| // Copyright 2006-2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "bootstrapper.h" |
| #include "codegen-inl.h" |
| #include "debug.h" |
| #include "runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(void* buffer, int size) |
| : Assembler(buffer, size), |
| generating_stub_(false), |
| allow_stub_calls_(true), |
| code_object_(Heap::undefined_value()) { |
| } |
| |
| |
| // We always generate arm code, never thumb code, even if V8 is compiled to |
| // thumb, so we require inter-working support |
| #if defined(__thumb__) && !defined(USE_THUMB_INTERWORK) |
| #error "flag -mthumb-interwork missing" |
| #endif |
| |
| |
| // We do not support thumb inter-working with an arm architecture not supporting |
| // the blx instruction (below v5t). If you know what CPU you are compiling for |
| // you can use -march=armv7 or similar. |
| #if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS) |
| # error "For thumb inter-working we require an architecture which supports blx" |
| #endif |
| |
| |
| // Using blx may yield better code, so use it when required or when available |
| #if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS) |
| #define USE_BLX 1 |
| #endif |
| |
| // Using bx does not yield better code, so use it only when required |
| #if defined(USE_THUMB_INTERWORK) |
| #define USE_BX 1 |
| #endif |
| |
| |
| void MacroAssembler::Jump(Register target, Condition cond) { |
| #if USE_BX |
| bx(target, cond); |
| #else |
| mov(pc, Operand(target), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond) { |
| #if USE_BX |
| mov(ip, Operand(target, rmode), LeaveCC, cond); |
| bx(ip, cond); |
| #else |
| mov(pc, Operand(target, rmode), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(reinterpret_cast<intptr_t>(target), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| // 'code' is always generated ARM code, never THUMB code |
| Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Call(Register target, Condition cond) { |
| #if USE_BLX |
| blx(target, cond); |
| #else |
| // set lr for return at current pc + 8 |
| mov(lr, Operand(pc), LeaveCC, cond); |
| mov(pc, Operand(target), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond) { |
| // Set lr for return at current pc + 8. |
| mov(lr, Operand(pc), LeaveCC, cond); |
| // Emit a ldr<cond> pc, [pc + offset of target in constant pool]. |
| mov(pc, Operand(target, rmode), LeaveCC, cond); |
| // If USE_BLX is defined, we could emit a 'mov ip, target', followed by a |
| // 'blx ip'; however, the code would not be shorter than the above sequence |
| // and the target address of the call would be referenced by the first |
| // instruction rather than the second one, which would make it harder to patch |
| // (two instructions before the return address, instead of one). |
| ASSERT(kCallTargetAddressOffset == kInstrSize); |
| } |
| |
| |
| void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| Call(reinterpret_cast<intptr_t>(target), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| // 'code' is always generated ARM code, never THUMB code |
| Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Ret(Condition cond) { |
| #if USE_BX |
| bx(lr, cond); |
| #else |
| mov(pc, Operand(lr), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { |
| LoadRoot(ip, Heap::kStackLimitRootIndex); |
| cmp(sp, Operand(ip)); |
| b(lo, on_stack_overflow); |
| } |
| |
| |
| void MacroAssembler::Drop(int count, Condition cond) { |
| if (count > 0) { |
| add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Call(Label* target) { |
| bl(target); |
| } |
| |
| |
| void MacroAssembler::Move(Register dst, Handle<Object> value) { |
| mov(dst, Operand(value)); |
| } |
| |
| |
| void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) { |
| // Empty the const pool. |
| CheckConstPool(true, true); |
| add(pc, pc, Operand(index, |
| LSL, |
| assembler::arm::Instr::kInstrSizeLog2 - kSmiTagSize)); |
| BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize); |
| nop(); // Jump table alignment. |
| for (int i = 0; i < targets.length(); i++) { |
| b(targets[i]); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadRoot(Register destination, |
| Heap::RootListIndex index, |
| Condition cond) { |
| ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond); |
| } |
| |
| |
| // Will clobber 4 registers: object, offset, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, Register offset, |
| Register scratch) { |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are cp. |
| ASSERT(!object.is(cp) && !offset.is(cp) && !scratch.is(cp)); |
| |
| // This is how much we shift the remembered set bit offset to get the |
| // offset of the word in the remembered set. We divide by kBitsPerInt (32, |
| // shift right 5) and then multiply by kIntSize (4, shift left 2). |
| const int kRSetWordShift = 3; |
| |
| Label fast, done; |
| |
| // First, test that the object is not in the new space. We cannot set |
| // remembered set bits in the new space. |
| // object: heap object pointer (with tag) |
| // offset: offset to store location from the object |
| and_(scratch, object, Operand(ExternalReference::new_space_mask())); |
| cmp(scratch, Operand(ExternalReference::new_space_start())); |
| b(eq, &done); |
| |
| // Compute the bit offset in the remembered set. |
| // object: heap object pointer (with tag) |
| // offset: offset to store location from the object |
| mov(ip, Operand(Page::kPageAlignmentMask)); // load mask only once |
| and_(scratch, object, Operand(ip)); // offset into page of the object |
| add(offset, scratch, Operand(offset)); // add offset into the object |
| mov(offset, Operand(offset, LSR, kObjectAlignmentBits)); |
| |
| // Compute the page address from the heap object pointer. |
| // object: heap object pointer (with tag) |
| // offset: bit offset of store position in the remembered set |
| bic(object, object, Operand(ip)); |
| |
| // If the bit offset lies beyond the normal remembered set range, it is in |
| // the extra remembered set area of a large object. |
| // object: page start |
| // offset: bit offset of store position in the remembered set |
| cmp(offset, Operand(Page::kPageSize / kPointerSize)); |
| b(lt, &fast); |
| |
| // Adjust the bit offset to be relative to the start of the extra |
| // remembered set and the start address to be the address of the extra |
| // remembered set. |
| sub(offset, offset, Operand(Page::kPageSize / kPointerSize)); |
| // Load the array length into 'scratch' and multiply by four to get the |
| // size in bytes of the elements. |
| ldr(scratch, MemOperand(object, Page::kObjectStartOffset |
| + FixedArray::kLengthOffset)); |
| mov(scratch, Operand(scratch, LSL, kObjectAlignmentBits)); |
| // Add the page header (including remembered set), array header, and array |
| // body size to the page address. |
| add(object, object, Operand(Page::kObjectStartOffset |
| + FixedArray::kHeaderSize)); |
| add(object, object, Operand(scratch)); |
| |
| bind(&fast); |
| // Get address of the rset word. |
| // object: start of the remembered set (page start for the fast case) |
| // offset: bit offset of store position in the remembered set |
| bic(scratch, offset, Operand(kBitsPerInt - 1)); // clear the bit offset |
| add(object, object, Operand(scratch, LSR, kRSetWordShift)); |
| // Get bit offset in the rset word. |
| // object: address of remembered set word |
| // offset: bit offset of store position |
| and_(offset, offset, Operand(kBitsPerInt - 1)); |
| |
| ldr(scratch, MemOperand(object)); |
| mov(ip, Operand(1)); |
| orr(scratch, scratch, Operand(ip, LSL, offset)); |
| str(scratch, MemOperand(object)); |
| |
| bind(&done); |
| |
| // Clobber all input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (FLAG_debug_code) { |
| mov(object, Operand(bit_cast<int32_t>(kZapValue))); |
| mov(offset, Operand(bit_cast<int32_t>(kZapValue))); |
| mov(scratch, Operand(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| void MacroAssembler::EnterFrame(StackFrame::Type type) { |
| // r0-r3: preserved |
| stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); |
| mov(ip, Operand(Smi::FromInt(type))); |
| push(ip); |
| mov(ip, Operand(CodeObject())); |
| push(ip); |
| add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP. |
| } |
| |
| |
| void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
| // r0: preserved |
| // r1: preserved |
| // r2: preserved |
| |
| // Drop the execution stack down to the frame pointer and restore |
| // the caller frame pointer and return address. |
| mov(sp, fp); |
| ldm(ia_w, sp, fp.bit() | lr.bit()); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode) { |
| // Compute the argv pointer and keep it in a callee-saved register. |
| // r0 is argc. |
| add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| sub(r6, r6, Operand(kPointerSize)); |
| |
| // Compute callee's stack pointer before making changes and save it as |
| // ip register so that it is restored as sp register on exit, thereby |
| // popping the args. |
| |
| // ip = sp + kPointerSize * #args; |
| add(ip, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| |
| // Align the stack at this point. After this point we have 5 pushes, |
| // so in fact we have to unalign here! See also the assert on the |
| // alignment in AlignStack. |
| AlignStack(1); |
| |
| // Push in reverse order: caller_fp, sp_on_exit, and caller_pc. |
| stm(db_w, sp, fp.bit() | ip.bit() | lr.bit()); |
| mov(fp, Operand(sp)); // Setup new frame pointer. |
| |
| mov(ip, Operand(CodeObject())); |
| push(ip); // Accessed from ExitFrame::code_slot. |
| |
| // Save the frame pointer and the context in top. |
| mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| str(fp, MemOperand(ip)); |
| mov(ip, Operand(ExternalReference(Top::k_context_address))); |
| str(cp, MemOperand(ip)); |
| |
| // Setup argc and the builtin function in callee-saved registers. |
| mov(r4, Operand(r0)); |
| mov(r5, Operand(r1)); |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Save the state of all registers to the stack from the memory |
| // location. This is needed to allow nested break points. |
| if (mode == ExitFrame::MODE_DEBUG) { |
| // Use sp as base to push. |
| CopyRegistersFromMemoryToStack(sp, kJSCallerSaved); |
| } |
| #endif |
| } |
| |
| |
| void MacroAssembler::AlignStack(int offset) { |
| #if defined(V8_HOST_ARCH_ARM) |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one ARM |
| // platform for another ARM platform with a different alignment. |
| int activation_frame_alignment = OS::ActivationFrameAlignment(); |
| #else // defined(V8_HOST_ARCH_ARM) |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so we will always align at |
| // this point here. |
| int activation_frame_alignment = 2 * kPointerSize; |
| #endif // defined(V8_HOST_ARCH_ARM) |
| if (activation_frame_alignment != kPointerSize) { |
| // This code needs to be made more general if this assert doesn't hold. |
| ASSERT(activation_frame_alignment == 2 * kPointerSize); |
| mov(r7, Operand(Smi::FromInt(0))); |
| tst(sp, Operand(activation_frame_alignment - offset)); |
| push(r7, eq); // Conditional push instruction. |
| } |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) { |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Restore the memory copy of the registers by digging them out from |
| // the stack. This is needed to allow nested break points. |
| if (mode == ExitFrame::MODE_DEBUG) { |
| // This code intentionally clobbers r2 and r3. |
| const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; |
| const int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize; |
| add(r3, fp, Operand(kOffset)); |
| CopyRegistersFromStackToMemory(r3, r2, kJSCallerSaved); |
| } |
| #endif |
| |
| // Clear top frame. |
| mov(r3, Operand(0)); |
| mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| str(r3, MemOperand(ip)); |
| |
| // Restore current context from top and clear it in debug mode. |
| mov(ip, Operand(ExternalReference(Top::k_context_address))); |
| ldr(cp, MemOperand(ip)); |
| #ifdef DEBUG |
| str(r3, MemOperand(ip)); |
| #endif |
| |
| // Pop the arguments, restore registers, and return. |
| mov(sp, Operand(fp)); // respect ABI stack constraint |
| ldm(ia, sp, fp.bit() | sp.bit() | pc.bit()); |
| } |
| |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_reg, |
| Label* done, |
| InvokeFlag flag) { |
| bool definitely_matches = false; |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // r0: actual arguments count |
| // r1: function (passed through to callee) |
| // r2: expected arguments count |
| // r3: callee code entry |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract if values are |
| // passed in registers. |
| ASSERT(actual.is_immediate() || actual.reg().is(r0)); |
| ASSERT(expected.is_immediate() || expected.reg().is(r2)); |
| ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3)); |
| |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| mov(r0, Operand(actual.immediate())); |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| mov(r2, Operand(expected.immediate())); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| cmp(expected.reg(), Operand(actual.immediate())); |
| b(eq, ®ular_invoke); |
| mov(r0, Operand(actual.immediate())); |
| } else { |
| cmp(expected.reg(), Operand(actual.reg())); |
| b(eq, ®ular_invoke); |
| } |
| } |
| |
| if (!definitely_matches) { |
| if (!code_constant.is_null()) { |
| mov(r3, Operand(code_constant)); |
| add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| Handle<Code> adaptor = |
| Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| b(done); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| Label done; |
| |
| InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); |
| if (flag == CALL_FUNCTION) { |
| Call(code); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| Jump(code); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag) { |
| Label done; |
| |
| InvokePrologue(expected, actual, code, no_reg, &done, flag); |
| if (flag == CALL_FUNCTION) { |
| Call(code, rmode); |
| } else { |
| Jump(code, rmode); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Register fun, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // Contract with called JS functions requires that function is passed in r1. |
| ASSERT(fun.is(r1)); |
| |
| Register expected_reg = r2; |
| Register code_reg = r3; |
| |
| ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| ldr(expected_reg, |
| FieldMemOperand(code_reg, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| ldr(code_reg, |
| MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag)); |
| add(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| ParameterCount expected(expected_reg); |
| InvokeCode(code_reg, expected, actual, flag); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(JSFunction* function, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| ASSERT(function->is_compiled()); |
| |
| // Get the function and setup the context. |
| mov(r1, Operand(Handle<JSFunction>(function))); |
| ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| |
| // Invoke the cached code. |
| Handle<Code> code(function->code()); |
| ParameterCount expected(function->shared()->formal_parameter_count()); |
| InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| void MacroAssembler::SaveRegistersToMemory(RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of registers to memory location. |
| for (int i = 0; i < kNumJSCallerSaved; i++) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| Register reg = { r }; |
| mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); |
| str(reg, MemOperand(ip)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of memory location to registers. |
| for (int i = kNumJSCallerSaved; --i >= 0;) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| Register reg = { r }; |
| mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); |
| ldr(reg, MemOperand(ip)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CopyRegistersFromMemoryToStack(Register base, |
| RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of the memory location to the stack and adjust base. |
| for (int i = kNumJSCallerSaved; --i >= 0;) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); |
| ldr(ip, MemOperand(ip)); |
| str(ip, MemOperand(base, 4, NegPreIndex)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CopyRegistersFromStackToMemory(Register base, |
| Register scratch, |
| RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of the stack to the memory location and adjust base. |
| for (int i = 0; i < kNumJSCallerSaved; i++) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); |
| ldr(scratch, MemOperand(base, 4, PostIndex)); |
| str(scratch, MemOperand(ip)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::DebugBreak() { |
| ASSERT(allow_stub_calls()); |
| mov(r0, Operand(0)); |
| mov(r1, Operand(ExternalReference(Runtime::kDebugBreak))); |
| CEntryStub ces(1); |
| Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| } |
| #endif |
| |
| |
| void MacroAssembler::PushTryHandler(CodeLocation try_location, |
| HandlerType type) { |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| // The pc (return address) is passed in register lr. |
| if (try_location == IN_JAVASCRIPT) { |
| if (type == TRY_CATCH_HANDLER) { |
| mov(r3, Operand(StackHandler::TRY_CATCH)); |
| } else { |
| mov(r3, Operand(StackHandler::TRY_FINALLY)); |
| } |
| ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize |
| && StackHandlerConstants::kFPOffset == 2 * kPointerSize |
| && StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| stm(db_w, sp, r3.bit() | fp.bit() | lr.bit()); |
| // Save the current handler as the next handler. |
| mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| ldr(r1, MemOperand(r3)); |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| push(r1); |
| // Link this handler as the new current one. |
| str(sp, MemOperand(r3)); |
| } else { |
| // Must preserve r0-r4, r5-r7 are available. |
| ASSERT(try_location == IN_JS_ENTRY); |
| // The frame pointer does not point to a JS frame so we save NULL |
| // for fp. We expect the code throwing an exception to check fp |
| // before dereferencing it to restore the context. |
| mov(ip, Operand(0)); // To save a NULL frame pointer. |
| mov(r6, Operand(StackHandler::ENTRY)); |
| ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize |
| && StackHandlerConstants::kFPOffset == 2 * kPointerSize |
| && StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| stm(db_w, sp, r6.bit() | ip.bit() | lr.bit()); |
| // Save the current handler as the next handler. |
| mov(r7, Operand(ExternalReference(Top::k_handler_address))); |
| ldr(r6, MemOperand(r7)); |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| push(r6); |
| // Link this handler as the new current one. |
| str(sp, MemOperand(r7)); |
| } |
| } |
| |
| |
| void MacroAssembler::PopTryHandler() { |
| ASSERT_EQ(0, StackHandlerConstants::kNextOffset); |
| pop(r1); |
| mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
| add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); |
| str(r1, MemOperand(ip)); |
| } |
| |
| |
| Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, |
| JSObject* holder, Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| // Make sure there's no overlap between scratch and the other |
| // registers. |
| ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); |
| |
| // Keep track of the current object in register reg. |
| Register reg = object_reg; |
| int depth = 1; |
| |
| // Check the maps in the prototype chain. |
| // Traverse the prototype chain from the object and do map checks. |
| while (object != holder) { |
| depth++; |
| |
| // Only global objects and objects that do not require access |
| // checks are allowed in stubs. |
| ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
| |
| // Get the map of the current object. |
| ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| cmp(scratch, Operand(Handle<Map>(object->map()))); |
| |
| // Branch on the result of the map check. |
| b(ne, miss); |
| |
| // Check access rights to the global object. This has to happen |
| // after the map check so that we know that the object is |
| // actually a global object. |
| if (object->IsJSGlobalProxy()) { |
| CheckAccessGlobalProxy(reg, scratch, miss); |
| // Restore scratch register to be the map of the object. In the |
| // new space case below, we load the prototype from the map in |
| // the scratch register. |
| ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| } |
| |
| reg = holder_reg; // from now the object is in holder_reg |
| JSObject* prototype = JSObject::cast(object->GetPrototype()); |
| if (Heap::InNewSpace(prototype)) { |
| // The prototype is in new space; we cannot store a reference |
| // to it in the code. Load it from the map. |
| ldr(reg, FieldMemOperand(scratch, Map::kPrototypeOffset)); |
| } else { |
| // The prototype is in old space; load it directly. |
| mov(reg, Operand(Handle<JSObject>(prototype))); |
| } |
| |
| // Go to the next object in the prototype chain. |
| object = prototype; |
| } |
| |
| // Check the holder map. |
| ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| cmp(scratch, Operand(Handle<Map>(object->map()))); |
| b(ne, miss); |
| |
| // Log the check depth. |
| LOG(IntEvent("check-maps-depth", depth)); |
| |
| // Perform security check for access to the global object and return |
| // the holder register. |
| ASSERT(object == holder); |
| ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
| if (object->IsJSGlobalProxy()) { |
| CheckAccessGlobalProxy(reg, scratch, miss); |
| } |
| return reg; |
| } |
| |
| |
| void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| Label same_contexts; |
| |
| ASSERT(!holder_reg.is(scratch)); |
| ASSERT(!holder_reg.is(ip)); |
| ASSERT(!scratch.is(ip)); |
| |
| // Load current lexical context from the stack frame. |
| ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // In debug mode, make sure the lexical context is set. |
| #ifdef DEBUG |
| cmp(scratch, Operand(0)); |
| Check(ne, "we should not have an empty lexical context"); |
| #endif |
| |
| // Load the global context of the current context. |
| int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| ldr(scratch, FieldMemOperand(scratch, offset)); |
| ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check the context is a global context. |
| if (FLAG_debug_code) { |
| // TODO(119): avoid push(holder_reg)/pop(holder_reg) |
| // Cannot use ip as a temporary in this verification code. Due to the fact |
| // that ip is clobbered as part of cmp with an object Operand. |
| push(holder_reg); // Temporarily save holder on the stack. |
| // Read the first word and compare to the global_context_map. |
| ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| cmp(holder_reg, ip); |
| Check(eq, "JSGlobalObject::global_context should be a global context."); |
| pop(holder_reg); // Restore holder. |
| } |
| |
| // Check if both contexts are the same. |
| ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| cmp(scratch, Operand(ip)); |
| b(eq, &same_contexts); |
| |
| // Check the context is a global context. |
| if (FLAG_debug_code) { |
| // TODO(119): avoid push(holder_reg)/pop(holder_reg) |
| // Cannot use ip as a temporary in this verification code. Due to the fact |
| // that ip is clobbered as part of cmp with an object Operand. |
| push(holder_reg); // Temporarily save holder on the stack. |
| mov(holder_reg, ip); // Move ip to its holding place. |
| LoadRoot(ip, Heap::kNullValueRootIndex); |
| cmp(holder_reg, ip); |
| Check(ne, "JSGlobalProxy::context() should not be null."); |
| |
| ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); |
| LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| cmp(holder_reg, ip); |
| Check(eq, "JSGlobalObject::global_context should be a global context."); |
| // Restore ip is not needed. ip is reloaded below. |
| pop(holder_reg); // Restore holder. |
| // Restore ip to holder's context. |
| ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| } |
| |
| // Check that the security token in the calling global object is |
| // compatible with the security token in the receiving global |
| // object. |
| int token_offset = Context::kHeaderSize + |
| Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| |
| ldr(scratch, FieldMemOperand(scratch, token_offset)); |
| ldr(ip, FieldMemOperand(ip, token_offset)); |
| cmp(scratch, Operand(ip)); |
| b(ne, miss); |
| |
| bind(&same_contexts); |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags) { |
| ASSERT(!result.is(scratch1)); |
| ASSERT(!scratch1.is(scratch2)); |
| |
| // Load address of new object into result and allocation top address into |
| // scratch1. |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| mov(scratch1, Operand(new_space_allocation_top)); |
| if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| ldr(result, MemOperand(scratch1)); |
| } else if (FLAG_debug_code) { |
| // Assert that result actually contains top on entry. scratch2 is used |
| // immediately below so this use of scratch2 does not cause difference with |
| // respect to register content between debug and release mode. |
| ldr(scratch2, MemOperand(scratch1)); |
| cmp(result, scratch2); |
| Check(eq, "Unexpected allocation top"); |
| } |
| |
| // Calculate new top and bail out if new space is exhausted. Use result |
| // to calculate the new top. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| mov(scratch2, Operand(new_space_allocation_limit)); |
| ldr(scratch2, MemOperand(scratch2)); |
| add(result, result, Operand(object_size * kPointerSize)); |
| cmp(result, Operand(scratch2)); |
| b(hi, gc_required); |
| |
| // Update allocation top. result temporarily holds the new top. |
| if (FLAG_debug_code) { |
| tst(result, Operand(kObjectAlignmentMask)); |
| Check(eq, "Unaligned allocation in new space"); |
| } |
| str(result, MemOperand(scratch1)); |
| |
| // Tag and adjust back to start of new object. |
| if ((flags & TAG_OBJECT) != 0) { |
| sub(result, result, Operand((object_size * kPointerSize) - |
| kHeapObjectTag)); |
| } else { |
| sub(result, result, Operand(object_size * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(Register object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags) { |
| ASSERT(!result.is(scratch1)); |
| ASSERT(!scratch1.is(scratch2)); |
| |
| // Load address of new object into result and allocation top address into |
| // scratch1. |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| mov(scratch1, Operand(new_space_allocation_top)); |
| if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| ldr(result, MemOperand(scratch1)); |
| } else if (FLAG_debug_code) { |
| // Assert that result actually contains top on entry. scratch2 is used |
| // immediately below so this use of scratch2 does not cause difference with |
| // respect to register content between debug and release mode. |
| ldr(scratch2, MemOperand(scratch1)); |
| cmp(result, scratch2); |
| Check(eq, "Unexpected allocation top"); |
| } |
| |
| // Calculate new top and bail out if new space is exhausted. Use result |
| // to calculate the new top. Object size is in words so a shift is required to |
| // get the number of bytes |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| mov(scratch2, Operand(new_space_allocation_limit)); |
| ldr(scratch2, MemOperand(scratch2)); |
| add(result, result, Operand(object_size, LSL, kPointerSizeLog2)); |
| cmp(result, Operand(scratch2)); |
| b(hi, gc_required); |
| |
| // Update allocation top. result temporarily holds the new top. |
| if (FLAG_debug_code) { |
| tst(result, Operand(kObjectAlignmentMask)); |
| Check(eq, "Unaligned allocation in new space"); |
| } |
| str(result, MemOperand(scratch1)); |
| |
| // Adjust back to start of new object. |
| sub(result, result, Operand(object_size, LSL, kPointerSizeLog2)); |
| |
| // Tag object if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| add(result, result, Operand(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::UndoAllocationInNewSpace(Register object, |
| Register scratch) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| |
| // Make sure the object has no tag before resetting top. |
| and_(object, object, Operand(~kHeapObjectTagMask)); |
| #ifdef DEBUG |
| // Check that the object un-allocated is below the current top. |
| mov(scratch, Operand(new_space_allocation_top)); |
| ldr(scratch, MemOperand(scratch)); |
| cmp(object, scratch); |
| Check(lt, "Undo allocation of non allocated memory"); |
| #endif |
| // Write the address of the object to un-allocate as the current top. |
| mov(scratch, Operand(new_space_allocation_top)); |
| str(object, MemOperand(scratch)); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars. |
| add(scratch1, scratch1, |
| Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); |
| // AllocateInNewSpace expects the size in words, so we can round down |
| // to kObjectAlignment and divide by kPointerSize in the same shift. |
| ASSERT_EQ(kPointerSize, kObjectAlignmentMask + 1); |
| mov(scratch1, Operand(scratch1, ASR, kPointerSizeLog2)); |
| |
| // Allocate two-byte string in new space. |
| AllocateInNewSpace(scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| LoadRoot(scratch1, Heap::kStringMapRootIndex); |
| str(length, FieldMemOperand(result, String::kLengthOffset)); |
| str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
| mov(scratch2, Operand(String::kEmptyHashField)); |
| str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| ASSERT(kCharSize == 1); |
| add(scratch1, length, |
| Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize)); |
| // AllocateInNewSpace expects the size in words, so we can round down |
| // to kObjectAlignment and divide by kPointerSize in the same shift. |
| ASSERT_EQ(kPointerSize, kObjectAlignmentMask + 1); |
| mov(scratch1, Operand(scratch1, ASR, kPointerSizeLog2)); |
| |
| // Allocate ASCII string in new space. |
| AllocateInNewSpace(scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| LoadRoot(scratch1, Heap::kAsciiStringMapRootIndex); |
| mov(scratch1, Operand(Factory::ascii_string_map())); |
| str(length, FieldMemOperand(result, String::kLengthOffset)); |
| str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
| mov(scratch2, Operand(String::kEmptyHashField)); |
| str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(ConsString::kSize / kPointerSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| LoadRoot(scratch1, Heap::kConsStringMapRootIndex); |
| mov(scratch2, Operand(String::kEmptyHashField)); |
| str(length, FieldMemOperand(result, String::kLengthOffset)); |
| str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
| str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(ConsString::kSize / kPointerSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| LoadRoot(scratch1, Heap::kConsAsciiStringMapRootIndex); |
| mov(scratch2, Operand(String::kEmptyHashField)); |
| str(length, FieldMemOperand(result, String::kLengthOffset)); |
| str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
| str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); |
| } |
| |
| |
| void MacroAssembler::CompareObjectType(Register function, |
| Register map, |
| Register type_reg, |
| InstanceType type) { |
| ldr(map, FieldMemOperand(function, HeapObject::kMapOffset)); |
| CompareInstanceType(map, type_reg, type); |
| } |
| |
| |
| void MacroAssembler::CompareInstanceType(Register map, |
| Register type_reg, |
| InstanceType type) { |
| ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| cmp(type_reg, Operand(type)); |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object) { |
| if (!is_heap_object) { |
| BranchOnSmi(obj, fail); |
| } |
| ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| mov(ip, Operand(map)); |
| cmp(scratch, ip); |
| b(ne, fail); |
| } |
| |
| |
| void MacroAssembler::TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss) { |
| // Check that the receiver isn't a smi. |
| BranchOnSmi(function, miss); |
| |
| // Check that the function really is a function. Load map into result reg. |
| CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); |
| b(ne, miss); |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
| tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
| b(ne, &non_instance); |
| |
| // Get the prototype or initial map from the function. |
| ldr(result, |
| FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // If the prototype or initial map is the hole, don't return it and |
| // simply miss the cache instead. This will allow us to allocate a |
| // prototype object on-demand in the runtime system. |
| LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| cmp(result, ip); |
| b(eq, miss); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| CompareObjectType(result, scratch, scratch, MAP_TYPE); |
| b(ne, &done); |
| |
| // Get the prototype from the initial map. |
| ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
| jmp(&done); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| bind(&non_instance); |
| ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub, Condition cond) { |
| ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { |
| ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| |
| void MacroAssembler::StubReturn(int argc) { |
| ASSERT(argc >= 1 && generating_stub()); |
| if (argc > 1) { |
| add(sp, sp, Operand((argc - 1) * kPointerSize)); |
| } |
| Ret(); |
| } |
| |
| |
| void MacroAssembler::IllegalOperation(int num_arguments) { |
| if (num_arguments > 0) { |
| add(sp, sp, Operand(num_arguments * kPointerSize)); |
| } |
| LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg, |
| Register outHighReg, |
| Register outLowReg) { |
| // ARMv7 VFP3 instructions to implement integer to double conversion. |
| mov(r7, Operand(inReg, ASR, kSmiTagSize)); |
| vmov(s15, r7); |
| vcvt(d7, s15); |
| vmov(outLowReg, outHighReg, d7); |
| } |
| |
| |
| void MacroAssembler::GetLeastBitsFromSmi(Register dst, |
| Register src, |
| int num_least_bits) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| ubfx(dst, src, Operand(kSmiTagSize), Operand(num_least_bits - 1)); |
| } else { |
| mov(dst, Operand(src, ASR, kSmiTagSize)); |
| and_(dst, dst, Operand((1 << num_least_bits) - 1)); |
| } |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { |
| // All parameters are on the stack. r0 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| if (f->nargs >= 0 && f->nargs != num_arguments) { |
| IllegalOperation(num_arguments); |
| return; |
| } |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(num_arguments)); |
| mov(r1, Operand(ExternalReference(f))); |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { |
| CallRuntime(Runtime::FunctionForId(fid), num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
| int num_arguments) { |
| mov(r0, Operand(num_arguments)); |
| mov(r1, Operand(ext)); |
| |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::TailCallRuntime(const ExternalReference& ext, |
| int num_arguments, |
| int result_size) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(num_arguments)); |
| JumpToRuntime(ext); |
| } |
| |
| |
| void MacroAssembler::JumpToRuntime(const ExternalReference& builtin) { |
| #if defined(__thumb__) |
| // Thumb mode builtin. |
| ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1); |
| #endif |
| mov(r1, Operand(builtin)); |
| CEntryStub stub(1); |
| Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
| InvokeJSFlags flags) { |
| GetBuiltinEntry(r2, id); |
| if (flags == CALL_JS) { |
| Call(r2); |
| } else { |
| ASSERT(flags == JUMP_JS); |
| Jump(r2); |
| } |
| } |
| |
| |
| void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| // Load the JavaScript builtin function from the builtins object. |
| ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| ldr(r1, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset)); |
| int builtins_offset = |
| JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); |
| ldr(r1, FieldMemOperand(r1, builtins_offset)); |
| // Load the code entry point from the function into the target register. |
| ldr(target, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| ldr(target, FieldMemOperand(target, SharedFunctionInfo::kCodeOffset)); |
| add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| |
| void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch1, Operand(value)); |
| mov(scratch2, Operand(ExternalReference(counter))); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch2, Operand(ExternalReference(counter))); |
| ldr(scratch1, MemOperand(scratch2)); |
| add(scratch1, scratch1, Operand(value)); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch2, Operand(ExternalReference(counter))); |
| ldr(scratch1, MemOperand(scratch2)); |
| sub(scratch1, scratch1, Operand(value)); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::Assert(Condition cc, const char* msg) { |
| if (FLAG_debug_code) |
| Check(cc, msg); |
| } |
| |
| |
| void MacroAssembler::Check(Condition cc, const char* msg) { |
| Label L; |
| b(cc, &L); |
| Abort(msg); |
| // will not return here |
| bind(&L); |
| } |
| |
| |
| void MacroAssembler::Abort(const char* msg) { |
| // We want to pass the msg string like a smi to avoid GC |
| // problems, however msg is not guaranteed to be aligned |
| // properly. Instead, we pass an aligned pointer that is |
| // a proper v8 smi, but also pass the alignment difference |
| // from the real pointer as a smi. |
| intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| #ifdef DEBUG |
| if (msg != NULL) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| #endif |
| // Disable stub call restrictions to always allow calls to abort. |
| set_allow_stub_calls(true); |
| |
| mov(r0, Operand(p0)); |
| push(r0); |
| mov(r0, Operand(Smi::FromInt(p1 - p0))); |
| push(r0); |
| CallRuntime(Runtime::kAbort, 2); |
| // will not return here |
| } |
| |
| |
| void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| if (context_chain_length > 0) { |
| // Move up the chain of contexts to the context containing the slot. |
| ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| // Load the function context (which is the incoming, outer context). |
| ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); |
| for (int i = 1; i < context_chain_length; i++) { |
| ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); |
| } |
| // The context may be an intermediate context, not a function context. |
| ldr(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| } else { // Slot is in the current function context. |
| // The context may be an intermediate context, not a function context. |
| ldr(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| } |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSmi(Register reg1, |
| Register reg2, |
| Label* on_not_both_smi) { |
| ASSERT_EQ(0, kSmiTag); |
| tst(reg1, Operand(kSmiTagMask)); |
| tst(reg2, Operand(kSmiTagMask), eq); |
| b(ne, on_not_both_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfEitherSmi(Register reg1, |
| Register reg2, |
| Label* on_either_smi) { |
| ASSERT_EQ(0, kSmiTag); |
| tst(reg1, Operand(kSmiTagMask)); |
| tst(reg2, Operand(kSmiTagMask), ne); |
| b(eq, on_either_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( |
| Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Test that both first and second are sequential ASCII strings. |
| // Assume that they are non-smis. |
| ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
| ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
| ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
| int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| and_(scratch1, scratch1, Operand(kFlatAsciiStringMask)); |
| and_(scratch2, scratch2, Operand(kFlatAsciiStringMask)); |
| cmp(scratch1, Operand(kFlatAsciiStringTag)); |
| // Ignore second test if first test failed. |
| cmp(scratch2, Operand(kFlatAsciiStringTag), eq); |
| b(ne, failure); |
| } |
| |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Check that neither is a smi. |
| ASSERT_EQ(0, kSmiTag); |
| and_(scratch1, first, Operand(second)); |
| tst(scratch1, Operand(kSmiTagMask)); |
| b(eq, failure); |
| JumpIfNonSmisNotBothSequentialAsciiStrings(first, |
| second, |
| scratch1, |
| scratch2, |
| failure); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| CodePatcher::CodePatcher(byte* address, int instructions) |
| : address_(address), |
| instructions_(instructions), |
| size_(instructions * Assembler::kInstrSize), |
| masm_(address, size_ + Assembler::kGap) { |
| // Create a new macro assembler pointing to the address of the code to patch. |
| // The size is adjusted with kGap on order for the assembler to generate size |
| // bytes of instructions without failing with buffer size constraints. |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| CodePatcher::~CodePatcher() { |
| // Indicate that code has changed. |
| CPU::FlushICache(address_, size_); |
| |
| // Check that the code was patched as expected. |
| ASSERT(masm_.pc_ == address_ + size_); |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| void CodePatcher::Emit(Instr x) { |
| masm()->emit(x); |
| } |
| |
| |
| void CodePatcher::Emit(Address addr) { |
| masm()->emit(reinterpret_cast<Instr>(addr)); |
| } |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| } } // namespace v8::internal |