| /* |
| * cipher_driver.c |
| * |
| * A driver for the generic cipher type |
| * |
| * David A. McGrew |
| * Cisco Systems, Inc. |
| */ |
| |
| /* |
| * |
| * Copyright (c) 2001-2006, Cisco Systems, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Cisco Systems, Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <stdio.h> /* for printf() */ |
| #include <stdlib.h> /* for rand() */ |
| #include <string.h> /* for memset() */ |
| #include <unistd.h> /* for getopt() */ |
| #include "cipher.h" |
| #include "aes_icm.h" |
| #include "null_cipher.h" |
| |
| #define PRINT_DEBUG 0 |
| |
| void |
| cipher_driver_test_throughput(cipher_t *c); |
| |
| err_status_t |
| cipher_driver_self_test(cipher_type_t *ct); |
| |
| |
| /* |
| * cipher_driver_test_buffering(ct) tests the cipher's output |
| * buffering for correctness by checking the consistency of succesive |
| * calls |
| */ |
| |
| err_status_t |
| cipher_driver_test_buffering(cipher_t *c); |
| |
| |
| /* |
| * functions for testing cipher cache thrash |
| */ |
| err_status_t |
| cipher_driver_test_array_throughput(cipher_type_t *ct, |
| int klen, int num_cipher); |
| |
| void |
| cipher_array_test_throughput(cipher_t *ca[], int num_cipher); |
| |
| uint64_t |
| cipher_array_bits_per_second(cipher_t *cipher_array[], int num_cipher, |
| unsigned octets_in_buffer, int num_trials); |
| |
| err_status_t |
| cipher_array_delete(cipher_t *cipher_array[], int num_cipher); |
| |
| err_status_t |
| cipher_array_alloc_init(cipher_t ***cipher_array, int num_ciphers, |
| cipher_type_t *ctype, int klen); |
| |
| void |
| usage(char *prog_name) { |
| printf("usage: %s [ -t | -v | -a ]\n", prog_name); |
| exit(255); |
| } |
| |
| void |
| check_status(err_status_t s) { |
| if (s) { |
| printf("error (code %d)\n", s); |
| exit(s); |
| } |
| return; |
| } |
| |
| /* |
| * null_cipher, aes_icm, and aes_cbc are the cipher meta-objects |
| * defined in the files in crypto/cipher subdirectory. these are |
| * declared external so that we can use these cipher types here |
| */ |
| |
| extern cipher_type_t null_cipher; |
| extern cipher_type_t aes_icm; |
| extern cipher_type_t aes_cbc; |
| |
| int |
| main(int argc, char *argv[]) { |
| cipher_t *c = NULL; |
| err_status_t status; |
| unsigned char test_key[20] = { |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 0x10, 0x11, 0x12, 0x13 |
| }; |
| int q; |
| unsigned do_timing_test = 0; |
| unsigned do_validation = 0; |
| unsigned do_array_timing_test = 0; |
| |
| /* process input arguments */ |
| while (1) { |
| q = getopt(argc, argv, "tva"); |
| if (q == -1) |
| break; |
| switch (q) { |
| case 't': |
| do_timing_test = 1; |
| break; |
| case 'v': |
| do_validation = 1; |
| break; |
| case 'a': |
| do_array_timing_test = 1; |
| break; |
| default: |
| usage(argv[0]); |
| } |
| } |
| |
| printf("cipher test driver\n" |
| "David A. McGrew\n" |
| "Cisco Systems, Inc.\n"); |
| |
| if (!do_validation && !do_timing_test && !do_array_timing_test) |
| usage(argv[0]); |
| |
| /* arry timing (cache thrash) test */ |
| if (do_array_timing_test) { |
| int max_num_cipher = 1 << 16; /* number of ciphers in cipher_array */ |
| int num_cipher; |
| |
| for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| cipher_driver_test_array_throughput(&null_cipher, 0, num_cipher); |
| |
| for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| cipher_driver_test_array_throughput(&aes_icm, 30, num_cipher); |
| |
| for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| cipher_driver_test_array_throughput(&aes_cbc, 16, num_cipher); |
| |
| } |
| |
| if (do_validation) { |
| cipher_driver_self_test(&null_cipher); |
| cipher_driver_self_test(&aes_icm); |
| cipher_driver_self_test(&aes_cbc); |
| } |
| |
| /* do timing and/or buffer_test on null_cipher */ |
| status = cipher_type_alloc(&null_cipher, &c, 0); |
| check_status(status); |
| |
| status = cipher_init(c, NULL, direction_encrypt); |
| check_status(status); |
| |
| if (do_timing_test) |
| cipher_driver_test_throughput(c); |
| if (do_validation) { |
| status = cipher_driver_test_buffering(c); |
| check_status(status); |
| } |
| status = cipher_dealloc(c); |
| check_status(status); |
| |
| |
| /* run the throughput test on the aes_icm cipher */ |
| status = cipher_type_alloc(&aes_icm, &c, 30); |
| if (status) { |
| fprintf(stderr, "error: can't allocate cipher\n"); |
| exit(status); |
| } |
| |
| status = cipher_init(c, test_key, direction_encrypt); |
| check_status(status); |
| |
| if (do_timing_test) |
| cipher_driver_test_throughput(c); |
| |
| if (do_validation) { |
| status = cipher_driver_test_buffering(c); |
| check_status(status); |
| } |
| |
| status = cipher_dealloc(c); |
| check_status(status); |
| |
| return 0; |
| } |
| |
| void |
| cipher_driver_test_throughput(cipher_t *c) { |
| int i; |
| int min_enc_len = 32; |
| int max_enc_len = 2048; /* should be a power of two */ |
| int num_trials = 100000; |
| |
| printf("timing %s throughput:\n", c->type->description); |
| fflush(stdout); |
| for (i=min_enc_len; i <= max_enc_len; i = i * 2) |
| printf("msg len: %d\tgigabits per second: %f\n", |
| i, cipher_bits_per_second(c, i, num_trials) / 1e9); |
| |
| } |
| |
| err_status_t |
| cipher_driver_self_test(cipher_type_t *ct) { |
| err_status_t status; |
| |
| printf("running cipher self-test for %s...", ct->description); |
| status = cipher_type_self_test(ct); |
| if (status) { |
| printf("failed with error code %d\n", status); |
| exit(status); |
| } |
| printf("passed\n"); |
| |
| return err_status_ok; |
| } |
| |
| /* |
| * cipher_driver_test_buffering(ct) tests the cipher's output |
| * buffering for correctness by checking the consistency of succesive |
| * calls |
| */ |
| |
| err_status_t |
| cipher_driver_test_buffering(cipher_t *c) { |
| int i, j, num_trials = 1000; |
| unsigned len, buflen = 1024; |
| uint8_t buffer0[buflen], buffer1[buflen], *current, *end; |
| uint8_t idx[16] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x34 |
| }; |
| err_status_t status; |
| |
| printf("testing output buffering for cipher %s...", |
| c->type->description); |
| |
| for (i=0; i < num_trials; i++) { |
| |
| /* set buffers to zero */ |
| for (j=0; j < buflen; j++) |
| buffer0[j] = buffer1[j] = 0; |
| |
| /* initialize cipher */ |
| status = cipher_set_iv(c, idx); |
| if (status) |
| return status; |
| |
| /* generate 'reference' value by encrypting all at once */ |
| status = cipher_encrypt(c, buffer0, &buflen); |
| if (status) |
| return status; |
| |
| /* re-initialize cipher */ |
| status = cipher_set_iv(c, idx); |
| if (status) |
| return status; |
| |
| /* now loop over short lengths until buffer1 is encrypted */ |
| current = buffer1; |
| end = buffer1 + buflen; |
| while (current < end) { |
| |
| /* choose a short length */ |
| len = rand() & 0x01f; |
| |
| /* make sure that len doesn't cause us to overreach the buffer */ |
| if (current + len > end) |
| len = end - current; |
| |
| status = cipher_encrypt(c, current, &len); |
| if (status) |
| return status; |
| |
| /* advance pointer into buffer1 to reflect encryption */ |
| current += len; |
| |
| /* if buffer1 is all encrypted, break out of loop */ |
| if (current == end) |
| break; |
| } |
| |
| /* compare buffers */ |
| for (j=0; j < buflen; j++) |
| if (buffer0[j] != buffer1[j]) { |
| #if PRINT_DEBUG |
| printf("test case %d failed at byte %d\n", i, j); |
| printf("computed: %s\n", octet_string_hex_string(buffer1, buflen)); |
| printf("expected: %s\n", octet_string_hex_string(buffer0, buflen)); |
| #endif |
| return err_status_algo_fail; |
| } |
| } |
| |
| printf("passed\n"); |
| |
| return err_status_ok; |
| } |
| |
| |
| /* |
| * The function cipher_test_throughput_array() tests the effect of CPU |
| * cache thrash on cipher throughput. |
| * |
| * cipher_array_alloc_init(ctype, array, num_ciphers) creates an array |
| * of cipher_t of type ctype |
| */ |
| |
| err_status_t |
| cipher_array_alloc_init(cipher_t ***ca, int num_ciphers, |
| cipher_type_t *ctype, int klen) { |
| int i, j; |
| err_status_t status; |
| uint8_t *key; |
| cipher_t **cipher_array; |
| |
| /* allocate array of pointers to ciphers */ |
| cipher_array = (cipher_t **) malloc(sizeof(cipher_t *) * num_ciphers); |
| if (cipher_array == NULL) |
| return err_status_alloc_fail; |
| |
| /* set ca to location of cipher_array */ |
| *ca = cipher_array; |
| |
| /* allocate key */ |
| key = crypto_alloc(klen); |
| if (key == NULL) { |
| free(cipher_array); |
| return err_status_alloc_fail; |
| } |
| |
| /* allocate and initialize an array of ciphers */ |
| for (i=0; i < num_ciphers; i++) { |
| |
| /* allocate cipher */ |
| status = cipher_type_alloc(ctype, cipher_array, klen); |
| if (status) |
| return status; |
| |
| /* generate random key and initialize cipher */ |
| for (j=0; j < klen; j++) |
| key[j] = (uint8_t) rand(); |
| status = cipher_init(*cipher_array, key, direction_encrypt); |
| if (status) |
| return status; |
| |
| /* printf("%dth cipher is at %p\n", i, *cipher_array); */ |
| /* printf("%dth cipher description: %s\n", i, */ |
| /* (*cipher_array)->type->description); */ |
| |
| /* advance cipher array pointer */ |
| cipher_array++; |
| } |
| |
| return err_status_ok; |
| } |
| |
| err_status_t |
| cipher_array_delete(cipher_t *cipher_array[], int num_cipher) { |
| int i; |
| |
| for (i=0; i < num_cipher; i++) { |
| cipher_dealloc(cipher_array[i]); |
| } |
| |
| free(cipher_array); |
| |
| return err_status_ok; |
| } |
| |
| |
| /* |
| * cipher_array_bits_per_second(c, l, t) computes (an estimate of) the |
| * number of bits that a cipher implementation can encrypt in a second |
| * when distinct keys are used to encrypt distinct messages |
| * |
| * c is a cipher (which MUST be allocated an initialized already), l |
| * is the length in octets of the test data to be encrypted, and t is |
| * the number of trials |
| * |
| * if an error is encountered, the value 0 is returned |
| */ |
| |
| uint64_t |
| cipher_array_bits_per_second(cipher_t *cipher_array[], int num_cipher, |
| unsigned octets_in_buffer, int num_trials) { |
| int i; |
| v128_t nonce; |
| clock_t timer; |
| unsigned char *enc_buf; |
| int cipher_index = 0; |
| |
| |
| enc_buf = crypto_alloc(octets_in_buffer); |
| if (enc_buf == NULL) |
| return 0; /* indicate bad parameters by returning null */ |
| |
| /* time repeated trials */ |
| v128_set_to_zero(&nonce); |
| timer = clock(); |
| for(i=0; i < num_trials; i++, nonce.v32[3] = i) { |
| |
| /* choose a cipher at random from the array*/ |
| cipher_index = (*((uint32_t *)enc_buf)) % num_cipher; |
| |
| /* encrypt buffer with cipher */ |
| cipher_set_iv(cipher_array[cipher_index], &nonce); |
| cipher_encrypt(cipher_array[cipher_index], enc_buf, &octets_in_buffer); |
| } |
| timer = clock() - timer; |
| |
| free(enc_buf); |
| |
| if (timer == 0) { |
| /* Too fast! */ |
| return 0; |
| } |
| |
| return CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer; |
| } |
| |
| void |
| cipher_array_test_throughput(cipher_t *ca[], int num_cipher) { |
| int i; |
| int min_enc_len = 16; |
| int max_enc_len = 2048; /* should be a power of two */ |
| int num_trials = 10000; |
| |
| printf("timing %s throughput with array size %d:\n", |
| (ca[0])->type->description, num_cipher); |
| fflush(stdout); |
| for (i=min_enc_len; i <= max_enc_len; i = i * 4) |
| printf("msg len: %d\tgigabits per second: %f\n", i, |
| cipher_array_bits_per_second(ca, num_cipher, i, num_trials) / 1e9); |
| |
| } |
| |
| err_status_t |
| cipher_driver_test_array_throughput(cipher_type_t *ct, |
| int klen, int num_cipher) { |
| cipher_t **ca = NULL; |
| err_status_t status; |
| |
| status = cipher_array_alloc_init(&ca, num_cipher, ct, klen); |
| if (status) { |
| printf("error: cipher_array_alloc_init() failed with error code %d\n", |
| status); |
| return status; |
| } |
| |
| cipher_array_test_throughput(ca, num_cipher); |
| |
| cipher_array_delete(ca, num_cipher); |
| |
| return err_status_ok; |
| } |