| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrDrawState_DEFINED |
| #define GrDrawState_DEFINED |
| |
| #include "GrBackendEffectFactory.h" |
| #include "GrColor.h" |
| #include "GrEffectStage.h" |
| #include "GrRefCnt.h" |
| #include "GrRenderTarget.h" |
| #include "GrStencil.h" |
| #include "GrTemplates.h" |
| #include "GrTexture.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| |
| #include "SkMatrix.h" |
| #include "SkXfermode.h" |
| |
| class GrPaint; |
| |
| class GrDrawState : public GrRefCnt { |
| public: |
| SK_DECLARE_INST_COUNT(GrDrawState) |
| |
| /** |
| * Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a |
| * GrEffect. The effect produces an output color in the fragment shader. It's inputs are the |
| * output from the previous enabled stage and a position. The position is either derived from |
| * the interpolated vertex positions or explicit per-vertex coords, depending upon the |
| * GrVertexLayout used to draw. |
| * |
| * The stages are divided into two sets, color-computing and coverage-computing. The final color |
| * stage produces the final pixel color. The coverage-computing stages function exactly as the |
| * color-computing but the output of the final coverage stage is treated as a fractional pixel |
| * coverage rather than as input to the src/dst color blend step. |
| * |
| * The input color to the first enabled color-stage is either the constant color or interpolated |
| * per-vertex colors, depending upon GrVertexLayout. The input to the first coverage stage is |
| * either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or |
| * edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a |
| * GrEffect). |
| * |
| * See the documentation of kCoverageDrawing_StateBit for information about disabling the |
| * the color / coverage distinction. |
| * |
| * Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's |
| * GrPaint. Stages GrPaint::kTotalStages through kNumStages-2 are earmarked for use by |
| * GrTextContext and GrPathRenderer-derived classes. kNumStages-1 is earmarked for clipping |
| * by GrClipMaskManager. |
| */ |
| enum { |
| kNumStages = 5, |
| kMaxTexCoords = kNumStages |
| }; |
| |
| GrDrawState() { |
| #if GR_DEBUG |
| VertexLayoutUnitTest(); |
| #endif |
| this->reset(); |
| } |
| |
| GrDrawState(const GrDrawState& state) { |
| *this = state; |
| } |
| |
| virtual ~GrDrawState() { |
| this->disableStages(); |
| } |
| |
| /** |
| * Resets to the default state. |
| * GrEffects will be removed from all stages. |
| */ |
| void reset() { |
| |
| this->disableStages(); |
| |
| fRenderTarget.reset(NULL); |
| |
| fCommon.fColor = 0xffffffff; |
| fCommon.fViewMatrix.reset(); |
| fCommon.fSrcBlend = kOne_GrBlendCoeff; |
| fCommon.fDstBlend = kZero_GrBlendCoeff; |
| fCommon.fBlendConstant = 0x0; |
| fCommon.fFlagBits = 0x0; |
| fCommon.fVertexEdgeType = kHairLine_EdgeType; |
| fCommon.fStencilSettings.setDisabled(); |
| fCommon.fFirstCoverageStage = kNumStages; |
| fCommon.fCoverage = 0xffffffff; |
| fCommon.fColorFilterMode = SkXfermode::kDst_Mode; |
| fCommon.fColorFilterColor = 0x0; |
| fCommon.fDrawFace = kBoth_DrawFace; |
| } |
| |
| /** |
| * Initializes the GrDrawState based on a GrPaint. Note that GrDrawState |
| * encompasses more than GrPaint. Aspects of GrDrawState that have no |
| * GrPaint equivalents are not modified. GrPaint has fewer stages than |
| * GrDrawState. The extra GrDrawState stages are disabled. |
| */ |
| void setFromPaint(const GrPaint& paint); |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Vertex Format |
| //// |
| |
| /** |
| * The format of vertices is represented as a bitfield of flags. |
| * Flags that indicate the layout of vertex data. Vertices always contain |
| * positions and may also contain up to GrDrawState::kMaxTexCoords sets |
| * of 2D texture coordinates, per-vertex colors, and per-vertex coverage. |
| * Each stage can |
| * use any of the texture coordinates as its input texture coordinates or it |
| * may use the positions as texture coordinates. |
| * |
| * If no texture coordinates are specified for a stage then the stage is |
| * disabled. |
| * |
| * Only one type of texture coord can be specified per stage. For |
| * example StageTexCoordVertexLayoutBit(0, 2) and |
| * StagePosAsTexCoordVertexLayoutBit(0) cannot both be specified. |
| * |
| * The order in memory is always (position, texture coord 0, ..., color, |
| * coverage) with any unused fields omitted. Note that this means that if |
| * only texture coordinates 1 is referenced then there is no texture |
| * coordinates 0 and the order would be (position, texture coordinate 1 |
| * [, color][, coverage]). |
| */ |
| |
| /** |
| * Generates a bit indicating that a texture stage uses texture coordinates |
| * |
| * @param stageIdx the stage that will use texture coordinates. |
| * @param texCoordIdx the index of the texture coordinates to use |
| * |
| * @return the bit to add to a GrVertexLayout bitfield. |
| */ |
| static int StageTexCoordVertexLayoutBit(int stageIdx, int texCoordIdx) { |
| GrAssert(stageIdx < kNumStages); |
| GrAssert(texCoordIdx < kMaxTexCoords); |
| return 1 << (stageIdx + (texCoordIdx * kNumStages)); |
| } |
| |
| static bool StageUsesTexCoords(GrVertexLayout layout, int stageIdx); |
| |
| private: |
| // non-stage bits start at this index. |
| static const int STAGE_BIT_CNT = kNumStages * kMaxTexCoords; |
| public: |
| |
| /** |
| * Additional Bits that can be specified in GrVertexLayout. |
| */ |
| enum VertexLayoutBits { |
| /* vertices have colors (GrColor) */ |
| kColor_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 0), |
| /* vertices have coverage (GrColor) |
| */ |
| kCoverage_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 1), |
| /* Use text vertices. (Pos and tex coords may be a different type for |
| * text [GrGpuTextVertex vs GrPoint].) |
| */ |
| kTextFormat_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 2), |
| |
| /* Each vertex specificies an edge. Distance to the edge is used to |
| * compute a coverage. See GrDrawState::setVertexEdgeType(). |
| */ |
| kEdge_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 3), |
| // for below assert |
| kDummyVertexLayoutBit, |
| kHighVertexLayoutBit = kDummyVertexLayoutBit - 1 |
| }; |
| // make sure we haven't exceeded the number of bits in GrVertexLayout. |
| GR_STATIC_ASSERT(kHighVertexLayoutBit < ((uint64_t)1 << 8*sizeof(GrVertexLayout))); |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // Helpers for picking apart vertex layouts |
| |
| /** |
| * Helper function to compute the size of a vertex from a vertex layout |
| * @return size of a single vertex. |
| */ |
| static size_t VertexSize(GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function for determining the index of texture coordinates that |
| * is input for a texture stage. Note that a stage may instead use positions |
| * as texture coordinates, in which case the result of the function is |
| * indistinguishable from the case when the stage is disabled. |
| * |
| * @param stageIdx the stage to query |
| * @param vertexLayout layout to query |
| * |
| * @return the texture coordinate index or -1 if the stage doesn't use |
| * separate (non-position) texture coordinates. |
| */ |
| static int VertexTexCoordsForStage(int stageIdx, GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function to compute the offset of texture coordinates in a vertex |
| * @return offset of texture coordinates in vertex layout or -1 if the |
| * layout has no texture coordinates. Will be 0 if positions are |
| * used as texture coordinates for the stage. |
| */ |
| static int VertexStageCoordOffset(int stageIdx, GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function to compute the offset of the color in a vertex |
| * @return offset of color in vertex layout or -1 if the |
| * layout has no color. |
| */ |
| static int VertexColorOffset(GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function to compute the offset of the coverage in a vertex |
| * @return offset of coverage in vertex layout or -1 if the |
| * layout has no coverage. |
| */ |
| static int VertexCoverageOffset(GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function to compute the offset of the edge pts in a vertex |
| * @return offset of edge in vertex layout or -1 if the |
| * layout has no edge. |
| */ |
| static int VertexEdgeOffset(GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function to determine if vertex layout contains explicit texture |
| * coordinates of some index. |
| * |
| * @param coordIndex the tex coord index to query |
| * @param vertexLayout layout to query |
| * |
| * @return true if vertex specifies texture coordinates for the index, |
| * false otherwise. |
| */ |
| static bool VertexUsesTexCoordIdx(int coordIndex, |
| GrVertexLayout vertexLayout); |
| |
| /** |
| * Helper function to compute the size of each vertex and the offsets of |
| * texture coordinates and color. Determines tex coord offsets by tex coord |
| * index rather than by stage. (Each stage can be mapped to any t.c. index |
| * by StageTexCoordVertexLayoutBit.) |
| * |
| * @param vertexLayout the layout to query |
| * @param texCoordOffsetsByIdx after return it is the offset of each |
| * tex coord index in the vertex or -1 if |
| * index isn't used. (optional) |
| * @param colorOffset after return it is the offset of the |
| * color field in each vertex, or -1 if |
| * there aren't per-vertex colors. (optional) |
| * @param coverageOffset after return it is the offset of the |
| * coverage field in each vertex, or -1 if |
| * there aren't per-vertex coeverages. |
| * (optional) |
| * @param edgeOffset after return it is the offset of the |
| * edge eq field in each vertex, or -1 if |
| * there aren't per-vertex edge equations. |
| * (optional) |
| * @return size of a single vertex |
| */ |
| static int VertexSizeAndOffsetsByIdx(GrVertexLayout vertexLayout, |
| int texCoordOffsetsByIdx[kMaxTexCoords], |
| int *colorOffset, |
| int *coverageOffset, |
| int* edgeOffset); |
| |
| /** |
| * Helper function to compute the size of each vertex and the offsets of |
| * texture coordinates and color. Determines tex coord offsets by stage |
| * rather than by index. (Each stage can be mapped to any t.c. index |
| * by StageTexCoordVertexLayoutBit.) If a stage uses positions for |
| * tex coords then that stage's offset will be 0 (positions are always at 0). |
| * |
| * @param vertexLayout the layout to query |
| * @param texCoordOffsetsByStage after return it is the offset of each |
| * tex coord index in the vertex or -1 if |
| * index isn't used. (optional) |
| * @param colorOffset after return it is the offset of the |
| * color field in each vertex, or -1 if |
| * there aren't per-vertex colors. |
| * (optional) |
| * @param coverageOffset after return it is the offset of the |
| * coverage field in each vertex, or -1 if |
| * there aren't per-vertex coeverages. |
| * (optional) |
| * @param edgeOffset after return it is the offset of the |
| * edge eq field in each vertex, or -1 if |
| * there aren't per-vertex edge equations. |
| * (optional) |
| * @return size of a single vertex |
| */ |
| static int VertexSizeAndOffsetsByStage(GrVertexLayout vertexLayout, |
| int texCoordOffsetsByStage[kNumStages], |
| int* colorOffset, |
| int* coverageOffset, |
| int* edgeOffset); |
| |
| /** |
| * Determines whether src alpha is guaranteed to be one for all src pixels |
| */ |
| bool srcAlphaWillBeOne(GrVertexLayout) const; |
| |
| /** |
| * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. |
| */ |
| bool hasSolidCoverage(GrVertexLayout) const; |
| |
| /** |
| * Accessing positions, texture coords, or colors, of a vertex within an |
| * array is a hassle involving casts and simple math. These helpers exist |
| * to keep GrDrawTarget clients' code a bit nicer looking. |
| */ |
| |
| /** |
| * Gets a pointer to a GrPoint of a vertex's position or texture |
| * coordinate. |
| * @param vertices the vetex array |
| * @param vertexIndex the index of the vertex in the array |
| * @param vertexSize the size of each vertex in the array |
| * @param offset the offset in bytes of the vertex component. |
| * Defaults to zero (corresponding to vertex position) |
| * @return pointer to the vertex component as a GrPoint |
| */ |
| static GrPoint* GetVertexPoint(void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset = 0) { |
| intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<GrPoint*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| static const GrPoint* GetVertexPoint(const void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset = 0) { |
| intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<const GrPoint*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| |
| /** |
| * Gets a pointer to a GrColor inside a vertex within a vertex array. |
| * @param vertices the vetex array |
| * @param vertexIndex the index of the vertex in the array |
| * @param vertexSize the size of each vertex in the array |
| * @param offset the offset in bytes of the vertex color |
| * @return pointer to the vertex component as a GrColor |
| */ |
| static GrColor* GetVertexColor(void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset) { |
| intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<GrColor*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| static const GrColor* GetVertexColor(const void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset) { |
| const intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<const GrColor*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| |
| static void VertexLayoutUnitTest(); |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Color |
| //// |
| |
| /** |
| * Sets color for next draw to a premultiplied-alpha color. |
| * |
| * @param color the color to set. |
| */ |
| void setColor(GrColor color) { fCommon.fColor = color; } |
| |
| GrColor getColor() const { return fCommon.fColor; } |
| |
| /** |
| * Sets the color to be used for the next draw to be |
| * (r,g,b,a) = (alpha, alpha, alpha, alpha). |
| * |
| * @param alpha The alpha value to set as the color. |
| */ |
| void setAlpha(uint8_t a) { |
| this->setColor((a << 24) | (a << 16) | (a << 8) | a); |
| } |
| |
| /** |
| * Add a color filter that can be represented by a color and a mode. Applied |
| * after color-computing texture stages. |
| */ |
| void setColorFilter(GrColor c, SkXfermode::Mode mode) { |
| fCommon.fColorFilterColor = c; |
| fCommon.fColorFilterMode = mode; |
| } |
| |
| GrColor getColorFilterColor() const { return fCommon.fColorFilterColor; } |
| SkXfermode::Mode getColorFilterMode() const { return fCommon.fColorFilterMode; } |
| |
| /** |
| * Constructor sets the color to be 'color' which is undone by the destructor. |
| */ |
| class AutoColorRestore : public ::GrNoncopyable { |
| public: |
| AutoColorRestore() : fDrawState(NULL) {} |
| |
| AutoColorRestore(GrDrawState* drawState, GrColor color) { |
| fDrawState = NULL; |
| this->set(drawState, color); |
| } |
| |
| void reset() { |
| if (NULL != fDrawState) { |
| fDrawState->setColor(fOldColor); |
| fDrawState = NULL; |
| } |
| } |
| |
| void set(GrDrawState* drawState, GrColor color) { |
| this->reset(); |
| fDrawState = drawState; |
| fOldColor = fDrawState->getColor(); |
| fDrawState->setColor(color); |
| } |
| |
| ~AutoColorRestore() { this->reset(); } |
| private: |
| GrDrawState* fDrawState; |
| GrColor fOldColor; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage |
| //// |
| |
| /** |
| * Sets a constant fractional coverage to be applied to the draw. The |
| * initial value (after construction or reset()) is 0xff. The constant |
| * coverage is ignored when per-vertex coverage is provided. |
| */ |
| void setCoverage(uint8_t coverage) { |
| fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); |
| } |
| |
| /** |
| * Version of above that specifies 4 channel per-vertex color. The value |
| * should be premultiplied. |
| */ |
| void setCoverage4(GrColor coverage) { |
| fCommon.fCoverage = coverage; |
| } |
| |
| GrColor getCoverage() const { |
| return fCommon.fCoverage; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Effect Stages |
| //// |
| |
| const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect) { |
| fStages[stageIdx].setEffect(effect); |
| return effect; |
| } |
| |
| /** |
| * Creates a GrSimpleTextureEffect. |
| */ |
| void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix) { |
| GrAssert(!this->getStage(stageIdx).getEffect()); |
| GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix); |
| this->setEffect(stageIdx, effect)->unref(); |
| } |
| void createTextureEffect(int stageIdx, |
| GrTexture* texture, |
| const SkMatrix& matrix, |
| const GrTextureParams& params) { |
| GrAssert(!this->getStage(stageIdx).getEffect()); |
| GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params); |
| this->setEffect(stageIdx, effect)->unref(); |
| } |
| |
| bool stagesDisabled() { |
| for (int i = 0; i < kNumStages; ++i) { |
| if (NULL != fStages[i].getEffect()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void disableStage(int stageIdx) { this->setEffect(stageIdx, NULL); } |
| |
| /** |
| * Release all the GrEffects referred to by this draw state. |
| */ |
| void disableStages() { |
| for (int i = 0; i < kNumStages; ++i) { |
| this->disableStage(i); |
| } |
| } |
| |
| class AutoStageDisable : public ::GrNoncopyable { |
| public: |
| AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {} |
| ~AutoStageDisable() { |
| if (NULL != fDrawState) { |
| fDrawState->disableStages(); |
| } |
| } |
| private: |
| GrDrawState* fDrawState; |
| }; |
| |
| /** |
| * Returns the current stage by index. |
| */ |
| const GrEffectStage& getStage(int stageIdx) const { |
| GrAssert((unsigned)stageIdx < kNumStages); |
| return fStages[stageIdx]; |
| } |
| |
| /** |
| * Called when the source coord system is changing. preConcat gives the transformation from the |
| * old coord system to the new coord system. |
| */ |
| void preConcatStageMatrices(const SkMatrix& preConcat) { |
| this->preConcatStageMatrices(~0U, preConcat); |
| } |
| /** |
| * Version of above that applies the update matrix selectively to stages via a mask. |
| */ |
| void preConcatStageMatrices(uint32_t stageMask, const SkMatrix& preConcat) { |
| for (int i = 0; i < kNumStages; ++i) { |
| if (((1 << i) & stageMask) && this->isStageEnabled(i)) { |
| fStages[i].preConcatCoordChange(preConcat); |
| } |
| } |
| } |
| |
| /** |
| * Called when the source coord system is changing. preConcatInverse is the inverse of the |
| * transformation from the old coord system to the new coord system. Returns false if the matrix |
| * cannot be inverted. |
| */ |
| bool preConcatStageMatricesWithInverse(const SkMatrix& preConcatInverse) { |
| SkMatrix inv; |
| bool computed = false; |
| for (int i = 0; i < kNumStages; ++i) { |
| if (this->isStageEnabled(i)) { |
| if (!computed && !preConcatInverse.invert(&inv)) { |
| return false; |
| } else { |
| computed = true; |
| } |
| fStages[i].preConcatCoordChange(preConcatInverse); |
| } |
| } |
| return true; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage / Color Stages |
| //// |
| |
| /** |
| * A common pattern is to compute a color with the initial stages and then |
| * modulate that color by a coverage value in later stage(s) (AA, mask- |
| * filters, glyph mask, etc). Color-filters, xfermodes, etc should be |
| * computed based on the pre-coverage-modulated color. The division of |
| * stages between color-computing and coverage-computing is specified by |
| * this method. Initially this is kNumStages (all stages |
| * are color-computing). |
| */ |
| void setFirstCoverageStage(int firstCoverageStage) { |
| GrAssert((unsigned)firstCoverageStage <= kNumStages); |
| fCommon.fFirstCoverageStage = firstCoverageStage; |
| } |
| |
| /** |
| * Gets the index of the first coverage-computing stage. |
| */ |
| int getFirstCoverageStage() const { |
| return fCommon.fFirstCoverageStage; |
| } |
| |
| ///@} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Blending |
| //// |
| |
| /** |
| * Sets the blending function coefficients. |
| * |
| * The blend function will be: |
| * D' = sat(S*srcCoef + D*dstCoef) |
| * |
| * where D is the existing destination color, S is the incoming source |
| * color, and D' is the new destination color that will be written. sat() |
| * is the saturation function. |
| * |
| * @param srcCoef coefficient applied to the src color. |
| * @param dstCoef coefficient applied to the dst color. |
| */ |
| void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { |
| fCommon.fSrcBlend = srcCoeff; |
| fCommon.fDstBlend = dstCoeff; |
| #if GR_DEBUG |
| switch (dstCoeff) { |
| case kDC_GrBlendCoeff: |
| case kIDC_GrBlendCoeff: |
| case kDA_GrBlendCoeff: |
| case kIDA_GrBlendCoeff: |
| GrPrintf("Unexpected dst blend coeff. Won't work correctly with" |
| "coverage stages.\n"); |
| break; |
| default: |
| break; |
| } |
| switch (srcCoeff) { |
| case kSC_GrBlendCoeff: |
| case kISC_GrBlendCoeff: |
| case kSA_GrBlendCoeff: |
| case kISA_GrBlendCoeff: |
| GrPrintf("Unexpected src blend coeff. Won't work correctly with" |
| "coverage stages.\n"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; } |
| GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; } |
| |
| void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, |
| GrBlendCoeff* dstBlendCoeff) const { |
| *srcBlendCoeff = fCommon.fSrcBlend; |
| *dstBlendCoeff = fCommon.fDstBlend; |
| } |
| |
| /** |
| * Sets the blending function constant referenced by the following blending |
| * coefficients: |
| * kConstC_GrBlendCoeff |
| * kIConstC_GrBlendCoeff |
| * kConstA_GrBlendCoeff |
| * kIConstA_GrBlendCoeff |
| * |
| * @param constant the constant to set |
| */ |
| void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; } |
| |
| /** |
| * Retrieves the last value set by setBlendConstant() |
| * @return the blending constant value |
| */ |
| GrColor getBlendConstant() const { return fCommon.fBlendConstant; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name View Matrix |
| //// |
| |
| /** |
| * Sets the matrix applied to vertex positions. |
| * |
| * In the post-view-matrix space the rectangle [0,w]x[0,h] |
| * fully covers the render target. (w and h are the width and height of the |
| * the render-target.) |
| */ |
| void setViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix = m; } |
| |
| /** |
| * Gets a writable pointer to the view matrix. |
| */ |
| SkMatrix* viewMatrix() { return &fCommon.fViewMatrix; } |
| |
| /** |
| * Multiplies the current view matrix by a matrix |
| * |
| * After this call V' = V*m where V is the old view matrix, |
| * m is the parameter to this function, and V' is the new view matrix. |
| * (We consider positions to be column vectors so position vector p is |
| * transformed by matrix X as p' = X*p.) |
| * |
| * @param m the matrix used to modify the view matrix. |
| */ |
| void preConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.preConcat(m); } |
| |
| /** |
| * Multiplies the current view matrix by a matrix |
| * |
| * After this call V' = m*V where V is the old view matrix, |
| * m is the parameter to this function, and V' is the new view matrix. |
| * (We consider positions to be column vectors so position vector p is |
| * transformed by matrix X as p' = X*p.) |
| * |
| * @param m the matrix used to modify the view matrix. |
| */ |
| void postConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.postConcat(m); } |
| |
| /** |
| * Retrieves the current view matrix |
| * @return the current view matrix. |
| */ |
| const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; } |
| |
| /** |
| * Retrieves the inverse of the current view matrix. |
| * |
| * If the current view matrix is invertible, return true, and if matrix |
| * is non-null, copy the inverse into it. If the current view matrix is |
| * non-invertible, return false and ignore the matrix parameter. |
| * |
| * @param matrix if not null, will receive a copy of the current inverse. |
| */ |
| bool getViewInverse(SkMatrix* matrix) const { |
| // TODO: determine whether we really need to leave matrix unmodified |
| // at call sites when inversion fails. |
| SkMatrix inverse; |
| if (fCommon.fViewMatrix.invert(&inverse)) { |
| if (matrix) { |
| *matrix = inverse; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Preconcats the current view matrix and restores the previous view matrix in the destructor. |
| * Effect matrices are automatically adjusted to compensate. |
| */ |
| class AutoViewMatrixRestore : public ::GrNoncopyable { |
| public: |
| AutoViewMatrixRestore() : fDrawState(NULL) {} |
| |
| AutoViewMatrixRestore(GrDrawState* ds, |
| const SkMatrix& preconcatMatrix, |
| uint32_t explicitCoordStageMask = 0) { |
| fDrawState = NULL; |
| this->set(ds, preconcatMatrix, explicitCoordStageMask); |
| } |
| |
| ~AutoViewMatrixRestore() { this->restore(); } |
| |
| /** |
| * Can be called prior to destructor to restore the original matrix. |
| */ |
| void restore(); |
| |
| void set(GrDrawState* drawState, |
| const SkMatrix& preconcatMatrix, |
| uint32_t explicitCoordStageMask = 0); |
| |
| bool isSet() const { return NULL != fDrawState; } |
| |
| private: |
| GrDrawState* fDrawState; |
| SkMatrix fViewMatrix; |
| GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; |
| uint32_t fRestoreMask; |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * This sets the view matrix to identity and adjusts stage matrices to compensate. The |
| * destructor undoes the changes, restoring the view matrix that was set before the |
| * constructor. It is similar to passing the inverse of the current view matrix to |
| * AutoViewMatrixRestore, but lazily computes the inverse only if necessary. |
| */ |
| class AutoDeviceCoordDraw : ::GrNoncopyable { |
| public: |
| AutoDeviceCoordDraw() : fDrawState(NULL) {} |
| /** |
| * If a stage's texture matrix is applied to explicit per-vertex coords, rather than to |
| * positions, then we don't want to modify its matrix. The explicitCoordStageMask is used |
| * to specify such stages. |
| */ |
| AutoDeviceCoordDraw(GrDrawState* drawState, |
| uint32_t explicitCoordStageMask = 0) { |
| fDrawState = NULL; |
| this->set(drawState, explicitCoordStageMask); |
| } |
| |
| ~AutoDeviceCoordDraw() { this->restore(); } |
| |
| bool set(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0); |
| |
| /** |
| * Returns true if this object was successfully initialized on to a GrDrawState. It may |
| * return false because a non-default constructor or set() were never called or because |
| * the view matrix was not invertible. |
| */ |
| bool succeeded() const { return NULL != fDrawState; } |
| |
| /** |
| * Returns the matrix that was set previously set on the drawState. This is only valid |
| * if succeeded returns true. |
| */ |
| const SkMatrix& getOriginalMatrix() const { |
| GrAssert(this->succeeded()); |
| return fViewMatrix; |
| } |
| |
| /** |
| * Can be called prior to destructor to restore the original matrix. |
| */ |
| void restore(); |
| |
| private: |
| GrDrawState* fDrawState; |
| SkMatrix fViewMatrix; |
| GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; |
| uint32_t fRestoreMask; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Render Target |
| //// |
| |
| /** |
| * Sets the render-target used at the next drawing call |
| * |
| * @param target The render target to set. |
| */ |
| void setRenderTarget(GrRenderTarget* target) { |
| fRenderTarget.reset(SkSafeRef(target)); |
| } |
| |
| /** |
| * Retrieves the currently set render-target. |
| * |
| * @return The currently set render target. |
| */ |
| const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } |
| GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } |
| |
| class AutoRenderTargetRestore : public ::GrNoncopyable { |
| public: |
| AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} |
| AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { |
| fDrawState = NULL; |
| fSavedTarget = NULL; |
| this->set(ds, newTarget); |
| } |
| ~AutoRenderTargetRestore() { this->restore(); } |
| |
| void restore() { |
| if (NULL != fDrawState) { |
| fDrawState->setRenderTarget(fSavedTarget); |
| fDrawState = NULL; |
| } |
| GrSafeSetNull(fSavedTarget); |
| } |
| |
| void set(GrDrawState* ds, GrRenderTarget* newTarget) { |
| this->restore(); |
| |
| if (NULL != ds) { |
| GrAssert(NULL == fSavedTarget); |
| fSavedTarget = ds->getRenderTarget(); |
| SkSafeRef(fSavedTarget); |
| ds->setRenderTarget(newTarget); |
| fDrawState = ds; |
| } |
| } |
| private: |
| GrDrawState* fDrawState; |
| GrRenderTarget* fSavedTarget; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Stencil |
| //// |
| |
| /** |
| * Sets the stencil settings to use for the next draw. |
| * Changing the clip has the side-effect of possibly zeroing |
| * out the client settable stencil bits. So multipass algorithms |
| * using stencil should not change the clip between passes. |
| * @param settings the stencil settings to use. |
| */ |
| void setStencil(const GrStencilSettings& settings) { |
| fCommon.fStencilSettings = settings; |
| } |
| |
| /** |
| * Shortcut to disable stencil testing and ops. |
| */ |
| void disableStencil() { |
| fCommon.fStencilSettings.setDisabled(); |
| } |
| |
| const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; } |
| |
| GrStencilSettings* stencil() { return &fCommon.fStencilSettings; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // @name Edge AA |
| // Edge equations can be specified to perform anti-aliasing. Because the |
| // edges are specified as per-vertex data, vertices that are shared by |
| // multiple edges must be split. |
| // |
| //// |
| |
| /** |
| * When specifying edges as vertex data this enum specifies what type of |
| * edges are in use. The edges are always 4 SkScalars in memory, even when |
| * the edge type requires fewer than 4. |
| * |
| * TODO: Fix the fact that HairLine and Circle edge types use y-down coords. |
| * (either adjust in VS or use origin_upper_left in GLSL) |
| */ |
| enum VertexEdgeType { |
| /* 1-pixel wide line |
| 2D implicit line eq (a*x + b*y +c = 0). 4th component unused */ |
| kHairLine_EdgeType, |
| /* Quadratic specified by u^2-v canonical coords (only 2 |
| components used). Coverage based on signed distance with negative |
| being inside, positive outside. Edge specified in window space |
| (y-down) */ |
| kQuad_EdgeType, |
| /* Same as above but for hairline quadratics. Uses unsigned distance. |
| Coverage is min(0, 1-distance). */ |
| kHairQuad_EdgeType, |
| /* Circle specified as center_x, center_y, outer_radius, inner_radius |
| all in window space (y-down). */ |
| kCircle_EdgeType, |
| /* Axis-aligned ellipse specified as center_x, center_y, x_radius, x_radius/y_radius |
| all in window space (y-down). */ |
| kEllipse_EdgeType, |
| |
| kVertexEdgeTypeCnt |
| }; |
| |
| /** |
| * Determines the interpretation per-vertex edge data when the |
| * kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges |
| * are not specified the value of this setting has no effect. |
| */ |
| void setVertexEdgeType(VertexEdgeType type) { |
| GrAssert(type >=0 && type < kVertexEdgeTypeCnt); |
| fCommon.fVertexEdgeType = type; |
| } |
| |
| VertexEdgeType getVertexEdgeType() const { return fCommon.fVertexEdgeType; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name State Flags |
| //// |
| |
| /** |
| * Flags that affect rendering. Controlled using enable/disableState(). All |
| * default to disabled. |
| */ |
| enum StateBits { |
| /** |
| * Perform dithering. TODO: Re-evaluate whether we need this bit |
| */ |
| kDither_StateBit = 0x01, |
| /** |
| * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, |
| * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by |
| * the 3D API. |
| */ |
| kHWAntialias_StateBit = 0x02, |
| /** |
| * Draws will respect the clip, otherwise the clip is ignored. |
| */ |
| kClip_StateBit = 0x04, |
| /** |
| * Disables writing to the color buffer. Useful when performing stencil |
| * operations. |
| */ |
| kNoColorWrites_StateBit = 0x08, |
| |
| /** |
| * Usually coverage is applied after color blending. The color is blended using the coeffs |
| * specified by setBlendFunc(). The blended color is then combined with dst using coeffs |
| * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In |
| * this case there is no distinction between coverage and color and the caller needs direct |
| * control over the blend coeffs. When set, there will be a single blend step controlled by |
| * setBlendFunc() which will use coverage*color as the src color. |
| */ |
| kCoverageDrawing_StateBit = 0x10, |
| |
| // Users of the class may add additional bits to the vector |
| kDummyStateBit, |
| kLastPublicStateBit = kDummyStateBit-1, |
| }; |
| |
| void resetStateFlags() { |
| fCommon.fFlagBits = 0; |
| } |
| |
| /** |
| * Enable render state settings. |
| * |
| * @param stateBits bitfield of StateBits specifying the states to enable |
| */ |
| void enableState(uint32_t stateBits) { |
| fCommon.fFlagBits |= stateBits; |
| } |
| |
| /** |
| * Disable render state settings. |
| * |
| * @param stateBits bitfield of StateBits specifying the states to disable |
| */ |
| void disableState(uint32_t stateBits) { |
| fCommon.fFlagBits &= ~(stateBits); |
| } |
| |
| /** |
| * Enable or disable stateBits based on a boolean. |
| * |
| * @param stateBits bitfield of StateBits to enable or disable |
| * @param enable if true enable stateBits, otherwise disable |
| */ |
| void setState(uint32_t stateBits, bool enable) { |
| if (enable) { |
| this->enableState(stateBits); |
| } else { |
| this->disableState(stateBits); |
| } |
| } |
| |
| bool isDitherState() const { |
| return 0 != (fCommon.fFlagBits & kDither_StateBit); |
| } |
| |
| bool isHWAntialiasState() const { |
| return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit); |
| } |
| |
| bool isClipState() const { |
| return 0 != (fCommon.fFlagBits & kClip_StateBit); |
| } |
| |
| bool isColorWriteDisabled() const { |
| return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit); |
| } |
| |
| bool isCoverageDrawing() const { |
| return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit); |
| } |
| |
| bool isStateFlagEnabled(uint32_t stateBit) const { |
| return 0 != (stateBit & fCommon.fFlagBits); |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Face Culling |
| //// |
| |
| enum DrawFace { |
| kInvalid_DrawFace = -1, |
| |
| kBoth_DrawFace, |
| kCCW_DrawFace, |
| kCW_DrawFace, |
| }; |
| |
| /** |
| * Controls whether clockwise, counterclockwise, or both faces are drawn. |
| * @param face the face(s) to draw. |
| */ |
| void setDrawFace(DrawFace face) { |
| GrAssert(kInvalid_DrawFace != face); |
| fCommon.fDrawFace = face; |
| } |
| |
| /** |
| * Gets whether the target is drawing clockwise, counterclockwise, |
| * or both faces. |
| * @return the current draw face(s). |
| */ |
| DrawFace getDrawFace() const { return fCommon.fDrawFace; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| |
| bool isStageEnabled(int s) const { |
| GrAssert((unsigned)s < kNumStages); |
| return (NULL != fStages[s].getEffect()); |
| } |
| |
| // Most stages are usually not used, so conditionals here |
| // reduce the expected number of bytes touched by 50%. |
| bool operator ==(const GrDrawState& s) const { |
| if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) { |
| return false; |
| } |
| |
| for (int i = 0; i < kNumStages; i++) { |
| bool enabled = this->isStageEnabled(i); |
| if (enabled != s.isStageEnabled(i)) { |
| return false; |
| } |
| if (enabled && this->fStages[i] != s.fStages[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| bool operator !=(const GrDrawState& s) const { return !(*this == s); } |
| |
| GrDrawState& operator= (const GrDrawState& s) { |
| this->setRenderTarget(s.fRenderTarget.get()); |
| fCommon = s.fCommon; |
| for (int i = 0; i < kNumStages; i++) { |
| if (s.isStageEnabled(i)) { |
| this->fStages[i] = s.fStages[i]; |
| } |
| } |
| return *this; |
| } |
| |
| private: |
| |
| /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */ |
| struct CommonState { |
| // These fields are roughly sorted by decreasing likelihood of being different in op== |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| GrBlendCoeff fSrcBlend; |
| GrBlendCoeff fDstBlend; |
| GrColor fBlendConstant; |
| uint32_t fFlagBits; |
| VertexEdgeType fVertexEdgeType; |
| GrStencilSettings fStencilSettings; |
| int fFirstCoverageStage; |
| GrColor fCoverage; |
| SkXfermode::Mode fColorFilterMode; |
| GrColor fColorFilterColor; |
| DrawFace fDrawFace; |
| bool operator== (const CommonState& other) const { |
| return fColor == other.fColor && |
| fViewMatrix.cheapEqualTo(other.fViewMatrix) && |
| fSrcBlend == other.fSrcBlend && |
| fDstBlend == other.fDstBlend && |
| fBlendConstant == other.fBlendConstant && |
| fFlagBits == other.fFlagBits && |
| fVertexEdgeType == other.fVertexEdgeType && |
| fStencilSettings == other.fStencilSettings && |
| fFirstCoverageStage == other.fFirstCoverageStage && |
| fCoverage == other.fCoverage && |
| fColorFilterMode == other.fColorFilterMode && |
| fColorFilterColor == other.fColorFilterColor && |
| fDrawFace == other.fDrawFace; |
| } |
| bool operator!= (const CommonState& other) const { return !(*this == other); } |
| }; |
| |
| /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef. |
| DeferredState must directly reference GrEffects, however. */ |
| struct SavedEffectStage { |
| SavedEffectStage() : fEffect(NULL) {} |
| const GrEffect* fEffect; |
| GrEffectStage::SavedCoordChange fCoordChange; |
| }; |
| |
| public: |
| /** |
| * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource |
| * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal |
| * dispose mechanism returns them to the cache. This allows recycling resources through the |
| * the cache while they are in a deferred draw queue. |
| */ |
| class DeferredState { |
| public: |
| DeferredState() : fRenderTarget(NULL) { |
| GR_DEBUGCODE(fInitialized = false;) |
| } |
| // TODO: Remove this when DeferredState no longer holds a ref to the RT |
| ~DeferredState() { SkSafeUnref(fRenderTarget); } |
| |
| void saveFrom(const GrDrawState& drawState) { |
| fCommon = drawState.fCommon; |
| // TODO: Here we will copy the GrRenderTarget pointer without taking a ref. |
| fRenderTarget = drawState.fRenderTarget.get(); |
| SkSafeRef(fRenderTarget); |
| // Here we ref the effects directly rather than the effect-refs. TODO: When the effect- |
| // ref gets fully unref'ed it will cause the underlying effect to unref its resources |
| // and recycle them to the cache (if no one else is holding a ref to the resources). |
| for (int i = 0; i < kNumStages; ++i) { |
| fStages[i].saveFrom(drawState.fStages[i]); |
| } |
| GR_DEBUGCODE(fInitialized = true;) |
| } |
| |
| void restoreTo(GrDrawState* drawState) { |
| GrAssert(fInitialized); |
| drawState->fCommon = fCommon; |
| drawState->setRenderTarget(fRenderTarget); |
| for (int i = 0; i < kNumStages; ++i) { |
| fStages[i].restoreTo(&drawState->fStages[i]); |
| } |
| } |
| |
| bool isEqual(const GrDrawState& state) const { |
| if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) { |
| return false; |
| } |
| for (int i = 0; i < kNumStages; ++i) { |
| if (!fStages[i].isEqual(state.fStages[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| private: |
| GrRenderTarget* fRenderTarget; |
| CommonState fCommon; |
| GrEffectStage::DeferredStage fStages[kNumStages]; |
| |
| GR_DEBUGCODE(bool fInitialized;) |
| }; |
| |
| private: |
| SkAutoTUnref<GrRenderTarget> fRenderTarget; |
| CommonState fCommon; |
| GrEffectStage fStages[kNumStages]; |
| |
| typedef GrRefCnt INHERITED; |
| }; |
| |
| #endif |