| /* |
| * aes_icm.c |
| * |
| * AES Integer Counter Mode |
| * |
| * David A. McGrew |
| * Cisco Systems, Inc. |
| */ |
| |
| /* |
| * |
| * Copyright (c) 2001-2006, Cisco Systems, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Cisco Systems, Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| |
| #define ALIGN_32 0 |
| |
| #include "aes_icm.h" |
| #include "alloc.h" |
| |
| |
| debug_module_t mod_aes_icm = { |
| 0, /* debugging is off by default */ |
| "aes icm" /* printable module name */ |
| }; |
| |
| /* |
| * integer counter mode works as follows: |
| * |
| * 16 bits |
| * <-----> |
| * +------+------+------+------+------+------+------+------+ |
| * | nonce | pakcet index | ctr |---+ |
| * +------+------+------+------+------+------+------+------+ | |
| * | |
| * +------+------+------+------+------+------+------+------+ v |
| * | salt |000000|->(+) |
| * +------+------+------+------+------+------+------+------+ | |
| * | |
| * +---------+ |
| * | encrypt | |
| * +---------+ |
| * | |
| * +------+------+------+------+------+------+------+------+ | |
| * | keystream block |<--+ |
| * +------+------+------+------+------+------+------+------+ |
| * |
| * All fields are big-endian |
| * |
| * ctr is the block counter, which increments from zero for |
| * each packet (16 bits wide) |
| * |
| * packet index is distinct for each packet (48 bits wide) |
| * |
| * nonce can be distinct across many uses of the same key, or |
| * can be a fixed value per key, or can be per-packet randomness |
| * (64 bits) |
| * |
| */ |
| |
| err_status_t |
| aes_icm_alloc_ismacryp(cipher_t **c, int key_len, int forIsmacryp) { |
| extern cipher_type_t aes_icm; |
| uint8_t *pointer; |
| int tmp; |
| |
| debug_print(mod_aes_icm, |
| "allocating cipher with key length %d", key_len); |
| |
| /* |
| * Ismacryp, for example, uses 16 byte key + 8 byte |
| * salt so this function is called with key_len = 24. |
| * The check for key_len = 30 does not apply. Our usage |
| * of aes functions with key_len = values other than 30 |
| * has not broken anything. Don't know what would be the |
| * effect of skipping this check for srtp in general. |
| */ |
| if (!forIsmacryp && key_len != 30) |
| return err_status_bad_param; |
| |
| /* allocate memory a cipher of type aes_icm */ |
| tmp = (sizeof(aes_icm_ctx_t) + sizeof(cipher_t)); |
| pointer = (uint8_t*)crypto_alloc(tmp); |
| if (pointer == NULL) |
| return err_status_alloc_fail; |
| |
| /* set pointers */ |
| *c = (cipher_t *)pointer; |
| (*c)->type = &aes_icm; |
| (*c)->state = pointer + sizeof(cipher_t); |
| |
| /* increment ref_count */ |
| aes_icm.ref_count++; |
| |
| /* set key size */ |
| (*c)->key_len = key_len; |
| |
| return err_status_ok; |
| } |
| |
| err_status_t aes_icm_alloc(cipher_t **c, int key_len, int forIsmacryp) { |
| return aes_icm_alloc_ismacryp(c, key_len, 0); |
| } |
| |
| err_status_t |
| aes_icm_dealloc(cipher_t *c) { |
| extern cipher_type_t aes_icm; |
| |
| /* zeroize entire state*/ |
| octet_string_set_to_zero((uint8_t *)c, |
| sizeof(aes_icm_ctx_t) + sizeof(cipher_t)); |
| |
| /* free memory */ |
| crypto_free(c); |
| |
| /* decrement ref_count */ |
| aes_icm.ref_count--; |
| |
| return err_status_ok; |
| } |
| |
| |
| /* |
| * aes_icm_context_init(...) initializes the aes_icm_context |
| * using the value in key[]. |
| * |
| * the key is the secret key |
| * |
| * the salt is unpredictable (but not necessarily secret) data which |
| * randomizes the starting point in the keystream |
| */ |
| |
| err_status_t |
| aes_icm_context_init(aes_icm_ctx_t *c, const uint8_t *key) { |
| v128_t tmp_key; |
| int i; |
| |
| /* set counter and initial values to 'offset' value */ |
| /* FIX!!! this assumes the salt is at key + 16, and thus that the */ |
| /* FIX!!! cipher key length is 16! */ |
| for (i = 0; i < 14; i++) { |
| c->counter.v8[i] = key[16 + i]; |
| c->offset.v8[i] = key[16 + i]; |
| } |
| |
| /* force last two octets of the offset to zero (for srtp compatibility) */ |
| c->offset.v8[14] = c->offset.v8[15] = 0; |
| c->counter.v8[14] = c->counter.v8[15] = 0; |
| |
| /* set tmp_key (for alignment) */ |
| v128_copy_octet_string(&tmp_key, key); |
| |
| debug_print(mod_aes_icm, |
| "key: %s", v128_hex_string(&tmp_key)); |
| debug_print(mod_aes_icm, |
| "offset: %s", v128_hex_string(&c->offset)); |
| |
| /* expand key */ |
| aes_expand_encryption_key(&tmp_key, c->expanded_key); |
| |
| /* indicate that the keystream_buffer is empty */ |
| c->bytes_in_buffer = 0; |
| |
| return err_status_ok; |
| } |
| |
| /* |
| * aes_icm_set_octet(c, i) sets the counter of the context which it is |
| * passed so that the next octet of keystream that will be generated |
| * is the ith octet |
| */ |
| |
| err_status_t |
| aes_icm_set_octet(aes_icm_ctx_t *c, |
| uint64_t octet_num) { |
| |
| #ifdef NO_64BIT_MATH |
| int tail_num = low32(octet_num) & 0x0f; |
| /* 64-bit right-shift 4 */ |
| uint64_t block_num = make64(high32(octet_num) >> 4, |
| ((high32(octet_num) & 0x0f)<<(32-4)) | |
| (low32(octet_num) >> 4)); |
| #else |
| int tail_num = (int)(octet_num % 16); |
| uint64_t block_num = octet_num / 16; |
| #endif |
| |
| |
| /* set counter value */ |
| /* FIX - There's no way this is correct */ |
| c->counter.v64[0] = c->offset.v64[0]; |
| #ifdef NO_64BIT_MATH |
| c->counter.v64[0] = make64(high32(c->offset.v64[0]) ^ high32(block_num), |
| low32(c->offset.v64[0]) ^ low32(block_num)); |
| #else |
| c->counter.v64[0] = c->offset.v64[0] ^ block_num; |
| #endif |
| |
| debug_print(mod_aes_icm, |
| "set_octet: %s", v128_hex_string(&c->counter)); |
| |
| /* fill keystream buffer, if needed */ |
| if (tail_num) { |
| v128_copy(&c->keystream_buffer, &c->counter); |
| aes_encrypt(&c->keystream_buffer, c->expanded_key); |
| c->bytes_in_buffer = sizeof(v128_t); |
| |
| debug_print(mod_aes_icm, "counter: %s", |
| v128_hex_string(&c->counter)); |
| debug_print(mod_aes_icm, "ciphertext: %s", |
| v128_hex_string(&c->keystream_buffer)); |
| |
| /* indicate number of bytes in keystream_buffer */ |
| c->bytes_in_buffer = sizeof(v128_t) - tail_num; |
| |
| } else { |
| |
| /* indicate that keystream_buffer is empty */ |
| c->bytes_in_buffer = 0; |
| } |
| |
| return err_status_ok; |
| } |
| |
| /* |
| * aes_icm_set_iv(c, iv) sets the counter value to the exor of iv with |
| * the offset |
| */ |
| |
| err_status_t |
| aes_icm_set_iv(aes_icm_ctx_t *c, void *iv) { |
| v128_t *nonce = (v128_t *) iv; |
| |
| debug_print(mod_aes_icm, |
| "setting iv: %s", v128_hex_string(nonce)); |
| |
| v128_xor(&c->counter, &c->offset, nonce); |
| |
| debug_print(mod_aes_icm, |
| "set_counter: %s", v128_hex_string(&c->counter)); |
| |
| /* indicate that the keystream_buffer is empty */ |
| c->bytes_in_buffer = 0; |
| |
| return err_status_ok; |
| } |
| |
| |
| |
| /* |
| * aes_icm_advance(...) refills the keystream_buffer and |
| * advances the block index of the sicm_context forward by one |
| * |
| * this is an internal, hopefully inlined function |
| */ |
| |
| static inline void |
| aes_icm_advance_ismacryp(aes_icm_ctx_t *c, uint8_t forIsmacryp) { |
| /* fill buffer with new keystream */ |
| v128_copy(&c->keystream_buffer, &c->counter); |
| aes_encrypt(&c->keystream_buffer, c->expanded_key); |
| c->bytes_in_buffer = sizeof(v128_t); |
| |
| debug_print(mod_aes_icm, "counter: %s", |
| v128_hex_string(&c->counter)); |
| debug_print(mod_aes_icm, "ciphertext: %s", |
| v128_hex_string(&c->keystream_buffer)); |
| |
| /* clock counter forward */ |
| |
| if (forIsmacryp) { |
| uint32_t temp; |
| //alex's clock counter forward |
| temp = ntohl(c->counter.v32[3]); |
| c->counter.v32[3] = htonl(++temp); |
| } else { |
| if (!++(c->counter.v8[15])) |
| ++(c->counter.v8[14]); |
| } |
| } |
| |
| inline void aes_icm_advance(aes_icm_ctx_t *c) { |
| aes_icm_advance_ismacryp(c, 0); |
| } |
| |
| |
| /*e |
| * icm_encrypt deals with the following cases: |
| * |
| * bytes_to_encr < bytes_in_buffer |
| * - add keystream into data |
| * |
| * bytes_to_encr > bytes_in_buffer |
| * - add keystream into data until keystream_buffer is depleted |
| * - loop over blocks, filling keystream_buffer and then |
| * adding keystream into data |
| * - fill buffer then add in remaining (< 16) bytes of keystream |
| */ |
| |
| err_status_t |
| aes_icm_encrypt_ismacryp(aes_icm_ctx_t *c, |
| unsigned char *buf, unsigned int *enc_len, |
| int forIsmacryp) { |
| unsigned int bytes_to_encr = *enc_len; |
| unsigned int i; |
| uint32_t *b; |
| |
| /* check that there's enough segment left but not for ismacryp*/ |
| if (!forIsmacryp && (bytes_to_encr + htons(c->counter.v16[7])) > 0xffff) |
| return err_status_terminus; |
| |
| debug_print(mod_aes_icm, "block index: %d", |
| htons(c->counter.v16[7])); |
| if (bytes_to_encr <= (unsigned int)c->bytes_in_buffer) { |
| |
| /* deal with odd case of small bytes_to_encr */ |
| for (i = (sizeof(v128_t) - c->bytes_in_buffer); |
| i < (sizeof(v128_t) - c->bytes_in_buffer + bytes_to_encr); i++) |
| { |
| *buf++ ^= c->keystream_buffer.v8[i]; |
| } |
| |
| c->bytes_in_buffer -= bytes_to_encr; |
| |
| /* return now to avoid the main loop */ |
| return err_status_ok; |
| |
| } else { |
| |
| /* encrypt bytes until the remaining data is 16-byte aligned */ |
| for (i=(sizeof(v128_t) - c->bytes_in_buffer); i < sizeof(v128_t); i++) |
| *buf++ ^= c->keystream_buffer.v8[i]; |
| |
| bytes_to_encr -= c->bytes_in_buffer; |
| c->bytes_in_buffer = 0; |
| |
| } |
| |
| /* now loop over entire 16-byte blocks of keystream */ |
| for (i=0; i < (bytes_to_encr/sizeof(v128_t)); i++) { |
| |
| /* fill buffer with new keystream */ |
| aes_icm_advance_ismacryp(c, forIsmacryp); |
| |
| /* |
| * add keystream into the data buffer (this would be a lot faster |
| * if we could assume 32-bit alignment!) |
| */ |
| |
| #if ALIGN_32 |
| b = (uint32_t *)buf; |
| *b++ ^= c->keystream_buffer.v32[0]; |
| *b++ ^= c->keystream_buffer.v32[1]; |
| *b++ ^= c->keystream_buffer.v32[2]; |
| *b++ ^= c->keystream_buffer.v32[3]; |
| buf = (uint8_t *)b; |
| #else |
| if ((((unsigned long) buf) & 0x03) != 0) { |
| *buf++ ^= c->keystream_buffer.v8[0]; |
| *buf++ ^= c->keystream_buffer.v8[1]; |
| *buf++ ^= c->keystream_buffer.v8[2]; |
| *buf++ ^= c->keystream_buffer.v8[3]; |
| *buf++ ^= c->keystream_buffer.v8[4]; |
| *buf++ ^= c->keystream_buffer.v8[5]; |
| *buf++ ^= c->keystream_buffer.v8[6]; |
| *buf++ ^= c->keystream_buffer.v8[7]; |
| *buf++ ^= c->keystream_buffer.v8[8]; |
| *buf++ ^= c->keystream_buffer.v8[9]; |
| *buf++ ^= c->keystream_buffer.v8[10]; |
| *buf++ ^= c->keystream_buffer.v8[11]; |
| *buf++ ^= c->keystream_buffer.v8[12]; |
| *buf++ ^= c->keystream_buffer.v8[13]; |
| *buf++ ^= c->keystream_buffer.v8[14]; |
| *buf++ ^= c->keystream_buffer.v8[15]; |
| } else { |
| b = (uint32_t *)buf; |
| *b++ ^= c->keystream_buffer.v32[0]; |
| *b++ ^= c->keystream_buffer.v32[1]; |
| *b++ ^= c->keystream_buffer.v32[2]; |
| *b++ ^= c->keystream_buffer.v32[3]; |
| buf = (uint8_t *)b; |
| } |
| #endif /* #if ALIGN_32 */ |
| |
| } |
| |
| /* if there is a tail end of the data, process it */ |
| if ((bytes_to_encr & 0xf) != 0) { |
| |
| /* fill buffer with new keystream */ |
| aes_icm_advance_ismacryp(c, forIsmacryp); |
| |
| for (i=0; i < (bytes_to_encr & 0xf); i++) |
| *buf++ ^= c->keystream_buffer.v8[i]; |
| |
| /* reset the keystream buffer size to right value */ |
| c->bytes_in_buffer = sizeof(v128_t) - i; |
| } else { |
| |
| /* no tail, so just reset the keystream buffer size to zero */ |
| c->bytes_in_buffer = 0; |
| |
| } |
| |
| return err_status_ok; |
| } |
| |
| err_status_t |
| aes_icm_encrypt(aes_icm_ctx_t *c, unsigned char *buf, unsigned int *enc_len) { |
| return aes_icm_encrypt_ismacryp(c, buf, enc_len, 0); |
| } |
| |
| err_status_t |
| aes_icm_output(aes_icm_ctx_t *c, uint8_t *buffer, int num_octets_to_output) { |
| unsigned int len = num_octets_to_output; |
| |
| /* zeroize the buffer */ |
| octet_string_set_to_zero(buffer, num_octets_to_output); |
| |
| /* exor keystream into buffer */ |
| return aes_icm_encrypt(c, buffer, &len); |
| } |
| |
| |
| char |
| aes_icm_description[] = "aes integer counter mode"; |
| |
| uint8_t aes_icm_test_case_0_key[30] = { |
| 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, |
| 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c, |
| 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
| 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd |
| }; |
| |
| uint8_t aes_icm_test_case_0_nonce[16] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| uint8_t aes_icm_test_case_0_plaintext[32] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| }; |
| |
| uint8_t aes_icm_test_case_0_ciphertext[32] = { |
| 0xe0, 0x3e, 0xad, 0x09, 0x35, 0xc9, 0x5e, 0x80, |
| 0xe1, 0x66, 0xb1, 0x6d, 0xd9, 0x2b, 0x4e, 0xb4, |
| 0xd2, 0x35, 0x13, 0x16, 0x2b, 0x02, 0xd0, 0xf7, |
| 0x2a, 0x43, 0xa2, 0xfe, 0x4a, 0x5f, 0x97, 0xab |
| }; |
| |
| cipher_test_case_t aes_icm_test_case_0 = { |
| 30, /* octets in key */ |
| aes_icm_test_case_0_key, /* key */ |
| aes_icm_test_case_0_nonce, /* packet index */ |
| 32, /* octets in plaintext */ |
| aes_icm_test_case_0_plaintext, /* plaintext */ |
| 32, /* octets in ciphertext */ |
| aes_icm_test_case_0_ciphertext, /* ciphertext */ |
| NULL /* pointer to next testcase */ |
| }; |
| |
| |
| /* |
| * note: the encrypt function is identical to the decrypt function |
| */ |
| |
| cipher_type_t aes_icm = { |
| (cipher_alloc_func_t) aes_icm_alloc, |
| (cipher_dealloc_func_t) aes_icm_dealloc, |
| (cipher_init_func_t) aes_icm_context_init, |
| (cipher_encrypt_func_t) aes_icm_encrypt, |
| (cipher_decrypt_func_t) aes_icm_encrypt, |
| (cipher_set_iv_func_t) aes_icm_set_iv, |
| (char *) aes_icm_description, |
| (int) 0, /* instance count */ |
| (cipher_test_case_t *) &aes_icm_test_case_0, |
| (debug_module_t *) &mod_aes_icm |
| }; |