perspective |
| if (trivial_matrix) { |
| SkASSERT(!fDoFilter); |
| fIntTileProcY = choose_int_tile_proc(fTileModeY); |
| switch (fTileModeX) { |
| case SkShader::kClamp_TileMode: |
| return clampx_nofilter_trans; |
| case SkShader::kRepeat_TileMode: |
| return repeatx_nofilter_trans; |
| case SkShader::kMirror_TileMode: |
| return mirrorx_nofilter_trans; |
| } |
| } |
| |
| int index = 0; |
| if (fDoFilter) { |
| index = 1; |
| } |
| if (fInvType & SkMatrix::kPerspective_Mask) { |
| index += 4; |
| } else if (fInvType & SkMatrix::kAffine_Mask) { |
| index += 2; |
| } |
| |
| if (SkShader::kClamp_TileMode == fTileModeX && |
| SkShader::kClamp_TileMode == fTileModeY) |
| { |
| // clamp gets special version of filterOne |
| fFilterOneX = SK_Fixed1; |
| fFilterOneY = SK_Fixed1; |
| return ClampX_ClampY_Procs[index]; |
| } |
| |
| // all remaining procs use this form for filterOne |
| fFilterOneX = SK_Fixed1 / fBitmap->width(); |
| fFilterOneY = SK_Fixed1 / fBitmap->height(); |
| |
| if (SkShader::kRepeat_TileMode == fTileModeX && |
| SkShader::kRepeat_TileMode == fTileModeY) |
| { |
| return RepeatX_RepeatY_Procs[index]; |
| } |
| |
| fTileProcX = choose_tile_proc(fTileModeX); |
| fTileProcY = choose_tile_proc(fTileModeY); |
| return GeneralXY_Procs[index]; |
| } |
| |