| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_MIPS_CONSTANTS_H_ |
| #define V8_MIPS_CONSTANTS_H_ |
| |
| // UNIMPLEMENTED_ macro for MIPS. |
| #ifdef DEBUG |
| #define UNIMPLEMENTED_MIPS() \ |
| v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \ |
| __FILE__, __LINE__, __func__) |
| #else |
| #define UNIMPLEMENTED_MIPS() |
| #endif |
| |
| #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n") |
| |
| |
| #ifdef _MIPS_ARCH_MIPS32R2 |
| #define mips32r2 1 |
| #else |
| #define mips32r2 0 |
| #endif |
| |
| |
| #if(defined(__mips_hard_float) && __mips_hard_float != 0) |
| // Use floating-point coprocessor instructions. This flag is raised when |
| // -mhard-float is passed to the compiler. |
| static const bool IsMipsSoftFloatABI = false; |
| #elif(defined(__mips_soft_float) && __mips_soft_float != 0) |
| // Not using floating-point coprocessor instructions. This flag is raised when |
| // -msoft-float is passed to the compiler. |
| static const bool IsMipsSoftFloatABI = true; |
| #else |
| static const bool IsMipsSoftFloatABI = true; |
| #endif |
| |
| |
| // Defines constants and accessor classes to assemble, disassemble and |
| // simulate MIPS32 instructions. |
| // |
| // See: MIPS32 Architecture For Programmers |
| // Volume II: The MIPS32 Instruction Set |
| // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf. |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Registers and FPURegisters. |
| |
| // Number of general purpose registers. |
| static const int kNumRegisters = 32; |
| static const int kInvalidRegister = -1; |
| |
| // Number of registers with HI, LO, and pc. |
| static const int kNumSimuRegisters = 35; |
| |
| // In the simulator, the PC register is simulated as the 34th register. |
| static const int kPCRegister = 34; |
| |
| // Number coprocessor registers. |
| static const int kNumFPURegisters = 32; |
| static const int kInvalidFPURegister = -1; |
| |
| // FPU (coprocessor 1) control registers. Currently only FCSR is implemented. |
| static const int kFCSRRegister = 31; |
| static const int kInvalidFPUControlRegister = -1; |
| static const uint32_t kFPUInvalidResult = (uint32_t) (1 << 31) - 1; |
| |
| // FCSR constants. |
| static const uint32_t kFCSRInexactFlagBit = 2; |
| static const uint32_t kFCSRUnderflowFlagBit = 3; |
| static const uint32_t kFCSROverflowFlagBit = 4; |
| static const uint32_t kFCSRDivideByZeroFlagBit = 5; |
| static const uint32_t kFCSRInvalidOpFlagBit = 6; |
| |
| static const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit; |
| static const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit; |
| static const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit; |
| static const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit; |
| static const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit; |
| |
| static const uint32_t kFCSRFlagMask = |
| kFCSRInexactFlagMask | |
| kFCSRUnderflowFlagMask | |
| kFCSROverflowFlagMask | |
| kFCSRDivideByZeroFlagMask | |
| kFCSRInvalidOpFlagMask; |
| |
| static const uint32_t kFCSRExceptionFlagMask = |
| kFCSRFlagMask ^ kFCSRInexactFlagMask; |
| |
| // Helper functions for converting between register numbers and names. |
| class Registers { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int reg; |
| const char *name; |
| }; |
| |
| static const int32_t kMaxValue = 0x7fffffff; |
| static const int32_t kMinValue = 0x80000000; |
| |
| private: |
| static const char* names_[kNumSimuRegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| // Helper functions for converting between register numbers and names. |
| class FPURegisters { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int creg; |
| const char *name; |
| }; |
| |
| private: |
| static const char* names_[kNumFPURegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Instructions encoding constants. |
| |
| // On MIPS all instructions are 32 bits. |
| typedef int32_t Instr; |
| |
| // Special Software Interrupt codes when used in the presence of the MIPS |
| // simulator. |
| enum SoftwareInterruptCodes { |
| // Transition to C code. |
| call_rt_redirected = 0xfffff |
| }; |
| |
| // On MIPS Simulator breakpoints can have different codes: |
| // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, |
| // the simulator will run through them and print the registers. |
| // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() |
| // instructions (see Assembler::stop()). |
| // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the |
| // debugger. |
| static const uint32_t kMaxWatchpointCode = 31; |
| static const uint32_t kMaxStopCode = 127; |
| STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode); |
| |
| |
| // ----- Fields offset and length. |
| static const int kOpcodeShift = 26; |
| static const int kOpcodeBits = 6; |
| static const int kRsShift = 21; |
| static const int kRsBits = 5; |
| static const int kRtShift = 16; |
| static const int kRtBits = 5; |
| static const int kRdShift = 11; |
| static const int kRdBits = 5; |
| static const int kSaShift = 6; |
| static const int kSaBits = 5; |
| static const int kFunctionShift = 0; |
| static const int kFunctionBits = 6; |
| static const int kLuiShift = 16; |
| |
| static const int kImm16Shift = 0; |
| static const int kImm16Bits = 16; |
| static const int kImm26Shift = 0; |
| static const int kImm26Bits = 26; |
| static const int kImm28Shift = 0; |
| static const int kImm28Bits = 28; |
| |
| // In branches and jumps immediate fields point to words, not bytes, |
| // and are therefore shifted by 2. |
| static const int kImmFieldShift = 2; |
| |
| static const int kFsShift = 11; |
| static const int kFsBits = 5; |
| static const int kFtShift = 16; |
| static const int kFtBits = 5; |
| static const int kFdShift = 6; |
| static const int kFdBits = 5; |
| static const int kFCccShift = 8; |
| static const int kFCccBits = 3; |
| static const int kFBccShift = 18; |
| static const int kFBccBits = 3; |
| static const int kFBtrueShift = 16; |
| static const int kFBtrueBits = 1; |
| |
| // ----- Miscellaneous useful masks. |
| // Instruction bit masks. |
| static const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift; |
| static const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift; |
| static const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift; |
| static const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift; |
| static const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift; |
| static const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift; |
| static const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; |
| static const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift; |
| static const int kFunctionFieldMask = |
| ((1 << kFunctionBits) - 1) << kFunctionShift; |
| // Misc masks. |
| static const int kHiMask = 0xffff << 16; |
| static const int kLoMask = 0xffff; |
| static const int kSignMask = 0x80000000; |
| static const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1; |
| |
| // ----- MIPS Opcodes and Function Fields. |
| // We use this presentation to stay close to the table representation in |
| // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set. |
| enum Opcode { |
| SPECIAL = 0 << kOpcodeShift, |
| REGIMM = 1 << kOpcodeShift, |
| |
| J = ((0 << 3) + 2) << kOpcodeShift, |
| JAL = ((0 << 3) + 3) << kOpcodeShift, |
| BEQ = ((0 << 3) + 4) << kOpcodeShift, |
| BNE = ((0 << 3) + 5) << kOpcodeShift, |
| BLEZ = ((0 << 3) + 6) << kOpcodeShift, |
| BGTZ = ((0 << 3) + 7) << kOpcodeShift, |
| |
| ADDI = ((1 << 3) + 0) << kOpcodeShift, |
| ADDIU = ((1 << 3) + 1) << kOpcodeShift, |
| SLTI = ((1 << 3) + 2) << kOpcodeShift, |
| SLTIU = ((1 << 3) + 3) << kOpcodeShift, |
| ANDI = ((1 << 3) + 4) << kOpcodeShift, |
| ORI = ((1 << 3) + 5) << kOpcodeShift, |
| XORI = ((1 << 3) + 6) << kOpcodeShift, |
| LUI = ((1 << 3) + 7) << kOpcodeShift, |
| |
| COP1 = ((2 << 3) + 1) << kOpcodeShift, // Coprocessor 1 class. |
| BEQL = ((2 << 3) + 4) << kOpcodeShift, |
| BNEL = ((2 << 3) + 5) << kOpcodeShift, |
| BLEZL = ((2 << 3) + 6) << kOpcodeShift, |
| BGTZL = ((2 << 3) + 7) << kOpcodeShift, |
| |
| SPECIAL2 = ((3 << 3) + 4) << kOpcodeShift, |
| SPECIAL3 = ((3 << 3) + 7) << kOpcodeShift, |
| |
| LB = ((4 << 3) + 0) << kOpcodeShift, |
| LH = ((4 << 3) + 1) << kOpcodeShift, |
| LWL = ((4 << 3) + 2) << kOpcodeShift, |
| LW = ((4 << 3) + 3) << kOpcodeShift, |
| LBU = ((4 << 3) + 4) << kOpcodeShift, |
| LHU = ((4 << 3) + 5) << kOpcodeShift, |
| LWR = ((4 << 3) + 6) << kOpcodeShift, |
| SB = ((5 << 3) + 0) << kOpcodeShift, |
| SH = ((5 << 3) + 1) << kOpcodeShift, |
| SWL = ((5 << 3) + 2) << kOpcodeShift, |
| SW = ((5 << 3) + 3) << kOpcodeShift, |
| SWR = ((5 << 3) + 6) << kOpcodeShift, |
| |
| LWC1 = ((6 << 3) + 1) << kOpcodeShift, |
| LDC1 = ((6 << 3) + 5) << kOpcodeShift, |
| |
| SWC1 = ((7 << 3) + 1) << kOpcodeShift, |
| SDC1 = ((7 << 3) + 5) << kOpcodeShift |
| }; |
| |
| enum SecondaryField { |
| // SPECIAL Encoding of Function Field. |
| SLL = ((0 << 3) + 0), |
| MOVCI = ((0 << 3) + 1), |
| SRL = ((0 << 3) + 2), |
| SRA = ((0 << 3) + 3), |
| SLLV = ((0 << 3) + 4), |
| SRLV = ((0 << 3) + 6), |
| SRAV = ((0 << 3) + 7), |
| |
| JR = ((1 << 3) + 0), |
| JALR = ((1 << 3) + 1), |
| MOVZ = ((1 << 3) + 2), |
| MOVN = ((1 << 3) + 3), |
| BREAK = ((1 << 3) + 5), |
| |
| MFHI = ((2 << 3) + 0), |
| MFLO = ((2 << 3) + 2), |
| |
| MULT = ((3 << 3) + 0), |
| MULTU = ((3 << 3) + 1), |
| DIV = ((3 << 3) + 2), |
| DIVU = ((3 << 3) + 3), |
| |
| ADD = ((4 << 3) + 0), |
| ADDU = ((4 << 3) + 1), |
| SUB = ((4 << 3) + 2), |
| SUBU = ((4 << 3) + 3), |
| AND = ((4 << 3) + 4), |
| OR = ((4 << 3) + 5), |
| XOR = ((4 << 3) + 6), |
| NOR = ((4 << 3) + 7), |
| |
| SLT = ((5 << 3) + 2), |
| SLTU = ((5 << 3) + 3), |
| |
| TGE = ((6 << 3) + 0), |
| TGEU = ((6 << 3) + 1), |
| TLT = ((6 << 3) + 2), |
| TLTU = ((6 << 3) + 3), |
| TEQ = ((6 << 3) + 4), |
| TNE = ((6 << 3) + 6), |
| |
| // SPECIAL2 Encoding of Function Field. |
| MUL = ((0 << 3) + 2), |
| CLZ = ((4 << 3) + 0), |
| CLO = ((4 << 3) + 1), |
| |
| // SPECIAL3 Encoding of Function Field. |
| EXT = ((0 << 3) + 0), |
| INS = ((0 << 3) + 4), |
| |
| // REGIMM encoding of rt Field. |
| BLTZ = ((0 << 3) + 0) << 16, |
| BGEZ = ((0 << 3) + 1) << 16, |
| BLTZAL = ((2 << 3) + 0) << 16, |
| BGEZAL = ((2 << 3) + 1) << 16, |
| |
| // COP1 Encoding of rs Field. |
| MFC1 = ((0 << 3) + 0) << 21, |
| CFC1 = ((0 << 3) + 2) << 21, |
| MFHC1 = ((0 << 3) + 3) << 21, |
| MTC1 = ((0 << 3) + 4) << 21, |
| CTC1 = ((0 << 3) + 6) << 21, |
| MTHC1 = ((0 << 3) + 7) << 21, |
| BC1 = ((1 << 3) + 0) << 21, |
| S = ((2 << 3) + 0) << 21, |
| D = ((2 << 3) + 1) << 21, |
| W = ((2 << 3) + 4) << 21, |
| L = ((2 << 3) + 5) << 21, |
| PS = ((2 << 3) + 6) << 21, |
| // COP1 Encoding of Function Field When rs=S. |
| ROUND_L_S = ((1 << 3) + 0), |
| TRUNC_L_S = ((1 << 3) + 1), |
| CEIL_L_S = ((1 << 3) + 2), |
| FLOOR_L_S = ((1 << 3) + 3), |
| ROUND_W_S = ((1 << 3) + 4), |
| TRUNC_W_S = ((1 << 3) + 5), |
| CEIL_W_S = ((1 << 3) + 6), |
| FLOOR_W_S = ((1 << 3) + 7), |
| CVT_D_S = ((4 << 3) + 1), |
| CVT_W_S = ((4 << 3) + 4), |
| CVT_L_S = ((4 << 3) + 5), |
| CVT_PS_S = ((4 << 3) + 6), |
| // COP1 Encoding of Function Field When rs=D. |
| ADD_D = ((0 << 3) + 0), |
| SUB_D = ((0 << 3) + 1), |
| MUL_D = ((0 << 3) + 2), |
| DIV_D = ((0 << 3) + 3), |
| SQRT_D = ((0 << 3) + 4), |
| ABS_D = ((0 << 3) + 5), |
| MOV_D = ((0 << 3) + 6), |
| NEG_D = ((0 << 3) + 7), |
| ROUND_L_D = ((1 << 3) + 0), |
| TRUNC_L_D = ((1 << 3) + 1), |
| CEIL_L_D = ((1 << 3) + 2), |
| FLOOR_L_D = ((1 << 3) + 3), |
| ROUND_W_D = ((1 << 3) + 4), |
| TRUNC_W_D = ((1 << 3) + 5), |
| CEIL_W_D = ((1 << 3) + 6), |
| FLOOR_W_D = ((1 << 3) + 7), |
| CVT_S_D = ((4 << 3) + 0), |
| CVT_W_D = ((4 << 3) + 4), |
| CVT_L_D = ((4 << 3) + 5), |
| C_F_D = ((6 << 3) + 0), |
| C_UN_D = ((6 << 3) + 1), |
| C_EQ_D = ((6 << 3) + 2), |
| C_UEQ_D = ((6 << 3) + 3), |
| C_OLT_D = ((6 << 3) + 4), |
| C_ULT_D = ((6 << 3) + 5), |
| C_OLE_D = ((6 << 3) + 6), |
| C_ULE_D = ((6 << 3) + 7), |
| // COP1 Encoding of Function Field When rs=W or L. |
| CVT_S_W = ((4 << 3) + 0), |
| CVT_D_W = ((4 << 3) + 1), |
| CVT_S_L = ((4 << 3) + 0), |
| CVT_D_L = ((4 << 3) + 1), |
| // COP1 Encoding of Function Field When rs=PS. |
| |
| NULLSF = 0 |
| }; |
| |
| |
| // ----- Emulated conditions. |
| // On MIPS we use this enum to abstract from conditionnal branch instructions. |
| // the 'U' prefix is used to specify unsigned comparisons. |
| enum Condition { |
| // Any value < 0 is considered no_condition. |
| kNoCondition = -1, |
| |
| overflow = 0, |
| no_overflow = 1, |
| Uless = 2, |
| Ugreater_equal= 3, |
| equal = 4, |
| not_equal = 5, |
| Uless_equal = 6, |
| Ugreater = 7, |
| negative = 8, |
| positive = 9, |
| parity_even = 10, |
| parity_odd = 11, |
| less = 12, |
| greater_equal = 13, |
| less_equal = 14, |
| greater = 15, |
| |
| cc_always = 16, |
| |
| // Aliases. |
| carry = Uless, |
| not_carry = Ugreater_equal, |
| zero = equal, |
| eq = equal, |
| not_zero = not_equal, |
| ne = not_equal, |
| nz = not_equal, |
| sign = negative, |
| not_sign = positive, |
| mi = negative, |
| pl = positive, |
| hi = Ugreater, |
| ls = Uless_equal, |
| ge = greater_equal, |
| lt = less, |
| gt = greater, |
| le = less_equal, |
| hs = Ugreater_equal, |
| lo = Uless, |
| al = cc_always, |
| |
| cc_default = kNoCondition |
| }; |
| |
| |
| // Returns the equivalent of !cc. |
| // Negation of the default kNoCondition (-1) results in a non-default |
| // no_condition value (-2). As long as tests for no_condition check |
| // for condition < 0, this will work as expected. |
| inline Condition NegateCondition(Condition cc) { |
| ASSERT(cc != cc_always); |
| return static_cast<Condition>(cc ^ 1); |
| } |
| |
| |
| inline Condition ReverseCondition(Condition cc) { |
| switch (cc) { |
| case Uless: |
| return Ugreater; |
| case Ugreater: |
| return Uless; |
| case Ugreater_equal: |
| return Uless_equal; |
| case Uless_equal: |
| return Ugreater_equal; |
| case less: |
| return greater; |
| case greater: |
| return less; |
| case greater_equal: |
| return less_equal; |
| case less_equal: |
| return greater_equal; |
| default: |
| return cc; |
| }; |
| } |
| |
| |
| // ----- Coprocessor conditions. |
| enum FPUCondition { |
| kNoFPUCondition = -1, |
| |
| F = 0, // False. |
| UN = 1, // Unordered. |
| EQ = 2, // Equal. |
| UEQ = 3, // Unordered or Equal. |
| OLT = 4, // Ordered or Less Than. |
| ULT = 5, // Unordered or Less Than. |
| OLE = 6, // Ordered or Less Than or Equal. |
| ULE = 7 // Unordered or Less Than or Equal. |
| }; |
| |
| |
| // FPU rounding modes. |
| enum FPURoundingMode { |
| RN = 0 << 0, // Round to Nearest. |
| RZ = 1 << 0, // Round towards zero. |
| RP = 2 << 0, // Round towards Plus Infinity. |
| RM = 3 << 0, // Round towards Minus Infinity. |
| |
| // Aliases. |
| kRoundToNearest = RN, |
| kRoundToZero = RZ, |
| kRoundToPlusInf = RP, |
| kRoundToMinusInf = RM |
| }; |
| |
| static const uint32_t kFPURoundingModeMask = 3 << 0; |
| |
| enum CheckForInexactConversion { |
| kCheckForInexactConversion, |
| kDontCheckForInexactConversion |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Hints. |
| |
| // Branch hints are not used on the MIPS. They are defined so that they can |
| // appear in shared function signatures, but will be ignored in MIPS |
| // implementations. |
| enum Hint { |
| no_hint = 0 |
| }; |
| |
| |
| inline Hint NegateHint(Hint hint) { |
| return no_hint; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| // These constants are declared in assembler-mips.cc, as they use named |
| // registers and other constants. |
| |
| // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) |
| // operations as post-increment of sp. |
| extern const Instr kPopInstruction; |
| // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. |
| extern const Instr kPushInstruction; |
| // sw(r, MemOperand(sp, 0)) |
| extern const Instr kPushRegPattern; |
| // lw(r, MemOperand(sp, 0)) |
| extern const Instr kPopRegPattern; |
| extern const Instr kLwRegFpOffsetPattern; |
| extern const Instr kSwRegFpOffsetPattern; |
| extern const Instr kLwRegFpNegOffsetPattern; |
| extern const Instr kSwRegFpNegOffsetPattern; |
| // A mask for the Rt register for push, pop, lw, sw instructions. |
| extern const Instr kRtMask; |
| extern const Instr kLwSwInstrTypeMask; |
| extern const Instr kLwSwInstrArgumentMask; |
| extern const Instr kLwSwOffsetMask; |
| |
| // Break 0xfffff, reserved for redirected real time call. |
| const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6; |
| // A nop instruction. (Encoding of sll 0 0 0). |
| const Instr nopInstr = 0; |
| |
| class Instruction { |
| public: |
| enum { |
| kInstrSize = 4, |
| kInstrSizeLog2 = 2, |
| // On MIPS PC cannot actually be directly accessed. We behave as if PC was |
| // always the value of the current instruction being executed. |
| kPCReadOffset = 0 |
| }; |
| |
| // Get the raw instruction bits. |
| inline Instr InstructionBits() const { |
| return *reinterpret_cast<const Instr*>(this); |
| } |
| |
| // Set the raw instruction bits to value. |
| inline void SetInstructionBits(Instr value) { |
| *reinterpret_cast<Instr*>(this) = value; |
| } |
| |
| // Read one particular bit out of the instruction bits. |
| inline int Bit(int nr) const { |
| return (InstructionBits() >> nr) & 1; |
| } |
| |
| // Read a bit field out of the instruction bits. |
| inline int Bits(int hi, int lo) const { |
| return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); |
| } |
| |
| // Instruction type. |
| enum Type { |
| kRegisterType, |
| kImmediateType, |
| kJumpType, |
| kUnsupported = -1 |
| }; |
| |
| // Get the encoding type of the instruction. |
| Type InstructionType() const; |
| |
| |
| // Accessors for the different named fields used in the MIPS encoding. |
| inline Opcode OpcodeValue() const { |
| return static_cast<Opcode>( |
| Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift)); |
| } |
| |
| inline int RsValue() const { |
| ASSERT(InstructionType() == kRegisterType || |
| InstructionType() == kImmediateType); |
| return Bits(kRsShift + kRsBits - 1, kRsShift); |
| } |
| |
| inline int RtValue() const { |
| ASSERT(InstructionType() == kRegisterType || |
| InstructionType() == kImmediateType); |
| return Bits(kRtShift + kRtBits - 1, kRtShift); |
| } |
| |
| inline int RdValue() const { |
| ASSERT(InstructionType() == kRegisterType); |
| return Bits(kRdShift + kRdBits - 1, kRdShift); |
| } |
| |
| inline int SaValue() const { |
| ASSERT(InstructionType() == kRegisterType); |
| return Bits(kSaShift + kSaBits - 1, kSaShift); |
| } |
| |
| inline int FunctionValue() const { |
| ASSERT(InstructionType() == kRegisterType || |
| InstructionType() == kImmediateType); |
| return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift); |
| } |
| |
| inline int FdValue() const { |
| return Bits(kFdShift + kFdBits - 1, kFdShift); |
| } |
| |
| inline int FsValue() const { |
| return Bits(kFsShift + kFsBits - 1, kFsShift); |
| } |
| |
| inline int FtValue() const { |
| return Bits(kFtShift + kFtBits - 1, kFtShift); |
| } |
| |
| // Float Compare condition code instruction bits. |
| inline int FCccValue() const { |
| return Bits(kFCccShift + kFCccBits - 1, kFCccShift); |
| } |
| |
| // Float Branch condition code instruction bits. |
| inline int FBccValue() const { |
| return Bits(kFBccShift + kFBccBits - 1, kFBccShift); |
| } |
| |
| // Float Branch true/false instruction bit. |
| inline int FBtrueValue() const { |
| return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift); |
| } |
| |
| // Return the fields at their original place in the instruction encoding. |
| inline Opcode OpcodeFieldRaw() const { |
| return static_cast<Opcode>(InstructionBits() & kOpcodeMask); |
| } |
| |
| inline int RsFieldRaw() const { |
| ASSERT(InstructionType() == kRegisterType || |
| InstructionType() == kImmediateType); |
| return InstructionBits() & kRsFieldMask; |
| } |
| |
| // Same as above function, but safe to call within InstructionType(). |
| inline int RsFieldRawNoAssert() const { |
| return InstructionBits() & kRsFieldMask; |
| } |
| |
| inline int RtFieldRaw() const { |
| ASSERT(InstructionType() == kRegisterType || |
| InstructionType() == kImmediateType); |
| return InstructionBits() & kRtFieldMask; |
| } |
| |
| inline int RdFieldRaw() const { |
| ASSERT(InstructionType() == kRegisterType); |
| return InstructionBits() & kRdFieldMask; |
| } |
| |
| inline int SaFieldRaw() const { |
| ASSERT(InstructionType() == kRegisterType); |
| return InstructionBits() & kSaFieldMask; |
| } |
| |
| inline int FunctionFieldRaw() const { |
| return InstructionBits() & kFunctionFieldMask; |
| } |
| |
| // Get the secondary field according to the opcode. |
| inline int SecondaryValue() const { |
| Opcode op = OpcodeFieldRaw(); |
| switch (op) { |
| case SPECIAL: |
| case SPECIAL2: |
| return FunctionValue(); |
| case COP1: |
| return RsValue(); |
| case REGIMM: |
| return RtValue(); |
| default: |
| return NULLSF; |
| } |
| } |
| |
| inline int32_t Imm16Value() const { |
| ASSERT(InstructionType() == kImmediateType); |
| return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift); |
| } |
| |
| inline int32_t Imm26Value() const { |
| ASSERT(InstructionType() == kJumpType); |
| return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift); |
| } |
| |
| // Say if the instruction should not be used in a branch delay slot. |
| bool IsForbiddenInBranchDelay() const; |
| // Say if the instruction 'links'. eg: jal, bal. |
| bool IsLinkingInstruction() const; |
| // Say if the instruction is a break or a trap. |
| bool IsTrap() const; |
| |
| // Instructions are read of out a code stream. The only way to get a |
| // reference to an instruction is to convert a pointer. There is no way |
| // to allocate or create instances of class Instruction. |
| // Use the At(pc) function to create references to Instruction. |
| static Instruction* At(byte* pc) { |
| return reinterpret_cast<Instruction*>(pc); |
| } |
| |
| private: |
| // We need to prevent the creation of instances of class Instruction. |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // MIPS assembly various constants. |
| |
| // C/C++ argument slots size. |
| static const int kCArgSlotCount = 4; |
| static const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize; |
| // JS argument slots size. |
| static const int kJSArgsSlotsSize = 0 * Instruction::kInstrSize; |
| // Assembly builtins argument slots size. |
| static const int kBArgsSlotsSize = 0 * Instruction::kInstrSize; |
| |
| static const int kBranchReturnOffset = 2 * Instruction::kInstrSize; |
| |
| static const int kDoubleAlignmentBits = 3; |
| static const int kDoubleAlignment = (1 << kDoubleAlignmentBits); |
| static const int kDoubleAlignmentMask = kDoubleAlignment - 1; |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // #ifndef V8_MIPS_CONSTANTS_H_ |