blob: eaf360a271e4032c1e970f9573f0d98b9e2618da [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* As per the Apache license requirements, this file has been modified
* from its original state.
*
* Such modifications are Copyright (C) 2010 Ben Gruver, and are released
* under the original license
*/
/*
* Command-line invocation of the Dalvik VM.
*/
#include "jni.h"
#include "Dalvik.h"
#include "libdex/OptInvocation.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include "utils/Log.h"
#define VERSION "1.0"
#define VER1_(x) #x
#define VER_(x) VER1_(x)
#define ANDROID_VERSION VER_(ANDROID_VER)
typedef struct InlineSub {
Method* method;
int inlineIdx;
} InlineSub;
static DexStringCache stringCache;
static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2);
//The following methods yanked from vm/analysis/CodeVerify.c
/*
* Compute the "class depth" of a class. This is the distance from the
* class to the top of the tree, chasing superclass links. java.lang.Object
* has a class depth of 0.
*/
static int getClassDepth(ClassObject* clazz)
{
int depth = 0;
while (clazz->super != NULL) {
clazz = clazz->super;
depth++;
}
return depth;
}
/*
* Given two classes, walk up the superclass tree to find a common
* ancestor. (Called from findCommonSuperclass().)
*
* TODO: consider caching the class depth in the class object so we don't
* have to search for it here.
*/
static ClassObject* digForSuperclass(ClassObject* c1, ClassObject* c2)
{
int depth1, depth2;
depth1 = getClassDepth(c1);
depth2 = getClassDepth(c2);
/* pull the deepest one up */
if (depth1 > depth2) {
while (depth1 > depth2) {
c1 = c1->super;
depth1--;
}
} else {
while (depth2 > depth1) {
c2 = c2->super;
depth2--;
}
}
/* walk up in lock-step */
while (c1 != c2) {
c1 = c1->super;
c2 = c2->super;
assert(c1 != NULL && c2 != NULL);
}
return c1;
}
/*
* Merge two array classes. We can't use the general "walk up to the
* superclass" merge because the superclass of an array is always Object.
* We want String[] + Integer[] = Object[]. This works for higher dimensions
* as well, e.g. String[][] + Integer[][] = Object[][].
*
* If Foo1 and Foo2 are subclasses of Foo, Foo1[] + Foo2[] = Foo[].
*
* If Class implements Type, Class[] + Type[] = Type[].
*
* If the dimensions don't match, we want to convert to an array of Object
* with the least dimension, e.g. String[][] + String[][][][] = Object[][].
*
* This gets a little awkward because we may have to ask the VM to create
* a new array type with the appropriate element and dimensions. However, we
* shouldn't be doing this often.
*/
static ClassObject* findCommonArraySuperclass(ClassObject* c1, ClassObject* c2)
{
ClassObject* arrayClass = NULL;
ClassObject* commonElem;
int i, numDims;
assert(c1->arrayDim > 0);
assert(c2->arrayDim > 0);
if (c1->arrayDim == c2->arrayDim) {
//commonElem = digForSuperclass(c1->elementClass, c2->elementClass);
commonElem = findCommonSuperclass(c1->elementClass, c2->elementClass);
numDims = c1->arrayDim;
} else {
if (c1->arrayDim < c2->arrayDim)
numDims = c1->arrayDim;
else
numDims = c2->arrayDim;
commonElem = c1->super; // == java.lang.Object
}
/* walk from the element to the (multi-)dimensioned array type */
for (i = 0; i < numDims; i++) {
arrayClass = dvmFindArrayClassForElement(commonElem);
commonElem = arrayClass;
}
return arrayClass;
}
/*
* Find the first common superclass of the two classes. We're not
* interested in common interfaces.
*
* The easiest way to do this for concrete classes is to compute the "class
* depth" of each, move up toward the root of the deepest one until they're
* at the same depth, then walk both up to the root until they match.
*
* If both classes are arrays of non-primitive types, we need to merge
* based on array depth and element type.
*
* If one class is an interface, we check to see if the other class/interface
* (or one of its predecessors) implements the interface. If so, we return
* the interface; otherwise, we return Object.
*
* NOTE: we continue the tradition of "lazy interface handling". To wit,
* suppose we have three classes:
* One implements Fancy, Free
* Two implements Fancy, Free
* Three implements Free
* where Fancy and Free are unrelated interfaces. The code requires us
* to merge One into Two. Ideally we'd use a common interface, which
* gives us a choice between Fancy and Free, and no guidance on which to
* use. If we use Free, we'll be okay when Three gets merged in, but if
* we choose Fancy, we're hosed. The "ideal" solution is to create a
* set of common interfaces and carry that around, merging further references
* into it. This is a pain. The easy solution is to simply boil them
* down to Objects and let the runtime invokeinterface call fail, which
* is what we do.
*/
static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2)
{
assert(!dvmIsPrimitiveClass(c1) && !dvmIsPrimitiveClass(c2));
if (c1 == c2)
return c1;
if (dvmIsInterfaceClass(c1) && dvmImplements(c2, c1)) {
return c1;
}
if (dvmIsInterfaceClass(c2) && dvmImplements(c1, c2)) {
return c2;
}
if (dvmIsArrayClass(c1) && dvmIsArrayClass(c2) &&
!dvmIsPrimitiveClass(c1->elementClass) &&
!dvmIsPrimitiveClass(c2->elementClass))
{
return findCommonArraySuperclass(c1, c2);
}
return digForSuperclass(c1, c2);
}
//method yanked from vm/analysis/DexOptimize.c
/*
* Try to load all classes in the specified DEX. If they have some sort
* of broken dependency, e.g. their superclass lives in a different DEX
* that wasn't previously loaded into the bootstrap class path, loading
* will fail. This is the desired behavior.
*
* We have no notion of class loader at this point, so we load all of
* the classes with the bootstrap class loader. It turns out this has
* exactly the behavior we want, and has no ill side effects because we're
* running in a separate process and anything we load here will be forgotten.
*
* We set the CLASS_MULTIPLE_DEFS flag here if we see multiple definitions.
* This works because we only call here as part of optimization / pre-verify,
* not during verification as part of loading a class into a running VM.
*
* This returns "false" if the world is too screwed up to do anything
* useful at all.
*/
int loadAllClasses(DvmDex* pDvmDex)
{
u4 count = pDvmDex->pDexFile->pHeader->classDefsSize;
u4 idx;
int loaded = 0;
dvmSetBootPathExtraDex(pDvmDex);
/*
* We have some circularity issues with Class and Object that are most
* easily avoided by ensuring that Object is never the first thing we
* try to find. Take care of that here. (We only need to do this when
* loading classes from the DEX file that contains Object, and only
* when Object comes first in the list, but it costs very little to
* do it in all cases.)
*/
if (dvmFindSystemClass("Ljava/lang/Class;") == NULL) {
return false;
}
for (idx = 0; idx < count; idx++) {
const DexClassDef* pClassDef;
const char* classDescriptor;
ClassObject* newClass;
pClassDef = dexGetClassDef(pDvmDex->pDexFile, idx);
classDescriptor =
dexStringByTypeIdx(pDvmDex->pDexFile, pClassDef->classIdx);
//newClass = dvmDefineClass(pDexFile, classDescriptor,
// NULL);
newClass = dvmFindSystemClassNoInit(classDescriptor);
if (newClass == NULL) {
dvmClearOptException(dvmThreadSelf());
} else if (newClass->pDvmDex != pDvmDex) {
/*
* We don't load the new one, and we tag the first one found
* with the "multiple def" flag so the resolver doesn't try
* to make it available.
*/
SET_CLASS_FLAG(newClass, CLASS_MULTIPLE_DEFS);
} else {
loaded++;
}
}
dvmSetBootPathExtraDex(NULL);
return true;
}
int dumpFields(char *classType, FILE *clientOut)
{
ClassObject *clazz;
if (classType[0] == '[')
clazz = dvmFindArrayClass(classType, NULL);
else
clazz = dvmFindSystemClassNoInit(classType);
if (clazz == NULL)
return 0;
int i;
do
{
InstField *pField = clazz->ifields;
for (i=0; i<clazz->ifieldCount; i++, pField++)
fprintf(clientOut, "field: %d %s:%s\n", pField->byteOffset, pField->field.name, pField->field.signature);
clazz = clazz->super;
} while (clazz != NULL);
return 1;
}
int dumpInlineMethods(FILE *clientOut)
{
const InlineOperation *inlineTable = dvmGetInlineOpsTable();
int count = dvmGetInlineOpsTableLength();
int i;
for (i=0; i<count; i++) {
const InlineOperation *inlineOp = &inlineTable[i];
ClassObject *clazz = dvmFindSystemClassNoInit(inlineOp->classDescriptor);
if (clazz == NULL)
return 0;
char *methodType;
Method *method = dvmFindDirectMethodByDescriptor(clazz, inlineOp->methodName, inlineOp->methodSignature);
if (method == NULL)
{
method = dvmFindVirtualMethodByDescriptor(clazz, inlineOp->methodName, inlineOp->methodSignature);
methodType = "virtual";
} else {
if (dvmIsStaticMethod(method))
methodType = "static";
else
methodType = "direct";
}
if (method == NULL)
return 0;
fprintf(clientOut, "inline: %s %s->%s%s\n", methodType, method->clazz->descriptor, method->name, dexProtoGetMethodDescriptor(&method->prototype, &stringCache));
}
return 1;
}
int dumpVirtualMethods(char *classType, FILE *clientOut)
{
ClassObject *clazz;
if (classType[0] == '[')
clazz = dvmFindArrayClass(classType, NULL);
else
clazz = dvmFindSystemClassNoInit(classType);
if (clazz == NULL)
{
fprintf(clientOut, "err: could not find class %s\n", classType);
return 0;
}
//interface classes don't have virtual methods, by definition. But it's possible
//to call virtual methods defined on the Object class via an interface type
if (dvmIsInterfaceClass(clazz))
{
clazz = dvmFindSystemClassNoInit("Ljava/lang/Object;");
if (clazz == NULL)
{
fprintf(clientOut, "err: could not find class %s\n", classType);
return 0;
}
}
int i;
for (i=0; i<clazz->vtableCount; i++)
{
Method *method = clazz->vtable[i];
fprintf(clientOut, "vtable: %s%s\n", method->name,
dexProtoGetMethodDescriptor(&method->prototype, &stringCache));
}
return 1;
}
ClassObject *lookupSuperclass(char *classType)
{
ClassObject *clazz = dvmFindSystemClassNoInit(classType);
if (clazz == NULL)
return NULL;
return clazz->super;
}
/*
* Parse arguments. Most of it just gets passed through to the VM. The
* JNI spec defines a handful of standard arguments.
*/
int main(int argc, char* const argv[])
{
const char* inputFileName;
JavaVM* vm = NULL;
JNIEnv* env = NULL;
DvmDex* pDvmDex = NULL;
DexClassLookup* pClassLookup;
if (argc != 3) {
fprintf(stderr, "deodexerant %s (Android %s)\n", VERSION, ANDROID_VERSION);
fprintf(stderr, "usage: deodexerant <odex_file> <port>\n");
return 1;
}
inputFileName = argv[1];
struct stat inputInfo;
if (stat(inputFileName, &inputInfo) != 0) {
fprintf(stderr, "could not stat '%s' : %s\n", inputFileName, strerror(errno));
return 1;
}
int odexFd = open(inputFileName, O_RDONLY);
if (odexFd < 0) {
fprintf(stderr, "Unable to open '%s': %s\n", inputFileName, strerror(errno));
return 1;
}
int port = atoi(argv[2]);
int socketFd = socket(AF_INET, SOCK_STREAM, 0);
if (socketFd < 0)
{
fprintf(stderr, "Unable to open socket\n");
return 1;
}
struct sockaddr_in serverAddress, clientAddress;
bzero((char *)&serverAddress, sizeof(serverAddress));
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = INADDR_ANY;
serverAddress.sin_port = htons(port);
if (bind(socketFd, (struct sockaddr *)&serverAddress, sizeof(serverAddress)) < 0)
{
fprintf(stderr, "Unable to bind socket\n");
return 1;
}
const char* bcp = getenv("BOOTCLASSPATH");
if (bcp == NULL) {
fprintf(stderr, "BOOTCLASSPATH not set\n");
return 1;
}
DexClassVerifyMode verifyMode = VERIFY_MODE_ALL;
DexOptimizerMode dexOptMode = OPTIMIZE_MODE_VERIFIED;
if (dvmPrepForDexOpt(bcp, dexOptMode, verifyMode,
0) != 0)
{
fprintf(stderr, "VM init failed\n");
return 1;
}
/*
* Map the entire file (so we don't have to worry about page
* alignment). The expectation is that the output file contains
* our DEX data plus room for a small header.
*/
bool success;
void* mapAddr;
mapAddr = mmap(NULL, inputInfo.st_size, PROT_READ,
MAP_PRIVATE, odexFd, 0);
if (mapAddr == MAP_FAILED) {
fprintf(stderr, "unable to mmap DEX cache: %s\n", strerror(errno));
return 1;
}
if (dvmDexFileOpenPartial(mapAddr + *((int *)(mapAddr+8)), *((int *)(mapAddr+12)), &pDvmDex) != 0) {
fprintf(stderr, "Unable to create DexFile\n");
return 1;
}
pClassLookup = dexCreateClassLookup(pDvmDex->pDexFile);
if (pClassLookup == NULL)
{
fprintf(stderr, "unable to create class lookup\n");
return 1;
}
pDvmDex->pDexFile->pClassLookup = pClassLookup;
if (!loadAllClasses(pDvmDex))
{
fprintf(stderr, "error while loading classes\n");
return 1;
}
listen(socketFd, 1);
int clientSocketLength = sizeof(clientAddress);
int clientFd = accept(socketFd, (struct sockaddr *) &clientAddress, &clientSocketLength);
if (clientFd < 0)
{
fprintf(stderr, "Unable to accept incomming connection\n");
return 1;
}
FILE *clientIn = fdopen(clientFd, "r");
if (clientIn == 0)
{
fprintf(stderr, "Unable to fdopen socket to get input stream\n");
return 1;
}
FILE *clientOut = fdopen(dup(clientFd), "w");
if (clientOut == 0)
{
fprintf(stderr, "Unable to fdopen socket to get output stream\n");
return 1;
}
char *command = NULL;
unsigned int len = 0;
dexStringCacheInit(&stringCache);
while ((command = fgetln(clientIn, &len)) != NULL) {
while (len > 0 && (command[len-1] == '\r' || command[len-1] == '\n'))
len--;
char *buf = malloc(len+1);
memcpy(buf, command, len);
buf[len] = 0;
//printf("%s\n", buf);
char *cmd = strtok(buf, " ");
if (cmd == NULL) {
fprintf(clientOut, "err: error interpreting command\n");
fflush(clientOut);
continue;
}
switch (cmd[0])
{
case 'F' :
{
char *classType = strtok(NULL, " ");
if (classType == NULL)
{
fprintf(clientOut, "err: no classType for field lookup\n");
fflush(clientOut);
break;
}
if (!dumpFields(classType, clientOut))
{
fprintf(clientOut, "err: error while dumping fields\n");
fflush(clientOut);
break;
}
fprintf(clientOut, "done\n");
fflush(clientOut);
break;
}
case 'I':
{
if (!dumpInlineMethods(clientOut))
{
fprintf(clientOut, "err: inline method not found\n");
fflush(clientOut);
break;
}
fprintf(clientOut, "done\n");
fflush(clientOut);
break;
}
case 'V':
{
char *classType = strtok(NULL, " ");
if (classType == NULL)
{
fprintf(clientOut, "err: no classType for vtable dump\n");
fflush(clientOut);
break;
}
if (!dumpVirtualMethods(classType, clientOut)) {
fprintf(clientOut, "err: error encountered while dumping virtual methods\n");
fflush(clientOut);
break;
}
fprintf(clientOut, "done\n");
fflush(clientOut);
break;
}
case 'P':
{
char *classType = strtok(NULL, " ");
if (classType == NULL)
{
fprintf(clientOut, "err: no classType for superclass lookup\n");
fflush(clientOut);
break;
}
ClassObject *clazz = lookupSuperclass(classType);
if (clazz == NULL)
{
fprintf(clientOut, "class: \n");
fflush(clientOut);
break;
}
fprintf(clientOut, "class: %s\n", clazz->descriptor);
fflush(clientOut);
break;
}
case 'C':
{
char *classType1 = strtok(NULL, " ");
if (classType1 == NULL)
{
fprintf(clientOut, "err: no classType for common superclass lookup\n");
fflush(clientOut);
break;
}
ClassObject *clazz1;
if (classType1[0] == '[')
clazz1 = dvmFindArrayClass(classType1, NULL);
else
clazz1 = dvmFindSystemClassNoInit(classType1);
if (clazz1 == NULL)
{
fprintf(clientOut, "err: class %s could not be found for common superclass lookup. This can be caused if a library the odex depends on is not in the BOOTCLASSPATH environment variable\n", classType1);
fflush(clientOut);
break;
}
char *classType2 = strtok(NULL, " ");
if (classType2 == NULL)
{
fprintf(clientOut, "err: no classType for common superclass lookup\n");
fflush(clientOut);
break;
}
ClassObject *clazz2;
if (classType2[0] == '[')
clazz2 = dvmFindArrayClass(classType2, NULL);
else
clazz2 = dvmFindSystemClassNoInit(classType2);
if (clazz2 == NULL)
{
fprintf(clientOut, "err: class %s could not be found for common superclass lookup. This can be caused if a library the odex depends on is not in the BOOTCLASSPATH environment variable\n", classType2);
fflush(clientOut);
break;
}
ClassObject *clazz = findCommonSuperclass(clazz1, clazz2);
fprintf(clientOut, "class: %s\n", clazz->descriptor);
fflush(clientOut);
break;
}
default:
fprintf(clientOut, "err: not a valid command\n");
fflush(clientOut);
}
/*gettimeofday(&tv, NULL);
printf("end %07d\n", tv.tv_usec);*/
}
return 0;
}