| /* |
| * Copyright (c) 1999 |
| * Silicon Graphics Computer Systems, Inc. |
| * |
| * Copyright (c) 1999 |
| * Boris Fomitchev |
| * |
| * This material is provided "as is", with absolutely no warranty expressed |
| * or implied. Any use is at your own risk. |
| * |
| * Permission to use or copy this software for any purpose is hereby granted |
| * without fee, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is granted, |
| * provided the above notices are retained, and a notice that the code was |
| * modified is included with the above copyright notice. |
| * |
| */ |
| |
| #include "stlport_prefix.h" |
| |
| #include <limits> |
| #include <locale> |
| #include <istream> |
| |
| #if (defined (__GNUC__) && !defined (__sun) && !defined (__hpux)) || \ |
| defined (__DMC__) |
| # include <stdint.h> |
| #endif |
| |
| #if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \ |
| defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC) |
| |
| # if defined (__BORLANDC__) |
| typedef unsigned int uint32_t; |
| typedef unsigned __int64 uint64_t; |
| # endif |
| |
| union _ll { |
| uint64_t i64; |
| struct { |
| # if defined (_STLP_BIG_ENDIAN) |
| uint32_t hi; |
| uint32_t lo; |
| # elif defined (_STLP_LITTLE_ENDIAN) |
| uint32_t lo; |
| uint32_t hi; |
| # else |
| # error Unknown endianess |
| # endif |
| } i32; |
| }; |
| |
| # if defined (__linux__) && !defined (ANDROID) |
| # include <ieee754.h> |
| # else |
| union ieee854_long_double { |
| long double d; |
| |
| /* This is the IEEE 854 double-extended-precision format. */ |
| struct { |
| unsigned int mantissa1:32; |
| unsigned int mantissa0:32; |
| unsigned int exponent:15; |
| unsigned int negative:1; |
| unsigned int empty:16; |
| } ieee; |
| }; |
| |
| # define IEEE854_LONG_DOUBLE_BIAS 0x3fff |
| # endif |
| #endif |
| |
| _STLP_BEGIN_NAMESPACE |
| _STLP_MOVE_TO_PRIV_NAMESPACE |
| |
| //---------------------------------------------------------------------- |
| // num_get |
| |
| // Helper functions for _M_do_get_float. |
| |
| #if !defined (_STLP_NO_WCHAR_T) |
| void _STLP_CALL |
| _Initialize_get_float( const ctype<wchar_t>& ct, |
| wchar_t& Plus, wchar_t& Minus, |
| wchar_t& pow_e, wchar_t& pow_E, |
| wchar_t* digits) { |
| char ndigits[11] = "0123456789"; |
| Plus = ct.widen('+'); |
| Minus = ct.widen('-'); |
| pow_e = ct.widen('e'); |
| pow_E = ct.widen('E'); |
| ct.widen(ndigits + 0, ndigits + 10, digits); |
| } |
| #endif /* WCHAR_T */ |
| |
| /* |
| * __string_to_double is just lifted from atof, the difference being |
| * that we just use '.' for the decimal point, rather than let it |
| * be taken from the current C locale, which of course is not accessible |
| * to us. |
| */ |
| #if defined (_STLP_MSVC) || defined (__BORLANDC__) || defined (__ICL) |
| typedef unsigned long uint32; |
| typedef unsigned __int64 uint64; |
| # define ULL(x) x##Ui64 |
| #elif defined (__unix) || defined (__MINGW32__) || \ |
| (defined (__DMC__) && (__LONGLONG)) || defined (__WATCOMC__) || \ |
| defined (ANDROID) |
| typedef uint32_t uint32; |
| typedef uint64_t uint64; |
| # define ULL(x) x##ULL |
| #else |
| # error There should be some unsigned 64-bit integer on the system! |
| #endif |
| |
| // Multiplication of two 64-bit integers, giving a 128-bit result. |
| // Taken from Algorithm M in Knuth section 4.3.1, with the loop |
| // hand-unrolled. |
| static void _Stl_mult64(const uint64 u, const uint64 v, |
| uint64& high, uint64& low) { |
| const uint64 low_mask = ULL(0xffffffff); |
| const uint64 u0 = u & low_mask; |
| const uint64 u1 = u >> 32; |
| const uint64 v0 = v & low_mask; |
| const uint64 v1 = v >> 32; |
| |
| uint64 t = u0 * v0; |
| low = t & low_mask; |
| |
| t = u1 * v0 + (t >> 32); |
| uint64 w1 = t & low_mask; |
| uint64 w2 = t >> 32; |
| |
| uint64 x = u0 * v1 + w1; |
| low += (x & low_mask) << 32; |
| high = u1 * v1 + w2 + (x >> 32); |
| } |
| |
| #if !defined (__linux__) || defined (ANDROID) |
| |
| # define bit11 ULL(0x7ff) |
| # define exponent_mask (bit11 << 52) |
| |
| # if !defined (__GNUC__) || (__GNUC__ != 3) || (__GNUC_MINOR__ != 4) || \ |
| (!defined (__CYGWIN__) && !defined (__MINGW32__)) |
| //Generate bad code when compiled with -O2 option. |
| inline |
| # endif |
| void _Stl_set_exponent(uint64 &val, uint64 exp) |
| { val = (val & ~exponent_mask) | ((exp & bit11) << 52); } |
| |
| #endif // __linux__ |
| |
| /* Power of ten fractions for tenscale*/ |
| /* The constants are factored so that at most two constants |
| * and two multiplies are needed. Furthermore, one of the constants |
| * is represented exactly - 10**n where 1<= n <= 27. |
| */ |
| |
| static const uint64 _Stl_tenpow[80] = { |
| ULL(0xa000000000000000), /* _Stl_tenpow[0]=(10**1)/(2**4) */ |
| ULL(0xc800000000000000), /* _Stl_tenpow[1]=(10**2)/(2**7) */ |
| ULL(0xfa00000000000000), /* _Stl_tenpow[2]=(10**3)/(2**10) */ |
| ULL(0x9c40000000000000), /* _Stl_tenpow[3]=(10**4)/(2**14) */ |
| ULL(0xc350000000000000), /* _Stl_tenpow[4]=(10**5)/(2**17) */ |
| ULL(0xf424000000000000), /* _Stl_tenpow[5]=(10**6)/(2**20) */ |
| ULL(0x9896800000000000), /* _Stl_tenpow[6]=(10**7)/(2**24) */ |
| ULL(0xbebc200000000000), /* _Stl_tenpow[7]=(10**8)/(2**27) */ |
| ULL(0xee6b280000000000), /* _Stl_tenpow[8]=(10**9)/(2**30) */ |
| ULL(0x9502f90000000000), /* _Stl_tenpow[9]=(10**10)/(2**34) */ |
| ULL(0xba43b74000000000), /* _Stl_tenpow[10]=(10**11)/(2**37) */ |
| ULL(0xe8d4a51000000000), /* _Stl_tenpow[11]=(10**12)/(2**40) */ |
| ULL(0x9184e72a00000000), /* _Stl_tenpow[12]=(10**13)/(2**44) */ |
| ULL(0xb5e620f480000000), /* _Stl_tenpow[13]=(10**14)/(2**47) */ |
| ULL(0xe35fa931a0000000), /* _Stl_tenpow[14]=(10**15)/(2**50) */ |
| ULL(0x8e1bc9bf04000000), /* _Stl_tenpow[15]=(10**16)/(2**54) */ |
| ULL(0xb1a2bc2ec5000000), /* _Stl_tenpow[16]=(10**17)/(2**57) */ |
| ULL(0xde0b6b3a76400000), /* _Stl_tenpow[17]=(10**18)/(2**60) */ |
| ULL(0x8ac7230489e80000), /* _Stl_tenpow[18]=(10**19)/(2**64) */ |
| ULL(0xad78ebc5ac620000), /* _Stl_tenpow[19]=(10**20)/(2**67) */ |
| ULL(0xd8d726b7177a8000), /* _Stl_tenpow[20]=(10**21)/(2**70) */ |
| ULL(0x878678326eac9000), /* _Stl_tenpow[21]=(10**22)/(2**74) */ |
| ULL(0xa968163f0a57b400), /* _Stl_tenpow[22]=(10**23)/(2**77) */ |
| ULL(0xd3c21bcecceda100), /* _Stl_tenpow[23]=(10**24)/(2**80) */ |
| ULL(0x84595161401484a0), /* _Stl_tenpow[24]=(10**25)/(2**84) */ |
| ULL(0xa56fa5b99019a5c8), /* _Stl_tenpow[25]=(10**26)/(2**87) */ |
| ULL(0xcecb8f27f4200f3a), /* _Stl_tenpow[26]=(10**27)/(2**90) */ |
| |
| ULL(0xd0cf4b50cfe20766), /* _Stl_tenpow[27]=(10**55)/(2**183) */ |
| ULL(0xd2d80db02aabd62c), /* _Stl_tenpow[28]=(10**83)/(2**276) */ |
| ULL(0xd4e5e2cdc1d1ea96), /* _Stl_tenpow[29]=(10**111)/(2**369) */ |
| ULL(0xd6f8d7509292d603), /* _Stl_tenpow[30]=(10**139)/(2**462) */ |
| ULL(0xd910f7ff28069da4), /* _Stl_tenpow[31]=(10**167)/(2**555) */ |
| ULL(0xdb2e51bfe9d0696a), /* _Stl_tenpow[32]=(10**195)/(2**648) */ |
| ULL(0xdd50f1996b947519), /* _Stl_tenpow[33]=(10**223)/(2**741) */ |
| ULL(0xdf78e4b2bd342cf7), /* _Stl_tenpow[34]=(10**251)/(2**834) */ |
| ULL(0xe1a63853bbd26451), /* _Stl_tenpow[35]=(10**279)/(2**927) */ |
| ULL(0xe3d8f9e563a198e5), /* _Stl_tenpow[36]=(10**307)/(2**1020) */ |
| |
| // /* _Stl_tenpow[36]=(10**335)/(2**) */ |
| // /* _Stl_tenpow[36]=(10**335)/(2**) */ |
| |
| ULL(0xfd87b5f28300ca0e), /* _Stl_tenpow[37]=(10**-28)/(2**-93) */ |
| ULL(0xfb158592be068d2f), /* _Stl_tenpow[38]=(10**-56)/(2**-186) */ |
| ULL(0xf8a95fcf88747d94), /* _Stl_tenpow[39]=(10**-84)/(2**-279) */ |
| ULL(0xf64335bcf065d37d), /* _Stl_tenpow[40]=(10**-112)/(2**-372) */ |
| ULL(0xf3e2f893dec3f126), /* _Stl_tenpow[41]=(10**-140)/(2**-465) */ |
| ULL(0xf18899b1bc3f8ca2), /* _Stl_tenpow[42]=(10**-168)/(2**-558) */ |
| ULL(0xef340a98172aace5), /* _Stl_tenpow[43]=(10**-196)/(2**-651) */ |
| ULL(0xece53cec4a314ebe), /* _Stl_tenpow[44]=(10**-224)/(2**-744) */ |
| ULL(0xea9c227723ee8bcb), /* _Stl_tenpow[45]=(10**-252)/(2**-837) */ |
| ULL(0xe858ad248f5c22ca), /* _Stl_tenpow[46]=(10**-280)/(2**-930) */ |
| ULL(0xe61acf033d1a45df), /* _Stl_tenpow[47]=(10**-308)/(2**-1023) */ |
| ULL(0xe3e27a444d8d98b8), /* _Stl_tenpow[48]=(10**-336)/(2**-1116) */ |
| ULL(0xe1afa13afbd14d6e) /* _Stl_tenpow[49]=(10**-364)/(2**-1209) */ |
| }; |
| |
| static const short _Stl_twoexp[80] = { |
| 4,7,10,14,17,20,24,27,30,34,37,40,44,47,50,54,57,60,64,67,70,74,77,80,84,87,90, |
| 183,276,369,462,555,648,741,834,927,1020, |
| -93,-186,-279,-372,-465,-558,-651,-744,-837,-930,-1023,-1116,-1209 |
| }; |
| |
| #define TEN_1 0 /* offset to 10 ** 1 */ |
| #define TEN_27 26 /* offset to 10 ** 27 */ |
| #define TEN_M28 37 /* offset to 10 ** -28 */ |
| #define NUM_HI_P 11 |
| #define NUM_HI_N 13 |
| |
| #define _Stl_HIBITULL (ULL(1) << 63) |
| |
| static void _Stl_norm_and_round(uint64& p, int& norm, uint64 prodhi, uint64 prodlo) { |
| norm = 0; |
| if ((prodhi & _Stl_HIBITULL) == 0) { |
| /* leading bit is a zero |
| * may have to normalize |
| */ |
| if ((prodhi == ~_Stl_HIBITULL) && |
| ((prodlo >> 62) == 0x3)) { /* normalization followed by round |
| * would cause carry to create |
| * extra bit, so don't normalize |
| */ |
| p = _Stl_HIBITULL; |
| return; |
| } |
| p = (prodhi << 1) | (prodlo >> 63); /* normalize */ |
| norm = 1; |
| prodlo <<= 1; |
| } |
| else { |
| p = prodhi; |
| } |
| |
| if ((prodlo & _Stl_HIBITULL) != 0) { /* first guard bit a one */ |
| if (((p & 0x1) != 0) || |
| prodlo != _Stl_HIBITULL ) { /* not borderline for round to even */ |
| /* round */ |
| ++p; |
| if (p == 0) |
| ++p; |
| } |
| } |
| } |
| |
| // Convert a 64-bitb fraction * 10^exp to a 64-bit fraction * 2^bexp. |
| // p: 64-bit fraction |
| // exp: base-10 exponent |
| // bexp: base-2 exponent (output parameter) |
| static void _Stl_tenscale(uint64& p, int exp, int& bexp) { |
| bexp = 0; |
| |
| if ( exp == 0 ) { /* no scaling needed */ |
| return; |
| } |
| |
| int exp_hi = 0, exp_lo = exp; /* exp = exp_hi*32 + exp_lo */ |
| int tlo = TEN_1, thi; /* offsets in power of ten table */ |
| int num_hi; /* number of high exponent powers */ |
| |
| if (exp > 0) { /* split exponent */ |
| if (exp_lo > 27) { |
| exp_lo++; |
| while (exp_lo > 27) { |
| exp_hi++; |
| exp_lo -= 28; |
| } |
| } |
| thi = TEN_27; |
| num_hi = NUM_HI_P; |
| } else { // exp < 0 |
| while (exp_lo < 0) { |
| exp_hi++; |
| exp_lo += 28; |
| } |
| thi = TEN_M28; |
| num_hi = NUM_HI_N; |
| } |
| |
| uint64 prodhi, prodlo; /* 128b product */ |
| int norm; /* number of bits of normalization */ |
| |
| int hi, lo; /* offsets in power of ten table */ |
| while (exp_hi) { /* scale */ |
| hi = (min) (exp_hi, num_hi); /* only a few large powers of 10 */ |
| exp_hi -= hi; /* could iterate in extreme case */ |
| hi += thi-1; |
| _Stl_mult64(p, _Stl_tenpow[hi], prodhi, prodlo); |
| _Stl_norm_and_round(p, norm, prodhi, prodlo); |
| bexp += _Stl_twoexp[hi] - norm; |
| } |
| |
| if (exp_lo) { |
| lo = tlo + exp_lo -1; |
| _Stl_mult64(p, _Stl_tenpow[lo], prodhi, prodlo); |
| _Stl_norm_and_round(p, norm, prodhi, prodlo); |
| bexp += _Stl_twoexp[lo] - norm; |
| } |
| |
| return; |
| } |
| |
| // First argument is a buffer of values from 0 to 9, NOT ascii. |
| // Second argument is number of digits in buffer, 1 <= digits <= 17. |
| // Third argument is base-10 exponent. |
| |
| /* IEEE representation */ |
| #if !defined (__linux__) || defined (ANDROID) |
| |
| union _Double_rep { |
| uint64 ival; |
| double val; |
| }; |
| |
| static double _Stl_atod(char *buffer, ptrdiff_t ndigit, int dexp) { |
| typedef numeric_limits<double> limits; |
| _Double_rep drep; |
| uint64 &value = drep.ival; /* Value develops as follows: |
| * 1) decimal digits as an integer |
| * 2) left adjusted fraction |
| * 3) right adjusted fraction |
| * 4) exponent and fraction |
| */ |
| |
| uint32 guard; /* First guard bit */ |
| uint64 rest; /* Remaining guard bits */ |
| |
| int bexp; /* binary exponent */ |
| int nzero; /* number of non-zero bits */ |
| int sexp; /* scaling exponent */ |
| |
| char *bufferend; /* pointer to char after last digit */ |
| |
| /* Convert the decimal digits to a binary integer. */ |
| bufferend = buffer + ndigit; |
| value = 0; |
| |
| while (buffer < bufferend) { |
| value *= 10; |
| value += *buffer++; |
| } |
| |
| /* Check for zero and treat it as a special case */ |
| if (value == 0) { |
| return 0.0; |
| } |
| |
| /* Normalize value */ |
| bexp = 64; /* convert from 64b int to fraction */ |
| |
| /* Count number of non-zeroes in value */ |
| nzero = 0; |
| if ((value >> 32) != 0) { nzero = 32; } //*TY 03/25/2000 - added explicit comparison to zero to avoid uint64 to bool conversion operator |
| if ((value >> (16 + nzero)) != 0) { nzero += 16; } |
| if ((value >> ( 8 + nzero)) != 0) { nzero += 8; } |
| if ((value >> ( 4 + nzero)) != 0) { nzero += 4; } |
| if ((value >> ( 2 + nzero)) != 0) { nzero += 2; } |
| if ((value >> ( 1 + nzero)) != 0) { nzero += 1; } |
| if ((value >> ( nzero)) != 0) { nzero += 1; } |
| |
| /* Normalize */ |
| value <<= /*(uint64)*/ (64 - nzero); //*TY 03/25/2000 - removed extraneous cast to uint64 |
| bexp -= 64 - nzero; |
| |
| /* At this point we have a 64b fraction and a binary exponent |
| * but have yet to incorporate the decimal exponent. |
| */ |
| |
| /* multiply by 10^dexp */ |
| _Stl_tenscale(value, dexp, sexp); |
| bexp += sexp; |
| |
| if (bexp <= -1022) { /* HI denorm or underflow */ |
| bexp += 1022; |
| if (bexp < -53) { /* guaranteed underflow */ |
| value = 0; |
| } |
| else { /* denorm or possible underflow */ |
| int lead0 = 12 - bexp; /* 12 sign and exponent bits */ |
| |
| /* we must special case right shifts of more than 63 */ |
| if (lead0 > 64) { |
| rest = value; |
| guard = 0; |
| value = 0; |
| } |
| else if (lead0 == 64) { |
| rest = value & ((ULL(1)<< 63)-1); |
| guard = (uint32) ((value>> 63) & 1 ); |
| value = 0; |
| } |
| else { |
| rest = value & (((ULL(1) << lead0)-1)-1); |
| guard = (uint32) (((value>> lead0)-1) & 1); |
| value >>= /*(uint64)*/ lead0; /* exponent is zero */ |
| } |
| |
| /* Round */ |
| if (guard && ((value & 1) || rest) ) { |
| ++value; |
| if (value == (ULL(1) << (limits::digits - 1))) { /* carry created normal number */ |
| value = 0; |
| _Stl_set_exponent(value, 1); |
| } |
| } |
| } |
| } |
| else { /* not zero or denorm */ |
| /* Round to 53 bits */ |
| rest = value & ((1 << 10) - 1); |
| value >>= 10; |
| guard = (uint32) value & 1; |
| value >>= 1; |
| |
| /* value&1 guard rest Action |
| * |
| * dc 0 dc none |
| * 1 1 dc round |
| * 0 1 0 none |
| * 0 1 !=0 round |
| */ |
| if (guard) { |
| if (((value&1)!=0) || (rest!=0)) { |
| ++value; /* round */ |
| if ((value >> 53) != 0) { /* carry all the way across */ |
| value >>= 1; /* renormalize */ |
| ++bexp; |
| } |
| } |
| } |
| /* |
| * Check for overflow |
| * IEEE Double Precision Format |
| * (From Table 7-8 of Kane and Heinrich) |
| * |
| * Fraction bits 52 |
| * Emax +1023 |
| * Emin -1022 |
| * Exponent bias +1023 |
| * Exponent bits 11 |
| * Integer bit hidden |
| * Total width in bits 64 |
| */ |
| |
| if (bexp > limits::max_exponent) { /* overflow */ |
| return limits::infinity(); |
| } |
| else { /* value is normal */ |
| value &= ~(ULL(1) << (limits::digits - 1)); /* hide hidden bit */ |
| _Stl_set_exponent(value, bexp + 1022); /* add bias */ |
| } |
| } |
| |
| _STLP_STATIC_ASSERT(sizeof(uint64) >= sizeof(double)) |
| return drep.val; |
| } |
| |
| #endif |
| |
| #if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \ |
| defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC) |
| |
| template <class D, class IEEE, int M, int BIAS> |
| D _Stl_atodT(char *buffer, ptrdiff_t ndigit, int dexp) |
| { |
| typedef numeric_limits<D> limits; |
| |
| /* Convert the decimal digits to a binary integer. */ |
| char *bufferend = buffer + ndigit; /* pointer to char after last digit */ |
| _ll vv; |
| vv.i64 = 0L; |
| |
| while ( buffer < bufferend ) { |
| vv.i64 *= 10; |
| vv.i64 += *buffer++; |
| } |
| |
| if ( vv.i64 == ULL(0) ) { /* Check for zero and treat it as a special case */ |
| return D(0.0); |
| } |
| |
| /* Normalize value */ |
| |
| int bexp = 64; /* convert from 64b int to fraction */ |
| |
| /* Count number of non-zeroes in value */ |
| int nzero = 0; |
| if ((vv.i64 >> 32) != 0) { nzero = 32; } |
| if ((vv.i64 >> (16 + nzero)) != 0) { nzero += 16; } |
| if ((vv.i64 >> ( 8 + nzero)) != 0) { nzero += 8; } |
| if ((vv.i64 >> ( 4 + nzero)) != 0) { nzero += 4; } |
| if ((vv.i64 >> ( 2 + nzero)) != 0) { nzero += 2; } |
| if ((vv.i64 >> ( 1 + nzero)) != 0) { nzero += 1; } |
| if ((vv.i64 >> ( nzero)) != 0) { nzero += 1; } |
| |
| /* Normalize */ |
| nzero = 64 - nzero; |
| vv.i64 <<= nzero; // * TY 03/25/2000 - removed extraneous cast to uint64 |
| bexp -= nzero; |
| |
| /* At this point we have a 64b fraction and a binary exponent |
| * but have yet to incorporate the decimal exponent. |
| */ |
| |
| /* multiply by 10^dexp */ |
| int sexp; |
| _Stl_tenscale(vv.i64, dexp, sexp); |
| bexp += sexp; |
| |
| if ( bexp >= limits::min_exponent ) { /* not zero or denorm */ |
| if ( limits::digits < 64 ) { |
| /* Round to (64 - M + 1) bits */ |
| uint64_t rest = vv.i64 & ((~ULL(0) / ULL(2)) >> (limits::digits - 1)); |
| vv.i64 >>= M - 2; |
| uint32_t guard = (uint32) vv.i64 & 1; |
| vv.i64 >>= 1; |
| |
| /* value&1 guard rest Action |
| * |
| * dc 0 dc none |
| * 1 1 dc round |
| * 0 1 0 none |
| * 0 1 !=0 round |
| */ |
| |
| if (guard) { |
| if ( ((vv.i64 & 1) != 0) || (rest != 0) ) { |
| vv.i64++; /* round */ |
| if ( (vv.i64 >> (limits::digits < 64 ? limits::digits : 0)) != 0 ) { /* carry all the way across */ |
| vv.i64 >>= 1; /* renormalize */ |
| ++bexp; |
| } |
| } |
| } |
| |
| vv.i64 &= ~(ULL(1) << (limits::digits - 1)); /* hide hidden bit */ |
| } |
| /* |
| * Check for overflow |
| * IEEE Double Precision Format |
| * (From Table 7-8 of Kane and Heinrich) |
| * |
| * Fraction bits 52 |
| * Emax +1023 |
| * Emin -1022 |
| * Exponent bias +1023 |
| * Exponent bits 11 |
| * Integer bit hidden |
| * Total width in bits 64 |
| */ |
| |
| if (bexp > limits::max_exponent) { /* overflow */ |
| return limits::infinity(); |
| } |
| |
| /* value is normal */ |
| |
| IEEE v; |
| |
| v.ieee.mantissa0 = vv.i32.hi; |
| v.ieee.mantissa1 = vv.i32.lo; |
| v.ieee.negative = 0; |
| v.ieee.exponent = bexp + BIAS - 1; |
| |
| return v.d; |
| } |
| |
| /* HI denorm or underflow */ |
| bexp += BIAS - 1; |
| if (bexp < -limits::digits) { /* guaranteed underflow */ |
| vv.i64 = 0; |
| } else { /* denorm or possible underflow */ |
| |
| /* |
| * Problem point for long double: looks like this code reflect shareing of mantissa |
| * and exponent in 64b int; not so for long double |
| */ |
| |
| int lead0 = M - bexp; /* M = 12 sign and exponent bits */ |
| uint64_t rest; |
| uint32_t guard; |
| |
| /* we must special case right shifts of more than 63 */ |
| |
| if (lead0 > 64) { |
| rest = vv.i64; |
| guard = 0; |
| vv.i64 = 0; |
| } else if (lead0 == 64) { |
| rest = vv.i64 & ((ULL(1) << 63)-1); |
| guard = (uint32) ((vv.i64 >> 63) & 1 ); |
| vv.i64 = 0; |
| } else { |
| rest = vv.i64 & (((ULL(1) << lead0)-1)-1); |
| guard = (uint32) (((vv.i64 >> lead0)-1) & 1); |
| vv.i64 >>= /*(uint64)*/ lead0; /* exponent is zero */ |
| } |
| |
| /* Round */ |
| if (guard && ( (vv.i64 & 1) || rest)) { |
| vv.i64++; |
| if (vv.i64 == (ULL(1) << (limits::digits - 1))) { /* carry created normal number */ |
| IEEE v; |
| |
| v.ieee.mantissa0 = 0; |
| v.ieee.mantissa1 = 0; |
| v.ieee.negative = 0; |
| v.ieee.exponent = 1; |
| return v.d; |
| } |
| } |
| } |
| |
| IEEE v; |
| |
| v.ieee.mantissa0 = vv.i32.hi; |
| v.ieee.mantissa1 = vv.i32.lo; |
| v.ieee.negative = 0; |
| v.ieee.exponent = 0; |
| |
| return v.d; |
| } |
| #endif // __linux__ |
| |
| #if !defined (__linux__) || defined (ANDROID) |
| static double _Stl_string_to_double(const char *s) { |
| typedef numeric_limits<double> limits; |
| const int max_digits = limits::digits10 + 2; |
| unsigned c; |
| unsigned Negate, decimal_point; |
| char *d; |
| int exp; |
| int dpchar; |
| char digits[max_digits]; |
| |
| c = *s++; |
| |
| /* process sign */ |
| Negate = 0; |
| if (c == '+') { |
| c = *s++; |
| } else if (c == '-') { |
| Negate = 1; |
| c = *s++; |
| } |
| |
| d = digits; |
| dpchar = '.' - '0'; |
| decimal_point = 0; |
| exp = 0; |
| |
| for (;;) { |
| c -= '0'; |
| if (c < 10) { |
| if (d == digits + max_digits) { |
| /* ignore more than max_digits digits, but adjust exponent */ |
| exp += (decimal_point ^ 1); |
| } else { |
| if (c == 0 && d == digits) { |
| /* ignore leading zeros */ |
| } else { |
| *d++ = (char) c; |
| } |
| exp -= decimal_point; |
| } |
| } else if (c == (unsigned int) dpchar && !decimal_point) { /* INTERNATIONAL */ |
| decimal_point = 1; |
| } else { |
| break; |
| } |
| c = *s++; |
| } |
| |
| /* strtod cant return until it finds the end of the exponent */ |
| if (d == digits) { |
| return 0.0; |
| } |
| |
| if (c == 'e' - '0' || c == 'E' - '0') { |
| register unsigned negate_exp = 0; |
| register int e = 0; |
| c = *s++; |
| if (c == '+' || c == ' ') { |
| c = *s++; |
| } else if (c == '-') { |
| negate_exp = 1; |
| c = *s++; |
| } |
| if (c -= '0', c < 10) { |
| do { |
| e = e * 10 + (int)c; |
| c = *s++; |
| } while (c -= '0', c < 10); |
| |
| if (negate_exp) { |
| e = -e; |
| } |
| exp += e; |
| } |
| } |
| |
| double x; |
| ptrdiff_t n = d - digits; |
| if ((exp + n - 1) < limits::min_exponent10) { |
| x = 0; |
| } |
| else if ((exp + n - 1) > limits::max_exponent10) { |
| x = limits::infinity(); |
| } |
| else { |
| /* Let _Stl_atod diagnose under- and over-flows. |
| * If the input was == 0.0, we have already returned, |
| * so retval of +-Inf signals OVERFLOW, 0.0 UNDERFLOW */ |
| x = _Stl_atod(digits, n, exp); |
| } |
| |
| if (Negate) { |
| x = -x; |
| } |
| |
| return x; |
| } |
| |
| #endif |
| |
| #if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \ |
| defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC) |
| |
| template <class D, class IEEE, int M, int BIAS> |
| D _Stl_string_to_doubleT(const char *s) |
| { |
| typedef numeric_limits<D> limits; |
| const int max_digits = limits::digits10; /* + 2 17 */; |
| unsigned c; |
| unsigned decimal_point; |
| char *d; |
| int exp; |
| D x; |
| int dpchar; |
| char digits[max_digits]; |
| |
| c = *s++; |
| |
| /* process sign */ |
| bool Negate = false; |
| if (c == '+') { |
| c = *s++; |
| } else if (c == '-') { |
| Negate = true; |
| c = *s++; |
| } |
| |
| d = digits; |
| dpchar = '.' - '0'; |
| decimal_point = 0; |
| exp = 0; |
| |
| for (;;) { |
| c -= '0'; |
| if (c < 10) { |
| if (d == digits + max_digits) { |
| /* ignore more than max_digits digits, but adjust exponent */ |
| exp += (decimal_point ^ 1); |
| } else { |
| if (c == 0 && d == digits) { |
| /* ignore leading zeros */ |
| } else { |
| *d++ = (char) c; |
| } |
| exp -= decimal_point; |
| } |
| } else if (c == (unsigned int) dpchar && !decimal_point) { /* INTERNATIONAL */ |
| decimal_point = 1; |
| } else { |
| break; |
| } |
| c = *s++; |
| } |
| /* strtod cant return until it finds the end of the exponent */ |
| if (d == digits) { |
| return D(0.0); |
| } |
| |
| if (c == 'e'-'0' || c == 'E'-'0') { |
| bool negate_exp = false; |
| register int e = 0; |
| c = *s++; |
| if (c == '+' || c == ' ') { |
| c = *s++; |
| } else if (c == '-') { |
| negate_exp = true; |
| c = *s++; |
| } |
| if (c -= '0', c < 10) { |
| do { |
| e = e * 10 + (int)c; |
| c = *s++; |
| } while (c -= '0', c < 10); |
| |
| if (negate_exp) { |
| e = -e; |
| } |
| exp += e; |
| } |
| } |
| |
| ptrdiff_t n = d - digits; |
| if ((exp + n - 1) < limits::min_exponent10) { |
| return D(0.0); // +0.0 is the same as -0.0 |
| } else if ((exp + n - 1) > limits::max_exponent10 ) { |
| // not good, because of x = -x below; this may lead to portability problems |
| x = limits::infinity(); |
| } else { |
| /* let _Stl_atod diagnose under- and over-flows */ |
| /* if the input was == 0.0, we have already returned, |
| so retval of +-Inf signals OVERFLOW, 0.0 UNDERFLOW |
| */ |
| x = _Stl_atodT<D,IEEE,M,BIAS>(digits, n, exp); |
| } |
| |
| return Negate ? -x : x; |
| } |
| |
| #endif // __linux__ |
| |
| void _STLP_CALL |
| __string_to_float(const __iostring& v, float& val) |
| { |
| #if !defined (__linux__) || defined (ANDROID) |
| val = (float)_Stl_string_to_double(v.c_str()); |
| #else |
| val = (float)_Stl_string_to_doubleT<double,ieee754_double,12,IEEE754_DOUBLE_BIAS>(v.c_str()); |
| #endif |
| } |
| |
| void _STLP_CALL |
| __string_to_float(const __iostring& v, double& val) |
| { |
| #if !defined (__linux__) || defined (ANDROID) |
| val = _Stl_string_to_double(v.c_str()); |
| #else |
| val = _Stl_string_to_doubleT<double,ieee754_double,12,IEEE754_DOUBLE_BIAS>(v.c_str()); |
| #endif |
| } |
| |
| #if !defined (_STLP_NO_LONG_DOUBLE) |
| void _STLP_CALL |
| __string_to_float(const __iostring& v, long double& val) { |
| #if !defined (__linux__) && !defined (__MINGW32__) && !defined (__CYGWIN__) && \ |
| !defined (__BORLANDC__) && !defined (__DMC__) && !defined (__HP_aCC) |
| //The following function is valid only if long double is an alias for double. |
| _STLP_STATIC_ASSERT( sizeof(long double) <= sizeof(double) ) |
| val = _Stl_string_to_double(v.c_str()); |
| #else |
| val = _Stl_string_to_doubleT<long double,ieee854_long_double,16,IEEE854_LONG_DOUBLE_BIAS>(v.c_str()); |
| #endif |
| } |
| #endif |
| |
| _STLP_MOVE_TO_STD_NAMESPACE |
| _STLP_END_NAMESPACE |
| |
| // Local Variables: |
| // mode:C++ |
| // End: |