blob: 70755423411c8a063ce17cdc1beebc4d8205ff60 [file] [log] [blame]
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "compiler.h"
#include "cpu.h"
#include "dateparser-inl.h"
#include "debug.h"
#include "execution.h"
#include "jsregexp.h"
#include "parser.h"
#include "platform.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "smart-pointer.h"
#include "stub-cache.h"
#include "v8threads.h"
namespace v8 {
namespace internal {
#define RUNTIME_ASSERT(value) \
if (!(value)) return Top::ThrowIllegalOperation();
// Cast the given object to a value of the specified type and store
// it in a variable with the given name. If the object is not of the
// expected type call IllegalOperation and return.
#define CONVERT_CHECKED(Type, name, obj) \
RUNTIME_ASSERT(obj->Is##Type()); \
Type* name = Type::cast(obj);
#define CONVERT_ARG_CHECKED(Type, name, index) \
RUNTIME_ASSERT(args[index]->Is##Type()); \
Handle<Type> name = args.at<Type>(index);
// Cast the given object to a boolean and store it in a variable with
// the given name. If the object is not a boolean call IllegalOperation
// and return.
#define CONVERT_BOOLEAN_CHECKED(name, obj) \
RUNTIME_ASSERT(obj->IsBoolean()); \
bool name = (obj)->IsTrue();
// Cast the given object to a Smi and store its value in an int variable
// with the given name. If the object is not a Smi call IllegalOperation
// and return.
#define CONVERT_SMI_CHECKED(name, obj) \
RUNTIME_ASSERT(obj->IsSmi()); \
int name = Smi::cast(obj)->value();
// Cast the given object to a double and store it in a variable with
// the given name. If the object is not a number (as opposed to
// the number not-a-number) call IllegalOperation and return.
#define CONVERT_DOUBLE_CHECKED(name, obj) \
RUNTIME_ASSERT(obj->IsNumber()); \
double name = (obj)->Number();
// Call the specified converter on the object *comand store the result in
// a variable of the specified type with the given name. If the
// object is not a Number call IllegalOperation and return.
#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
RUNTIME_ASSERT(obj->IsNumber()); \
type name = NumberTo##Type(obj);
// Non-reentrant string buffer for efficient general use in this file.
static StaticResource<StringInputBuffer> runtime_string_input_buffer;
static Object* DeepCopyBoilerplate(JSObject* boilerplate) {
StackLimitCheck check;
if (check.HasOverflowed()) return Top::StackOverflow();
Object* result = Heap::CopyJSObject(boilerplate);
if (result->IsFailure()) return result;
JSObject* copy = JSObject::cast(result);
// Deep copy local properties.
if (copy->HasFastProperties()) {
FixedArray* properties = copy->properties();
for (int i = 0; i < properties->length(); i++) {
Object* value = properties->get(i);
if (value->IsJSObject()) {
JSObject* js_object = JSObject::cast(value);
result = DeepCopyBoilerplate(js_object);
if (result->IsFailure()) return result;
properties->set(i, result);
}
}
int nof = copy->map()->inobject_properties();
for (int i = 0; i < nof; i++) {
Object* value = copy->InObjectPropertyAt(i);
if (value->IsJSObject()) {
JSObject* js_object = JSObject::cast(value);
result = DeepCopyBoilerplate(js_object);
if (result->IsFailure()) return result;
copy->InObjectPropertyAtPut(i, result);
}
}
} else {
result = Heap::AllocateFixedArray(copy->NumberOfLocalProperties(NONE));
if (result->IsFailure()) return result;
FixedArray* names = FixedArray::cast(result);
copy->GetLocalPropertyNames(names, 0);
for (int i = 0; i < names->length(); i++) {
ASSERT(names->get(i)->IsString());
String* key_string = String::cast(names->get(i));
PropertyAttributes attributes =
copy->GetLocalPropertyAttribute(key_string);
// Only deep copy fields from the object literal expression.
// In particular, don't try to copy the length attribute of
// an array.
if (attributes != NONE) continue;
Object* value = copy->GetProperty(key_string, &attributes);
ASSERT(!value->IsFailure());
if (value->IsJSObject()) {
JSObject* js_object = JSObject::cast(value);
result = DeepCopyBoilerplate(js_object);
if (result->IsFailure()) return result;
result = copy->SetProperty(key_string, result, NONE);
if (result->IsFailure()) return result;
}
}
}
// Deep copy local elements.
// Pixel elements cannot be created using an object literal.
ASSERT(!copy->HasPixelElements() && !copy->HasExternalArrayElements());
switch (copy->GetElementsKind()) {
case JSObject::FAST_ELEMENTS: {
FixedArray* elements = FixedArray::cast(copy->elements());
for (int i = 0; i < elements->length(); i++) {
Object* value = elements->get(i);
if (value->IsJSObject()) {
JSObject* js_object = JSObject::cast(value);
result = DeepCopyBoilerplate(js_object);
if (result->IsFailure()) return result;
elements->set(i, result);
}
}
break;
}
case JSObject::DICTIONARY_ELEMENTS: {
NumberDictionary* element_dictionary = copy->element_dictionary();
int capacity = element_dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = element_dictionary->KeyAt(i);
if (element_dictionary->IsKey(k)) {
Object* value = element_dictionary->ValueAt(i);
if (value->IsJSObject()) {
JSObject* js_object = JSObject::cast(value);
result = DeepCopyBoilerplate(js_object);
if (result->IsFailure()) return result;
element_dictionary->ValueAtPut(i, result);
}
}
}
break;
}
default:
UNREACHABLE();
break;
}
return copy;
}
static Object* Runtime_CloneLiteralBoilerplate(Arguments args) {
CONVERT_CHECKED(JSObject, boilerplate, args[0]);
return DeepCopyBoilerplate(boilerplate);
}
static Object* Runtime_CloneShallowLiteralBoilerplate(Arguments args) {
CONVERT_CHECKED(JSObject, boilerplate, args[0]);
return Heap::CopyJSObject(boilerplate);
}
static Handle<Map> ComputeObjectLiteralMap(
Handle<Context> context,
Handle<FixedArray> constant_properties,
bool* is_result_from_cache) {
int number_of_properties = constant_properties->length() / 2;
if (FLAG_canonicalize_object_literal_maps) {
// First find prefix of consecutive symbol keys.
int number_of_symbol_keys = 0;
while ((number_of_symbol_keys < number_of_properties) &&
(constant_properties->get(number_of_symbol_keys*2)->IsSymbol())) {
number_of_symbol_keys++;
}
// Based on the number of prefix symbols key we decide whether
// to use the map cache in the global context.
const int kMaxKeys = 10;
if ((number_of_symbol_keys == number_of_properties) &&
(number_of_symbol_keys < kMaxKeys)) {
// Create the fixed array with the key.
Handle<FixedArray> keys = Factory::NewFixedArray(number_of_symbol_keys);
for (int i = 0; i < number_of_symbol_keys; i++) {
keys->set(i, constant_properties->get(i*2));
}
*is_result_from_cache = true;
return Factory::ObjectLiteralMapFromCache(context, keys);
}
}
*is_result_from_cache = false;
return Factory::CopyMap(
Handle<Map>(context->object_function()->initial_map()),
number_of_properties);
}
static Handle<Object> CreateLiteralBoilerplate(
Handle<FixedArray> literals,
Handle<FixedArray> constant_properties);
static Handle<Object> CreateObjectLiteralBoilerplate(
Handle<FixedArray> literals,
Handle<FixedArray> constant_properties) {
// Get the global context from the literals array. This is the
// context in which the function was created and we use the object
// function from this context to create the object literal. We do
// not use the object function from the current global context
// because this might be the object function from another context
// which we should not have access to.
Handle<Context> context =
Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals));
bool is_result_from_cache;
Handle<Map> map = ComputeObjectLiteralMap(context,
constant_properties,
&is_result_from_cache);
Handle<JSObject> boilerplate = Factory::NewJSObjectFromMap(map);
{ // Add the constant properties to the boilerplate.
int length = constant_properties->length();
OptimizedObjectForAddingMultipleProperties opt(boilerplate,
length / 2,
!is_result_from_cache);
for (int index = 0; index < length; index +=2) {
Handle<Object> key(constant_properties->get(index+0));
Handle<Object> value(constant_properties->get(index+1));
if (value->IsFixedArray()) {
// The value contains the constant_properties of a
// simple object literal.
Handle<FixedArray> array = Handle<FixedArray>::cast(value);
value = CreateLiteralBoilerplate(literals, array);
if (value.is_null()) return value;
}
Handle<Object> result;
uint32_t element_index = 0;
if (key->IsSymbol()) {
// If key is a symbol it is not an array element.
Handle<String> name(String::cast(*key));
ASSERT(!name->AsArrayIndex(&element_index));
result = SetProperty(boilerplate, name, value, NONE);
} else if (Array::IndexFromObject(*key, &element_index)) {
// Array index (uint32).
result = SetElement(boilerplate, element_index, value);
} else {
// Non-uint32 number.
ASSERT(key->IsNumber());
double num = key->Number();
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str = DoubleToCString(num, buffer);
Handle<String> name = Factory::NewStringFromAscii(CStrVector(str));
result = SetProperty(boilerplate, name, value, NONE);
}
// If setting the property on the boilerplate throws an
// exception, the exception is converted to an empty handle in
// the handle based operations. In that case, we need to
// convert back to an exception.
if (result.is_null()) return result;
}
}
return boilerplate;
}
static Handle<Object> CreateArrayLiteralBoilerplate(
Handle<FixedArray> literals,
Handle<FixedArray> elements) {
// Create the JSArray.
Handle<JSFunction> constructor(
JSFunction::GlobalContextFromLiterals(*literals)->array_function());
Handle<Object> object = Factory::NewJSObject(constructor);
Handle<Object> copied_elements = Factory::CopyFixedArray(elements);
Handle<FixedArray> content = Handle<FixedArray>::cast(copied_elements);
for (int i = 0; i < content->length(); i++) {
if (content->get(i)->IsFixedArray()) {
// The value contains the constant_properties of a
// simple object literal.
Handle<FixedArray> fa(FixedArray::cast(content->get(i)));
Handle<Object> result =
CreateLiteralBoilerplate(literals, fa);
if (result.is_null()) return result;
content->set(i, *result);
}
}
// Set the elements.
Handle<JSArray>::cast(object)->SetContent(*content);
return object;
}
static Handle<Object> CreateLiteralBoilerplate(
Handle<FixedArray> literals,
Handle<FixedArray> array) {
Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
switch (CompileTimeValue::GetType(array)) {
case CompileTimeValue::OBJECT_LITERAL:
return CreateObjectLiteralBoilerplate(literals, elements);
case CompileTimeValue::ARRAY_LITERAL:
return CreateArrayLiteralBoilerplate(literals, elements);
default:
UNREACHABLE();
return Handle<Object>::null();
}
}
static Object* Runtime_CreateObjectLiteralBoilerplate(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
// Copy the arguments.
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_CHECKED(literals_index, args[1]);
CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
Handle<Object> result =
CreateObjectLiteralBoilerplate(literals, constant_properties);
if (result.is_null()) return Failure::Exception();
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *result);
return *result;
}
static Object* Runtime_CreateArrayLiteralBoilerplate(Arguments args) {
// Takes a FixedArray of elements containing the literal elements of
// the array literal and produces JSArray with those elements.
// Additionally takes the literals array of the surrounding function
// which contains the context from which to get the Array function
// to use for creating the array literal.
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_CHECKED(literals_index, args[1]);
CONVERT_ARG_CHECKED(FixedArray, elements, 2);
Handle<Object> object = CreateArrayLiteralBoilerplate(literals, elements);
if (object.is_null()) return Failure::Exception();
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *object);
return *object;
}
static Object* Runtime_CreateObjectLiteral(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_CHECKED(literals_index, args[1]);
CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
// Check if boilerplate exists. If not, create it first.
Handle<Object> boilerplate(literals->get(literals_index));
if (*boilerplate == Heap::undefined_value()) {
boilerplate = CreateObjectLiteralBoilerplate(literals, constant_properties);
if (boilerplate.is_null()) return Failure::Exception();
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
}
return DeepCopyBoilerplate(JSObject::cast(*boilerplate));
}
static Object* Runtime_CreateObjectLiteralShallow(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_CHECKED(literals_index, args[1]);
CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
// Check if boilerplate exists. If not, create it first.
Handle<Object> boilerplate(literals->get(literals_index));
if (*boilerplate == Heap::undefined_value()) {
boilerplate = CreateObjectLiteralBoilerplate(literals, constant_properties);
if (boilerplate.is_null()) return Failure::Exception();
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
}
return Heap::CopyJSObject(JSObject::cast(*boilerplate));
}
static Object* Runtime_CreateArrayLiteral(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_CHECKED(literals_index, args[1]);
CONVERT_ARG_CHECKED(FixedArray, elements, 2);
// Check if boilerplate exists. If not, create it first.
Handle<Object> boilerplate(literals->get(literals_index));
if (*boilerplate == Heap::undefined_value()) {
boilerplate = CreateArrayLiteralBoilerplate(literals, elements);
if (boilerplate.is_null()) return Failure::Exception();
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
}
return DeepCopyBoilerplate(JSObject::cast(*boilerplate));
}
static Object* Runtime_CreateArrayLiteralShallow(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
CONVERT_SMI_CHECKED(literals_index, args[1]);
CONVERT_ARG_CHECKED(FixedArray, elements, 2);
// Check if boilerplate exists. If not, create it first.
Handle<Object> boilerplate(literals->get(literals_index));
if (*boilerplate == Heap::undefined_value()) {
boilerplate = CreateArrayLiteralBoilerplate(literals, elements);
if (boilerplate.is_null()) return Failure::Exception();
// Update the functions literal and return the boilerplate.
literals->set(literals_index, *boilerplate);
}
return Heap::CopyJSObject(JSObject::cast(*boilerplate));
}
static Object* Runtime_CreateCatchExtensionObject(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, key, args[0]);
Object* value = args[1];
// Create a catch context extension object.
JSFunction* constructor =
Top::context()->global_context()->context_extension_function();
Object* object = Heap::AllocateJSObject(constructor);
if (object->IsFailure()) return object;
// Assign the exception value to the catch variable and make sure
// that the catch variable is DontDelete.
value = JSObject::cast(object)->SetProperty(key, value, DONT_DELETE);
if (value->IsFailure()) return value;
return object;
}
static Object* Runtime_ClassOf(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (!obj->IsJSObject()) return Heap::null_value();
return JSObject::cast(obj)->class_name();
}
static Object* Runtime_IsInPrototypeChain(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
Object* O = args[0];
Object* V = args[1];
while (true) {
Object* prototype = V->GetPrototype();
if (prototype->IsNull()) return Heap::false_value();
if (O == prototype) return Heap::true_value();
V = prototype;
}
}
// Inserts an object as the hidden prototype of another object.
static Object* Runtime_SetHiddenPrototype(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSObject, jsobject, args[0]);
CONVERT_CHECKED(JSObject, proto, args[1]);
// Sanity checks. The old prototype (that we are replacing) could
// theoretically be null, but if it is not null then check that we
// didn't already install a hidden prototype here.
RUNTIME_ASSERT(!jsobject->GetPrototype()->IsHeapObject() ||
!HeapObject::cast(jsobject->GetPrototype())->map()->is_hidden_prototype());
RUNTIME_ASSERT(!proto->map()->is_hidden_prototype());
// Allocate up front before we start altering state in case we get a GC.
Object* map_or_failure = proto->map()->CopyDropTransitions();
if (map_or_failure->IsFailure()) return map_or_failure;
Map* new_proto_map = Map::cast(map_or_failure);
map_or_failure = jsobject->map()->CopyDropTransitions();
if (map_or_failure->IsFailure()) return map_or_failure;
Map* new_map = Map::cast(map_or_failure);
// Set proto's prototype to be the old prototype of the object.
new_proto_map->set_prototype(jsobject->GetPrototype());
proto->set_map(new_proto_map);
new_proto_map->set_is_hidden_prototype();
// Set the object's prototype to proto.
new_map->set_prototype(proto);
jsobject->set_map(new_map);
return Heap::undefined_value();
}
static Object* Runtime_IsConstructCall(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
JavaScriptFrameIterator it;
return Heap::ToBoolean(it.frame()->IsConstructor());
}
// Recursively traverses hidden prototypes if property is not found
static void GetOwnPropertyImplementation(JSObject* obj,
String* name,
LookupResult* result) {
obj->LocalLookupRealNamedProperty(name, result);
if (!result->IsProperty()) {
Object* proto = obj->GetPrototype();
if (proto->IsJSObject() &&
JSObject::cast(proto)->map()->is_hidden_prototype())
GetOwnPropertyImplementation(JSObject::cast(proto),
name, result);
}
}
// Returns an array with the property description:
// if args[1] is not a property on args[0]
// returns undefined
// if args[1] is a data property on args[0]
// [false, value, Writeable, Enumerable, Configurable]
// if args[1] is an accessor on args[0]
// [true, GetFunction, SetFunction, Enumerable, Configurable]
static Object* Runtime_GetOwnProperty(Arguments args) {
ASSERT(args.length() == 2);
HandleScope scope;
Handle<FixedArray> elms = Factory::NewFixedArray(5);
Handle<JSArray> desc = Factory::NewJSArrayWithElements(elms);
LookupResult result;
CONVERT_CHECKED(JSObject, obj, args[0]);
CONVERT_CHECKED(String, name, args[1]);
// Use recursive implementation to also traverse hidden prototypes
GetOwnPropertyImplementation(obj, name, &result);
if (!result.IsProperty())
return Heap::undefined_value();
if (result.type() == CALLBACKS) {
Object* structure = result.GetCallbackObject();
if (structure->IsProxy() || structure->IsAccessorInfo()) {
// Property that is internally implemented as a callback or
// an API defined callback.
Object* value = obj->GetPropertyWithCallback(
obj, structure, name, result.holder());
elms->set(0, Heap::false_value());
elms->set(1, value);
elms->set(2, Heap::ToBoolean(!result.IsReadOnly()));
} else if (structure->IsFixedArray()) {
// __defineGetter__/__defineSetter__ callback.
elms->set(0, Heap::true_value());
elms->set(1, FixedArray::cast(structure)->get(0));
elms->set(2, FixedArray::cast(structure)->get(1));
} else {
return Heap::undefined_value();
}
} else {
elms->set(0, Heap::false_value());
elms->set(1, result.GetLazyValue());
elms->set(2, Heap::ToBoolean(!result.IsReadOnly()));
}
elms->set(3, Heap::ToBoolean(!result.IsDontEnum()));
elms->set(4, Heap::ToBoolean(!result.IsDontDelete()));
return *desc;
}
static Object* Runtime_IsExtensible(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSObject, obj, args[0]);
return obj->map()->is_extensible() ? Heap::true_value()
: Heap::false_value();
}
static Object* Runtime_RegExpCompile(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSRegExp, re, 0);
CONVERT_ARG_CHECKED(String, pattern, 1);
CONVERT_ARG_CHECKED(String, flags, 2);
Handle<Object> result = RegExpImpl::Compile(re, pattern, flags);
if (result.is_null()) return Failure::Exception();
return *result;
}
static Object* Runtime_CreateApiFunction(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(FunctionTemplateInfo, data, 0);
return *Factory::CreateApiFunction(data);
}
static Object* Runtime_IsTemplate(Arguments args) {
ASSERT(args.length() == 1);
Object* arg = args[0];
bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
return Heap::ToBoolean(result);
}
static Object* Runtime_GetTemplateField(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(HeapObject, templ, args[0]);
CONVERT_CHECKED(Smi, field, args[1]);
int index = field->value();
int offset = index * kPointerSize + HeapObject::kHeaderSize;
InstanceType type = templ->map()->instance_type();
RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
type == OBJECT_TEMPLATE_INFO_TYPE);
RUNTIME_ASSERT(offset > 0);
if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
} else {
RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
}
return *HeapObject::RawField(templ, offset);
}
static Object* Runtime_DisableAccessChecks(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(HeapObject, object, args[0]);
Map* old_map = object->map();
bool needs_access_checks = old_map->is_access_check_needed();
if (needs_access_checks) {
// Copy map so it won't interfere constructor's initial map.
Object* new_map = old_map->CopyDropTransitions();
if (new_map->IsFailure()) return new_map;
Map::cast(new_map)->set_is_access_check_needed(false);
object->set_map(Map::cast(new_map));
}
return needs_access_checks ? Heap::true_value() : Heap::false_value();
}
static Object* Runtime_EnableAccessChecks(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(HeapObject, object, args[0]);
Map* old_map = object->map();
if (!old_map->is_access_check_needed()) {
// Copy map so it won't interfere constructor's initial map.
Object* new_map = old_map->CopyDropTransitions();
if (new_map->IsFailure()) return new_map;
Map::cast(new_map)->set_is_access_check_needed(true);
object->set_map(Map::cast(new_map));
}
return Heap::undefined_value();
}
static Object* ThrowRedeclarationError(const char* type, Handle<String> name) {
HandleScope scope;
Handle<Object> type_handle = Factory::NewStringFromAscii(CStrVector(type));
Handle<Object> args[2] = { type_handle, name };
Handle<Object> error =
Factory::NewTypeError("redeclaration", HandleVector(args, 2));
return Top::Throw(*error);
}
static Object* Runtime_DeclareGlobals(Arguments args) {
HandleScope scope;
Handle<GlobalObject> global = Handle<GlobalObject>(Top::context()->global());
Handle<Context> context = args.at<Context>(0);
CONVERT_ARG_CHECKED(FixedArray, pairs, 1);
bool is_eval = Smi::cast(args[2])->value() == 1;
// Compute the property attributes. According to ECMA-262, section
// 13, page 71, the property must be read-only and
// non-deletable. However, neither SpiderMonkey nor KJS creates the
// property as read-only, so we don't either.
PropertyAttributes base = is_eval ? NONE : DONT_DELETE;
// Traverse the name/value pairs and set the properties.
int length = pairs->length();
for (int i = 0; i < length; i += 2) {
HandleScope scope;
Handle<String> name(String::cast(pairs->get(i)));
Handle<Object> value(pairs->get(i + 1));
// We have to declare a global const property. To capture we only
// assign to it when evaluating the assignment for "const x =
// <expr>" the initial value is the hole.
bool is_const_property = value->IsTheHole();
if (value->IsUndefined() || is_const_property) {
// Lookup the property in the global object, and don't set the
// value of the variable if the property is already there.
LookupResult lookup;
global->Lookup(*name, &lookup);
if (lookup.IsProperty()) {
// Determine if the property is local by comparing the holder
// against the global object. The information will be used to
// avoid throwing re-declaration errors when declaring
// variables or constants that exist in the prototype chain.
bool is_local = (*global == lookup.holder());
// Get the property attributes and determine if the property is
// read-only.
PropertyAttributes attributes = global->GetPropertyAttribute(*name);
bool is_read_only = (attributes & READ_ONLY) != 0;
if (lookup.type() == INTERCEPTOR) {
// If the interceptor says the property is there, we
// just return undefined without overwriting the property.
// Otherwise, we continue to setting the property.
if (attributes != ABSENT) {
// Check if the existing property conflicts with regards to const.
if (is_local && (is_read_only || is_const_property)) {
const char* type = (is_read_only) ? "const" : "var";
return ThrowRedeclarationError(type, name);
};
// The property already exists without conflicting: Go to
// the next declaration.
continue;
}
// Fall-through and introduce the absent property by using
// SetProperty.
} else {
if (is_local && (is_read_only || is_const_property)) {
const char* type = (is_read_only) ? "const" : "var";
return ThrowRedeclarationError(type, name);
}
// The property already exists without conflicting: Go to
// the next declaration.
continue;
}
}
} else {
// Copy the function and update its context. Use it as value.
Handle<JSFunction> boilerplate = Handle<JSFunction>::cast(value);
Handle<JSFunction> function =
Factory::NewFunctionFromBoilerplate(boilerplate, context, TENURED);
value = function;
}
LookupResult lookup;
global->LocalLookup(*name, &lookup);
PropertyAttributes attributes = is_const_property
? static_cast<PropertyAttributes>(base | READ_ONLY)
: base;
if (lookup.IsProperty()) {
// There's a local property that we need to overwrite because
// we're either declaring a function or there's an interceptor
// that claims the property is absent.
// Check for conflicting re-declarations. We cannot have
// conflicting types in case of intercepted properties because
// they are absent.
if (lookup.type() != INTERCEPTOR &&
(lookup.IsReadOnly() || is_const_property)) {
const char* type = (lookup.IsReadOnly()) ? "const" : "var";
return ThrowRedeclarationError(type, name);
}
SetProperty(global, name, value, attributes);
} else {
// If a property with this name does not already exist on the
// global object add the property locally. We take special
// precautions to always add it as a local property even in case
// of callbacks in the prototype chain (this rules out using
// SetProperty). Also, we must use the handle-based version to
// avoid GC issues.
IgnoreAttributesAndSetLocalProperty(global, name, value, attributes);
}
}
return Heap::undefined_value();
}
static Object* Runtime_DeclareContextSlot(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(Context, context, 0);
Handle<String> name(String::cast(args[1]));
PropertyAttributes mode =
static_cast<PropertyAttributes>(Smi::cast(args[2])->value());
ASSERT(mode == READ_ONLY || mode == NONE);
Handle<Object> initial_value(args[3]);
// Declarations are always done in the function context.
context = Handle<Context>(context->fcontext());
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
if (attributes != ABSENT) {
// The name was declared before; check for conflicting
// re-declarations: This is similar to the code in parser.cc in
// the AstBuildingParser::Declare function.
if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) {
// Functions are not read-only.
ASSERT(mode != READ_ONLY || initial_value->IsTheHole());
const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var";
return ThrowRedeclarationError(type, name);
}
// Initialize it if necessary.
if (*initial_value != NULL) {
if (index >= 0) {
// The variable or constant context slot should always be in
// the function context or the arguments object.
if (holder->IsContext()) {
ASSERT(holder.is_identical_to(context));
if (((attributes & READ_ONLY) == 0) ||
context->get(index)->IsTheHole()) {
context->set(index, *initial_value);
}
} else {
Handle<JSObject>::cast(holder)->SetElement(index, *initial_value);
}
} else {
// Slow case: The property is not in the FixedArray part of the context.
Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
SetProperty(context_ext, name, initial_value, mode);
}
}
} else {
// The property is not in the function context. It needs to be
// "declared" in the function context's extension context, or in the
// global context.
Handle<JSObject> context_ext;
if (context->has_extension()) {
// The function context's extension context exists - use it.
context_ext = Handle<JSObject>(context->extension());
} else {
// The function context's extension context does not exists - allocate
// it.
context_ext = Factory::NewJSObject(Top::context_extension_function());
// And store it in the extension slot.
context->set_extension(*context_ext);
}
ASSERT(*context_ext != NULL);
// Declare the property by setting it to the initial value if provided,
// or undefined, and use the correct mode (e.g. READ_ONLY attribute for
// constant declarations).
ASSERT(!context_ext->HasLocalProperty(*name));
Handle<Object> value(Heap::undefined_value());
if (*initial_value != NULL) value = initial_value;
SetProperty(context_ext, name, value, mode);
ASSERT(context_ext->GetLocalPropertyAttribute(*name) == mode);
}
return Heap::undefined_value();
}
static Object* Runtime_InitializeVarGlobal(Arguments args) {
NoHandleAllocation nha;
// Determine if we need to assign to the variable if it already
// exists (based on the number of arguments).
RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
bool assign = args.length() == 2;
CONVERT_ARG_CHECKED(String, name, 0);
GlobalObject* global = Top::context()->global();
// According to ECMA-262, section 12.2, page 62, the property must
// not be deletable.
PropertyAttributes attributes = DONT_DELETE;
// Lookup the property locally in the global object. If it isn't
// there, there is a property with this name in the prototype chain.
// We follow Safari and Firefox behavior and only set the property
// locally if there is an explicit initialization value that we have
// to assign to the property. When adding the property we take
// special precautions to always add it as a local property even in
// case of callbacks in the prototype chain (this rules out using
// SetProperty). We have IgnoreAttributesAndSetLocalProperty for
// this.
// Note that objects can have hidden prototypes, so we need to traverse
// the whole chain of hidden prototypes to do a 'local' lookup.
JSObject* real_holder = global;
LookupResult lookup;
while (true) {
real_holder->LocalLookup(*name, &lookup);
if (lookup.IsProperty()) {
// Determine if this is a redeclaration of something read-only.
if (lookup.IsReadOnly()) {
// If we found readonly property on one of hidden prototypes,
// just shadow it.
if (real_holder != Top::context()->global()) break;
return ThrowRedeclarationError("const", name);
}
// Determine if this is a redeclaration of an intercepted read-only
// property and figure out if the property exists at all.
bool found = true;
PropertyType type = lookup.type();
if (type == INTERCEPTOR) {
HandleScope handle_scope;
Handle<JSObject> holder(real_holder);
PropertyAttributes intercepted = holder->GetPropertyAttribute(*name);
real_holder = *holder;
if (intercepted == ABSENT) {
// The interceptor claims the property isn't there. We need to
// make sure to introduce it.
found = false;
} else if ((intercepted & READ_ONLY) != 0) {
// The property is present, but read-only. Since we're trying to
// overwrite it with a variable declaration we must throw a
// re-declaration error. However if we found readonly property
// on one of hidden prototypes, just shadow it.
if (real_holder != Top::context()->global()) break;
return ThrowRedeclarationError("const", name);
}
}
if (found && !assign) {
// The global property is there and we're not assigning any value
// to it. Just return.
return Heap::undefined_value();
}
// Assign the value (or undefined) to the property.
Object* value = (assign) ? args[1] : Heap::undefined_value();
return real_holder->SetProperty(&lookup, *name, value, attributes);
}
Object* proto = real_holder->GetPrototype();
if (!proto->IsJSObject())
break;
if (!JSObject::cast(proto)->map()->is_hidden_prototype())
break;
real_holder = JSObject::cast(proto);
}
global = Top::context()->global();
if (assign) {
return global->IgnoreAttributesAndSetLocalProperty(*name,
args[1],
attributes);
}
return Heap::undefined_value();
}
static Object* Runtime_InitializeConstGlobal(Arguments args) {
// All constants are declared with an initial value. The name
// of the constant is the first argument and the initial value
// is the second.
RUNTIME_ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, name, 0);
Handle<Object> value = args.at<Object>(1);
// Get the current global object from top.
GlobalObject* global = Top::context()->global();
// According to ECMA-262, section 12.2, page 62, the property must
// not be deletable. Since it's a const, it must be READ_ONLY too.
PropertyAttributes attributes =
static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
// Lookup the property locally in the global object. If it isn't
// there, we add the property and take special precautions to always
// add it as a local property even in case of callbacks in the
// prototype chain (this rules out using SetProperty).
// We use IgnoreAttributesAndSetLocalProperty instead
LookupResult lookup;
global->LocalLookup(*name, &lookup);
if (!lookup.IsProperty()) {
return global->IgnoreAttributesAndSetLocalProperty(*name,
*value,
attributes);
}
// Determine if this is a redeclaration of something not
// read-only. In case the result is hidden behind an interceptor we
// need to ask it for the property attributes.
if (!lookup.IsReadOnly()) {
if (lookup.type() != INTERCEPTOR) {
return ThrowRedeclarationError("var", name);
}
PropertyAttributes intercepted = global->GetPropertyAttribute(*name);
// Throw re-declaration error if the intercepted property is present
// but not read-only.
if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) {
return ThrowRedeclarationError("var", name);
}
// Restore global object from context (in case of GC) and continue
// with setting the value because the property is either absent or
// read-only. We also have to do redo the lookup.
global = Top::context()->global();
// BUG 1213579: Handle the case where we have to set a read-only
// property through an interceptor and only do it if it's
// uninitialized, e.g. the hole. Nirk...
global->SetProperty(*name, *value, attributes);
return *value;
}
// Set the value, but only we're assigning the initial value to a
// constant. For now, we determine this by checking if the
// current value is the hole.
PropertyType type = lookup.type();
if (type == FIELD) {
FixedArray* properties = global->properties();
int index = lookup.GetFieldIndex();
if (properties->get(index)->IsTheHole()) {
properties->set(index, *value);
}
} else if (type == NORMAL) {
if (global->GetNormalizedProperty(&lookup)->IsTheHole()) {
global->SetNormalizedProperty(&lookup, *value);
}
} else {
// Ignore re-initialization of constants that have already been
// assigned a function value.
ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION);
}
// Use the set value as the result of the operation.
return *value;
}
static Object* Runtime_InitializeConstContextSlot(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
Handle<Object> value(args[0]);
ASSERT(!value->IsTheHole());
CONVERT_ARG_CHECKED(Context, context, 1);
Handle<String> name(String::cast(args[2]));
// Initializations are always done in the function context.
context = Handle<Context>(context->fcontext());
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
// In most situations, the property introduced by the const
// declaration should be present in the context extension object.
// However, because declaration and initialization are separate, the
// property might have been deleted (if it was introduced by eval)
// before we reach the initialization point.
//
// Example:
//
// function f() { eval("delete x; const x;"); }
//
// In that case, the initialization behaves like a normal assignment
// to property 'x'.
if (index >= 0) {
// Property was found in a context.
if (holder->IsContext()) {
// The holder cannot be the function context. If it is, there
// should have been a const redeclaration error when declaring
// the const property.
ASSERT(!holder.is_identical_to(context));
if ((attributes & READ_ONLY) == 0) {
Handle<Context>::cast(holder)->set(index, *value);
}
} else {
// The holder is an arguments object.
ASSERT((attributes & READ_ONLY) == 0);
Handle<JSObject>::cast(holder)->SetElement(index, *value);
}
return *value;
}
// The property could not be found, we introduce it in the global
// context.
if (attributes == ABSENT) {
Handle<JSObject> global = Handle<JSObject>(Top::context()->global());
SetProperty(global, name, value, NONE);
return *value;
}
// The property was present in a context extension object.
Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
if (*context_ext == context->extension()) {
// This is the property that was introduced by the const
// declaration. Set it if it hasn't been set before. NOTE: We
// cannot use GetProperty() to get the current value as it
// 'unholes' the value.
LookupResult lookup;
context_ext->LocalLookupRealNamedProperty(*name, &lookup);
ASSERT(lookup.IsProperty()); // the property was declared
ASSERT(lookup.IsReadOnly()); // and it was declared as read-only
PropertyType type = lookup.type();
if (type == FIELD) {
FixedArray* properties = context_ext->properties();
int index = lookup.GetFieldIndex();
if (properties->get(index)->IsTheHole()) {
properties->set(index, *value);
}
} else if (type == NORMAL) {
if (context_ext->GetNormalizedProperty(&lookup)->IsTheHole()) {
context_ext->SetNormalizedProperty(&lookup, *value);
}
} else {
// We should not reach here. Any real, named property should be
// either a field or a dictionary slot.
UNREACHABLE();
}
} else {
// The property was found in a different context extension object.
// Set it if it is not a read-only property.
if ((attributes & READ_ONLY) == 0) {
Handle<Object> set = SetProperty(context_ext, name, value, attributes);
// Setting a property might throw an exception. Exceptions
// are converted to empty handles in handle operations. We
// need to convert back to exceptions here.
if (set.is_null()) {
ASSERT(Top::has_pending_exception());
return Failure::Exception();
}
}
}
return *value;
}
static Object* Runtime_OptimizeObjectForAddingMultipleProperties(
Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, object, 0);
CONVERT_SMI_CHECKED(properties, args[1]);
if (object->HasFastProperties()) {
NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
}
return *object;
}
static Object* Runtime_RegExpExec(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(JSRegExp, regexp, 0);
CONVERT_ARG_CHECKED(String, subject, 1);
// Due to the way the JS calls are constructed this must be less than the
// length of a string, i.e. it is always a Smi. We check anyway for security.
CONVERT_SMI_CHECKED(index, args[2]);
CONVERT_ARG_CHECKED(JSArray, last_match_info, 3);
RUNTIME_ASSERT(last_match_info->HasFastElements());
RUNTIME_ASSERT(index >= 0);
RUNTIME_ASSERT(index <= subject->length());
Counters::regexp_entry_runtime.Increment();
Handle<Object> result = RegExpImpl::Exec(regexp,
subject,
index,
last_match_info);
if (result.is_null()) return Failure::Exception();
return *result;
}
static Object* Runtime_MaterializeRegExpLiteral(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 4);
CONVERT_ARG_CHECKED(FixedArray, literals, 0);
int index = Smi::cast(args[1])->value();
Handle<String> pattern = args.at<String>(2);
Handle<String> flags = args.at<String>(3);
// Get the RegExp function from the context in the literals array.
// This is the RegExp function from the context in which the
// function was created. We do not use the RegExp function from the
// current global context because this might be the RegExp function
// from another context which we should not have access to.
Handle<JSFunction> constructor =
Handle<JSFunction>(
JSFunction::GlobalContextFromLiterals(*literals)->regexp_function());
// Compute the regular expression literal.
bool has_pending_exception;
Handle<Object> regexp =
RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
&has_pending_exception);
if (has_pending_exception) {
ASSERT(Top::has_pending_exception());
return Failure::Exception();
}
literals->set(index, *regexp);
return *regexp;
}
static Object* Runtime_FunctionGetName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
return f->shared()->name();
}
static Object* Runtime_FunctionSetName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, f, args[0]);
CONVERT_CHECKED(String, name, args[1]);
f->shared()->set_name(name);
return Heap::undefined_value();
}
static Object* Runtime_FunctionGetScript(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, fun, args[0]);
Handle<Object> script = Handle<Object>(fun->shared()->script());
if (!script->IsScript()) return Heap::undefined_value();
return *GetScriptWrapper(Handle<Script>::cast(script));
}
static Object* Runtime_FunctionGetSourceCode(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
return f->shared()->GetSourceCode();
}
static Object* Runtime_FunctionGetScriptSourcePosition(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, fun, args[0]);
int pos = fun->shared()->start_position();
return Smi::FromInt(pos);
}
static Object* Runtime_FunctionGetPositionForOffset(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
Code* code = fun->code();
RUNTIME_ASSERT(0 <= offset && offset < code->Size());
Address pc = code->address() + offset;
return Smi::FromInt(fun->code()->SourcePosition(pc));
}
static Object* Runtime_FunctionSetInstanceClassName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
CONVERT_CHECKED(String, name, args[1]);
fun->SetInstanceClassName(name);
return Heap::undefined_value();
}
static Object* Runtime_FunctionSetLength(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
CONVERT_CHECKED(Smi, length, args[1]);
fun->shared()->set_length(length->value());
return length;
}
static Object* Runtime_FunctionSetPrototype(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSFunction, fun, args[0]);
Object* obj = Accessors::FunctionSetPrototype(fun, args[1], NULL);
if (obj->IsFailure()) return obj;
return args[0]; // return TOS
}
static Object* Runtime_FunctionIsAPIFunction(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
// The function_data field of the shared function info is used exclusively by
// the API.
return !f->shared()->function_data()->IsUndefined() ? Heap::true_value()
: Heap::false_value();
}
static Object* Runtime_FunctionIsBuiltin(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
return f->IsBuiltin() ? Heap::true_value() : Heap::false_value();
}
static Object* Runtime_SetCode(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSFunction, target, 0);
Handle<Object> code = args.at<Object>(1);
Handle<Context> context(target->context());
if (!code->IsNull()) {
RUNTIME_ASSERT(code->IsJSFunction());
Handle<JSFunction> fun = Handle<JSFunction>::cast(code);
Handle<SharedFunctionInfo> shared(fun->shared());
SetExpectedNofProperties(target, shared->expected_nof_properties());
if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
return Failure::Exception();
}
// Set the code, formal parameter count, and the length of the target
// function.
target->set_code(fun->code());
target->shared()->set_length(shared->length());
target->shared()->set_formal_parameter_count(
shared->formal_parameter_count());
// Set the source code of the target function to undefined.
// SetCode is only used for built-in constructors like String,
// Array, and Object, and some web code
// doesn't like seeing source code for constructors.
target->shared()->set_script(Heap::undefined_value());
// Clear the optimization hints related to the compiled code as these are no
// longer valid when the code is overwritten.
target->shared()->ClearThisPropertyAssignmentsInfo();
context = Handle<Context>(fun->context());
// Make sure we get a fresh copy of the literal vector to avoid
// cross context contamination.
int number_of_literals = fun->NumberOfLiterals();
Handle<FixedArray> literals =
Factory::NewFixedArray(number_of_literals, TENURED);
if (number_of_literals > 0) {
// Insert the object, regexp and array functions in the literals
// array prefix. These are the functions that will be used when
// creating object, regexp and array literals.
literals->set(JSFunction::kLiteralGlobalContextIndex,
context->global_context());
}
// It's okay to skip the write barrier here because the literals
// are guaranteed to be in old space.
target->set_literals(*literals, SKIP_WRITE_BARRIER);
}
target->set_context(*context);
return *target;
}
static Object* CharCodeAt(String* subject, Object* index) {
uint32_t i = 0;
if (!Array::IndexFromObject(index, &i)) return Heap::nan_value();
// Flatten the string. If someone wants to get a char at an index
// in a cons string, it is likely that more indices will be
// accessed.
Object* flat = subject->TryFlatten();
if (flat->IsFailure()) return flat;
subject = String::cast(flat);
if (i >= static_cast<uint32_t>(subject->length())) {
return Heap::nan_value();
}
return Smi::FromInt(subject->Get(i));
}
static Object* CharFromCode(Object* char_code) {
uint32_t code;
if (Array::IndexFromObject(char_code, &code)) {
if (code <= 0xffff) {
return Heap::LookupSingleCharacterStringFromCode(code);
}
}
return Heap::empty_string();
}
static Object* Runtime_StringCharCodeAt(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, subject, args[0]);
Object* index = args[1];
return CharCodeAt(subject, index);
}
static Object* Runtime_StringCharAt(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, subject, args[0]);
Object* index = args[1];
Object* code = CharCodeAt(subject, index);
if (code == Heap::nan_value()) {
return Heap::undefined_value();
}
return CharFromCode(code);
}
static Object* Runtime_CharFromCode(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
return CharFromCode(args[0]);
}
// Forward declarations.
static const int kStringBuilderConcatHelperLengthBits = 11;
static const int kStringBuilderConcatHelperPositionBits = 19;
template <typename schar>
static inline void StringBuilderConcatHelper(String*,
schar*,
FixedArray*,
int);
typedef BitField<int, 0, 11> StringBuilderSubstringLength;
typedef BitField<int, 11, 19> StringBuilderSubstringPosition;
class ReplacementStringBuilder {
public:
ReplacementStringBuilder(Handle<String> subject, int estimated_part_count)
: subject_(subject),
parts_(Factory::NewFixedArray(estimated_part_count)),
part_count_(0),
character_count_(0),
is_ascii_(subject->IsAsciiRepresentation()) {
// Require a non-zero initial size. Ensures that doubling the size to
// extend the array will work.
ASSERT(estimated_part_count > 0);
}
void EnsureCapacity(int elements) {
int length = parts_->length();
int required_length = part_count_ + elements;
if (length < required_length) {
int new_length = length;
do {
new_length *= 2;
} while (new_length < required_length);
Handle<FixedArray> extended_array =
Factory::NewFixedArray(new_length);
parts_->CopyTo(0, *extended_array, 0, part_count_);
parts_ = extended_array;
}
}
void AddSubjectSlice(int from, int to) {
ASSERT(from >= 0);
int length = to - from;
ASSERT(length > 0);
// Can we encode the slice in 11 bits for length and 19 bits for
// start position - as used by StringBuilderConcatHelper?
if (StringBuilderSubstringLength::is_valid(length) &&
StringBuilderSubstringPosition::is_valid(from)) {
int encoded_slice = StringBuilderSubstringLength::encode(length) |
StringBuilderSubstringPosition::encode(from);
AddElement(Smi::FromInt(encoded_slice));
} else {
// Otherwise encode as two smis.
AddElement(Smi::FromInt(-length));
AddElement(Smi::FromInt(from));
}
IncrementCharacterCount(length);
}
void AddString(Handle<String> string) {
int length = string->length();
ASSERT(length > 0);
AddElement(*string);
if (!string->IsAsciiRepresentation()) {
is_ascii_ = false;
}
IncrementCharacterCount(length);
}
Handle<String> ToString() {
if (part_count_ == 0) {
return Factory::empty_string();
}
Handle<String> joined_string;
if (is_ascii_) {
joined_string = NewRawAsciiString(character_count_);
AssertNoAllocation no_alloc;
SeqAsciiString* seq = SeqAsciiString::cast(*joined_string);
char* char_buffer = seq->GetChars();
StringBuilderConcatHelper(*subject_,
char_buffer,
*parts_,
part_count_);
} else {
// Non-ASCII.
joined_string = NewRawTwoByteString(character_count_);
AssertNoAllocation no_alloc;
SeqTwoByteString* seq = SeqTwoByteString::cast(*joined_string);
uc16* char_buffer = seq->GetChars();
StringBuilderConcatHelper(*subject_,
char_buffer,
*parts_,
part_count_);
}
return joined_string;
}
void IncrementCharacterCount(int by) {
if (character_count_ > String::kMaxLength - by) {
V8::FatalProcessOutOfMemory("String.replace result too large.");
}
character_count_ += by;
}
private:
Handle<String> NewRawAsciiString(int size) {
CALL_HEAP_FUNCTION(Heap::AllocateRawAsciiString(size), String);
}
Handle<String> NewRawTwoByteString(int size) {
CALL_HEAP_FUNCTION(Heap::AllocateRawTwoByteString(size), String);
}
void AddElement(Object* element) {
ASSERT(element->IsSmi() || element->IsString());
ASSERT(parts_->length() > part_count_);
parts_->set(part_count_, element);
part_count_++;
}
Handle<String> subject_;
Handle<FixedArray> parts_;
int part_count_;
int character_count_;
bool is_ascii_;
};
class CompiledReplacement {
public:
CompiledReplacement()
: parts_(1), replacement_substrings_(0) {}
void Compile(Handle<String> replacement,
int capture_count,
int subject_length);
void Apply(ReplacementStringBuilder* builder,
int match_from,
int match_to,
Handle<JSArray> last_match_info);
// Number of distinct parts of the replacement pattern.
int parts() {
return parts_.length();
}
private:
enum PartType {
SUBJECT_PREFIX = 1,
SUBJECT_SUFFIX,
SUBJECT_CAPTURE,
REPLACEMENT_SUBSTRING,
REPLACEMENT_STRING,
NUMBER_OF_PART_TYPES
};
struct ReplacementPart {
static inline ReplacementPart SubjectMatch() {
return ReplacementPart(SUBJECT_CAPTURE, 0);
}
static inline ReplacementPart SubjectCapture(int capture_index) {
return ReplacementPart(SUBJECT_CAPTURE, capture_index);
}
static inline ReplacementPart SubjectPrefix() {
return ReplacementPart(SUBJECT_PREFIX, 0);
}
static inline ReplacementPart SubjectSuffix(int subject_length) {
return ReplacementPart(SUBJECT_SUFFIX, subject_length);
}
static inline ReplacementPart ReplacementString() {
return ReplacementPart(REPLACEMENT_STRING, 0);
}
static inline ReplacementPart ReplacementSubString(int from, int to) {
ASSERT(from >= 0);
ASSERT(to > from);
return ReplacementPart(-from, to);
}
// If tag <= 0 then it is the negation of a start index of a substring of
// the replacement pattern, otherwise it's a value from PartType.
ReplacementPart(int tag, int data)
: tag(tag), data(data) {
// Must be non-positive or a PartType value.
ASSERT(tag < NUMBER_OF_PART_TYPES);
}
// Either a value of PartType or a non-positive number that is
// the negation of an index into the replacement string.
int tag;
// The data value's interpretation depends on the value of tag:
// tag == SUBJECT_PREFIX ||
// tag == SUBJECT_SUFFIX: data is unused.
// tag == SUBJECT_CAPTURE: data is the number of the capture.
// tag == REPLACEMENT_SUBSTRING ||
// tag == REPLACEMENT_STRING: data is index into array of substrings
// of the replacement string.
// tag <= 0: Temporary representation of the substring of the replacement
// string ranging over -tag .. data.
// Is replaced by REPLACEMENT_{SUB,}STRING when we create the
// substring objects.
int data;
};
template<typename Char>
static void ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
Vector<Char> characters,
int capture_count,
int subject_length) {
int length = characters.length();
int last = 0;
for (int i = 0; i < length; i++) {
Char c = characters[i];
if (c == '$') {
int next_index = i + 1;
if (next_index == length) { // No next character!
break;
}
Char c2 = characters[next_index];
switch (c2) {
case '$':
if (i > last) {
// There is a substring before. Include the first "$".
parts->Add(ReplacementPart::ReplacementSubString(last, next_index));
last = next_index + 1; // Continue after the second "$".
} else {
// Let the next substring start with the second "$".
last = next_index;
}
i = next_index;
break;
case '`':
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i));
}
parts->Add(ReplacementPart::SubjectPrefix());
i = next_index;
last = i + 1;
break;
case '\'':
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i));
}
parts->Add(ReplacementPart::SubjectSuffix(subject_length));
i = next_index;
last = i + 1;
break;
case '&':
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i));
}
parts->Add(ReplacementPart::SubjectMatch());
i = next_index;
last = i + 1;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
int capture_ref = c2 - '0';
if (capture_ref > capture_count) {
i = next_index;
continue;
}
int second_digit_index = next_index + 1;
if (second_digit_index < length) {
// Peek ahead to see if we have two digits.
Char c3 = characters[second_digit_index];
if ('0' <= c3 && c3 <= '9') { // Double digits.
int double_digit_ref = capture_ref * 10 + c3 - '0';
if (double_digit_ref <= capture_count) {
next_index = second_digit_index;
capture_ref = double_digit_ref;
}
}
}
if (capture_ref > 0) {
if (i > last) {
parts->Add(ReplacementPart::ReplacementSubString(last, i));
}
ASSERT(capture_ref <= capture_count);
parts->Add(ReplacementPart::SubjectCapture(capture_ref));
last = next_index + 1;
}
i = next_index;
break;
}
default:
i = next_index;
break;
}
}
}
if (length > last) {
if (last == 0) {
parts->Add(ReplacementPart::ReplacementString());
} else {
parts->Add(ReplacementPart::ReplacementSubString(last, length));
}
}
}
ZoneList<ReplacementPart> parts_;
ZoneList<Handle<String> > replacement_substrings_;
};
void CompiledReplacement::Compile(Handle<String> replacement,
int capture_count,
int subject_length) {
ASSERT(replacement->IsFlat());
if (replacement->IsAsciiRepresentation()) {
AssertNoAllocation no_alloc;
ParseReplacementPattern(&parts_,
replacement->ToAsciiVector(),
capture_count,
subject_length);
} else {
ASSERT(replacement->IsTwoByteRepresentation());
AssertNoAllocation no_alloc;
ParseReplacementPattern(&parts_,
replacement->ToUC16Vector(),
capture_count,
subject_length);
}
// Find substrings of replacement string and create them as String objects.
int substring_index = 0;
for (int i = 0, n = parts_.length(); i < n; i++) {
int tag = parts_[i].tag;
if (tag <= 0) { // A replacement string slice.
int from = -tag;
int to = parts_[i].data;
replacement_substrings_.Add(Factory::NewSubString(replacement, from, to));
parts_[i].tag = REPLACEMENT_SUBSTRING;
parts_[i].data = substring_index;
substring_index++;
} else if (tag == REPLACEMENT_STRING) {
replacement_substrings_.Add(replacement);
parts_[i].data = substring_index;
substring_index++;
}
}
}
void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
int match_from,
int match_to,
Handle<JSArray> last_match_info) {
for (int i = 0, n = parts_.length(); i < n; i++) {
ReplacementPart part = parts_[i];
switch (part.tag) {
case SUBJECT_PREFIX:
if (match_from > 0) builder->AddSubjectSlice(0, match_from);
break;
case SUBJECT_SUFFIX: {
int subject_length = part.data;
if (match_to < subject_length) {
builder->AddSubjectSlice(match_to, subject_length);
}
break;
}
case SUBJECT_CAPTURE: {
int capture = part.data;
FixedArray* match_info = FixedArray::cast(last_match_info->elements());
int from = RegExpImpl::GetCapture(match_info, capture * 2);
int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1);
if (from >= 0 && to > from) {
builder->AddSubjectSlice(from, to);
}
break;
}
case REPLACEMENT_SUBSTRING:
case REPLACEMENT_STRING:
builder->AddString(replacement_substrings_[part.data]);
break;
default:
UNREACHABLE();
}
}
}
static Object* StringReplaceRegExpWithString(String* subject,
JSRegExp* regexp,
String* replacement,
JSArray* last_match_info) {
ASSERT(subject->IsFlat());
ASSERT(replacement->IsFlat());
HandleScope handles;
int length = subject->length();
Handle<String> subject_handle(subject);
Handle<JSRegExp> regexp_handle(regexp);
Handle<String> replacement_handle(replacement);
Handle<JSArray> last_match_info_handle(last_match_info);
Handle<Object> match = RegExpImpl::Exec(regexp_handle,
subject_handle,
0,
last_match_info_handle);
if (match.is_null()) {
return Failure::Exception();
}
if (match->IsNull()) {
return *subject_handle;
}
int capture_count = regexp_handle->CaptureCount();
// CompiledReplacement uses zone allocation.
CompilationZoneScope zone(DELETE_ON_EXIT);
CompiledReplacement compiled_replacement;
compiled_replacement.Compile(replacement_handle,
capture_count,
length);
bool is_global = regexp_handle->GetFlags().is_global();
// Guessing the number of parts that the final result string is built
// from. Global regexps can match any number of times, so we guess
// conservatively.
int expected_parts =
(compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1;
ReplacementStringBuilder builder(subject_handle, expected_parts);
// Index of end of last match.
int prev = 0;
// Number of parts added by compiled replacement plus preceeding
// string and possibly suffix after last match. It is possible for
// all components to use two elements when encoded as two smis.
const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
bool matched = true;
do {
ASSERT(last_match_info_handle->HasFastElements());
// Increase the capacity of the builder before entering local handle-scope,
// so its internal buffer can safely allocate a new handle if it grows.
builder.EnsureCapacity(parts_added_per_loop);
HandleScope loop_scope;
int start, end;
{
AssertNoAllocation match_info_array_is_not_in_a_handle;
FixedArray* match_info_array =
FixedArray::cast(last_match_info_handle->elements());
ASSERT_EQ(capture_count * 2 + 2,
RegExpImpl::GetLastCaptureCount(match_info_array));
start = RegExpImpl::GetCapture(match_info_array, 0);
end = RegExpImpl::GetCapture(match_info_array, 1);
}
if (prev < start) {
builder.AddSubjectSlice(prev, start);
}
compiled_replacement.Apply(&builder,
start,
end,
last_match_info_handle);
prev = end;
// Only continue checking for global regexps.
if (!is_global) break;
// Continue from where the match ended, unless it was an empty match.
int next = end;
if (start == end) {
next = end + 1;
if (next > length) break;
}
match = RegExpImpl::Exec(regexp_handle,
subject_handle,
next,
last_match_info_handle);
if (match.is_null()) {
return Failure::Exception();
}
matched = !match->IsNull();
} while (matched);
if (prev < length) {
builder.AddSubjectSlice(prev, length);
}
return *(builder.ToString());
}
static Object* Runtime_StringReplaceRegExpWithString(Arguments args) {
ASSERT(args.length() == 4);
CONVERT_CHECKED(String, subject, args[0]);
if (!subject->IsFlat()) {
Object* flat_subject = subject->TryFlatten();
if (flat_subject->IsFailure()) {
return flat_subject;
}
subject = String::cast(flat_subject);
}
CONVERT_CHECKED(String, replacement, args[2]);
if (!replacement->IsFlat()) {
Object* flat_replacement = replacement->TryFlatten();
if (flat_replacement->IsFailure()) {
return flat_replacement;
}
replacement = String::cast(flat_replacement);
}
CONVERT_CHECKED(JSRegExp, regexp, args[1]);
CONVERT_CHECKED(JSArray, last_match_info, args[3]);
ASSERT(last_match_info->HasFastElements());
return StringReplaceRegExpWithString(subject,
regexp,
replacement,
last_match_info);
}
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables.
static const int kBMMaxShift = 0xff;
// Reduce alphabet to this size.
static const int kBMAlphabetSize = 0x100;
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 5;
// Holds the two buffers used by Boyer-Moore string search's Good Suffix
// shift. Only allows the last kBMMaxShift characters of the needle
// to be indexed.
class BMGoodSuffixBuffers {
public:
BMGoodSuffixBuffers() {}
inline void init(int needle_length) {
ASSERT(needle_length > 1);
int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift;
int len = needle_length - start;
biased_suffixes_ = suffixes_ - start;
biased_good_suffix_shift_ = good_suffix_shift_ - start;
for (int i = 0; i <= len; i++) {
good_suffix_shift_[i] = len;
}
}
inline int& suffix(int index) {
ASSERT(biased_suffixes_ + index >= suffixes_);
return biased_suffixes_[index];
}
inline int& shift(int index) {
ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_);
return biased_good_suffix_shift_[index];
}
private:
int suffixes_[kBMMaxShift + 1];
int good_suffix_shift_[kBMMaxShift + 1];
int* biased_suffixes_;
int* biased_good_suffix_shift_;
DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers);
};
// buffers reused by BoyerMoore
static int bad_char_occurrence[kBMAlphabetSize];
static BMGoodSuffixBuffers bmgs_buffers;
// Compute the bad-char table for Boyer-Moore in the static buffer.
template <typename pchar>
static void BoyerMoorePopulateBadCharTable(Vector<const pchar> pattern,
int start) {
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
int table_size = (sizeof(pchar) == 1) ? String::kMaxAsciiCharCode + 1
: kBMAlphabetSize;
if (start == 0) { // All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (int i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (int i = start; i < pattern.length() - 1; i++) {
pchar c = pattern[i];
int bucket = (sizeof(pchar) ==1) ? c : c % kBMAlphabetSize;
bad_char_occurrence[bucket] = i;
}
}
template <typename pchar>
static void BoyerMoorePopulateGoodSuffixTable(Vector<const pchar> pattern,
int start) {
int m = pattern.length();
int len = m - start;
// Compute Good Suffix tables.
bmgs_buffers.init(m);
bmgs_buffers.shift(m-1) = 1;
bmgs_buffers.suffix(m) = m + 1;
pchar last_char = pattern[m - 1];
int suffix = m + 1;
for (int i = m; i > start;) {
for (pchar c = pattern[i - 1]; suffix <= m && c != pattern[suffix - 1];) {
if (bmgs_buffers.shift(suffix) == len) {
bmgs_buffers.shift(suffix) = suffix - i;
}
suffix = bmgs_buffers.suffix(suffix);
}
i--;
suffix--;
bmgs_buffers.suffix(i) = suffix;
if (suffix == m) {
// No suffix to extend, so we check against last_char only.
while (i > start && pattern[i - 1] != last_char) {
if (bmgs_buffers.shift(m) == len) {
bmgs_buffers.shift(m) = m - i;
}
i--;
bmgs_buffers.suffix(i) = m;
}
if (i > start) {
i--;
suffix--;
bmgs_buffers.suffix(i) = suffix;
}
}
}
if (suffix < m) {
for (int i = start; i <= m; i++) {
if (bmgs_buffers.shift(i) == len) {
bmgs_buffers.shift(i) = suffix - start;
}
if (i == suffix) {
suffix = bmgs_buffers.suffix(suffix);
}
}
}
}
template <typename schar, typename pchar>
static inline int CharOccurrence(int char_code) {
if (sizeof(schar) == 1) {
return bad_char_occurrence[char_code];
}
if (sizeof(pchar) == 1) {
if (char_code > String::kMaxAsciiCharCode) {
return -1;
}
return bad_char_occurrence[char_code];
}
return bad_char_occurrence[char_code % kBMAlphabetSize];
}
// Restricted simplified Boyer-Moore string matching.
// Uses only the bad-shift table of Boyer-Moore and only uses it
// for the character compared to the last character of the needle.
template <typename schar, typename pchar>
static int BoyerMooreHorspool(Vector<const schar> subject,
Vector<const pchar> pattern,
int start_index,
bool* complete) {
int n = subject.length();
int m = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
BoyerMoorePopulateBadCharTable(pattern, start);
int badness = -m; // How bad we are doing without a good-suffix table.
int idx; // No matches found prior to this index.
pchar last_char = pattern[m - 1];
int last_char_shift = m - 1 - CharOccurrence<schar, pchar>(last_char);
// Perform search
for (idx = start_index; idx <= n - m;) {
int j = m - 1;
int c;
while (last_char != (c = subject[idx + j])) {
int bc_occ = CharOccurrence<schar, pchar>(c);
int shift = j - bc_occ;
idx += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (idx > n - m) {
*complete = true;
return -1;
}
}
j--;
while (j >= 0 && pattern[j] == (subject[idx + j])) j--;
if (j < 0) {
*complete = true;
return idx;
} else {
idx += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (m - j) - last_char_shift;
if (badness > 0) {
*complete = false;
return idx;
}
}
}
*complete = true;
return -1;
}
template <typename schar, typename pchar>
static int BoyerMooreIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
int n = subject.length();
int m = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
// Build the Good Suffix table and continue searching.
BoyerMoorePopulateGoodSuffixTable(pattern, start);
pchar last_char = pattern[m - 1];
// Continue search from i.
while (idx <= n - m) {
int j = m - 1;
schar c;
while (last_char != (c = subject[idx + j])) {
int shift = j - CharOccurrence<schar, pchar>(c);
idx += shift;
if (idx > n - m) {
return -1;
}
}
while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
if (j < 0) {
return idx;
} else if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
idx += m - 1 - CharOccurrence<schar, pchar>(last_char);
} else {
int gs_shift = bmgs_buffers.shift(j + 1); // Good suffix shift.
int bc_occ = CharOccurrence<schar, pchar>(c);
int shift = j - bc_occ; // Bad-char shift.
if (gs_shift > shift) {
shift = gs_shift;
}
idx += shift;
}
}
return -1;
}
template <typename schar>
static int SingleCharIndexOf(Vector<const schar> string,
schar pattern_char,
int start_index) {
for (int i = start_index, n = string.length(); i < n; i++) {
if (pattern_char == string[i]) {
return i;
}
}
return -1;
}
template <typename schar>
static int SingleCharLastIndexOf(Vector<const schar> string,
schar pattern_char,
int start_index) {
for (int i = start_index; i >= 0; i--) {
if (pattern_char == string[i]) {
return i;
}
}
return -1;
}
// Trivial string search for shorter strings.
// On return, if "complete" is set to true, the return value is the
// final result of searching for the patter in the subject.
// If "complete" is set to false, the return value is the index where
// further checking should start, i.e., it's guaranteed that the pattern
// does not occur at a position prior to the returned index.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx,
bool* complete) {
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int badness = -10 - (pattern.length() << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
pchar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
badness++;
if (badness > 0) {
*complete = false;
return i;
}
if (subject[i] != pattern_first_char) continue;
int j = 1;
do {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
} while (j < pattern.length());
if (j == pattern.length()) {
*complete = true;
return i;
}
badness += j;
}
*complete = true;
return -1;
}
// Simple indexOf that never bails out. For short patterns only.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
pchar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
if (subject[i] != pattern_first_char) continue;
int j = 1;
do {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
} while (j < pattern.length());
if (j == pattern.length()) {
return i;
}
}
return -1;
}
// Dispatch to different algorithms.
template <typename schar, typename pchar>
static int StringMatchStrategy(Vector<const schar> sub,
Vector<const pchar> pat,
int start_index) {
ASSERT(pat.length() > 1);
// We have an ASCII haystack and a non-ASCII needle. Check if there
// really is a non-ASCII character in the needle and bail out if there
// is.
if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
for (int i = 0; i < pat.length(); i++) {
uc16 c = pat[i];
if (c > String::kMaxAsciiCharCode) {
return -1;
}
}
}
if (pat.length() < kBMMinPatternLength) {
// We don't believe fancy searching can ever be more efficient.
// The max shift of Boyer-Moore on a pattern of this length does
// not compensate for the overhead.
return SimpleIndexOf(sub, pat, start_index);
}
// Try algorithms in order of increasing setup cost and expected performance.
bool complete;
int idx = SimpleIndexOf(sub, pat, start_index, &complete);
if (complete) return idx;
idx = BoyerMooreHorspool(sub, pat, idx, &complete);
if (complete) return idx;
return BoyerMooreIndexOf(sub, pat, idx);
}
// Perform string match of pattern on subject, starting at start index.
// Caller must ensure that 0 <= start_index <= sub->length(),
// and should check that pat->length() + start_index <= sub->length()
int Runtime::StringMatch(Handle<String> sub,
Handle<String> pat,
int start_index) {
ASSERT(0 <= start_index);
ASSERT(start_index <= sub->length());
int pattern_length = pat->length();
if (pattern_length == 0) return start_index;
int subject_length = sub->length();
if (start_index + pattern_length > subject_length) return -1;
if (!sub->IsFlat()) {
FlattenString(sub);
}
// Searching for one specific character is common. For one
// character patterns linear search is necessary, so any smart
// algorithm is unnecessary overhead.
if (pattern_length == 1) {
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
if (sub->IsAsciiRepresentation()) {
uc16 pchar = pat->Get(0);
if (pchar > String::kMaxAsciiCharCode) {
return -1;
}
Vector<const char> ascii_vector =
sub->ToAsciiVector().SubVector(start_index, subject_length);
const void* pos = memchr(ascii_vector.start(),
static_cast<const char>(pchar),
static_cast<size_t>(ascii_vector.length()));
if (pos == NULL) {
return -1;
}
return static_cast<int>(reinterpret_cast<const char*>(pos)
- ascii_vector.start() + start_index);
}
return SingleCharIndexOf(sub->ToUC16Vector(), pat->Get(0), start_index);
}
if (!pat->IsFlat()) {
FlattenString(pat);
}
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
// dispatch on type of strings
if (pat->IsAsciiRepresentation()) {
Vector<const char> pat_vector = pat->ToAsciiVector();
if (sub->IsAsciiRepresentation()) {
return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
}
return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
}
Vector<const uc16> pat_vector = pat->ToUC16Vector();
if (sub->IsAsciiRepresentation()) {
return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
}
return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
}
static Object* Runtime_StringIndexOf(Arguments args) {
HandleScope scope; // create a new handle scope
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(String, sub, 0);
CONVERT_ARG_CHECKED(String, pat, 1);
Object* index = args[2];
uint32_t start_index;
if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);
RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
int position = Runtime::StringMatch(sub, pat, start_index);
return Smi::FromInt(position);
}
template <typename schar, typename pchar>
static int StringMatchBackwards(Vector<const schar> sub,
Vector<const pchar> pat,
int idx) {
ASSERT(pat.length() >= 1);
ASSERT(idx + pat.length() <= sub.length());
if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
for (int i = 0; i < pat.length(); i++) {
uc16 c = pat[i];
if (c > String::kMaxAsciiCharCode) {
return -1;
}
}
}
pchar pattern_first_char = pat[0];
for (int i = idx; i >= 0; i--) {
if (sub[i] != pattern_first_char) continue;
int j = 1;
while (j < pat.length()) {
if (pat[j] != sub[i+j]) {
break;
}
j++;
}
if (j == pat.length()) {
return i;
}
}
return -1;
}
static Object* Runtime_StringLastIndexOf(Arguments args) {
HandleScope scope; // create a new handle scope
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(String, sub, 0);
CONVERT_ARG_CHECKED(String, pat, 1);
Object* index = args[2];
uint32_t start_index;
if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);
uint32_t pat_length = pat->length();
uint32_t sub_length = sub->length();
if (start_index + pat_length > sub_length) {
start_index = sub_length - pat_length;
}
if (pat_length == 0) {
return Smi::FromInt(start_index);
}
if (!sub->IsFlat()) {
FlattenString(sub);
}
if (pat_length == 1) {
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
if (sub->IsAsciiRepresentation()) {
uc16 pchar = pat->Get(0);
if (pchar > String::kMaxAsciiCharCode) {
return Smi::FromInt(-1);
}
return Smi::FromInt(SingleCharLastIndexOf(sub->ToAsciiVector(),
static_cast<char>(pat->Get(0)),
start_index));
} else {
return Smi::FromInt(SingleCharLastIndexOf(sub->ToUC16Vector(),
pat->Get(0),
start_index));
}
}
if (!pat->IsFlat()) {
FlattenString(pat);
}
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
int position = -1;
if (pat->IsAsciiRepresentation()) {
Vector<const char> pat_vector = pat->ToAsciiVector();
if (sub->IsAsciiRepresentation()) {
position = StringMatchBackwards(sub->ToAsciiVector(),
pat_vector,
start_index);
} else {
position = StringMatchBackwards(sub->ToUC16Vector(),
pat_vector,
start_index);
}
} else {
Vector<const uc16> pat_vector = pat->ToUC16Vector();
if (sub->IsAsciiRepresentation()) {
position = StringMatchBackwards(sub->ToAsciiVector(),
pat_vector,
start_index);
} else {
position = StringMatchBackwards(sub->ToUC16Vector(),
pat_vector,
start_index);
}
}
return Smi::FromInt(position);
}
static Object* Runtime_StringLocaleCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, str1, args[0]);
CONVERT_CHECKED(String, str2, args[1]);
if (str1 == str2) return Smi::FromInt(0); // Equal.
int str1_length = str1->length();
int str2_length = str2->length();
// Decide trivial cases without flattening.
if (str1_length == 0) {
if (str2_length == 0) return Smi::FromInt(0); // Equal.
return Smi::FromInt(-str2_length);
} else {
if (str2_length == 0) return Smi::FromInt(str1_length);
}
int end = str1_length < str2_length ? str1_length : str2_length;
// No need to flatten if we are going to find the answer on the first
// character. At this point we know there is at least one character
// in each string, due to the trivial case handling above.
int d = str1->Get(0) - str2->Get(0);
if (d != 0) return Smi::FromInt(d);
str1->TryFlattenIfNotFlat();
str2->TryFlattenIfNotFlat();
static StringInputBuffer buf1;
static StringInputBuffer buf2;
buf1.Reset(str1);
buf2.Reset(str2);
for (int i = 0; i < end; i++) {
uint16_t char1 = buf1.GetNext();
uint16_t char2 = buf2.GetNext();
if (char1 != char2) return Smi::FromInt(char1 - char2);
}
return Smi::FromInt(str1_length - str2_length);
}
static Object* Runtime_SubString(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_CHECKED(String, value, args[0]);
Object* from = args[1];
Object* to = args[2];
int start, end;
// We have a fast integer-only case here to avoid a conversion to double in
// the common case where from and to are Smis.
if (from->IsSmi() && to->IsSmi()) {
start = Smi::cast(from)->value();
end = Smi::cast(to)->value();
} else {
CONVERT_DOUBLE_CHECKED(from_number, from);
CONVERT_DOUBLE_CHECKED(to_number, to);
start = FastD2I(from_number);
end = FastD2I(to_number);
}
RUNTIME_ASSERT(end >= start);
RUNTIME_ASSERT(start >= 0);
RUNTIME_ASSERT(end <= value->length());
Counters::sub_string_runtime.Increment();
return value->SubString(start, end);
}
static Object* Runtime_StringMatch(Arguments args) {
ASSERT_EQ(3, args.length());
CONVERT_ARG_CHECKED(String, subject, 0);
CONVERT_ARG_CHECKED(JSRegExp, regexp, 1);
CONVERT_ARG_CHECKED(JSArray, regexp_info, 2);
HandleScope handles;
Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info);
if (match.is_null()) {
return Failure::Exception();
}
if (match->IsNull()) {
return Heap::null_value();
}
int length = subject->length();
CompilationZoneScope zone_space(DELETE_ON_EXIT);
ZoneList<int> offsets(8);
do {
int start;
int end;
{
AssertNoAllocation no_alloc;
FixedArray* elements = FixedArray::cast(regexp_info->elements());
start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value();
end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value();
}
offsets.Add(start);
offsets.Add(end);
int index = start < end ? end : end + 1;
if (index > length) break;
match = RegExpImpl::Exec(regexp, subject, index, regexp_info);
if (match.is_null()) {
return Failure::Exception();
}
} while (!match->IsNull());
int matches = offsets.length() / 2;
Handle<FixedArray> elements = Factory::NewFixedArray(matches);
for (int i = 0; i < matches ; i++) {
int from = offsets.at(i * 2);
int to = offsets.at(i * 2 + 1);
elements->set(i, *Factory::NewSubString(subject, from, to));
}
Handle<JSArray> result = Factory::NewJSArrayWithElements(elements);
result->set_length(Smi::FromInt(matches));
return *result;
}
static Object* Runtime_NumberToRadixString(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// Fast case where the result is a one character string.
if (args[0]->IsSmi() && args[1]->IsSmi()) {
int value = Smi::cast(args[0])->value();
int radix = Smi::cast(args[1])->value();
if (value >= 0 && value < radix) {
RUNTIME_ASSERT(radix <= 36);
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return Heap::LookupSingleCharacterStringFromCode(kCharTable[value]);
}
}
// Slow case.
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(radix_number, args[1]);
int radix = FastD2I(radix_number);
RUNTIME_ASSERT(2 <= radix && radix <= 36);
char* str = DoubleToRadixCString(value, radix);
Object* result = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return result;
}
static Object* Runtime_NumberToFixed(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
int f = FastD2I(f_number);
RUNTIME_ASSERT(f >= 0);
char* str = DoubleToFixedCString(value, f);
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return res;
}
static Object* Runtime_NumberToExponential(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
int f = FastD2I(f_number);
RUNTIME_ASSERT(f >= -1 && f <= 20);
char* str = DoubleToExponentialCString(value, f);
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return res;
}
static Object* Runtime_NumberToPrecision(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(value, args[0]);
if (isnan(value)) {
return Heap::AllocateStringFromAscii(CStrVector("NaN"));
}
if (isinf(value)) {
if (value < 0) {
return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
}
return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
}
CONVERT_DOUBLE_CHECKED(f_number, args[1]);
int f = FastD2I(f_number);
RUNTIME_ASSERT(f >= 1 && f <= 21);
char* str = DoubleToPrecisionCString(value, f);
Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
DeleteArray(str);
return res;
}
// Returns a single character string where first character equals
// string->Get(index).
static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
if (index < static_cast<uint32_t>(string->length())) {
string->TryFlattenIfNotFlat();
return LookupSingleCharacterStringFromCode(
string->Get(index));
}
return Execution::CharAt(string, index);
}
Object* Runtime::GetElementOrCharAt(Handle<Object> object, uint32_t index) {
// Handle [] indexing on Strings
if (object->IsString()) {
Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
if (!result->IsUndefined()) return *result;
}
// Handle [] indexing on String objects
if (object->IsStringObjectWithCharacterAt(index)) {
Handle<JSValue> js_value = Handle<JSValue>::cast(object);
Handle<Object> result =
GetCharAt(Handle<String>(String::cast(js_value->value())), index);
if (!result->IsUndefined()) return *result;
}
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
Handle<Object> prototype = GetPrototype(object);
return prototype->GetElement(index);
}
return object->GetElement(index);
}
Object* Runtime::GetObjectProperty(Handle<Object> object, Handle<Object> key) {
HandleScope scope;
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = { key, object };
Handle<Object> error =
Factory::NewTypeError("non_object_property_load",
HandleVector(args, 2));
return Top::Throw(*error);
}
// Check if the given key is an array index.
uint32_t index;
if (Array::IndexFromObject(*key, &index)) {
return GetElementOrCharAt(object, index);
}
// Convert the key to a string - possibly by calling back into JavaScript.
Handle<String> name;
if (key->IsString()) {
name = Handle<String>::cast(key);
} else {
bool has_pending_exception = false;
Handle<Object> converted =
Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
name = Handle<String>::cast(converted);
}
// Check if the name is trivially convertible to an index and get
// the element if so.
if (name->AsArrayIndex(&index)) {
return GetElementOrCharAt(object, index);
} else {
PropertyAttributes attr;
return object->GetProperty(*name, &attr);
}
}
static Object* Runtime_GetProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
return Runtime::GetObjectProperty(object, key);
}
// KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric.
static Object* Runtime_KeyedGetProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// Fast cases for getting named properties of the receiver JSObject
// itself.
//
// The global proxy objects has to be excluded since LocalLookup on
// the global proxy object can return a valid result even though the
// global proxy object never has properties. This is the case
// because the global proxy object forwards everything to its hidden
// prototype including local lookups.
//
// Additionally, we need to make sure that we do not cache results
// for objects that require access checks.
if (args[0]->IsJSObject() &&
!args[0]->IsJSGlobalProxy() &&
!args[0]->IsAccessCheckNeeded() &&
args[1]->IsString()) {
JSObject* receiver = JSObject::cast(args[0]);
String* key = String::cast(args[1]);
if (receiver->HasFastProperties()) {
// Attempt to use lookup cache.
Map* receiver_map = receiver->map();
int offset = KeyedLookupCache::Lookup(receiver_map, key);
if (offset != -1) {
Object* value = receiver->FastPropertyAt(offset);
return value->IsTheHole() ? Heap::undefined_value() : value;
}
// Lookup cache miss. Perform lookup and update the cache if appropriate.
LookupResult result;
receiver->LocalLookup(key, &result);
if (result.IsProperty() && result.type() == FIELD) {
int offset = result.GetFieldIndex();
KeyedLookupCache::Update(receiver_map, key, offset);
return receiver->FastPropertyAt(offset);
}
} else {
// Attempt dictionary lookup.
StringDictionary* dictionary = receiver->property_dictionary();
int entry = dictionary->FindEntry(key);
if ((entry != StringDictionary::kNotFound) &&
(dictionary->DetailsAt(entry).type() == NORMAL)) {
Object* value = dictionary->ValueAt(entry);
if (!receiver->IsGlobalObject()) return value;
value = JSGlobalPropertyCell::cast(value)->value();
if (!value->IsTheHole()) return value;
// If value is the hole do the general lookup.
}
}
} else if (args[0]->IsString() && args[1]->IsSmi()) {
// Fast case for string indexing using [] with a smi index.
HandleScope scope;
Handle<String> str = args.at<String>(0);
int index = Smi::cast(args[1])->value();
Handle<Object> result = GetCharAt(str, index);
return *result;
}
// Fall back to GetObjectProperty.
return Runtime::GetObjectProperty(args.at<Object>(0),
args.at<Object>(1));
}
static Object* Runtime_DefineOrRedefineAccessorProperty(Arguments args) {
ASSERT(args.length() == 5);
HandleScope scope;
CONVERT_ARG_CHECKED(JSObject, obj, 0);
CONVERT_CHECKED(String, name, args[1]);
CONVERT_CHECKED(Smi, flag_setter, args[2]);
CONVERT_CHECKED(JSFunction, fun, args[3]);
CONVERT_CHECKED(Smi, flag_attr, args[4]);
int unchecked = flag_attr->value();
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
RUNTIME_ASSERT(!obj->IsNull());
LookupResult result;
obj->LocalLookupRealNamedProperty(name, &result);
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
// If an existing property is either FIELD, NORMAL or CONSTANT_FUNCTION
// delete it to avoid running into trouble in DefineAccessor, which
// handles this incorrectly if the property is readonly (does nothing)
if (result.IsProperty() &&
(result.type() == FIELD || result.type() == NORMAL
|| result.type() == CONSTANT_FUNCTION)) {
obj->DeleteProperty(name, JSObject::NORMAL_DELETION);
}
return obj->DefineAccessor(name, flag_setter->value() == 0, fun, attr);
}
static Object* Runtime_DefineOrRedefineDataProperty(Arguments args) {
ASSERT(args.length() == 4);
HandleScope scope;
CONVERT_ARG_CHECKED(JSObject, js_object, 0);
CONVERT_ARG_CHECKED(String, name, 1);
Handle<Object> obj_value = args.at<Object>(2);
CONVERT_CHECKED(Smi, flag, args[3]);
int unchecked = flag->value();
RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
LookupResult result;
js_object->LocalLookupRealNamedProperty(*name, &result);
PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
// Take special care when attributes are different and there is already
// a property. For simplicity we normalize the property which enables us
// to not worry about changing the instance_descriptor and creating a new
// map. The current version of SetObjectProperty does not handle attributes
// correctly in the case where a property is a field and is reset with
// new attributes.
if (result.IsProperty() && attr != result.GetAttributes()) {
// New attributes - normalize to avoid writing to instance descriptor
js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
// Use IgnoreAttributes version since a readonly property may be
// overridden and SetProperty does not allow this.
return js_object->IgnoreAttributesAndSetLocalProperty(*name,
*obj_value,
attr);
}
return Runtime::SetObjectProperty(js_object, name, obj_value, attr);
}
Object* Runtime::SetObjectProperty(Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr) {
HandleScope scope;
if (object->IsUndefined() || object->IsNull()) {
Handle<Object> args[2] = { key, object };
Handle<Object> error =
Factory::NewTypeError("non_object_property_store",
HandleVector(args, 2));
return Top::Throw(*error);
}
// If the object isn't a JavaScript object, we ignore the store.
if (!object->IsJSObject()) return *value;
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
// Check if the given key is an array index.
uint32_t index;
if (Array::IndexFromObject(*key, &index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return *value;
}
Handle<Object> result = SetElement(js_object, index, value);
if (result.is_null()) return Failure::Exception();
return *value;
}
if (key->IsString()) {
Handle<Object> result;
if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
result = SetElement(js_object, index, value);
} else {
Handle<String> key_string = Handle<String>::cast(key);
key_string->TryFlattenIfNotFlat();
result = SetProperty(js_object, key_string, value, attr);
}
if (result.is_null()) return Failure::Exception();
return *value;
}
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
return js_object->SetElement(index, *value);
} else {
return js_object->SetProperty(*name, *value, attr);
}
}
Object* Runtime::ForceSetObjectProperty(Handle<JSObject> js_object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attr) {
HandleScope scope;
// Check if the given key is an array index.
uint32_t index;
if (Array::IndexFromObject(*key, &index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the characters
// of a string using [] notation. We need to support this too in
// JavaScript.
// In the case of a String object we just need to redirect the assignment to
// the underlying string if the index is in range. Since the underlying
// string does nothing with the assignment then we can ignore such
// assignments.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return *value;
}
return js_object->SetElement(index, *value);
}
if (key->IsString()) {
if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
return js_object->SetElement(index, *value);
} else {
Handle<String> key_string = Handle<String>::cast(key);
key_string->TryFlattenIfNotFlat();
return js_object->IgnoreAttributesAndSetLocalProperty(*key_string,
*value,
attr);
}
}
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<String> name = Handle<String>::cast(converted);
if (name->AsArrayIndex(&index)) {
return js_object->SetElement(index, *value);
} else {
return js_object->IgnoreAttributesAndSetLocalProperty(*name, *value, attr);
}
}
Object* Runtime::ForceDeleteObjectProperty(Handle<JSObject> js_object,
Handle<Object> key) {
HandleScope scope;
// Check if the given key is an array index.
uint32_t index;
if (Array::IndexFromObject(*key, &index)) {
// In Firefox/SpiderMonkey, Safari and Opera you can access the
// characters of a string using [] notation. In the case of a
// String object we just need to redirect the deletion to the
// underlying string if the index is in range. Since the
// underlying string does nothing with the deletion, we can ignore
// such deletions.
if (js_object->IsStringObjectWithCharacterAt(index)) {
return Heap::true_value();
}
return js_object->DeleteElement(index, JSObject::FORCE_DELETION);
}
Handle<String> key_string;
if (key->IsString()) {
key_string = Handle<String>::cast(key);
} else {
// Call-back into JavaScript to convert the key to a string.
bool has_pending_exception = false;
Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
key_string = Handle<String>::cast(converted);
}
key_string->TryFlattenIfNotFlat();
return js_object->DeleteProperty(*key_string, JSObject::FORCE_DELETION);
}
static Object* Runtime_SetProperty(Arguments args) {
NoHandleAllocation ha;
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 4) {
CONVERT_CHECKED(Smi, value_obj, args[3]);
int unchecked_value = value_obj->value();
// Only attribute bits should be set.
RUNTIME_ASSERT(
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(unchecked_value);
}
return Runtime::SetObjectProperty(object, key, value, attributes);
}
// Set a local property, even if it is READ_ONLY. If the property does not
// exist, it will be added with attributes NONE.
static Object* Runtime_IgnoreAttributesAndSetProperty(Arguments args) {
NoHandleAllocation ha;
RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_CHECKED(String, name, args[1]);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 4) {
CONVERT_CHECKED(Smi, value_obj, args[3]);
int unchecked_value = value_obj->value();
// Only attribute bits should be set.
RUNTIME_ASSERT(
(unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(unchecked_value);
}
return object->
IgnoreAttributesAndSetLocalProperty(name, args[2], attributes);
}
static Object* Runtime_DeleteProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_CHECKED(String, key, args[1]);
return object->DeleteProperty(key, JSObject::NORMAL_DELETION);
}
static Object* HasLocalPropertyImplementation(Handle<JSObject> object,
Handle<String> key) {
if (object->HasLocalProperty(*key)) return Heap::true_value();
// Handle hidden prototypes. If there's a hidden prototype above this thing
// then we have to check it for properties, because they are supposed to
// look like they are on this object.
Handle<Object> proto(object->GetPrototype());
if (proto->IsJSObject() &&
Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) {
return HasLocalPropertyImplementation(Handle<JSObject>::cast(proto), key);
}
return Heap::false_value();
}
static Object* Runtime_HasLocalProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, key, args[1]);
Object* obj = args[0];
// Only JS objects can have properties.
if (obj->IsJSObject()) {
JSObject* object = JSObject::cast(obj);
// Fast case - no interceptors.
if (object->HasRealNamedProperty(key)) return Heap::true_value();
// Slow case. Either it's not there or we have an interceptor. We should
// have handles for this kind of deal.
HandleScope scope;
return HasLocalPropertyImplementation(Handle<JSObject>(object),
Handle<String>(key));
} else if (obj->IsString()) {
// Well, there is one exception: Handle [] on strings.
uint32_t index;
if (key->AsArrayIndex(&index)) {
String* string = String::cast(obj);
if (index < static_cast<uint32_t>(string->length()))
return Heap::true_value();
}
}
return Heap::false_value();
}
static Object* Runtime_HasProperty(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
// Only JS objects can have properties.
if (args[0]->IsJSObject()) {
JSObject* object = JSObject::cast(args[0]);
CONVERT_CHECKED(String, key, args[1]);
if (object->HasProperty(key)) return Heap::true_value();
}
return Heap::false_value();
}
static Object* Runtime_HasElement(Arguments args) {
NoHandleAllocation na;
ASSERT(args.length() == 2);
// Only JS objects can have elements.
if (args[0]->IsJSObject()) {
JSObject* object = JSObject::cast(args[0]);
CONVERT_CHECKED(Smi, index_obj, args[1]);
uint32_t index = index_obj->value();
if (object->HasElement(index)) return Heap::true_value();
}
return Heap::false_value();
}
static Object* Runtime_IsPropertyEnumerable(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_CHECKED(String, key, args[1]);
uint32_t index;
if (key->AsArrayIndex(&index)) {
return Heap::ToBoolean(object->HasElement(index));
}
PropertyAttributes att = object->GetLocalPropertyAttribute(key);
return Heap::ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0);
}
static Object* Runtime_GetPropertyNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, object, 0);
return *GetKeysFor(object);
}
// Returns either a FixedArray as Runtime_GetPropertyNames,
// or, if the given object has an enum cache that contains
// all enumerable properties of the object and its prototypes
// have none, the map of the object. This is used to speed up
// the check for deletions during a for-in.
static Object* Runtime_GetPropertyNamesFast(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSObject, raw_object, args[0]);
if (raw_object->IsSimpleEnum()) return raw_object->map();
HandleScope scope;
Handle<JSObject> object(raw_object);
Handle<FixedArray> content = GetKeysInFixedArrayFor(object,
INCLUDE_PROTOS);
// Test again, since cache may have been built by preceding call.
if (object->IsSimpleEnum()) return object->map();
return *content;
}
// Find the length of the prototype chain that is to to handled as one. If a
// prototype object is hidden it is to be viewed as part of the the object it
// is prototype for.
static int LocalPrototypeChainLength(JSObject* obj) {
int count = 1;
Object* proto = obj->GetPrototype();
while (proto->IsJSObject() &&
JSObject::cast(proto)->map()->is_hidden_prototype()) {
count++;
proto = JSObject::cast(proto)->GetPrototype();
}
return count;
}
// Return the names of the local named properties.
// args[0]: object
static Object* Runtime_GetLocalPropertyNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Heap::undefined_value();
}
CONVERT_ARG_CHECKED(JSObject, obj, 0);
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (obj->IsJSGlobalProxy()) {
// Only collect names if access is permitted.
if (obj->IsAccessCheckNeeded() &&
!Top::MayNamedAccess(*obj, Heap::undefined_value(), v8::ACCESS_KEYS)) {
Top::ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS);
return *Factory::NewJSArray(0);
}
obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
}
// Find the number of objects making up this.
int length = LocalPrototypeChainLength(*obj);
// Find the number of local properties for each of the objects.
int* local_property_count = NewArray<int>(length);
int total_property_count = 0;
Handle<JSObject> jsproto = obj;
for (int i = 0; i < length; i++) {
// Only collect names if access is permitted.
if (jsproto->IsAccessCheckNeeded() &&
!Top::MayNamedAccess(*jsproto,
Heap::undefined_value(),
v8::ACCESS_KEYS)) {
Top::ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS);
return *Factory::NewJSArray(0);
}
int n;
n = jsproto->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE));
local_property_count[i] = n;
total_property_count += n;
if (i < length - 1) {
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
}
}
// Allocate an array with storage for all the property names.
Handle<FixedArray> names = Factory::NewFixedArray(total_property_count);
// Get the property names.
jsproto = obj;
int proto_with_hidden_properties = 0;
for (int i = 0; i < length; i++) {
jsproto->GetLocalPropertyNames(*names,
i == 0 ? 0 : local_property_count[i - 1]);
if (!GetHiddenProperties(jsproto, false)->IsUndefined()) {
proto_with_hidden_properties++;
}
if (i < length - 1) {
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
}
}
// Filter out name of hidden propeties object.
if (proto_with_hidden_properties > 0) {
Handle<FixedArray> old_names = names;
names = Factory::NewFixedArray(
names->length() - proto_with_hidden_properties);
int dest_pos = 0;
for (int i = 0; i < total_property_count; i++) {
Object* name = old_names->get(i);
if (name == Heap::hidden_symbol()) {
continue;
}
names->set(dest_pos++, name);
}
}
DeleteArray(local_property_count);
return *Factory::NewJSArrayWithElements(names);
}
// Return the names of the local indexed properties.
// args[0]: object
static Object* Runtime_GetLocalElementNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Heap::undefined_value();
}
CONVERT_ARG_CHECKED(JSObject, obj, 0);
int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE));
Handle<FixedArray> names = Factory::NewFixedArray(n);
obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE));
return *Factory::NewJSArrayWithElements(names);
}
// Return information on whether an object has a named or indexed interceptor.
// args[0]: object
static Object* Runtime_GetInterceptorInfo(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
if (!args[0]->IsJSObject()) {
return Smi::FromInt(0);
}
CONVERT_ARG_CHECKED(JSObject, obj, 0);
int result = 0;
if (obj->HasNamedInterceptor()) result |= 2;
if (obj->HasIndexedInterceptor()) result |= 1;
return Smi::FromInt(result);
}
// Return property names from named interceptor.
// args[0]: object
static Object* Runtime_GetNamedInterceptorPropertyNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
if (obj->HasNamedInterceptor()) {
v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj);
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
}
return Heap::undefined_value();
}
// Return element names from indexed interceptor.
// args[0]: object
static Object* Runtime_GetIndexedInterceptorElementNames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
if (obj->HasIndexedInterceptor()) {
v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj);
if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
}
return Heap::undefined_value();
}
static Object* Runtime_LocalKeys(Arguments args) {
ASSERT_EQ(args.length(), 1);
CONVERT_CHECKED(JSObject, raw_object, args[0]);
HandleScope scope;
Handle<JSObject> object(raw_object);
Handle<FixedArray> contents = GetKeysInFixedArrayFor(object,
LOCAL_ONLY);
// Some fast paths through GetKeysInFixedArrayFor reuse a cached
// property array and since the result is mutable we have to create
// a fresh clone on each invocation.
int length = contents->length();
Handle<FixedArray> copy = Factory::NewFixedArray(length);
for (int i = 0; i < length; i++) {
Object* entry = contents->get(i);
if (entry->IsString()) {
copy->set(i, entry);
} else {
ASSERT(entry->IsNumber());
HandleScope scope;
Handle<Object> entry_handle(entry);
Handle<Object> entry_str = Factory::NumberToString(entry_handle);
copy->set(i, *entry_str);
}
}
return *Factory::NewJSArrayWithElements(copy);
}
static Object* Runtime_GetArgumentsProperty(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
// Compute the frame holding the arguments.
JavaScriptFrameIterator it;
it.AdvanceToArgumentsFrame();
JavaScriptFrame* frame = it.frame();
// Get the actual number of provided arguments.
const uint32_t n = frame->GetProvidedParametersCount();
// Try to convert the key to an index. If successful and within
// index return the the argument from the frame.
uint32_t index;
if (Array::IndexFromObject(args[0], &index) && index < n) {
return frame->GetParameter(index);
}
// Convert the key to a string.
HandleScope scope;
bool exception = false;
Handle<Object> converted =
Execution::ToString(args.at<Object>(0), &exception);
if (exception) return Failure::Exception();
Handle<String> key = Handle<String>::cast(converted);
// Try to convert the string key into an array index.
if (key->AsArrayIndex(&index)) {
if (index < n) {
return frame->GetParameter(index);
} else {
return Top::initial_object_prototype()->GetElement(index);
}
}
// Handle special arguments properties.
if (key->Equals(Heap::length_symbol())) return Smi::FromInt(n);
if (key->Equals(Heap::callee_symbol())) return frame->function();
// Lookup in the initial Object.prototype object.
return Top::initial_object_prototype()->GetProperty(*key);
}
static Object* Runtime_ToFastProperties(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> object = args.at<Object>(0);
if (object->IsJSObject()) {
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
if (!js_object->HasFastProperties() && !js_object->IsGlobalObject()) {
js_object->TransformToFastProperties(0);
}
}
return *object;
}
static Object* Runtime_ToSlowProperties(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> object = args.at<Object>(0);
if (object->IsJSObject()) {
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
}
return *object;
}
static Object* Runtime_ToBool(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
return args[0]->ToBoolean();
}
// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
// Possible optimizations: put the type string into the oddballs.
static Object* Runtime_Typeof(Arguments args) {
NoHandleAllocation ha;
Object* obj = args[0];
if (obj->IsNumber()) return Heap::number_symbol();
HeapObject* heap_obj = HeapObject::cast(obj);
// typeof an undetectable object is 'undefined'
if (heap_obj->map()->is_undetectable()) return Heap::undefined_symbol();
InstanceType instance_type = heap_obj->map()->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
return Heap::string_symbol();
}
switch (instance_type) {
case ODDBALL_TYPE:
if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
return Heap::boolean_symbol();
}
if (heap_obj->IsNull()) {
return Heap::object_symbol();
}
ASSERT(heap_obj->IsUndefined());
return Heap::undefined_symbol();
case JS_FUNCTION_TYPE: case JS_REGEXP_TYPE:
return Heap::function_symbol();
default:
// For any kind of object not handled above, the spec rule for
// host objects gives that it is okay to return "object"
return Heap::object_symbol();
}
}
static Object* Runtime_StringToNumber(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, subject, args[0]);
subject->TryFlattenIfNotFlat();
return Heap::NumberFromDouble(StringToDouble(subject, ALLOW_HEX));
}
static Object* Runtime_StringFromCharCodeArray(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSArray, codes, args[0]);
int length = Smi::cast(codes->length())->value();
// Check if the string can be ASCII.
int i;
for (i = 0; i < length; i++) {
Object* element = codes->GetElement(i);
CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
if ((chr & 0xffff) > String::kMaxAsciiCharCode)
break;
}
Object* object = NULL;
if (i == length) { // The string is ASCII.
object = Heap::AllocateRawAsciiString(length);
} else { // The string is not ASCII.
object = Heap::AllocateRawTwoByteString(length);
}
if (object->IsFailure()) return object;
String* result = String::cast(object);
for (int i = 0; i < length; i++) {
Object* element = codes->GetElement(i);
CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
result->Set(i, chr & 0xffff);
}
return result;
}
// kNotEscaped is generated by the following:
//
// #!/bin/perl
// for (my $i = 0; $i < 256; $i++) {
// print "\n" if $i % 16 == 0;
// my $c = chr($i);
// my $escaped = 1;
// $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#;
// print $escaped ? "0, " : "1, ";
// }
static bool IsNotEscaped(uint16_t character) {
// Only for 8 bit characters, the rest are always escaped (in a different way)
ASSERT(character < 256);
static const char kNotEscaped[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
return kNotEscaped[character] != 0;
}
static Object* Runtime_URIEscape(Arguments args) {
const char hex_chars[] = "0123456789ABCDEF";
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, source, args[0]);
source->TryFlattenIfNotFlat();
int escaped_length = 0;
int length = source->length();
{
Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
buffer->Reset(source);
while (buffer->has_more()) {
uint16_t character = buffer->GetNext();
if (character >= 256) {
escaped_length += 6;
} else if (IsNotEscaped(character)) {
escaped_length++;
} else {
escaped_length += 3;
}
// We don't allow strings that are longer than a maximal length.
ASSERT(String::kMaxLength < 0x7fffffff - 6); // Cannot overflow.
if (escaped_length > String::kMaxLength) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
}
}
// No length change implies no change. Return original string if no change.
if (escaped_length == length) {
return source;
}
Object* o = Heap::AllocateRawAsciiString(escaped_length);
if (o->IsFailure()) return o;
String* destination = String::cast(o);
int dest_position = 0;
Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
buffer->Rewind();
while (buffer->has_more()) {
uint16_t chr = buffer->GetNext();
if (chr >= 256) {
destination->Set(dest_position, '%');
destination->Set(dest_position+1, 'u');
destination->Set(dest_position+2, hex_chars[chr >> 12]);
destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]);
destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]);
destination->Set(dest_position+5, hex_chars[chr & 0xf]);
dest_position += 6;
} else if (IsNotEscaped(chr)) {
destination->Set(dest_position, chr);
dest_position++;
} else {
destination->Set(dest_position, '%');
destination->Set(dest_position+1, hex_chars[chr >> 4]);
destination->Set(dest_position+2, hex_chars[chr & 0xf]);
dest_position += 3;
}
}
return destination;
}
static inline int TwoDigitHex(uint16_t character1, uint16_t character2) {
static const signed char kHexValue['g'] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15 };
if (character1 > 'f') return -1;
int hi = kHexValue[character1];
if (hi == -1) return -1;
if (character2 > 'f') return -1;
int lo = kHexValue[character2];
if (lo == -1) return -1;
return (hi << 4) + lo;
}
static inline int Unescape(String* source,
int i,
int length,
int* step) {
uint16_t character = source->Get(i);
int32_t hi = 0;
int32_t lo = 0;
if (character == '%' &&
i <= length - 6 &&
source->Get(i + 1) == 'u' &&
(hi = TwoDigitHex(source->Get(i + 2),
source->Get(i + 3))) != -1 &&
(lo = TwoDigitHex(source->Get(i + 4),
source->Get(i + 5))) != -1) {
*step = 6;
return (hi << 8) + lo;
} else if (character == '%' &&
i <= length - 3 &&
(lo = TwoDigitHex(source->Get(i + 1),
source->Get(i + 2))) != -1) {
*step = 3;
return lo;
} else {
*step = 1;
return character;
}
}
static Object* Runtime_URIUnescape(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, source, args[0]);
source->TryFlattenIfNotFlat();
bool ascii = true;
int length = source->length();
int unescaped_length = 0;
for (int i = 0; i < length; unescaped_length++) {
int step;
if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) {
ascii = false;
}
i += step;
}
// No length change implies no change. Return original string if no change.
if (unescaped_length == length)
return source;
Object* o = ascii ?
Heap::AllocateRawAsciiString(unescaped_length) :
Heap::AllocateRawTwoByteString(unescaped_length);
if (o->IsFailure()) return o;
String* destination = String::cast(o);
int dest_position = 0;
for (int i = 0; i < length; dest_position++) {
int step;
destination->Set(dest_position, Unescape(source, i, length, &step));
i += step;
}
return destination;
}
static Object* Runtime_StringParseInt(Arguments args) {
NoHandleAllocation ha;
CONVERT_CHECKED(String, s, args[0]);
CONVERT_SMI_CHECKED(radix, args[1]);
s->TryFlattenIfNotFlat();
int len = s->length();
int i;
// Skip leading white space.
for (i = 0; i < len && Scanner::kIsWhiteSpace.get(s->Get(i)); i++) ;
if (i == len) return Heap::nan_value();
// Compute the sign (default to +).
int sign = 1;
if (s->Get(i) == '-') {
sign = -1;
i++;
} else if (s->Get(i) == '+') {
i++;
}
// Compute the radix if 0.
if (radix == 0) {
radix = 10;
if (i < len && s->Get(i) == '0') {
radix = 8;
if (i + 1 < len) {
int c = s->Get(i + 1);
if (c == 'x' || c == 'X') {
radix = 16;
i += 2;
}
}
}
} else if (radix == 16) {
// Allow 0x or 0X prefix if radix is 16.
if (i + 1 < len && s->Get(i) == '0') {
int c = s->Get(i + 1);
if (c == 'x' || c == 'X') i += 2;
}
}
RUNTIME_ASSERT(2 <= radix && radix <= 36);
double value;
int end_index = StringToInt(s, i, radix, &value);
if (end_index != i) {
return Heap::NumberFromDouble(sign * value);
}
return Heap::nan_value();
}
static Object* Runtime_StringParseFloat(Arguments args) {
NoHandleAllocation ha;
CONVERT_CHECKED(String, str, args[0]);
// ECMA-262 section 15.1.2.3, empty string is NaN
double value = StringToDouble(str, ALLOW_TRAILING_JUNK, OS::nan_value());
// Create a number object from the value.
return Heap::NumberFromDouble(value);
}
static unibrow::Mapping<unibrow::ToUppercase, 128> to_upper_mapping;
static unibrow::Mapping<unibrow::ToLowercase, 128> to_lower_mapping;
template <class Converter>
static Object* ConvertCaseHelper(String* s,
int length,
int input_string_length,
unibrow::Mapping<Converter, 128>* mapping) {
// We try this twice, once with the assumption that the result is no longer
// than the input and, if that assumption breaks, again with the exact
// length. This may not be pretty, but it is nicer than what was here before
// and I hereby claim my vaffel-is.
//
// Allocate the resulting string.
//
// NOTE: This assumes that the upper/lower case of an ascii
// character is also ascii. This is currently the case, but it
// might break in the future if we implement more context and locale
// dependent upper/lower conversions.
Object* o = s->IsAsciiRepresentation()
? Heap::AllocateRawAsciiString(length)
: Heap::AllocateRawTwoByteString(length);
if (o->IsFailure()) return o;
String* result = String::cast(o);
bool has_changed_character = false;
// Convert all characters to upper case, assuming that they will fit
// in the buffer
Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
buffer->Reset(s);
unibrow::uchar chars[Converter::kMaxWidth];
// We can assume that the string is not empty
uc32 current = buffer->GetNext();
for (int i = 0; i < length;) {
bool has_next = buffer->has_more();
uc32 next = has_next ? buffer->GetNext() : 0;
int char_length = mapping->get(current, next, chars);
if (char_length == 0) {
// The case conversion of this character is the character itself.
result->Set(i, current);
i++;
} else if (char_length == 1) {
// Common case: converting the letter resulted in one character.
ASSERT(static_cast<uc32>(chars[0]) != current);
result->Set(i, chars[0]);
has_changed_character = true;
i++;
} else if (length == input_string_length) {
// We've assumed that the result would be as long as the
// input but here is a character that converts to several
// characters. No matter, we calculate the exact length
// of the result and try the whole thing again.
//
// Note that this leaves room for optimization. We could just
// memcpy what we already have to the result string. Also,
// the result string is the last object allocated we could
// "realloc" it and probably, in the vast majority of cases,
// extend the existing string to be able to hold the full
// result.
int next_length = 0;
if (has_next) {
next_length = mapping->get(next, 0, chars);
if (next_length == 0) next_length = 1;
}
int current_length = i + char_length + next_length;
while (buffer->has_more()) {
current = buffer->GetNext();
// NOTE: we use 0 as the next character here because, while
// the next character may affect what a character converts to,
// it does not in any case affect the length of what it convert
// to.
int char_length = mapping->get(current, 0, chars);
if (char_length == 0) char_length = 1;
current_length += char_length;
if (current_length > Smi::kMaxValue) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
}
// Try again with the real length.
return Smi::FromInt(current_length);
} else {
for (int j = 0; j < char_length; j++) {
result->Set(i, chars[j]);
i++;
}
has_changed_character = true;
}
current = next;
}
if (has_changed_character) {
return result;
} else {
// If we didn't actually change anything in doing the conversion
// we simple return the result and let the converted string
// become garbage; there is no reason to keep two identical strings
// alive.
return s;
}
}
template <class Converter>
static Object* ConvertCase(Arguments args,
unibrow::Mapping<Converter, 128>* mapping) {
NoHandleAllocation ha;
CONVERT_CHECKED(String, s, args[0]);
s->TryFlattenIfNotFlat();
int input_string_length = s->length();
// Assume that the string is not empty; we need this assumption later
if (input_string_length == 0) return s;
int length = input_string_length;
Object* answer = ConvertCaseHelper(s, length, length, mapping);
if (answer->IsSmi()) {
// Retry with correct length.
answer = ConvertCaseHelper(s, Smi::cast(answer)->value(), length, mapping);
}
return answer; // This may be a failure.
}
static Object* Runtime_StringToLowerCase(Arguments args) {
return ConvertCase<unibrow::ToLowercase>(args, &to_lower_mapping);
}
static Object* Runtime_StringToUpperCase(Arguments args) {
return ConvertCase<unibrow::ToUppercase>(args, &to_upper_mapping);
}
static inline bool IsTrimWhiteSpace(unibrow::uchar c) {
return unibrow::WhiteSpace::Is(c) || c == 0x200b;
}
static Object* Runtime_StringTrim(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_CHECKED(String, s, args[0]);
CONVERT_BOOLEAN_CHECKED(trimLeft, args[1]);
CONVERT_BOOLEAN_CHECKED(trimRight, args[2]);
s->TryFlattenIfNotFlat();
int length = s->length();
int left = 0;
if (trimLeft) {
while (left < length && IsTrimWhiteSpace(s->Get(left))) {
left++;
}
}
int right = length;
if (trimRight) {
while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) {
right--;
}
}
return s->SubString(left, right);
}
bool Runtime::IsUpperCaseChar(uint16_t ch) {
unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
int char_length = to_upper_mapping.get(ch, 0, chars);
return char_length == 0;
}
static Object* Runtime_NumberToString(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* number = args[0];
RUNTIME_ASSERT(number->IsNumber());
return Heap::NumberToString(number);
}
static Object* Runtime_NumberToInteger(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) return obj;
CONVERT_DOUBLE_CHECKED(number, obj);
return Heap::NumberFromDouble(DoubleToInteger(number));
}
static Object* Runtime_NumberToJSUint32(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi() && Smi::cast(obj)->value() >= 0) return obj;
CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, obj);
return Heap::NumberFromUint32(number);
}
static Object* Runtime_NumberToJSInt32(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) return obj;
CONVERT_DOUBLE_CHECKED(number, obj);
return Heap::NumberFromInt32(DoubleToInt32(number));
}
// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
static Object* Runtime_NumberToSmi(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Object* obj = args[0];
if (obj->IsSmi()) {
return obj;
}
if (obj->IsHeapNumber()) {
double value = HeapNumber::cast(obj)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return Heap::nan_value();
}
static Object* Runtime_NumberAdd(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::AllocateHeapNumber(x + y);
}
static Object* Runtime_NumberSub(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::AllocateHeapNumber(x - y);
}
static Object* Runtime_NumberMul(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::AllocateHeapNumber(x * y);
}
static Object* Runtime_NumberUnaryMinus(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(-x);
}
static Object* Runtime_NumberDiv(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
return Heap::NewNumberFromDouble(x / y);
}
static Object* Runtime_NumberMod(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
x = modulo(x, y);
// NewNumberFromDouble may return a Smi instead of a Number object
return Heap::NewNumberFromDouble(x);
}
static Object* Runtime_StringAdd(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, str1, args[0]);
CONVERT_CHECKED(String, str2, args[1]);
Counters::string_add_runtime.Increment();
return Heap::AllocateConsString(str1, str2);
}
template<typename sinkchar>
static inline void StringBuilderConcatHelper(String* special,
sinkchar* sink,
FixedArray* fixed_array,
int array_length) {
int position = 0;
for (int i = 0; i < array_length; i++) {
Object* element = fixed_array->get(i);
if (element->IsSmi()) {
// Smi encoding of position and length.
int encoded_slice = Smi::cast(element)->value();
int pos;
int len;
if (encoded_slice > 0) {
// Position and length encoded in one smi.
pos = StringBuilderSubstringPosition::decode(encoded_slice);
len = StringBuilderSubstringLength::decode(encoded_slice);
} else {
// Position and length encoded in two smis.
Object* obj = fixed_array->get(++i);
ASSERT(obj->IsSmi());
pos = Smi::cast(obj)->value();
len = -encoded_slice;
}
String::WriteToFlat(special,
sink + position,
pos,
pos + len);
position += len;
} else {
String* string = String::cast(element);
int element_length = string->length();
String::WriteToFlat(string, sink + position, 0, element_length);
position += element_length;
}
}
}
static Object* Runtime_StringBuilderConcat(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_CHECKED(JSArray, array, args[0]);
if (!args[1]->IsSmi()) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
int array_length = Smi::cast(args[1])->value();
CONVERT_CHECKED(String, special, args[2]);
// This assumption is used by the slice encoding in one or two smis.
ASSERT(Smi::kMaxValue >= String::kMaxLength);
int special_length = special->length();
if (!array->HasFastElements()) {
return Top::Throw(Heap::illegal_argument_symbol());
}
FixedArray* fixed_array = FixedArray::cast(array->elements());
if (fixed_array->length() < array_length) {
array_length = fixed_array->length();
}
if (array_length == 0) {
return Heap::empty_string();
} else if (array_length == 1) {
Object* first = fixed_array->get(0);
if (first->IsString()) return first;
}
bool ascii = special->IsAsciiRepresentation();
int position = 0;
int increment = 0;
for (int i = 0; i < array_length; i++) {
Object* elt = fixed_array->get(i);
if (elt->IsSmi()) {
// Smi encoding of position and length.
int len = Smi::cast(elt)->value();
if (len > 0) {
// Position and length encoded in one smi.
int pos = len >> 11;
len &= 0x7ff;
if (pos + len > special_length) {
return Top::Throw(Heap::illegal_argument_symbol());
}
increment = len;
} else {
// Position and length encoded in two smis.
increment = (-len);
// Get the position and check that it is also a smi.
i++;
if (i >= array_length) {
return Top::Throw(Heap::illegal_argument_symbol());
}
Object* pos = fixed_array->get(i);
if (!pos->IsSmi()) {
return Top::Throw(Heap::illegal_argument_symbol());
}
}
} else if (elt->IsString()) {
String* element = String::cast(elt);
int element_length = element->length();
increment = element_length;
if (ascii && !element->IsAsciiRepresentation()) {
ascii = false;
}
} else {
return Top::Throw(Heap::illegal_argument_symbol());
}
if (increment > String::kMaxLength - position) {
Top::context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
position += increment;
}
int length = position;
Object* object;
if (ascii) {
object = Heap::AllocateRawAsciiString(length);
if (object->IsFailure()) return object;
SeqAsciiString* answer = SeqAsciiString::cast(object);
StringBuilderConcatHelper(special,
answer->GetChars(),
fixed_array,
array_length);
return answer;
} else {
object = Heap::AllocateRawTwoByteString(length);
if (object->IsFailure()) return object;
SeqTwoByteString* answer = SeqTwoByteString::cast(object);
StringBuilderConcatHelper(special,
answer->GetChars(),
fixed_array,
array_length);
return answer;
}
}
static Object* Runtime_NumberOr(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x | y);
}
static Object* Runtime_NumberAnd(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x & y);
}
static Object* Runtime_NumberXor(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x ^ y);
}
static Object* Runtime_NumberNot(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
return Heap::NumberFromInt32(~x);
}
static Object* Runtime_NumberShl(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(x << (y & 0x1f));
}
static Object* Runtime_NumberShr(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromUint32(x >> (y & 0x1f));
}
static Object* Runtime_NumberSar(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return Heap::NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f));
}
static Object* Runtime_NumberEquals(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
if (isnan(x)) return Smi::FromInt(NOT_EQUAL);
if (isnan(y)) return Smi::FromInt(NOT_EQUAL);
if (x == y) return Smi::FromInt(EQUAL);
Object* result;
if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
result = Smi::FromInt(EQUAL);
} else {
result = Smi::FromInt(NOT_EQUAL);
}
return result;
}
static Object* Runtime_StringEquals(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, x, args[0]);
CONVERT_CHECKED(String, y, args[1]);
bool not_equal = !x->Equals(y);
// This is slightly convoluted because the value that signifies
// equality is 0 and inequality is 1 so we have to negate the result
// from String::Equals.
ASSERT(not_equal == 0 || not_equal == 1);
STATIC_CHECK(EQUAL == 0);
STATIC_CHECK(NOT_EQUAL == 1);
return Smi::FromInt(not_equal);
}
static Object* Runtime_NumberCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
if (isnan(x) || isnan(y)) return args[2];
if (x == y) return Smi::FromInt(EQUAL);
if (isless(x, y)) return Smi::FromInt(LESS);
return Smi::FromInt(GREATER);
}
// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
static Object* Runtime_SmiLexicographicCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
// Arrays for the individual characters of the two Smis. Smis are
// 31 bit integers and 10 decimal digits are therefore enough.
static int x_elms[10];
static int y_elms[10];
// Extract the integer values from the Smis.
CONVERT_CHECKED(Smi, x, args[0]);
CONVERT_CHECKED(Smi, y, args[1]);
int x_value = x->value();
int y_value = y->value();
// If the integers are equal so are the string representations.
if (x_value == y_value) return Smi::FromInt(EQUAL);
// If one of the integers are zero the normal integer order is the
// same as the lexicographic order of the string representations.
if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value);
// If only one of the integers is negative the negative number is
// smallest because the char code of '-' is less than the char code
// of any digit. Otherwise, we make both values positive.
if (x_value < 0 || y_value < 0) {
if (y_value >= 0) return Smi::FromInt(LESS);
if (x_value >= 0) return Smi::FromInt(GREATER);
x_value = -x_value;
y_value = -y_value;
}
// Convert the integers to arrays of their decimal digits.
int x_index = 0;
int y_index = 0;
while (x_value > 0) {
x_elms[x_index++] = x_value % 10;
x_value /= 10;
}
while (y_value > 0) {
y_elms[y_index++] = y_value % 10;
y_value /= 10;
}
// Loop through the arrays of decimal digits finding the first place
// where they differ.
while (--x_index >= 0 && --y_index >= 0) {
int diff = x_elms[x_index] - y_elms[y_index];
if (diff != 0) return Smi::FromInt(diff);
}
// If one array is a suffix of the other array, the longest array is
// the representation of the largest of the Smis in the
// lexicographic ordering.
return Smi::FromInt(x_index - y_index);
}
static Object* Runtime_StringCompare(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, x, args[0]);
CONVERT_CHECKED(String, y, args[1]);
Counters::string_compare_runtime.Increment();
// A few fast case tests before we flatten.
if (x == y) return Smi::FromInt(EQUAL);
if (y->length() == 0) {
if (x->length() == 0) return Smi::FromInt(EQUAL);
return Smi::FromInt(GREATER);
} else if (x->length() == 0) {
return Smi::FromInt(LESS);
}
int d = x->Get(0) - y->Get(0);
if (d < 0) return Smi::FromInt(LESS);
else if (d > 0) return Smi::FromInt(GREATER);
x->TryFlattenIfNotFlat();
y->TryFlattenIfNotFlat();
static StringInputBuffer bufx;
static StringInputBuffer bufy;
bufx.Reset(x);
bufy.Reset(y);
while (bufx.has_more() && bufy.has_more()) {
int d = bufx.GetNext() - bufy.GetNext();
if (d < 0) return Smi::FromInt(LESS);
else if (d > 0) return Smi::FromInt(GREATER);
}
// x is (non-trivial) prefix of y:
if (bufy.has_more()) return Smi::FromInt(LESS);
// y is prefix of x:
return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL);
}
static Object* Runtime_Math_abs(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_abs.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(fabs(x));
}
static Object* Runtime_Math_acos(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_acos.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::ACOS, x);
}
static Object* Runtime_Math_asin(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_asin.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::ASIN, x);
}
static Object* Runtime_Math_atan(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_atan.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::ATAN, x);
}
static Object* Runtime_Math_atan2(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
Counters::math_atan2.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
double result;
if (isinf(x) && isinf(y)) {
// Make sure that the result in case of two infinite arguments
// is a multiple of Pi / 4. The sign of the result is determined
// by the first argument (x) and the sign of the second argument
// determines the multiplier: one or three.
static double kPiDividedBy4 = 0.78539816339744830962;
int multiplier = (x < 0) ? -1 : 1;
if (y < 0) multiplier *= 3;
result = multiplier * kPiDividedBy4;
} else {
result = atan2(x, y);
}
return Heap::AllocateHeapNumber(result);
}
static Object* Runtime_Math_ceil(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_ceil.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::NumberFromDouble(ceiling(x));
}
static Object* Runtime_Math_cos(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_cos.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::COS, x);
}
static Object* Runtime_Math_exp(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_exp.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::EXP, x);
}
static Object* Runtime_Math_floor(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_floor.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::NumberFromDouble(floor(x));
}
static Object* Runtime_Math_log(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_log.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::LOG, x);
}
// Helper function to compute x^y, where y is known to be an
// integer. Uses binary decomposition to limit the number of
// multiplications; see the discussion in "Hacker's Delight" by Henry
// S. Warren, Jr., figure 11-6, page 213.
static double powi(double x, int y) {
ASSERT(y != kMinInt);
unsigned n = (y < 0) ? -y : y;
double m = x;
double p = 1;
while (true) {
if ((n & 1) != 0) p *= m;
n >>= 1;
if (n == 0) {
if (y < 0) {
// Unfortunately, we have to be careful when p has reached
// infinity in the computation, because sometimes the higher
// internal precision in the pow() implementation would have
// given us a finite p. This happens very rarely.
double result = 1.0 / p;
return (result == 0 && isinf(p))
? pow(x, static_cast<double>(y)) // Avoid pow(double, int).
: result;
} else {
return p;
}
}
m *= m;
}
}
static Object* Runtime_Math_pow(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
Counters::math_pow.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
// If the second argument is a smi, it is much faster to call the
// custom powi() function than the generic pow().
if (args[1]->IsSmi()) {
int y = Smi::cast(args[1])->value();
return Heap::AllocateHeapNumber(powi(x, y));
}
CONVERT_DOUBLE_CHECKED(y, args[1]);
if (!isinf(x)) {
if (y == 0.5) {
// It's not uncommon to use Math.pow(x, 0.5) to compute the
// square root of a number. To speed up such computations, we
// explictly check for this case and use the sqrt() function
// which is faster than pow().
return Heap::AllocateHeapNumber(sqrt(x));
} else if (y == -0.5) {
// Optimized using Math.pow(x, -0.5) == 1 / Math.pow(x, 0.5).
return Heap::AllocateHeapNumber(1.0 / sqrt(x));
}
}
if (y == 0) {
return Smi::FromInt(1);
} else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
return Heap::nan_value();
} else {
return Heap::AllocateHeapNumber(pow(x, y));
}
}
static Object* Runtime_Math_round(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_round.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
if (signbit(x) && x >= -0.5) return Heap::minus_zero_value();
double integer = ceil(x);
if (integer - x > 0.5) { integer -= 1.0; }
return Heap::NumberFromDouble(integer);
}
static Object* Runtime_Math_sin(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_sin.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::SIN, x);
}
static Object* Runtime_Math_sqrt(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_sqrt.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::AllocateHeapNumber(sqrt(x));
}
static Object* Runtime_Math_tan(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
Counters::math_tan.Increment();
CONVERT_DOUBLE_CHECKED(x, args[0]);
return TranscendentalCache::Get(TranscendentalCache::TAN, x);
}
static Object* Runtime_NewArgumentsFast(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 3);
JSFunction* callee = JSFunction::cast(args[0]);
Object** parameters = reinterpret_cast<Object**>(args[1]);
const int length = Smi::cast(args[2])->value();
Object* result = Heap::AllocateArgumentsObject(callee, length);
if (result->IsFailure()) return result;
// Allocate the elements if needed.
if (length > 0) {
// Allocate the fixed array.
Object* obj = Heap::AllocateRawFixedArray(length);
if (obj->IsFailure()) return obj;
AssertNoAllocation no_gc;
reinterpret_cast<Array*>(obj)->set_map(Heap::fixed_array_map());
FixedArray* array = FixedArray::cast(obj);
array->set_length(length);
WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
for (int i = 0; i < length; i++) {
array->set(i, *--parameters, mode);
}
JSObject::cast(result)->set_elements(FixedArray::cast(obj));
}
return result;
}
static Object* Runtime_NewClosure(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(Context, context, 0);
CONVERT_ARG_CHECKED(JSFunction, boilerplate, 1);
PretenureFlag pretenure = (context->global_context() == *context)
? TENURED // Allocate global closures in old space.
: NOT_TENURED; // Allocate local closures in new space.
Handle<JSFunction> result =
Factory::NewFunctionFromBoilerplate(boilerplate, context, pretenure);
return *result;
}
static Code* ComputeConstructStub(Handle<JSFunction> function) {
Handle<Object> prototype = Factory::null_value();
if (function->has_instance_prototype()) {
prototype = Handle<Object>(function->instance_prototype());
}
if (function->shared()->CanGenerateInlineConstructor(*prototype)) {
ConstructStubCompiler compiler;
Object* code = compiler.CompileConstructStub(function->shared());
if (code->IsFailure()) {
return Builtins::builtin(Builtins::JSConstructStubGeneric);
}
return Code::cast(code);
}
return function->shared()->construct_stub();
}
static Object* Runtime_NewObject(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> constructor = args.at<Object>(0);
// If the constructor isn't a proper function we throw a type error.
if (!constructor->IsJSFunction()) {
Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
Handle<Object> type_error =
Factory::NewTypeError("not_constructor", arguments);
return Top::Throw(*type_error);
}
Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Handle stepping into constructors if step into is active.
if (Debug::StepInActive()) {
Debug::HandleStepIn(function, Handle<Object>::null(), 0, true);
}
#endif
if (function->has_initial_map()) {
if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
// The 'Function' function ignores the receiver object when
// called using 'new' and creates a new JSFunction object that
// is returned. The receiver object is only used for error
// reporting if an error occurs when constructing the new
// JSFunction. Factory::NewJSObject() should not be used to
// allocate JSFunctions since it does not properly initialize
// the shared part of the function. Since the receiver is
// ignored anyway, we use the global object as the receiver
// instead of a new JSFunction object. This way, errors are
// reported the same way whether or not 'Function' is called
// using 'new'.
return Top::context()->global();
}
}
// The function should be compiled for the optimization hints to be available.
Handle<SharedFunctionInfo> shared(function->shared());
EnsureCompiled(shared, CLEAR_EXCEPTION);
bool first_allocation = !function->has_initial_map();
Handle<JSObject> result = Factory::NewJSObject(function);
if (first_allocation) {
Handle<Code> stub = Handle<Code>(
ComputeConstructStub(Handle<JSFunction>(function)));
shared->set_construct_stub(*stub);
}
Counters::constructed_objects.Increment();
Counters::constructed_objects_runtime.Increment();
return *result;
}
static Object* Runtime_LazyCompile(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<JSFunction> function = args.at<JSFunction>(0);
#ifdef DEBUG
if (FLAG_trace_lazy) {
PrintF("[lazy: ");
function->shared()->name()->Print();
PrintF("]\n");
}
#endif
// Compile the target function. Here we compile using CompileLazyInLoop in
// order to get the optimized version. This helps code like delta-blue
// that calls performance-critical routines through constructors. A
// constructor call doesn't use a CallIC, it uses a LoadIC followed by a
// direct call. Since the in-loop tracking takes place through CallICs
// this means that things called through constructors are never known to
// be in loops. We compile them as if they are in loops here just in case.
ASSERT(!function->is_compiled());
if (!CompileLazyInLoop(function, Handle<Object>::null(), KEEP_EXCEPTION)) {
return Failure::Exception();
}
return function->code();
}
static Object* Runtime_GetFunctionDelegate(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
RUNTIME_ASSERT(!args[0]->IsJSFunction());
return *Execution::GetFunctionDelegate(args.at<Object>(0));
}
static Object* Runtime_GetConstructorDelegate(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
RUNTIME_ASSERT(!args[0]->IsJSFunction());
return *Execution::GetConstructorDelegate(args.at<Object>(0));
}
static Object* Runtime_NewContext(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, function, args[0]);
int length = ScopeInfo<>::NumberOfContextSlots(function->code());
Object* result = Heap::AllocateFunctionContext(length, function);
if (result->IsFailure()) return result;
Top::set_context(Context::cast(result));
return result; // non-failure
}
static Object* PushContextHelper(Object* object, bool is_catch_context) {
// Convert the object to a proper JavaScript object.
Object* js_object = object;
if (!js_object->IsJSObject()) {
js_object = js_object->ToObject();
if (js_object->IsFailure()) {
if (!Failure::cast(js_object)->IsInternalError()) return js_object;
HandleScope scope;
Handle<Object> handle(object);
Handle<Object> result =
Factory::NewTypeError("with_expression", HandleVector(&handle, 1));
return Top::Throw(*result);
}
}
Object* result =
Heap::AllocateWithContext(Top::context(),
JSObject::cast(js_object),
is_catch_context);
if (result->IsFailure()) return result;
Context* context = Context::cast(result);
Top::set_context(context);
return result;
}
static Object* Runtime_PushContext(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
return PushContextHelper(args[0], false);
}
static Object* Runtime_PushCatchContext(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
return PushContextHelper(args[0], true);
}
static Object* Runtime_LookupContext(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(Context, context, 0);
CONVERT_ARG_CHECKED(String, name, 1);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
if (index < 0 && !holder.is_null()) {
ASSERT(holder->IsJSObject());
return *holder;
}
// No intermediate context found. Use global object by default.
return Top::context()->global();
}
// A mechanism to return a pair of Object pointers in registers (if possible).
// How this is achieved is calling convention-dependent.
// All currently supported x86 compiles uses calling conventions that are cdecl
// variants where a 64-bit value is returned in two 32-bit registers
// (edx:eax on ia32, r1:r0 on ARM).
// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
// In Win64 calling convention, a struct of two pointers is returned in memory,
// allocated by the caller, and passed as a pointer in a hidden first parameter.
#ifdef V8_HOST_ARCH_64_BIT
struct ObjectPair {
Object* x;
Object* y;
};
static inline ObjectPair MakePair(Object* x, Object* y) {
ObjectPair result = {x, y};
// Pointers x and y returned in rax and rdx, in AMD-x64-abi.
// In Win64 they are assigned to a hidden first argument.
return result;
}
#else
typedef uint64_t ObjectPair;
static inline ObjectPair MakePair(Object* x, Object* y) {
return reinterpret_cast<uint32_t>(x) |
(reinterpret_cast<ObjectPair>(y) << 32);
}
#endif
static inline Object* Unhole(Object* x, PropertyAttributes attributes) {
ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0);
USE(attributes);
return x->IsTheHole() ? Heap::undefined_value() : x;
}
static JSObject* ComputeReceiverForNonGlobal(JSObject* holder) {
ASSERT(!holder->IsGlobalObject());
Context* top = Top::context();
// Get the context extension function.
JSFunction* context_extension_function =
top->global_context()->context_extension_function();
// If the holder isn't a context extension object, we just return it
// as the receiver. This allows arguments objects to be used as
// receivers, but only if they are put in the context scope chain
// explicitly via a with-statement.
Object* constructor = holder->map()->constructor();
if (constructor != context_extension_function) return holder;
// Fall back to using the global object as the receiver if the
// property turns out to be a local variable allocated in a context
// extension object - introduced via eval.
return top->global()->global_receiver();
}
static ObjectPair LoadContextSlotHelper(Arguments args, bool throw_error) {
HandleScope scope;
ASSERT_EQ(2, args.length());
if (!args[0]->IsContext() || !args[1]->IsString()) {
return MakePair(Top::ThrowIllegalOperation(), NULL);
}
Handle<Context> context = args.at<Context>(0);
Handle<String> name = args.at<String>(1);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
// If the index is non-negative, the slot has been found in a local
// variable or a parameter. Read it from the context object or the
// arguments object.
if (index >= 0) {
// If the "property" we were looking for is a local variable or an
// argument in a context, the receiver is the global object; see
// ECMA-262, 3rd., 10.1.6 and 10.2.3.
JSObject* receiver = Top::context()->global()->global_receiver();
Object* value = (holder->IsContext())
? Context::cast(*holder)->get(index)
: JSObject::cast(*holder)->GetElement(index);
return MakePair(Unhole(value, attributes), receiver);
}
// If the holder is found, we read the property from it.
if (!holder.is_null() && holder->IsJSObject()) {
ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name));
JSObject* object = JSObject::cast(*holder);
JSObject* receiver;
if (object->IsGlobalObject()) {
receiver = GlobalObject::cast(object)->global_receiver();
} else if (context->is_exception_holder(*holder)) {
receiver = Top::context()->global()->global_receiver();
} else {
receiver = ComputeReceiverForNonGlobal(object);
}
// No need to unhole the value here. This is taken care of by the
// GetProperty function.
Object* value = object->GetProperty(*name);
return MakePair(value, receiver);
}
if (throw_error) {
// The property doesn't exist - throw exception.
Handle<Object> reference_error =
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
return MakePair(Top::Throw(*reference_error), NULL);
} else {
// The property doesn't exist - return undefined
return MakePair(Heap::undefined_value(), Heap::undefined_value());
}
}
static ObjectPair Runtime_LoadContextSlot(Arguments args) {
return LoadContextSlotHelper(args, true);
}
static ObjectPair Runtime_LoadContextSlotNoReferenceError(Arguments args) {
return LoadContextSlotHelper(args, false);
}
static Object* Runtime_StoreContextSlot(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
Handle<Object> value(args[0]);
CONVERT_ARG_CHECKED(Context, context, 1);
CONVERT_ARG_CHECKED(String, name, 2);
int index;
PropertyAttributes attributes;
ContextLookupFlags flags = FOLLOW_CHAINS;
Handle<Object> holder =
context->Lookup(name, flags, &index, &attributes);
if (index >= 0) {
if (holder->IsContext()) {
// Ignore if read_only variable.
if ((attributes & READ_ONLY) == 0) {
Handle<Context>::cast(holder)->set(index, *value);
}
} else {
ASSERT((attributes & READ_ONLY) == 0);
Object* result =
Handle<JSObject>::cast(holder)->SetElement(index, *value);
USE(result);
ASSERT(!result->IsFailure());
}
return *value;
}
// Slow case: The property is not in a FixedArray context.
// It is either in an JSObject extension context or it was not found.
Handle<JSObject> context_ext;
if (!holder.is_null()) {
// The property exists in the extension context.
context_ext = Handle<JSObject>::cast(holder);
} else {
// The property was not found. It needs to be stored in the global context.
ASSERT(attributes == ABSENT);
attributes = NONE;
context_ext = Handle<JSObject>(Top::context()->global());
}
// Set the property, but ignore if read_only variable on the context
// extension object itself.
if ((attributes & READ_ONLY) == 0 ||
(context_ext->GetLocalPropertyAttribute(*name) == ABSENT)) {
Handle<Object> set = SetProperty(context_ext, name, value, attributes);
if (set.is_null()) {
// Failure::Exception is converted to a null handle in the
// handle-based methods such as SetProperty. We therefore need
// to convert null handles back to exceptions.
ASSERT(Top::has_pending_exception());
return Failure::Exception();
}
}
return *value;
}
static Object* Runtime_Throw(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
return Top::Throw(args[0]);
}
static Object* Runtime_ReThrow(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
return Top::ReThrow(args[0]);
}
static Object* Runtime_PromoteScheduledException(Arguments args) {
ASSERT_EQ(0, args.length());
return Top::PromoteScheduledException();
}
static Object* Runtime_ThrowReferenceError(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> name(args[0]);
Handle<Object> reference_error =
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
return Top::Throw(*reference_error);
}
static Object* Runtime_StackOverflow(Arguments args) {
NoHandleAllocation na;
return Top::StackOverflow();
}
static Object* Runtime_StackGuard(Arguments args) {
ASSERT(args.length() == 1);
// First check if this is a real stack overflow.
if (StackGuard::IsStackOverflow()) {
return Runtime_StackOverflow(args);
}
return Execution::HandleStackGuardInterrupt();
}
// NOTE: These PrintXXX functions are defined for all builds (not just
// DEBUG builds) because we may want to be able to trace function
// calls in all modes.
static void PrintString(String* str) {
// not uncommon to have empty strings
if (str->length() > 0) {
SmartPointer<char> s =
str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
PrintF("%s", *s);
}
}
static void PrintObject(Object* obj) {
if (obj->IsSmi()) {
PrintF("%d", Smi::cast(obj)->value());
} else if (obj->IsString() || obj->IsSymbol()) {
PrintString(String::cast(obj));
} else if (obj->IsNumber()) {
PrintF("%g", obj->Number());
} else if (obj->IsFailure()) {
PrintF("<failure>");
} else if (obj->IsUndefined()) {
PrintF("<undefined>");
} else if (obj->IsNull()) {
PrintF("<null>");
} else if (obj->IsTrue()) {
PrintF("<true>");
} else if (obj->IsFalse()) {
PrintF("<false>");
} else {
PrintF("%p", obj);
}
}
static int StackSize() {
int n = 0;
for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++;
return n;
}
static void PrintTransition(Object* result) {
// indentation
{ const int nmax = 80;
int n = StackSize();
if (n <= nmax)
PrintF("%4d:%*s", n, n, "");
else
PrintF("%4d:%*s", n, nmax, "...");
}
if (result == NULL) {
// constructor calls
JavaScriptFrameIterator it;
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) PrintF("new ");
// function name
Object* fun = frame->function();
if (fun->IsJSFunction()) {
PrintObject(JSFunction::cast(fun)->shared()->name());
} else {
PrintObject(fun);
}
// function arguments
// (we are intentionally only printing the actually
// supplied parameters, not all parameters required)
PrintF("(this=");
PrintObject(frame->receiver());
const int length = frame->GetProvidedParametersCount();
for (int i = 0; i < length; i++) {
PrintF(", ");
PrintObject(frame->GetParameter(i));
}
PrintF(") {\n");
} else {
// function result
PrintF("} -> ");
PrintObject(result);
PrintF("\n");
}
}
static Object* Runtime_TraceEnter(Arguments args) {
ASSERT(args.length() == 0);
NoHandleAllocation ha;
PrintTransition(NULL);
return Heap::undefined_value();
}
static Object* Runtime_TraceExit(Arguments args) {
NoHandleAllocation ha;
PrintTransition(args[0]);
return args[0]; // return TOS
}
static Object* Runtime_DebugPrint(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
#ifdef DEBUG
if (args[0]->IsString()) {
// If we have a string, assume it's a code "marker"
// and print some interesting cpu debugging info.
JavaScriptFrameIterator it;
JavaScriptFrame* frame = it.frame();
PrintF("fp = %p, sp = %p, caller_sp = %p: ",
frame->fp(), frame->sp(), frame->caller_sp());
} else {
PrintF("DebugPrint: ");
}
args[0]->Print();
if (args[0]->IsHeapObject()) {
HeapObject::cast(args[0])->map()->Print();
}
#else
// ShortPrint is available in release mode. Print is not.
args[0]->ShortPrint();
#endif
PrintF("\n");
Flush();
return args[0]; // return TOS
}
static Object* Runtime_DebugTrace(Arguments args) {
ASSERT(args.length() == 0);
NoHandleAllocation ha;
Top::PrintStack();
return Heap::undefined_value();
}
static Object* Runtime_DateCurrentTime(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
// According to ECMA-262, section 15.9.1, page 117, the precision of
// the number in a Date object representing a particular instant in
// time is milliseconds. Therefore, we floor the result of getting
// the OS time.
double millis = floor(OS::TimeCurrentMillis());
return Heap::NumberFromDouble(millis);
}
static Object* Runtime_DateParseString(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(String, str, 0);
FlattenString(str);
CONVERT_ARG_CHECKED(JSArray, output, 1);
RUNTIME_ASSERT(output->HasFastElements());
AssertNoAllocation no_allocation;
FixedArray* output_array = FixedArray::cast(output->elements());
RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
bool result;
if (str->IsAsciiRepresentation()) {
result = DateParser::Parse(str->ToAsciiVector(), output_array);
} else {
ASSERT(str->IsTwoByteRepresentation());
result = DateParser::Parse(str->ToUC16Vector(), output_array);
}
if (result) {
return *output;
} else {
return Heap::null_value();
}
}
static Object* Runtime_DateLocalTimezone(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
const char* zone = OS::LocalTimezone(x);
return Heap::AllocateStringFromUtf8(CStrVector(zone));
}
static Object* Runtime_DateLocalTimeOffset(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 0);
return Heap::NumberFromDouble(OS::LocalTimeOffset());
}
static Object* Runtime_DateDaylightSavingsOffset(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(x, args[0]);
return Heap::NumberFromDouble(OS::DaylightSavingsOffset(x));
}
static Object* Runtime_NumberIsFinite(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_DOUBLE_CHECKED(value, args[0]);
Object* result;
if (isnan(value) || (fpclassify(value) == FP_INFINITE)) {
result = Heap::false_value();
} else {
result = Heap::true_value();
}
return result;
}
static Object* Runtime_GlobalReceiver(Arguments args) {
ASSERT(args.length() == 1);
Object* global = args[0];
if (!global->IsJSGlobalObject()) return Heap::null_value();
return JSGlobalObject::cast(global)->global_receiver();
}
static Object* Runtime_CompileString(Arguments args) {
HandleScope scope;
ASSERT_EQ(2, args.length());
CONVERT_ARG_CHECKED(String, source, 0);
CONVERT_ARG_CHECKED(Oddball, is_json, 1)
// Compile source string in the global context.
Handle<Context> context(Top::context()->global_context());
Compiler::ValidationState validate = (is_json->IsTrue())
? Compiler::VALIDATE_JSON : Compiler::DONT_VALIDATE_JSON;
Handle<JSFunction> boilerplate = Compiler::CompileEval(source,
context,
true,
validate);
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> fun =
Factory::NewFunctionFromBoilerplate(boilerplate, context, NOT_TENURED);
return *fun;
}
static ObjectPair Runtime_ResolvePossiblyDirectEval(Arguments args) {
ASSERT(args.length() == 3);
if (!args[0]->IsJSFunction()) {
return MakePair(Top::ThrowIllegalOperation(), NULL);
}
HandleScope scope;
Handle<JSFunction> callee = args.at<JSFunction>(0);
Handle<Object> receiver; // Will be overwritten.
// Compute the calling context.
Handle<Context> context = Handle<Context>(Top::context());
#ifdef DEBUG
// Make sure Top::context() agrees with the old code that traversed
// the stack frames to compute the context.
StackFrameLocator locator;
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
ASSERT(Context::cast(frame->context()) == *context);
#endif
// Find where the 'eval' symbol is bound. It is unaliased only if
// it is bound in the global context.
int index = -1;
PropertyAttributes attributes = ABSENT;
while (true) {
receiver = context->Lookup(Factory::eval_symbol(), FOLLOW_PROTOTYPE_CHAIN,
&index, &attributes);
// Stop search when eval is found or when the global context is
// reached.
if (attributes != ABSENT || context->IsGlobalContext()) break;
if (context->is_function_context()) {
context = Handle<Context>(Context::cast(context->closure()->context()));
} else {
context = Handle<Context>(context->previous());
}
}
// If eval could not be resolved, it has been deleted and we need to
// throw a reference error.
if (attributes == ABSENT) {
Handle<Object> name = Factory::eval_symbol();
Handle<Object> reference_error =
Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
return MakePair(Top::Throw(*reference_error), NULL);
}
if (!context->IsGlobalContext()) {
// 'eval' is not bound in the global context. Just call the function
// with the given arguments. This is not necessarily the global eval.
if (receiver->IsContext()) {
context = Handle<Context>::cast(receiver);
receiver = Handle<Object>(context->get(index));
} else if (receiver->IsJSContextExtensionObject()) {
receiver = Handle<JSObject>(Top::context()->global()->global_receiver());
}
return MakePair(*callee, *receiver);
}
// 'eval' is bound in the global context, but it may have been overwritten.
// Compare it to the builtin 'GlobalEval' function to make sure.
if (*callee != Top::global_context()->global_eval_fun() ||
!args[1]->IsString()) {
return MakePair(*callee, Top::context()->global()->global_receiver());
}
// Deal with a normal eval call with a string argument. Compile it
// and return the compiled function bound in the local context.
Handle<String> source = args.at<String>(1);
Handle<JSFunction> boilerplate = Compiler::CompileEval(
source,
Handle<Context>(Top::context()),
Top::context()->IsGlobalContext(),
Compiler::DONT_VALIDATE_JSON);
if (boilerplate.is_null()) return MakePair(Failure::Exception(), NULL);
callee = Factory::NewFunctionFromBoilerplate(
boilerplate,
Handle<Context>(Top::context()),
NOT_TENURED);
return MakePair(*callee, args[2]);
}
static Object* Runtime_SetNewFunctionAttributes(Arguments args) {
// This utility adjusts the property attributes for newly created Function
// object ("new Function(...)") by changing the map.
// All it does is changing the prototype property to enumerable
// as specified in ECMA262, 15.3.5.2.
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, func, 0);
ASSERT(func->map()->instance_type() ==
Top::function_instance_map()->instance_type());
ASSERT(func->map()->instance_size() ==
Top::function_instance_map()->instance_size());
func->set_map(*Top::function_instance_map());
return *func;
}
// Push an array unto an array of arrays if it is not already in the
// array. Returns true if the element was pushed on the stack and
// false otherwise.
static Object* Runtime_PushIfAbsent(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSArray, array, args[0]);
CONVERT_CHECKED(JSArray, element, args[1]);
RUNTIME_ASSERT(array->HasFastElements());
int length = Smi::cast(array->length())->value();
FixedArray* elements = FixedArray::cast(array->elements());
for (int i = 0; i < length; i++) {
if (elements->get(i) == element) return Heap::false_value();
}
Object* obj = array->SetFastElement(length, element);
if (obj->IsFailure()) return obj;
return Heap::true_value();
}
/**
* A simple visitor visits every element of Array's.
* The backend storage can be a fixed array for fast elements case,
* or a dictionary for sparse array. Since Dictionary is a subtype
* of FixedArray, the class can be used by both fast and slow cases.
* The second parameter of the constructor, fast_elements, specifies
* whether the storage is a FixedArray or Dictionary.
*
* An index limit is used to deal with the situation that a result array
* length overflows 32-bit non-negative integer.
*/
class ArrayConcatVisitor {
public:
ArrayConcatVisitor(Handle<FixedArray> storage,
uint32_t index_limit,
bool fast_elements) :
storage_(storage), index_limit_(index_limit),
index_offset_(0), fast_elements_(fast_elements) { }
void visit(uint32_t i, Handle<Object> elm) {
if (i >= index_limit_ - index_offset_) return;
uint32_t index = index_offset_ + i;
if (fast_elements_) {
ASSERT(index < static_cast<uint32_t>(storage_->length()));
storage_->set(index, *elm);
} else {
Handle<NumberDictionary> dict = Handle<NumberDictionary>::cast(storage_);
Handle<NumberDictionary> result =
Factory::DictionaryAtNumberPut(dict, index, elm);
if (!result.is_identical_to(dict))
storage_ = result;
}
}
void increase_index_offset(uint32_t delta) {
if (index_limit_ - index_offset_ < delta) {
index_offset_ = index_limit_;
} else {
index_offset_ += delta;
}
}
Handle<FixedArray> storage() { return storage_; }
private:
Handle<FixedArray> storage_;
// Limit on the accepted indices. Elements with indices larger than the
// limit are ignored by the visitor.
uint32_t index_limit_;
// Index after last seen index. Always less than or equal to index_limit_.
uint32_t index_offset_;
bool fast_elements_;
};
template<class ExternalArrayClass, class ElementType>
static uint32_t IterateExternalArrayElements(Handle<JSObject> receiver,
bool elements_are_ints,
bool elements_are_guaranteed_smis,
uint32_t range,
ArrayConcatVisitor* visitor) {
Handle<ExternalArrayClass> array(
ExternalArrayClass::cast(receiver->elements()));
uint32_t len = Min(static_cast<uint32_t>(array->length()), range);
if (visitor != NULL) {
if (elements_are_ints) {
if (elements_are_guaranteed_smis) {
for (uint32_t j = 0; j < len; j++) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j))));
visitor->visit(j, e);
}
} else {
for (uint32_t j = 0; j < len; j++) {
int64_t val = static_cast<int64_t>(array->get(j));
if (Smi::IsValid(static_cast<intptr_t>(val))) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)));
visitor->visit(j, e);
} else {
Handle<Object> e(
Heap::AllocateHeapNumber(static_cast<ElementType>(val)));
visitor->visit(j, e);
}
}
}
} else {
for (uint32_t j = 0; j < len; j++) {
Handle<Object> e(Heap::AllocateHeapNumber(array->get(j)));
visitor->visit(j, e);
}
}
}
return len;
}
/**
* A helper function that visits elements of a JSObject. Only elements
* whose index between 0 and range (exclusive) are visited.
*
* If the third parameter, visitor, is not NULL, the visitor is called
* with parameters, 'visitor_index_offset + element index' and the element.
*
* It returns the number of visisted elements.
*/
static uint32_t IterateElements(Handle<JSObject> receiver,
uint32_t range,
ArrayConcatVisitor* visitor) {
uint32_t num_of_elements = 0;
switch (receiver->GetElementsKind()) {
case JSObject::FAST_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
uint32_t len = elements->length();
if (range < len) {
len = range;
}
for (uint32_t j = 0; j < len; j++) {
Handle<Object> e(elements->get(j));
if (!e->IsTheHole()) {
num_of_elements++;
if (visitor) {
visitor->visit(j, e);
}
}
}
break;
}
case JSObject::PIXEL_ELEMENTS: {
Handle<PixelArray> pixels(PixelArray::cast(receiver->elements()));
uint32_t len = pixels->length();
if (range < len) {
len = range;
}
for (uint32_t j = 0; j < len; j++) {
num_of_elements++;
if (visitor != NULL) {
Handle<Smi> e(Smi::FromInt(pixels->get(j)));
visitor->visit(j, e);
}
}
break;
}
case JSObject::EXTERNAL_BYTE_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalByteArray, int8_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_SHORT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalShortArray, int16_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_INT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalIntArray, int32_t>(
receiver, true, false, range, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
receiver, true, false, range, visitor);
break;
}
case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalFloatArray, float>(
receiver, false, false, range, visitor);
break;
}
case JSObject::DICTIONARY_ELEMENTS: {
Handle<NumberDictionary> dict(receiver->element_dictionary());
uint32_t capacity = dict->Capacity();
for (uint32_t j = 0; j < capacity; j++) {
Handle<Object> k(dict->KeyAt(j));
if (dict->IsKey(*k)) {
ASSERT(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) {
num_of_elements++;
if (visitor) {
visitor->visit(index, Handle<Object>(dict->ValueAt(j)));
}
}
}
}
break;
}
default:
UNREACHABLE();
break;
}
return num_of_elements;
}
/**
* A helper function that visits elements of an Array object, and elements
* on its prototypes.
*
* Elements on prototypes are visited first, and only elements whose indices
* less than Array length are visited.
*
* If a ArrayConcatVisitor object is given, the visitor is called with
* parameters, element's index + visitor_index_offset and the element.
*
* The returned number of elements is an upper bound on the actual number
* of elements added. If the same element occurs in more than one object
* in the array's prototype chain, it will be counted more than once, but
* will only occur once in the result.
*/
static uint32_t IterateArrayAndPrototypeElements(Handle<JSArray> array,
ArrayConcatVisitor* visitor) {
uint32_t range = static_cast<uint32_t>(array->length()->Number());
Handle<Object> obj = array;
static const int kEstimatedPrototypes = 3;
List< Handle<JSObject> > objects(kEstimatedPrototypes);
// Visit prototype first. If an element on the prototype is shadowed by
// the inheritor using the same index, the ArrayConcatVisitor visits
// the prototype element before the shadowing element.
// The visitor can simply overwrite the old value by new value using
// the same index. This follows Array::concat semantics.
while (!obj->IsNull()) {
objects.Add(Handle<JSObject>::cast(obj));
obj = Handle<Object>(obj->GetPrototype());
}
uint32_t nof_elements = 0;
for (int i = objects.length() - 1; i >= 0; i--) {
Handle<JSObject> obj = objects[i];
uint32_t encountered_elements =
IterateElements(Handle<JSObject>::cast(obj), range, visitor);
if (encountered_elements > JSObject::kMaxElementCount - nof_elements) {
nof_elements = JSObject::kMaxElementCount;
} else {
nof_elements += encountered_elements;
}
}
return nof_elements;
}
/**
* A helper function of Runtime_ArrayConcat.
*
* The first argument is an Array of arrays and objects. It is the
* same as the arguments array of Array::concat JS function.
*
* If an argument is an Array object, the function visits array
* elements. If an argument is not an Array object, the function
* visits the object as if it is an one-element array.
*
* If the result array index overflows 32-bit unsigned integer, the rounded
* non-negative number is used as new length. For example, if one
* array length is 2^32 - 1, second array length is 1, the
* concatenated array length is 0.
* TODO(lrn) Change length behavior to ECMAScript 5 specification (length
* is one more than the last array index to get a value assigned).
*/
static uint32_t IterateArguments(Handle<JSArray> arguments,
ArrayConcatVisitor* visitor) {
uint32_t visited_elements = 0;
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
for (uint32_t i = 0; i < num_of_args; i++) {
Handle<Object> obj(arguments->GetElement(i));
if (obj->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(obj);
uint32_t len = static_cast<uint32_t>(array->length()->Number());
uint32_t nof_elements =
IterateArrayAndPrototypeElements(array, visitor);
// Total elements of array and its prototype chain can be more than
// the array length, but ArrayConcat can only concatenate at most
// the array length number of elements. We use the length as an estimate
// for the actual number of elements added.
uint32_t added_elements = (nof_elements > len) ? len : nof_elements;
if (JSArray::kMaxElementCount - visited_elements < added_elements) {
visited_elements = JSArray::kMaxElementCount;
} else {
visited_elements += added_elements;
}
if (visitor) visitor->increase_index_offset(len);
} else {
if (visitor) {
visitor->visit(0, obj);
visitor->increase_index_offset(1);
}
if (visited_elements < JSArray::kMaxElementCount) {
visited_elements++;
}
}
}
return visited_elements;
}
/**
* Array::concat implementation.
* See ECMAScript 262, 15.4.4.4.
* TODO(lrn): Fix non-compliance for very large concatenations and update to
* following the ECMAScript 5 specification.
*/
static Object* Runtime_ArrayConcat(Arguments args) {
ASSERT(args.length() == 1);
HandleScope handle_scope;
CONVERT_CHECKED(JSArray, arg_arrays, args[0]);
Handle<JSArray> arguments(arg_arrays);
// Pass 1: estimate the number of elements of the result
// (it could be more than real numbers if prototype has elements).
uint32_t result_length = 0;
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
{ AssertNoAllocation nogc;
for (uint32_t i = 0; i < num_of_args; i++) {
Object* obj = arguments->GetElement(i);
uint32_t length_estimate;
if (obj->IsJSArray()) {
length_estimate =
static_cast<uint32_t>(JSArray::cast(obj)->length()->Number());
} else {
length_estimate = 1;
}
if (JSObject::kMaxElementCount - result_length < length_estimate) {
result_length = JSObject::kMaxElementCount;
break;
}
result_length += length_estimate;
}
}
// Allocate an empty array, will set length and content later.
Handle<JSArray> result = Factory::NewJSArray(0);
uint32_t estimate_nof_elements = IterateArguments(arguments, NULL);
// If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a
// dictionary.
bool fast_case = (estimate_nof_elements * 2) >= result_length;
Handle<FixedArray> storage;
if (fast_case) {
// The backing storage array must have non-existing elements to
// preserve holes across concat operations.
storage = Factory::NewFixedArrayWithHoles(result_length);
} else {
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for = estimate_nof_elements +
(estimate_nof_elements >> 2);
storage = Handle<FixedArray>::cast(
Factory::NewNumberDictionary(at_least_space_for));
}
Handle<Object> len = Factory::NewNumber(static_cast<double>(result_length));
ArrayConcatVisitor visitor(storage, result_length, fast_case);
IterateArguments(arguments, &visitor);
result->set_length(*len);
// Please note the storage might have changed in the visitor.
result->set_elements(*visitor.storage());
return *result;
}
// This will not allocate (flatten the string), but it may run
// very slowly for very deeply nested ConsStrings. For debugging use only.
static Object* Runtime_GlobalPrint(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, string, args[0]);
StringInputBuffer buffer(string);
while (buffer.has_more()) {
uint16_t character = buffer.GetNext();
PrintF("%c", character);
}
return string;
}
// Moves all own elements of an object, that are below a limit, to positions
// starting at zero. All undefined values are placed after non-undefined values,
// and are followed by non-existing element. Does not change the length
// property.
// Returns the number of non-undefined elements collected.
static Object* Runtime_RemoveArrayHoles(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSObject, object, args[0]);
CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
return object->PrepareElementsForSort(limit);
}
// Move contents of argument 0 (an array) to argument 1 (an array)
static Object* Runtime_MoveArrayContents(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(JSArray, from, args[0]);
CONVERT_CHECKED(JSArray, to, args[1]);
to->SetContent(FixedArray::cast(from->elements()));
to->set_length(from->length());
from->SetContent(Heap::empty_fixed_array());
from->set_length(Smi::FromInt(0));
return to;
}
// How many elements does this array have?
static Object* Runtime_EstimateNumberOfElements(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSArray, array, args[0]);
HeapObject* elements = array->elements();
if (elements->IsDictionary()) {
return Smi::FromInt(NumberDictionary::cast(elements)->NumberOfElements());
} else {
return array->length();
}
}
// Returns an array that tells you where in the [0, length) interval an array
// might have elements. Can either return keys or intervals. Keys can have
// gaps in (undefined). Intervals can also span over some undefined keys.
static Object* Runtime_GetArrayKeys(Arguments args) {
ASSERT(args.length() == 2);
HandleScope scope;
CONVERT_ARG_CHECKED(JSObject, array, 0);
CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
if (array->elements()->IsDictionary()) {
// Create an array and get all the keys into it, then remove all the
// keys that are not integers in the range 0 to length-1.
Handle<FixedArray> keys = GetKeysInFixedArrayFor(array, INCLUDE_PROTOS);
int keys_length = keys->length();
for (int i = 0; i < keys_length; i++) {
Object* key = keys->get(i);
uint32_t index;
if (!Array::IndexFromObject(key, &index) || index >= length) {
// Zap invalid keys.
keys->set_undefined(i);
}
}
return *Factory::NewJSArrayWithElements(keys);
} else {
Handle<FixedArray> single_interval = Factory::NewFixedArray(2);
// -1 means start of array.
single_interval->set(0, Smi::FromInt(-1));
uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
uint32_t min_length = actual_length < length ? actual_length : length;
Handle<Object> length_object =
Factory::NewNumber(static_cast<double>(min_length));
single_interval->set(1, *length_object);
return *Factory::NewJSArrayWithElements(single_interval);
}
}
// DefineAccessor takes an optional final argument which is the
// property attributes (eg, DONT_ENUM, DONT_DELETE). IMPORTANT: due
// to the way accessors are implemented, it is set for both the getter
// and setter on the first call to DefineAccessor and ignored on
// subsequent calls.
static Object* Runtime_DefineAccessor(Arguments args) {
RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
// Compute attributes.
PropertyAttributes attributes = NONE;
if (args.length() == 5) {
CONVERT_CHECKED(Smi, attrs, args[4]);
int value = attrs->value();
// Only attribute bits should be set.
ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
attributes = static_cast<PropertyAttributes>(value);
}
CONVERT_CHECKED(JSObject, obj, args[0]);
CONVERT_CHECKED(String, name, args[1]);
CONVERT_CHECKED(Smi, flag, args[2]);
CONVERT_CHECKED(JSFunction, fun, args[3]);
return obj->DefineAccessor(name, flag->value() == 0, fun, attributes);
}
static Object* Runtime_LookupAccessor(Arguments args) {
ASSERT(args.length() == 3);
CONVERT_CHECKED(JSObject, obj, args[0]);
CONVERT_CHECKED(String, name, args[1]);
CONVERT_CHECKED(Smi, flag, args[2]);
return obj->LookupAccessor(name, flag->value() == 0);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
static Object* Runtime_DebugBreak(Arguments args) {
ASSERT(args.length() == 0);
return Execution::DebugBreakHelper();
}
// Helper functions for wrapping and unwrapping stack frame ids.
static Smi* WrapFrameId(StackFrame::Id id) {
ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
return Smi::FromInt(id >> 2);
}
static StackFrame::Id UnwrapFrameId(Smi* wrapped) {
return static_cast<StackFrame::Id>(wrapped->value() << 2);
}
// Adds a JavaScript function as a debug event listener.
// args[0]: debug event listener function to set or null or undefined for
// clearing the event listener function
// args[1]: object supplied during callback
static Object* Runtime_SetDebugEventListener(Arguments args) {
ASSERT(args.length() == 2);
RUNTIME_ASSERT(args[0]->IsJSFunction() ||
args[0]->IsUndefined() ||
args[0]->IsNull());
Handle<Object> callback = args.at<Object>(0);
Handle<Object> data = args.at<Object>(1);
Debugger::SetEventListener(callback, data);
return Heap::undefined_value();
}
static Object* Runtime_Break(Arguments args) {
ASSERT(args.length() == 0);
StackGuard::DebugBreak();
return Heap::undefined_value();
}
static Object* DebugLookupResultValue(Object* receiver, String* name,
LookupResult* result,
bool* caught_exception) {
Object* value;
switch (result->type()) {
case NORMAL:
value = result->holder()->GetNormalizedProperty(result);
if (value->IsTheHole()) {
return Heap::undefined_value();
}
return value;
case FIELD:
value =
JSObject::cast(
result->holder())->FastPropertyAt(result->GetFieldIndex());
if (value->IsTheHole()) {
return Heap::undefined_value();
}
return value;
case CONSTANT_FUNCTION:
return result->GetConstantFunction();
case CALLBACKS: {
Object* structure = result->GetCallbackObject();
if (structure->IsProxy() || structure->IsAccessorInfo()) {
value = receiver->GetPropertyWithCallback(
receiver, structure, name, result->holder());
if (value->IsException()) {
value = Top::pending_exception();
Top::clear_pending_exception();
if (caught_exception != NULL) {
*caught_exception = true;
}
}
return value;
} else {
return Heap::undefined_value();
}
}
case INTERCEPTOR:
case MAP_TRANSITION:
case CONSTANT_TRANSITION:
case NULL_DESCRIPTOR:
return Heap::undefined_value();
default:
UNREACHABLE();
}
UNREACHABLE();
return Heap::undefined_value();
}
// Get debugger related details for an object property.
// args[0]: object holding property
// args[1]: name of the property
//
// The array returned contains the following information:
// 0: Property value
// 1: Property details
// 2: Property value is exception
// 3: Getter function if defined
// 4: Setter function if defined
// Items 2-4 are only filled if the property has either a getter or a setter
// defined through __defineGetter__ and/or __defineSetter__.
static Object* Runtime_DebugGetPropertyDetails(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
CONVERT_ARG_CHECKED(String, name, 1);
// Make sure to set the current context to the context before the debugger was
// entered (if the debugger is entered). The reason for switching context here
// is that for some property lookups (accessors and interceptors) callbacks
// into the embedding application can occour, and the embedding application
// could have the assumption that its own global context is the current
// context and not some internal debugger context.
SaveContext save;
if (Debug::InDebugger()) {
Top::set_context(*Debug::debugger_entry()->GetContext());
}
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (obj->IsJSGlobalProxy()) {
obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
}
// Check if the name is trivially convertible to an index and get the element
// if so.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<FixedArray> details = Factory::NewFixedArray(2);
details->set(0, Runtime::GetElementOrCharAt(obj, index));
details->set(1, PropertyDetails(NONE, NORMAL).AsSmi());
return *Factory::NewJSArrayWithElements(details);
}
// Find the number of objects making up this.
int length = LocalPrototypeChainLength(*obj);
// Try local lookup on each of the objects.
Handle<JSObject> jsproto = obj;
for (int i = 0; i < length; i++) {
LookupResult result;
jsproto->LocalLookup(*name, &result);
if (result.IsProperty()) {
// LookupResult is not GC safe as it holds raw object pointers.
// GC can happen later in this code so put the required fields into
// local variables using handles when required for later use.
PropertyType result_type = result.type();
Handle<Object> result_callback_obj;
if (result_type == CALLBACKS) {
result_callback_obj = Handle<Object>(result.GetCallbackObject());
}
Smi* property_details = result.GetPropertyDetails().AsSmi();
// DebugLookupResultValue can cause GC so details from LookupResult needs
// to be copied to handles before this.
bool caught_exception = false;
Object* raw_value = DebugLookupResultValue(*obj, *name, &result,
&caught_exception);
if (raw_value->IsFailure()) return raw_value;
Handle<Object> value(raw_value);
// If the callback object is a fixed array then it contains JavaScript
// getter and/or setter.
bool hasJavaScriptAccessors = result_type == CALLBACKS &&
result_callback_obj->IsFixedArray();
Handle<FixedArray> details =
Factory::NewFixedArray(hasJavaScriptAccessors ? 5 : 2);
details->set(0, *value);
details->set(1, property_details);
if (hasJavaScriptAccessors) {
details->set(2,
caught_exception ? Heap::true_value()
: Heap::false_value());
details->set(3, FixedArray::cast(*result_callback_obj)->get(0));
details->set(4, FixedArray::cast(*result_callback_obj)->get(1));
}
return *Factory::NewJSArrayWithElements(details);
}
if (i < length - 1) {
jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
}
}
return Heap::undefined_value();
}
static Object* Runtime_DebugGetProperty(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
CONVERT_ARG_CHECKED(String, name, 1);
LookupResult result;
obj->Lookup(*name, &result);
if (result.IsProperty()) {
return DebugLookupResultValue(*obj, *name, &result, NULL);
}
return Heap::undefined_value();
}
// Return the property type calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyTypeFromDetails(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(Smi, details, args[0]);
PropertyType type = PropertyDetails(details).type();
return Smi::FromInt(static_cast<int>(type));
}
// Return the property attribute calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyAttributesFromDetails(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(Smi, details, args[0]);
PropertyAttributes attributes = PropertyDetails(details).attributes();
return Smi::FromInt(static_cast<int>(attributes));
}
// Return the property insertion index calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyIndexFromDetails(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(Smi, details, args[0]);
int index = PropertyDetails(details).index();
return Smi::FromInt(index);
}
// Return property value from named interceptor.
// args[0]: object
// args[1]: property name
static Object* Runtime_DebugNamedInterceptorPropertyValue(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasNamedInterceptor());
CONVERT_ARG_CHECKED(String, name, 1);
PropertyAttributes attributes;
return obj->GetPropertyWithInterceptor(*obj, *name, &attributes);
}
// Return element value from indexed interceptor.
// args[0]: object
// args[1]: index
static Object* Runtime_DebugIndexedInterceptorElementValue(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
CONVERT_ARG_CHECKED(JSObject, obj, 0);
RUNTIME_ASSERT(obj->HasIndexedInterceptor());
CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
return obj->GetElementWithInterceptor(*obj, index);
}
static Object* Runtime_CheckExecutionState(Arguments args) {
ASSERT(args.length() >= 1);
CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
// Check that the break id is valid.
if (Debug::break_id() == 0 || break_id != Debug::break_id()) {
return Top::Throw(Heap::illegal_execution_state_symbol());
}
return Heap::true_value();
}
static Object* Runtime_GetFrameCount(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
// Check arguments.
Object* result = Runtime_CheckExecutionState(args);
if (result->IsFailure()) return result;
// Count all frames which are relevant to debugging stack trace.
int n = 0;
StackFrame::Id id = Debug::break_frame_id();
if (id == StackFrame::NO_ID) {
// If there is no JavaScript stack frame count is 0.
return Smi::FromInt(0);
}
for (JavaScriptFrameIterator it(id); !it.done(); it.Advance()) n++;
return Smi::FromInt(n);
}
static const int kFrameDetailsFrameIdIndex = 0;
static const int kFrameDetailsReceiverIndex = 1;
static const int kFrameDetailsFunctionIndex = 2;
static const int kFrameDetailsArgumentCountIndex = 3;
static const int kFrameDetailsLocalCountIndex = 4;
static const int kFrameDetailsSourcePositionIndex = 5;
static const int kFrameDetailsConstructCallIndex = 6;
static const int kFrameDetailsDebuggerFrameIndex = 7;
static const int kFrameDetailsFirstDynamicIndex = 8;
// Return an array with frame details
// args[0]: number: break id
// args[1]: number: frame index
//
// The array returned contains the following information:
// 0: Frame id
// 1: Receiver
// 2: Function
// 3: Argument count
// 4: Local count
// 5: Source position
// 6: Constructor call
// 7: Debugger frame
// Arguments name, value
// Locals name, value
static Object* Runtime_GetFrameDetails(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
// Find the relevant frame with the requested index.
StackFrame::Id id = Debug::break_frame_id();
if (id == StackFrame::NO_ID) {
// If there are no JavaScript stack frames return undefined.
return Heap::undefined_value();
}
int count = 0;
JavaScriptFrameIterator it(id);
for (; !it.done(); it.Advance()) {
if (count == index) break;
count++;
}
if (it.done()) return Heap::undefined_value();
// Traverse the saved contexts chain to find the active context for the
// selected frame.
SaveContext* save = Top::save_context();
while (save != NULL && !save->below(it.frame())) {
save = save->prev();
}
ASSERT(save != NULL);
// Get the frame id.
Handle<Object> frame_id(WrapFrameId(it.frame()->id()));
// Find source position.
int position = it.frame()->code()->SourcePosition(it.frame()->pc());
// Check for constructor frame.
bool constructor = it.frame()->IsConstructor();
// Get code and read scope info from it for local variable information.
Handle<Code> code(it.frame()->code());
ScopeInfo<> info(*code);
// Get the context.
Handle<Context> context(Context::cast(it.frame()->context()));
// Get the locals names and values into a temporary array.
//
// TODO(1240907): Hide compiler-introduced stack variables
// (e.g. .result)? For users of the debugger, they will probably be
// confusing.
Handle<FixedArray> locals = Factory::NewFixedArray(info.NumberOfLocals() * 2);
for (int i = 0; i < info.NumberOfLocals(); i++) {
// Name of the local.
locals->set(i * 2, *info.LocalName(i));
// Fetch the value of the local - either from the stack or from a
// heap-allocated context.
if (i < info.number_of_stack_slots()) {
locals->set(i * 2 + 1, it.frame()->GetExpression(i));
} else {
Handle<String> name = info.LocalName(i);
// Traverse the context chain to the function context as all local
// variables stored in the context will be on the function context.
while (!context->is_function_context()) {
context = Handle<Context>(context->previous());
}
ASSERT(context->is_function_context());
locals->set(i * 2 + 1,
context->get(ScopeInfo<>::ContextSlotIndex(*code, *name,
NULL)));
}
}
// Now advance to the arguments adapter frame (if any). If contains all
// the provided parameters and
// Now advance to the arguments adapter frame (if any). It contains all
// the provided parameters whereas the function frame always have the number
// of arguments matching the functions parameters. The rest of the
// information (except for what is collected above) is the same.
it.AdvanceToArgumentsFrame();
// Find the number of arguments to fill. At least fill the number of
// parameters for the function and fill more if more parameters are provided.
int argument_count = info.number_of_parameters();
if (argument_count < it.frame()->GetProvidedParametersCount()) {
argument_count = it.frame()->GetProvidedParametersCount();
}
// Calculate the size of the result.
int details_size = kFrameDetailsFirstDynamicIndex +
2 * (argument_count + info.NumberOfLocals());
Handle<FixedArray> details = Factory::NewFixedArray(details_size);
// Add the frame id.
details->set(kFrameDetailsFrameIdIndex, *frame_id);
// Add the function (same as in function frame).
details->set(kFrameDetailsFunctionIndex, it.frame()->function());
// Add the arguments count.
details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
// Add the locals count
details->set(kFrameDetailsLocalCountIndex,
Smi::FromInt(info.NumberOfLocals()));
// Add the source position.
if (position != RelocInfo::kNoPosition) {
details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
} else {
details->set(kFrameDetailsSourcePositionIndex, Heap::undefined_value());
}
// Add the constructor information.
details->set(kFrameDetailsConstructCallIndex, Heap::ToBoolean(constructor));
// Add information on whether this frame is invoked in the debugger context.
details->set(kFrameDetailsDebuggerFrameIndex,
Heap::ToBoolean(*save->context() == *Debug::debug_context()));
// Fill the dynamic part.
int details_index = kFrameDetailsFirstDynamicIndex;
// Add arguments name and value.
for (int i = 0; i < argument_count; i++) {
// Name of the argument.
if (i < info.number_of_parameters()) {
details->set(details_index++, *info.parameter_name(i));
} else {
details->set(details_index++, Heap::undefined_value());
}
// Parameter value.
if (i < it.frame()->GetProvidedParametersCount()) {
details->set(details_index++, it.frame()->GetParameter(i));
} else {
details->set(details_index++, Heap::undefined_value());
}
}
// Add locals name and value from the temporary copy from the function frame.
for (int i = 0; i < info.NumberOfLocals() * 2; i++) {
details->set(details_index++, locals->get(i));
}
// Add the receiver (same as in function frame).
// THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
// THE FRAME ITERATOR TO WRAP THE RECEIVER.
Handle<Object> receiver(it.frame()->receiver());
if (!receiver->IsJSObject()) {
// If the receiver is NOT a JSObject we have hit an optimization
// where a value object is not converted into a wrapped JS objects.
// To hide this optimization from the debugger, we wrap the receiver
// by creating correct wrapper object based on the calling frame's
// global context.
it.Advance();
Handle<Context> calling_frames_global_context(
Context::cast(Context::cast(it.frame()->context())->global_context()));
receiver = Factory::ToObject(receiver, calling_frames_global_context);
}
details->set(kFrameDetailsReceiverIndex, *receiver);
ASSERT_EQ(details_size, details_index);
return *Factory::NewJSArrayWithElements(details);
}
// Copy all the context locals into an object used to materialize a scope.
static void CopyContextLocalsToScopeObject(Handle<Code> code,
ScopeInfo<>& scope_info,
Handle<Context> context,
Handle<JSObject> scope_object) {
// Fill all context locals to the context extension.
for (int i = Context::MIN_CONTEXT_SLOTS;
i < scope_info.number_of_context_slots();
i++) {
int context_index =
ScopeInfo<>::ContextSlotIndex(*code,
*scope_info.context_slot_name(i),
NULL);
// Don't include the arguments shadow (.arguments) context variable.
if (*scope_info.context_slot_name(i) != Heap::arguments_shadow_symbol()) {
SetProperty(scope_object,
scope_info.context_slot_name(i),
Handle<Object>(context->get(context_index)), NONE);
}
}
}
// Create a plain JSObject which materializes the local scope for the specified
// frame.
static Handle<JSObject> MaterializeLocalScope(JavaScriptFrame* frame) {
Handle<JSFunction> function(JSFunction::cast(frame->function()));
Handle<Code> code(function->code());
ScopeInfo<> scope_info(*code);
// Allocate and initialize a JSObject with all the arguments, stack locals
// heap locals and extension properties of the debugged function.
Handle<JSObject> local_scope = Factory::NewJSObject(Top::object_function());
// First fill all parameters.
for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
SetProperty(local_scope,
scope_info.parameter_name(i),
Handle<Object>(frame->GetParameter(i)), NONE);
}
// Second fill all stack locals.
for (int i = 0; i < scope_info.number_of_stack_slots(); i++) {
SetProperty(local_scope,
scope_info.stack_slot_name(i),
Handle<Object>(frame->GetExpression(i)), NONE);
}
// Third fill all context locals.
Handle<Context> frame_context(Context::cast(frame->context()));
Handle<Context> function_context(frame_context->fcontext());
CopyContextLocalsToScopeObject(code, scope_info,
function_context, local_scope);
// Finally copy any properties from the function context extension. This will
// be variables introduced by eval.
if (function_context->closure() == *function) {
if (function_context->has_extension() &&
!function_context->IsGlobalContext()) {
Handle<JSObject> ext(JSObject::cast(function_context->extension()));
Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
for (int i = 0; i < keys->length(); i++) {
// Names of variables introduced by eval are strings.
ASSERT(keys->get(i)->IsString());
Handle<String> key(String::cast(keys->get(i)));
SetProperty(local_scope, key, GetProperty(ext, key), NONE);
}
}
}
return local_scope;
}
// Create a plain JSObject which materializes the closure content for the
// context.
static Handle<JSObject> MaterializeClosure(Handle<Context> context) {
ASSERT(context->is_function_context());
Handle<Code> code(context->closure()->code());
ScopeInfo<> scope_info(*code);
// Allocate and initialize a JSObject with all the content of theis function
// closure.
Handle<JSObject> closure_scope = Factory::NewJSObject(Top::object_function());
// Check whether the arguments shadow object exists.
int arguments_shadow_index =
ScopeInfo<>::ContextSlotIndex(*code,
Heap::arguments_shadow_symbol(),
NULL);
if (arguments_shadow_index >= 0) {
// In this case all the arguments are available in the arguments shadow
// object.
Handle<JSObject> arguments_shadow(
JSObject::cast(context->get(arguments_shadow_index)));
for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
SetProperty(closure_scope,
scope_info.parameter_name(i),
Handle<Object>(arguments_shadow->GetElement(i)), NONE);
}
}
// Fill all context locals to the context extension.
CopyContextLocalsToScopeObject(code, scope_info, context, closure_scope);
// Finally copy any properties from the function context extension. This will
// be variables introduced by eval.
if (context->has_extension()) {
Handle<JSObject> ext(JSObject::cast(context->extension()));
Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
for (int i = 0; i < keys->length(); i++) {
// Names of variables introduced by eval are strings.
ASSERT(keys->get(i)->IsString());
Handle<String> key(String::cast(keys->get(i)));
SetProperty(closure_scope, key, GetProperty(ext, key), NONE);
}
}
return closure_scope;
}
// Iterate over the actual scopes visible from a stack frame. All scopes are
// backed by an actual context except the local scope, which is inserted
// "artifically" in the context chain.
class ScopeIterator {
public:
enum ScopeType {
ScopeTypeGlobal = 0,
ScopeTypeLocal,
ScopeTypeWith,
ScopeTypeClosure,
// Every catch block contains an implicit with block (its parameter is
// a JSContextExtensionObject) that extends current scope with a variable
// holding exception object. Such with blocks are treated as scopes of their
// own type.
ScopeTypeCatch
};
explicit ScopeIterator(JavaScriptFrame* frame)
: frame_(frame),
function_(JSFunction::cast(frame->function())),
context_(Context::cast(frame->context())),
local_done_(false),
at_local_(false) {
// Check whether the first scope is actually a local scope.
if (context_->IsGlobalContext()) {
// If there is a stack slot for .result then this local scope has been
// created for evaluating top level code and it is not a real local scope.
// Checking for the existence of .result seems fragile, but the scope info
// saved with the code object does not otherwise have that information.
Handle<Code> code(function_->code());
int index = ScopeInfo<>::StackSlotIndex(*code, Heap::result_symbol());
at_local_ = index < 0;
} else if (context_->is_function_context()) {
at_local_ = true;
}
}
// More scopes?
bool Done() { return context_.is_null(); }
// Move to the next scope.
void Next() {
// If at a local scope mark the local scope as passed.
if (at_local_) {
at_local_ = false;
local_done_ = true;
// If the current context is not associated with the local scope the
// current context is the next real scope, so don't move to the next
// context in this case.
if (context_->closure() != *function_) {
return;
}
}
// The global scope is always the last in the chain.
if (context_->IsGlobalContext()) {
context_ = Handle<Context>();
return;
}
// Move to the next context.
if (context_->is_function_context()) {
context_ = Handle<Context>(Context::cast(context_->closure()->context()));
} else {
context_ = Handle<Context>(context_->previous());
}
// If passing the local scope indicate that the current scope is now the
// local scope.
if (!local_done_ &&
(context_->IsGlobalContext() || (context_->is_function_context()))) {
at_local_ = true;
}
}
// Return the type of the current scope.
int Type() {
if (at_local_) {
return ScopeTypeLocal;
}
if (context_->IsGlobalContext()) {
ASSERT(context_->global()->IsGlobalObject());
return ScopeTypeGlobal;
}
if (context_->is_function_context()) {
return ScopeTypeClosure;
}
ASSERT(context_->has_extension());
// Current scope is either an explicit with statement or a with statement
// implicitely generated for a catch block.
// If the extension object here is a JSContextExtensionObject then
// current with statement is one frome a catch block otherwise it's a
// regular with statement.
if (context_->extension()->IsJSContextExtensionObject()) {
return ScopeTypeCatch;
}
return ScopeTypeWith;
}
// Return the JavaScript object with the content of the current scope.
Handle<JSObject> ScopeObject() {
switch (Type()) {
case ScopeIterator::ScopeTypeGlobal:
return Handle<JSObject>(CurrentContext()->global());
break;
case ScopeIterator::ScopeTypeLocal:
// Materialize the content of the local scope into a JSObject.
return MaterializeLocalScope(frame_);
break;
case ScopeIterator::ScopeTypeWith:
case ScopeIterator::ScopeTypeCatch:
// Return the with object.
return Handle<JSObject>(CurrentContext()->extension());
break;
case ScopeIterator::ScopeTypeClosure:
// Materialize the content of the closure scope into a JSObject.
return MaterializeClosure(CurrentContext());
break;
}
UNREACHABLE();
return Handle<JSObject>();
}
// Return the context for this scope. For the local context there might not
// be an actual context.
Handle<Context> CurrentContext() {
if (at_local_ && context_->closure() != *function_) {
return Handle<Context>();
}
return context_;
}
#ifdef DEBUG
// Debug print of the content of the current scope.
void DebugPrint() {
switch (Type()) {
case ScopeIterator::ScopeTypeGlobal:
PrintF("Global:\n");
CurrentContext()->Print();
break;
case ScopeIterator::ScopeTypeLocal: {
PrintF("Local:\n");
Handle<Code> code(function_->code());
ScopeInfo<> scope_info(*code);
scope_info.Print();
if (!CurrentContext().is_null()) {
CurrentContext()->Print();
if (CurrentContext()->has_extension()) {
Handle<JSObject> extension =
Handle<JSObject>(CurrentContext()->extension());
if (extension->IsJSContextExtensionObject()) {
extension->Print();
}
}
}
break;
}
case ScopeIterator::ScopeTypeWith: {
PrintF("With:\n");
Handle<JSObject> extension =
Handle<JSObject>(CurrentContext()->extension());
extension->Print();
break;
}
case ScopeIterator::ScopeTypeCatch: {
PrintF("Catch:\n");
Handle<JSObject> extension =
Handle<JSObject>(CurrentContext()->extension());
extension->Print();
break;
}
case ScopeIterator::ScopeTypeClosure: {
PrintF("Closure:\n");
CurrentContext()->Print();
if (CurrentContext()->has_extension()) {
Handle<JSObject> extension =
Handle<JSObject>(CurrentContext()->extension());
if (extension->IsJSContextExtensionObject()) {
extension->Print();
}
}
break;
}
default:
UNREACHABLE();
}
PrintF("\n");
}
#endif
private:
JavaScriptFrame* frame_;
Handle<JSFunction> function_;
Handle<Context> context_;
bool local_done_;
bool at_local_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
};
static Object* Runtime_GetScopeCount(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator it(id);
JavaScriptFrame* frame = it.frame();
// Count the visible scopes.
int n = 0;
for (ScopeIterator it(frame); !it.Done(); it.Next()) {
n++;
}
return Smi::FromInt(n);
}
static const int kScopeDetailsTypeIndex = 0;
static const int kScopeDetailsObjectIndex = 1;
static const int kScopeDetailsSize = 2;
// Return an array with scope details
// args[0]: number: break id
// args[1]: number: frame index
// args[2]: number: scope index
//
// The array returned contains the following information:
// 0: Scope type
// 1: Scope object
static Object* Runtime_GetScopeDetails(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
CONVERT_NUMBER_CHECKED(int, index, Int32, args[2]);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator frame_it(id);
JavaScriptFrame* frame = frame_it.frame();
// Find the requested scope.
int n = 0;
ScopeIterator it(frame);
for (; !it.Done() && n < index; it.Next()) {
n++;
}
if (it.Done()) {
return Heap::undefined_value();
}
// Calculate the size of the result.
int details_size = kScopeDetailsSize;
Handle<FixedArray> details = Factory::NewFixedArray(details_size);
// Fill in scope details.
details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type()));
details->set(kScopeDetailsObjectIndex, *it.ScopeObject());
return *Factory::NewJSArrayWithElements(details);
}
static Object* Runtime_DebugPrintScopes(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 0);
#ifdef DEBUG
// Print the scopes for the top frame.
StackFrameLocator locator;
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
for (ScopeIterator it(frame); !it.Done(); it.Next()) {
it.DebugPrint();
}
#endif
return Heap::undefined_value();
}
static Object* Runtime_GetCFrames(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Object* result = Runtime_CheckExecutionState(args);
if (result->IsFailure()) return result;
#if V8_HOST_ARCH_64_BIT
UNIMPLEMENTED();
return Heap::undefined_value();
#else
static const int kMaxCFramesSize = 200;
ScopedVector<OS::StackFrame> frames(kMaxCFramesSize);
int frames_count = OS::StackWalk(frames);
if (frames_count == OS::kStackWalkError) {
return Heap::undefined_value();
}
Handle<String> address_str = Factory::LookupAsciiSymbol("address");
Handle<String> text_str = Factory::LookupAsciiSymbol("text");
Handle<FixedArray> frames_array = Factory::NewFixedArray(frames_count);
for (int i = 0; i < frames_count; i++) {
Handle<JSObject> frame_value = Factory::NewJSObject(Top::object_function());
frame_value->SetProperty(
*address_str,
*Factory::NewNumberFromInt(reinterpret_cast<int>(frames[i].address)),
NONE);
// Get the stack walk text for this frame.
Handle<String> frame_text;
int frame_text_length = StrLength(frames[i].text);
if (frame_text_length > 0) {
Vector<const char> str(frames[i].text, frame_text_length);
frame_text = Factory::NewStringFromAscii(str);
}
if (!frame_text.is_null()) {
frame_value->SetProperty(*text_str, *frame_text, NONE);
}
frames_array->set(i, *frame_value);
}
return *Factory::NewJSArrayWithElements(frames_array);
#endif // V8_HOST_ARCH_64_BIT
}
static Object* Runtime_GetThreadCount(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
// Check arguments.
Object* result = Runtime_CheckExecutionState(args);
if (result->IsFailure()) return result;
// Count all archived V8 threads.
int n = 0;
for (ThreadState* thread = ThreadState::FirstInUse();
thread != NULL;
thread = thread->Next()) {
n++;
}
// Total number of threads is current thread and archived threads.
return Smi::FromInt(n + 1);
}
static const int kThreadDetailsCurrentThreadIndex = 0;
static const int kThreadDetailsThreadIdIndex = 1;
static const int kThreadDetailsSize = 2;
// Return an array with thread details
// args[0]: number: break id
// args[1]: number: thread index
//
// The array returned contains the following information:
// 0: Is current thread?
// 1: Thread id
static Object* Runtime_GetThreadDetails(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
// Allocate array for result.
Handle<FixedArray> details = Factory::NewFixedArray(kThreadDetailsSize);
// Thread index 0 is current thread.
if (index == 0) {
// Fill the details.
details->set(kThreadDetailsCurrentThreadIndex, Heap::true_value());
details->set(kThreadDetailsThreadIdIndex,
Smi::FromInt(ThreadManager::CurrentId()));
} else {
// Find the thread with the requested index.
int n = 1;
ThreadState* thread = ThreadState::FirstInUse();
while (index != n && thread != NULL) {
thread = thread->Next();
n++;
}
if (thread == NULL) {
return Heap::undefined_value();
}
// Fill the details.
details->set(kThreadDetailsCurrentThreadIndex, Heap::false_value());
details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id()));
}
// Convert to JS array and return.
return *Factory::NewJSArrayWithElements(details);
}
static Object* Runtime_GetBreakLocations(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
Handle<SharedFunctionInfo> shared(fun->shared());
// Find the number of break points
Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared);
if (break_locations->IsUndefined()) return Heap::undefined_value();
// Return array as JS array
return *Factory::NewJSArrayWithElements(
Handle<FixedArray>::cast(break_locations));
}
// Set a break point in a function
// args[0]: function
// args[1]: number: break source position (within the function source)
// args[2]: number: break point object
static Object* Runtime_SetFunctionBreakPoint(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSFunction, fun, 0);
Handle<SharedFunctionInfo> shared(fun->shared());
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
RUNTIME_ASSERT(source_position >= 0);
Handle<Object> break_point_object_arg = args.at<Object>(2);
// Set break point.
Debug::SetBreakPoint(shared, source_position, break_point_object_arg);
return Heap::undefined_value();
}
Object* Runtime::FindSharedFunctionInfoInScript(Handle<Script> script,
int position) {
// Iterate the heap looking for SharedFunctionInfo generated from the
// script. The inner most SharedFunctionInfo containing the source position
// for the requested break point is found.
// NOTE: This might reqire several heap iterations. If the SharedFunctionInfo
// which is found is not compiled it is compiled and the heap is iterated
// again as the compilation might create inner functions from the newly
// compiled function and the actual requested break point might be in one of
// these functions.
bool done = false;
// The current candidate for the source position:
int target_start_position = RelocInfo::kNoPosition;
Handle<SharedFunctionInfo> target;
// The current candidate for the last function in script:
Handle<SharedFunctionInfo> last;
while (!done) {
HeapIterator iterator;
for (HeapObject* obj = iterator.next();
obj != NULL; obj = iterator.next()) {
if (obj->IsSharedFunctionInfo()) {
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj));
if (shared->script() == *script) {
// If the SharedFunctionInfo found has the requested script data and
// contains the source position it is a candidate.
int start_position = shared->function_token_position();
if (start_position == RelocInfo::kNoPosition) {
start_position = shared->start_position();
}
if (start_position <= position &&
position <= shared->end_position()) {
// If there is no candidate or this function is within the current
// candidate this is the new candidate.
if (target.is_null()) {
target_start_position = start_position;
target = shared;
} else {
if (target_start_position == start_position &&
shared->end_position() == target->end_position()) {
// If a top-level function contain only one function
// declartion the source for the top-level and the function is
// the same. In that case prefer the non top-level function.
if (!shared->is_toplevel()) {
target_start_position = start_position;
target = shared;
}
} else if (target_start_position <= start_position &&
shared->end_position() <= target->end_position()) {
// This containment check includes equality as a function inside
// a top-level function can share either start or end position
// with the top-level function.
target_start_position = start_position;
target = shared;
}
}
}
// Keep track of the last function in the script.
if (last.is_null() ||
shared->end_position() > last->start_position()) {
last = shared;
}
}
}
}
// Make sure some candidate is selected.
if (target.is_null()) {
if (!last.is_null()) {
// Position after the last function - use last.
target = last;
} else {
// Unable to find function - possibly script without any function.
return Heap::undefined_value();
}
}
// If the candidate found is compiled we are done. NOTE: when lazy
// compilation of inner functions is introduced some additional checking
// needs to be done here to compile inner functions.
done = target->is_compiled();
if (!done) {
// If the candidate is not compiled compile it to reveal any inner
// functions which might contain the requested source position.
CompileLazyShared(target, KEEP_EXCEPTION);
}
}
return *target;
}
// Change the state of a break point in a script. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script to set break point in
// args[1]: number: break source position (within the script source)
// args[2]: number: break point object
static Object* Runtime_SetScriptBreakPoint(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
CONVERT_ARG_CHECKED(JSValue, wrapper, 0);
CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
RUNTIME_ASSERT(source_position >= 0);
Handle<Object> break_point_object_arg = args.at<Object>(2);
// Get the script from the script wrapper.
RUNTIME_ASSERT(wrapper->value()->IsScript());
Handle<Script> script(Script::cast(wrapper->value()));
Object* result = Runtime::FindSharedFunctionInfoInScript(
script, source_position);
if (!result->IsUndefined()) {
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result));
// Find position within function. The script position might be before the
// source position of the first function.
int position;
if (shared->start_position() > source_position) {
position = 0;
} else {
position = source_position - shared->start_position();
}
Debug::SetBreakPoint(shared, position, break_point_object_arg);
}
return Heap::undefined_value();
}
// Clear a break point
// args[0]: number: break point object
static Object* Runtime_ClearBreakPoint(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
Handle<Object> break_point_object_arg = args.at<Object>(0);
// Clear break point.
Debug::ClearBreakPoint(break_point_object_arg);
return Heap::undefined_value();
}
// Change the state of break on exceptions
// args[0]: boolean indicating uncaught exceptions
// args[1]: boolean indicating on/off
static Object* Runtime_ChangeBreakOnException(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 2);
ASSERT(args[0]->IsNumber());
ASSERT(args[1]->IsBoolean());
// Update break point state
ExceptionBreakType type =
static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
bool enable = args[1]->ToBoolean()->IsTrue();
Debug::ChangeBreakOnException(type, enable);
return Heap::undefined_value();
}
// Prepare for stepping
// args[0]: break id for checking execution state
// args[1]: step action from the enumeration StepAction
// args[2]: number of times to perform the step, for step out it is the number
// of frames to step down.
static Object* Runtime_PrepareStep(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 3);
// Check arguments.
Object* check = Runtime_CheckExecutionState(args);
if (check->IsFailure()) return check;
if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
return Top::Throw(Heap::illegal_argument_symbol());
}
// Get the step action and check validity.
StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
if (step_action != StepIn &&
step_action != StepNext &&
step_action != StepOut &&
step_action != StepInMin &&
step_action != StepMin) {
return Top::Throw(Heap::illegal_argument_symbol());
}
// Get the number of steps.
int step_count = NumberToInt32(args[2]);
if (step_count < 1) {
return Top::Throw(Heap::illegal_argument_symbol());
}
// Clear all current stepping setup.
Debug::ClearStepping();
// Prepare step.
Debug::PrepareStep(static_cast<StepAction>(step_action), step_count);
return Heap::undefined_value();
}
// Clear all stepping set by PrepareStep.
static Object* Runtime_ClearStepping(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 0);
Debug::ClearStepping();
return Heap::undefined_value();
}
// Creates a copy of the with context chain. The copy of the context chain is
// is linked to the function context supplied.
static Handle<Context> CopyWithContextChain(Handle<Context> context_chain,
Handle<Context> function_context) {
// At the bottom of the chain. Return the function context to link to.
if (context_chain->is_function_context()) {
return function_context;
}
// Recursively copy the with contexts.
Handle<Context> previous(context_chain->previous());
Handle<JSObject> extension(JSObject::cast(context_chain->extension()));
return Factory::NewWithContext(
CopyWithContextChain(function_context, previous),
extension,
context_chain->IsCatchContext());
}
// Helper function to find or create the arguments object for
// Runtime_DebugEvaluate.
static Handle<Object> GetArgumentsObject(JavaScriptFrame* frame,
Handle<JSFunction> function,
Handle<Code> code,
const ScopeInfo<>* sinfo,
Handle<Context> function_context) {
// Try to find the value of 'arguments' to pass as parameter. If it is not
// found (that is the debugged function does not reference 'arguments' and
// does not support eval) then create an 'arguments' object.
int index;
if (sinfo->number_of_stack_slots() > 0) {
index = ScopeInfo<>::StackSlotIndex(*code, Heap::arguments_symbol());
if (index != -1) {
return Handle<Object>(frame->GetExpression(index));
}
}
if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) {
index = ScopeInfo<>::ContextSlotIndex(*code, Heap::arguments_symbol(),
NULL);
if (index != -1) {
return Handle<Object>(function_context->get(index));
}
}
const int length = frame->GetProvidedParametersCount();
Handle<JSObject> arguments = Factory::NewArgumentsObject(function, length);
Handle<FixedArray> array = Factory::NewFixedArray(length);
AssertNoAllocation no_gc;
WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
for (int i = 0; i < length; i++) {
array->set(i, frame->GetParameter(i), mode);
}
arguments->set_elements(*array);
return arguments;
}
// Evaluate a piece of JavaScript in the context of a stack frame for
// debugging. This is accomplished by creating a new context which in its
// extension part has all the parameters and locals of the function on the
// stack frame. A function which calls eval with the code to evaluate is then
// compiled in this context and called in this context. As this context
// replaces the context of the function on the stack frame a new (empty)
// function is created as well to be used as the closure for the context.
// This function and the context acts as replacements for the function on the
// stack frame presenting the same view of the values of parameters and
// local variables as if the piece of JavaScript was evaluated at the point
// where the function on the stack frame is currently stopped.
static Object* Runtime_DebugEvaluate(Arguments args) {
HandleScope scope;
// Check the execution state and decode arguments frame and source to be
// evaluated.
ASSERT(args.length() == 4);
Object* check_result = Runtime_CheckExecutionState(args);
if (check_result->IsFailure()) return check_result;
CONVERT_CHECKED(Smi, wrapped_id, args[1]);
CONVERT_ARG_CHECKED(String, source, 2);
CONVERT_BOOLEAN_CHECKED(disable_break, args[3]);
// Handle the processing of break.
DisableBreak disable_break_save(disable_break);
// Get the frame where the debugging is performed.
StackFrame::Id id = UnwrapFrameId(wrapped_id);
JavaScriptFrameIterator it(id);
JavaScriptFrame* frame = it.frame();
Handle<JSFunction> function(JSFunction::cast(frame->function()));
Handle<Code> code(function->code());
ScopeInfo<> sinfo(*code);
// Traverse the saved contexts chain to find the active context for the
// selected frame.
SaveContext* save = Top::save_context();
while (save != NULL && !save->below(frame)) {
save = save->prev();
}
ASSERT(save != NULL);
SaveContext savex;
Top::set_context(*(save->context()));
// Create the (empty) function replacing the function on the stack frame for
// the purpose of evaluating in the context created below. It is important
// that this function does not describe any parameters and local variables
// in the context. If it does then this will cause problems with the lookup
// in Context::Lookup, where context slots for parameters and local variables
// are looked at before the extension object.
Handle<JSFunction> go_between =
Factory::NewFunction(Factory::empty_string(), Factory::undefined_value());
go_between->set_context(function->context());
#ifdef DEBUG
ScopeInfo<> go_between_sinfo(go_between->shared()->code());
ASSERT(go_between_sinfo.number_of_parameters() == 0);
ASSERT(go_between_sinfo.number_of_context_slots() == 0);
#endif
// Materialize the content of the local scope into a JSObject.
Handle<JSObject> local_scope = MaterializeLocalScope(frame);
// Allocate a new context for the debug evaluation and set the extension
// object build.
Handle<Context> context =
Factory::NewFunctionContext(Context::MIN_CONTEXT_SLOTS, go_between);
context->set_extension(*local_scope);
// Copy any with contexts present and chain them in front of this context.
Handle<Context> frame_context(Context::cast(frame->context()));
Handle<Context> function_context(frame_context->fcontext());
context = CopyWithContextChain(frame_context, context);
// Wrap the evaluation statement in a new function compiled in the newly
// created context. The function has one parameter which has to be called
// 'arguments'. This it to have access to what would have been 'arguments' in
// the function being debugged.
// function(arguments,__source__) {return eval(__source__);}
static const char* source_str =
"(function(arguments,__source__){return eval(__source__);})";
static const int source_str_length = StrLength(source_str);
Handle<String> function_source =
Factory::NewStringFromAscii(Vector<const char>(source_str,
source_str_length));
Handle<JSFunction> boilerplate =
Compiler::CompileEval(function_source,
context,
context->IsGlobalContext(),
Compiler::DONT_VALIDATE_JSON);
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> compiled_function =
Factory::NewFunctionFromBoilerplate(boilerplate, context);
// Invoke the result of the compilation to get the evaluation function.
bool has_pending_exception;
Handle<Object> receiver(frame->receiver());
Handle<Object> evaluation_function =
Execution::Call(compiled_function, receiver, 0, NULL,
&has_pending_exception);
if (has_pending_exception) return Failure::Exception();
Handle<Object> arguments = GetArgumentsObject(frame, function, code, &sinfo,
function_context);
// Invoke the evaluation function and return the result.
const int argc = 2;
Object** argv[argc] = { arguments.location(),
Handle<Object>::cast(source).location() };
Handle<Object> result =
Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver,
argc, argv, &has_pending_exception);
if (has_pending_exception) return Failure::Exception();
// Skip the global proxy as it has no properties and always delegates to the
// real global object.
if (result->IsJSGlobalProxy()) {
result = Handle<JSObject>(JSObject::cast(result->GetPrototype()));
}
return *result;
}
static Object* Runtime_DebugEvaluateGlobal(Arguments args) {
HandleScope scope;
// Check the execution state and decode arguments frame and source to be
// evaluated.
ASSERT(args.length() == 3);
Object* check_result = Runtime_CheckExecutionState(args);
if (check_result->IsFailure()) return check_result;
CONVERT_ARG_CHECKED(String, source, 1);
CONVERT_BOOLEAN_CHECKED(disable_break, args[2]);
// Handle the processing of break.
DisableBreak disable_break_save(disable_break);
// Enter the top context from before the debugger was invoked.
SaveContext save;
SaveContext* top = &save;
while (top != NULL && *top->context() == *Debug::debug_context()) {
top = top->prev();
}
if (top != NULL) {
Top::set_context(*top->context());
}
// Get the global context now set to the top context from before the
// debugger was invoked.
Handle<Context> context = Top::global_context();
// Compile the source to be evaluated.
Handle<JSFunction> boilerplate =
Handle<JSFunction>(Compiler::CompileEval(source,
context,
true,
Compiler::DONT_VALIDATE_JSON));
if (boilerplate.is_null()) return Failure::Exception();
Handle<JSFunction> compiled_function =
Handle<JSFunction>(Factory::NewFunctionFromBoilerplate(boilerplate,
context));
// Invoke the result of the compilation to get the evaluation function.
bool has_pending_exception;
Handle<Object> receiver = Top::global();
Handle<Object> result =
Execution::Call(compiled_function, receiver, 0, NULL,
&has_pending_exception);
if (has_pending_exception) return Failure::Exception();
return *result;
}
static Object* Runtime_DebugGetLoadedScripts(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 0);
// Fill the script objects.
Handle<FixedArray> instances = Debug::GetLoadedScripts();
// Convert the script objects to proper JS objects.
for (int i = 0; i < instances->length(); i++) {
Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
// Get the script wrapper in a local handle before calling GetScriptWrapper,
// because using
// instances->set(i, *GetScriptWrapper(script))
// is unsafe as GetScriptWrapper might call GC and the C++ compiler might
// already have deferenced the instances handle.
Handle<JSValue> wrapper = GetScriptWrapper(script);
instances->set(i, *wrapper);
}
// Return result as a JS array.
Handle<JSObject> result = Factory::NewJSObject(Top::array_function());
Handle<JSArray>::cast(result)->SetContent(*instances);
return *result;
}
// Helper function used by Runtime_DebugReferencedBy below.
static int DebugReferencedBy(JSObject* target,
Object* instance_filter, int max_references,
FixedArray* instances, int instances_size,
JSFunction* arguments_function) {
NoHandleAllocation ha;
AssertNoAllocation no_alloc;
// Iterate the heap.
int count = 0;
JSObject* last = NULL;
HeapIterator iterator;
HeapObject* heap_obj = NULL;
while (((heap_obj = iterator.next()) != NULL) &&
(max_references == 0 || count < max_references)) {
// Only look at all JSObjects.
if (heap_obj->IsJSObject()) {
// Skip context extension objects and argument arrays as these are
// checked in the context of functions using them.
JSObject* obj = JSObject::cast(heap_obj);
if (obj->IsJSContextExtensionObject() ||
obj->map()->constructor() == arguments_function) {
continue;
}
// Check if the JS object has a reference to the object looked for.
if (obj->ReferencesObject(target)) {
// Check instance filter if supplied. This is normally used to avoid
// references from mirror objects (see Runtime_IsInPrototypeChain).
if (!instance_filter->IsUndefined()) {
Object* V = obj;
while (true) {
Object* prototype = V->GetPrototype();
if (prototype->IsNull()) {
break;
}
if (instance_filter == prototype) {
obj = NULL; // Don't add this object.
break;
}
V = prototype;
}
}
if (obj != NULL) {
// Valid reference found add to instance array if supplied an update
// count.
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
last = obj;
count++;
}
}
}
}
// Check for circular reference only. This can happen when the object is only
// referenced from mirrors and has a circular reference in which case the
// object is not really alive and would have been garbage collected if not
// referenced from the mirror.
if (count == 1 && last == target) {
count = 0;
}
// Return the number of referencing objects found.
return count;
}
// Scan the heap for objects with direct references to an object
// args[0]: the object to find references to
// args[1]: constructor function for instances to exclude (Mirror)
// args[2]: the the maximum number of objects to return
static Object* Runtime_DebugReferencedBy(Arguments args) {
ASSERT(args.length() == 3);
// First perform a full GC in order to avoid references from dead objects.
Heap::CollectAllGarbage(false);
// Check parameters.
CONVERT_CHECKED(JSObject, target, args[0]);
Object* instance_filter = args[1];
RUNTIME_ASSERT(instance_filter->IsUndefined() ||
instance_filter->IsJSObject());
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
RUNTIME_ASSERT(max_references >= 0);
// Get the constructor function for context extension and arguments array.
JSObject* arguments_boilerplate =
Top::context()->global_context()->arguments_boilerplate();
JSFunction* arguments_function =
JSFunction::cast(arguments_boilerplate->map()->constructor());
// Get the number of referencing objects.
int count;
count = DebugReferencedBy(target, instance_filter, max_references,
NULL, 0, arguments_function);
// Allocate an array to hold the result.
Object* object = Heap::AllocateFixedArray(count);
if (object->IsFailure()) return object;
FixedArray* instances = FixedArray::cast(object);
// Fill the referencing objects.
count = DebugReferencedBy(target, instance_filter, max_references,
instances, count, arguments_function);
// Return result as JS array.
Object* result =
Heap::AllocateJSObject(
Top::context()->global_context()->array_function());
if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
return result;
}
// Helper function used by Runtime_DebugConstructedBy below.
static int DebugConstructedBy(JSFunction* constructor, int max_references,
FixedArray* instances, int instances_size) {
AssertNoAllocation no_alloc;
// Iterate the heap.
int count = 0;
HeapIterator iterator;
HeapObject* heap_obj = NULL;
while (((heap_obj = iterator.next()) != NULL) &&
(max_references == 0 || count < max_references)) {
// Only look at all JSObjects.
if (heap_obj->IsJSObject()) {
JSObject* obj = JSObject::cast(heap_obj);
if (obj->map()->constructor() == constructor) {
// Valid reference found add to instance array if supplied an update
// count.
if (instances != NULL && count < instances_size) {
instances->set(count, obj);
}
count++;
}
}
}
// Return the number of referencing objects found.
return count;
}
// Scan the heap for objects constructed by a specific function.
// args[0]: the constructor to find instances of
// args[1]: the the maximum number of objects to return
static Object* Runtime_DebugConstructedBy(Arguments args) {
ASSERT(args.length() == 2);
// First perform a full GC in order to avoid dead objects.
Heap::CollectAllGarbage(false);
// Check parameters.
CONVERT_CHECKED(JSFunction, constructor, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
RUNTIME_ASSERT(max_references >= 0);
// Get the number of referencing objects.
int count;
count = DebugConstructedBy(constructor, max_references, NULL, 0);
// Allocate an array to hold the result.
Object* object = Heap::AllocateFixedArray(count);
if (object->IsFailure()) return object;
FixedArray* instances = FixedArray::cast(object);
// Fill the referencing objects.
count = DebugConstructedBy(constructor, max_references, instances, count);
// Return result as JS array.
Object* result =
Heap::AllocateJSObject(
Top::context()->global_context()->array_function());
if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
return result;
}
// Find the effective prototype object as returned by __proto__.
// args[0]: the object to find the prototype for.
static Object* Runtime_DebugGetPrototype(Arguments args) {
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSObject, obj, args[0]);
// Use the __proto__ accessor.
return Accessors::ObjectPrototype.getter(obj, NULL);
}
static Object* Runtime_SystemBreak(Arguments args) {
ASSERT(args.length() == 0);
CPU::DebugBreak();
return Heap::undefined_value();
}
static Object* Runtime_DebugDisassembleFunction(Arguments args) {
#ifdef DEBUG
HandleScope scope;
ASSERT(args.length() == 1);
// Get the function and make sure it is compiled.
CONVERT_ARG_CHECKED(JSFunction, func, 0);
Handle<SharedFunctionInfo> shared(func->shared());
if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
return Failure::Exception();
}
func->code()->PrintLn();
#endif // DEBUG
return Heap::undefined_value();
}
static Object* Runtime_DebugDisassembleConstructor(Arguments args) {
#ifdef DEBUG
HandleScope scope;
ASSERT(args.length() == 1);
// Get the function and make sure it is compiled.
CONVERT_ARG_CHECKED(JSFunction, func, 0);
Handle<SharedFunctionInfo> shared(func->shared());
if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
return Failure::Exception();
}
shared->construct_stub()->PrintLn();
#endif // DEBUG
return Heap::undefined_value();
}
static Object* Runtime_FunctionGetInferredName(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 1);
CONVERT_CHECKED(JSFunction, f, args[0]);
return f->shared()->inferred_name();
}
#endif // ENABLE_DEBUGGER_SUPPORT
#ifdef ENABLE_LOGGING_AND_PROFILING
static Object* Runtime_ProfilerResume(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(Smi, smi_modules, args[0]);
CONVERT_CHECKED(Smi, smi_tag, args[1]);
v8::V8::ResumeProfilerEx(smi_modules->value(), smi_tag->value());
return Heap::undefined_value();
}
static Object* Runtime_ProfilerPause(Arguments args) {
NoHandleAllocation ha;
ASSERT(args.length() == 2);
CONVERT_CHECKED(Smi, smi_modules, args[0]);
CONVERT_CHECKED(Smi, smi_tag, args[1]);
v8::V8::PauseProfilerEx(smi_modules->value(), smi_tag->value());
return Heap::undefined_value();
}
#endif // ENABLE_LOGGING_AND_PROFILING
// Finds the script object from the script data. NOTE: This operation uses
// heap traversal to find the function generated for the source position
// for the requested break point. For lazily compiled functions several heap
// traversals might be required rendering this operation as a rather slow
// operation. However for setting break points which is normally done through
// some kind of user interaction the performance is not crucial.
static Handle<Object> Runtime_GetScriptFromScriptName(
Handle<String> script_name) {
// Scan the heap for Script objects to find the script with the requested
// script data.
Handle<Script> script;
HeapIterator iterator;
HeapObject* obj = NULL;
while (script.is_null() && ((obj = iterator.next()) != NULL)) {
// If a script is found check if it has the script data requested.
if (obj->IsScript()) {
if (Script::cast(obj)->name()->IsString()) {
if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
script = Handle<Script>(Script::cast(obj));
}
}
}
}
// If no script with the requested script data is found return undefined.
if (script.is_null()) return Factory::undefined_value();
// Return the script found.
return GetScriptWrapper(script);
}
// Get the script object from script data. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script data for the script to find the source for
static Object* Runtime_GetScript(Arguments args) {
HandleScope scope;
ASSERT(args.length() == 1);
CONVERT_CHECKED(String, script_name, args[0]);
// Find the requested script.
Handle<Object> result =
Runtime_GetScriptFromScriptName(Handle<String>(script_name));
return *result;
}
// Determines whether the given stack frame should be displayed in
// a stack trace. The caller is the error constructor that asked
// for the stack trace to be collected. The first time a construct
// call to this function is encountered it is skipped. The seen_caller
// in/out parameter is used to remember if the caller has been seen
// yet.
static bool ShowFrameInStackTrace(StackFrame* raw_frame, Object* caller,
bool* seen_caller) {
// Only display JS frames.
if (!raw_frame->is_java_script())
return false;
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
Object* raw_fun = frame->function();
// Not sure when this can happen but skip it just in case.
if (!raw_fun->IsJSFunction())
return false;
if ((raw_fun == caller) && !(*seen_caller)) {
*seen_caller = true;
return false;
}
// Skip all frames until we've seen the caller. Also, skip the most
// obvious builtin calls. Some builtin calls (such as Number.ADD
// which is invoked using 'call') are very difficult to recognize
// so we're leaving them in for now.
return *seen_caller && !frame->receiver()->IsJSBuiltinsObject();
}
// Collect the raw data for a stack trace. Returns an array of three
// element segments each containing a receiver, function and native
// code offset.
static Object* Runtime_CollectStackTrace(Arguments args) {
ASSERT_EQ(args.length(), 2);
Handle<Object> caller = args.at<Object>(0);
CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[1]);
HandleScope scope;
limit = Max(limit, 0); // Ensure that limit is not negative.
int initial_size = Min(limit, 10);
Handle<JSArray> result = Factory::NewJSArray(initial_size * 3);
StackFrameIterator iter;
// If the caller parameter is a function we skip frames until we're
// under it before starting to collect.
bool seen_caller = !caller->IsJSFunction();
int cursor = 0;
int frames_seen = 0;
while (!iter.done() && frames_seen < limit) {
StackFrame* raw_frame = iter.frame();
if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) {
frames_seen++;
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
Object* recv = frame->receiver();
Object* fun = frame->function();
Address pc = frame->pc();
Address start = frame->code()->address();
Smi* offset = Smi::FromInt(static_cast<int>(pc - start));
FixedArray* elements = FixedArray::cast(result->elements());
if (cursor + 2 < elements->length()) {
elements->set(cursor++, recv);
elements->set(cursor++, fun);
elements->set(cursor++, offset);
} else {
HandleScope scope;
Handle<Object> recv_handle(recv);
Handle<Object> fun_handle(fun);
SetElement(result, cursor++, recv_handle);
SetElement(result, cursor++, fun_handle);
SetElement(result, cursor++, Handle<Smi>(offset));
}
}
iter.Advance();
}
result->set_length(Smi::FromInt(cursor));
return *result;
}
// Returns V8 version as a string.
static Object* Runtime_GetV8Version(Arguments args) {
ASSERT_EQ(args.length(), 0);
NoHandleAllocation ha;
const char* version_string = v8::V8::GetVersion();
return Heap::AllocateStringFromAscii(CStrVector(version_string), NOT_TENURED);
}
static Object* Runtime_Abort(Arguments args) {
ASSERT(args.length() == 2);
OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) +
Smi::cast(args[1])->value());
Top::PrintStack();
OS::Abort();
UNREACHABLE();
return NULL;
}
static Object* Runtime_DeleteHandleScopeExtensions(Arguments args) {
ASSERT(args.length() == 0);
HandleScope::DeleteExtensions();
return Heap::undefined_value();
}
#ifdef DEBUG
// ListNatives is ONLY used by the fuzz-natives.js in debug mode
// Exclude the code in release mode.
static Object* Runtime_ListNatives(Arguments args) {
ASSERT(args.length() == 0);
HandleScope scope;
Handle<JSArray> result = Factory::NewJSArray(0);
int index = 0;
#define ADD_ENTRY(Name, argc, ressize) \
{ \
HandleScope inner; \
Handle<String> name = \
Factory::NewStringFromAscii( \
Vector<const char>(#Name, StrLength(#Name))); \
Handle<JSArray> pair = Factory::NewJSArray(0); \
SetElement(pair, 0, name); \
SetElement(pair, 1, Handle<Smi>(Smi::FromInt(argc))); \
SetElement(result, index++, pair); \
}
RUNTIME_FUNCTION_LIST(ADD_ENTRY)
#undef ADD_ENTRY
return *result;
}
#endif
static Object* Runtime_Log(Arguments args) {
ASSERT(args.length() == 2);
CONVERT_CHECKED(String, format, args[0]);
CONVERT_CHECKED(JSArray, elms, args[1]);
Vector<const char> chars = format->ToAsciiVector();
Logger::LogRuntime(chars, elms);
return Heap::undefined_value();
}
static Object* Runtime_IS_VAR(Arguments args) {
UNREACHABLE(); // implemented as macro in the parser
return NULL;
}
// ----------------------------------------------------------------------------
// Implementation of Runtime
#define F(name, nargs, ressize) \
{ #name, FUNCTION_ADDR(Runtime_##name), nargs, \
static_cast<int>(Runtime::k##name), ressize },
static Runtime::Function Runtime_functions[] = {
RUNTIME_FUNCTION_LIST(F)
{ NULL, NULL, 0, -1, 0 }
};
#undef F
Runtime::Function* Runtime::FunctionForId(FunctionId fid) {
ASSERT(0 <= fid && fid < kNofFunctions);
return &Runtime_functions[fid];
}
Runtime::Function* Runtime::FunctionForName(const char* name) {
for (Function* f = Runtime_functions; f->name != NULL; f++) {
if (strcmp(f->name, name) == 0) {
return f;
}
}
return NULL;
}
void Runtime::PerformGC(Object* result) {
Failure* failure = Failure::cast(result);
if (failure->IsRetryAfterGC()) {
// Try to do a garbage collection; ignore it if it fails. The C
// entry stub will throw an out-of-memory exception in that case.
Heap::CollectGarbage(failure->requested(), failure->allocation_space());
} else {
// Handle last resort GC and make sure to allow future allocations
// to grow the heap without causing GCs (if possible).
Counters::gc_last_resort_from_js.Increment();
Heap::CollectAllGarbage(false);
}
}
} } // namespace v8::internal