| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| // Note on Mips implementation: |
| // |
| // The result_register() for mips is the 'v0' register, which is defined |
| // by the ABI to contain function return values. However, the first |
| // parameter to a function is defined to be 'a0'. So there are many |
| // places where we have to move a previous result in v0 to a0 for the |
| // next call: mov(a0, v0). This is not needed on the other architectures. |
| |
| #include "code-stubs.h" |
| #include "codegen.h" |
| #include "compiler.h" |
| #include "debug.h" |
| #include "full-codegen.h" |
| #include "parser.h" |
| #include "scopes.h" |
| #include "stub-cache.h" |
| |
| #include "mips/code-stubs-mips.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| |
| static unsigned GetPropertyId(Property* property) { |
| return property->id(); |
| } |
| |
| |
| // A patch site is a location in the code which it is possible to patch. This |
| // class has a number of methods to emit the code which is patchable and the |
| // method EmitPatchInfo to record a marker back to the patchable code. This |
| // marker is a andi at, rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 |
| // bit immediate value is used) is the delta from the pc to the first |
| // instruction of the patchable code. |
| class JumpPatchSite BASE_EMBEDDED { |
| public: |
| explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { |
| #ifdef DEBUG |
| info_emitted_ = false; |
| #endif |
| } |
| |
| ~JumpPatchSite() { |
| ASSERT(patch_site_.is_bound() == info_emitted_); |
| } |
| |
| // When initially emitting this ensure that a jump is always generated to skip |
| // the inlined smi code. |
| void EmitJumpIfNotSmi(Register reg, Label* target) { |
| ASSERT(!patch_site_.is_bound() && !info_emitted_); |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| __ bind(&patch_site_); |
| __ andi(at, reg, 0); |
| // Always taken before patched. |
| __ Branch(target, eq, at, Operand(zero_reg)); |
| } |
| |
| // When initially emitting this ensure that a jump is never generated to skip |
| // the inlined smi code. |
| void EmitJumpIfSmi(Register reg, Label* target) { |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| ASSERT(!patch_site_.is_bound() && !info_emitted_); |
| __ bind(&patch_site_); |
| __ andi(at, reg, 0); |
| // Never taken before patched. |
| __ Branch(target, ne, at, Operand(zero_reg)); |
| } |
| |
| void EmitPatchInfo() { |
| if (patch_site_.is_bound()) { |
| int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); |
| Register reg = Register::from_code(delta_to_patch_site / kImm16Mask); |
| __ andi(at, reg, delta_to_patch_site % kImm16Mask); |
| #ifdef DEBUG |
| info_emitted_ = true; |
| #endif |
| } else { |
| __ nop(); // Signals no inlined code. |
| } |
| } |
| |
| private: |
| MacroAssembler* masm_; |
| Label patch_site_; |
| #ifdef DEBUG |
| bool info_emitted_; |
| #endif |
| }; |
| |
| |
| // Generate code for a JS function. On entry to the function the receiver |
| // and arguments have been pushed on the stack left to right. The actual |
| // argument count matches the formal parameter count expected by the |
| // function. |
| // |
| // The live registers are: |
| // o a1: the JS function object being called (ie, ourselves) |
| // o cp: our context |
| // o fp: our caller's frame pointer |
| // o sp: stack pointer |
| // o ra: return address |
| // |
| // The function builds a JS frame. Please see JavaScriptFrameConstants in |
| // frames-mips.h for its layout. |
| void FullCodeGenerator::Generate(CompilationInfo* info) { |
| ASSERT(info_ == NULL); |
| info_ = info; |
| scope_ = info->scope(); |
| SetFunctionPosition(function()); |
| Comment cmnt(masm_, "[ function compiled by full code generator"); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| __ stop("stop-at"); |
| } |
| #endif |
| |
| // Strict mode functions and builtins need to replace the receiver |
| // with undefined when called as functions (without an explicit |
| // receiver object). t1 is zero for method calls and non-zero for |
| // function calls. |
| if (info->is_strict_mode() || info->is_native()) { |
| Label ok; |
| __ Branch(&ok, eq, t1, Operand(zero_reg)); |
| int receiver_offset = info->scope()->num_parameters() * kPointerSize; |
| __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); |
| __ sw(a2, MemOperand(sp, receiver_offset)); |
| __ bind(&ok); |
| } |
| |
| int locals_count = info->scope()->num_stack_slots(); |
| |
| __ Push(ra, fp, cp, a1); |
| if (locals_count > 0) { |
| // Load undefined value here, so the value is ready for the loop |
| // below. |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| } |
| // Adjust fp to point to caller's fp. |
| __ Addu(fp, sp, Operand(2 * kPointerSize)); |
| |
| { Comment cmnt(masm_, "[ Allocate locals"); |
| for (int i = 0; i < locals_count; i++) { |
| __ push(at); |
| } |
| } |
| |
| bool function_in_register = true; |
| |
| // Possibly allocate a local context. |
| int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| if (heap_slots > 0) { |
| Comment cmnt(masm_, "[ Allocate local context"); |
| // Argument to NewContext is the function, which is in a1. |
| __ push(a1); |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| __ CallStub(&stub); |
| } else { |
| __ CallRuntime(Runtime::kNewFunctionContext, 1); |
| } |
| function_in_register = false; |
| // Context is returned in both v0 and cp. It replaces the context |
| // passed to us. It's saved in the stack and kept live in cp. |
| __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // Copy any necessary parameters into the context. |
| int num_parameters = info->scope()->num_parameters(); |
| for (int i = 0; i < num_parameters; i++) { |
| Variable* var = scope()->parameter(i); |
| if (var->IsContextSlot()) { |
| int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
| (num_parameters - 1 - i) * kPointerSize; |
| // Load parameter from stack. |
| __ lw(a0, MemOperand(fp, parameter_offset)); |
| // Store it in the context. |
| __ li(a1, Operand(Context::SlotOffset(var->index()))); |
| __ addu(a2, cp, a1); |
| __ sw(a0, MemOperand(a2, 0)); |
| // Update the write barrier. This clobbers all involved |
| // registers, so we have to use two more registers to avoid |
| // clobbering cp. |
| __ mov(a2, cp); |
| __ RecordWrite(a2, a1, a3); |
| } |
| } |
| } |
| |
| Variable* arguments = scope()->arguments(); |
| if (arguments != NULL) { |
| // Function uses arguments object. |
| Comment cmnt(masm_, "[ Allocate arguments object"); |
| if (!function_in_register) { |
| // Load this again, if it's used by the local context below. |
| __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| } else { |
| __ mov(a3, a1); |
| } |
| // Receiver is just before the parameters on the caller's stack. |
| int num_parameters = info->scope()->num_parameters(); |
| int offset = num_parameters * kPointerSize; |
| __ Addu(a2, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + offset)); |
| __ li(a1, Operand(Smi::FromInt(num_parameters))); |
| __ Push(a3, a2, a1); |
| |
| // Arguments to ArgumentsAccessStub: |
| // function, receiver address, parameter count. |
| // The stub will rewrite receiever and parameter count if the previous |
| // stack frame was an arguments adapter frame. |
| ArgumentsAccessStub::Type type; |
| if (is_strict_mode()) { |
| type = ArgumentsAccessStub::NEW_STRICT; |
| } else if (function()->has_duplicate_parameters()) { |
| type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW; |
| } else { |
| type = ArgumentsAccessStub::NEW_NON_STRICT_FAST; |
| } |
| ArgumentsAccessStub stub(type); |
| __ CallStub(&stub); |
| |
| SetVar(arguments, v0, a1, a2); |
| } |
| |
| if (FLAG_trace) { |
| __ CallRuntime(Runtime::kTraceEnter, 0); |
| } |
| |
| // Visit the declarations and body unless there is an illegal |
| // redeclaration. |
| if (scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ Declarations"); |
| scope()->VisitIllegalRedeclaration(this); |
| |
| } else { |
| PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS); |
| { Comment cmnt(masm_, "[ Declarations"); |
| // For named function expressions, declare the function name as a |
| // constant. |
| if (scope()->is_function_scope() && scope()->function() != NULL) { |
| int ignored = 0; |
| EmitDeclaration(scope()->function(), Variable::CONST, NULL, &ignored); |
| } |
| VisitDeclarations(scope()->declarations()); |
| } |
| |
| { Comment cmnt(masm_, "[ Stack check"); |
| PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS); |
| Label ok; |
| __ LoadRoot(t0, Heap::kStackLimitRootIndex); |
| __ Branch(&ok, hs, sp, Operand(t0)); |
| StackCheckStub stub; |
| __ CallStub(&stub); |
| __ bind(&ok); |
| } |
| |
| { Comment cmnt(masm_, "[ Body"); |
| ASSERT(loop_depth() == 0); |
| VisitStatements(function()->body()); |
| ASSERT(loop_depth() == 0); |
| } |
| } |
| |
| // Always emit a 'return undefined' in case control fell off the end of |
| // the body. |
| { Comment cmnt(masm_, "[ return <undefined>;"); |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| } |
| EmitReturnSequence(); |
| } |
| |
| |
| void FullCodeGenerator::ClearAccumulator() { |
| ASSERT(Smi::FromInt(0) == 0); |
| __ mov(v0, zero_reg); |
| } |
| |
| |
| void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt) { |
| Comment cmnt(masm_, "[ Stack check"); |
| Label ok; |
| __ LoadRoot(t0, Heap::kStackLimitRootIndex); |
| __ Branch(&ok, hs, sp, Operand(t0)); |
| StackCheckStub stub; |
| // Record a mapping of this PC offset to the OSR id. This is used to find |
| // the AST id from the unoptimized code in order to use it as a key into |
| // the deoptimization input data found in the optimized code. |
| RecordStackCheck(stmt->OsrEntryId()); |
| |
| __ CallStub(&stub); |
| __ bind(&ok); |
| PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); |
| // Record a mapping of the OSR id to this PC. This is used if the OSR |
| // entry becomes the target of a bailout. We don't expect it to be, but |
| // we want it to work if it is. |
| PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); |
| } |
| |
| |
| void FullCodeGenerator::EmitReturnSequence() { |
| Comment cmnt(masm_, "[ Return sequence"); |
| if (return_label_.is_bound()) { |
| __ Branch(&return_label_); |
| } else { |
| __ bind(&return_label_); |
| if (FLAG_trace) { |
| // Push the return value on the stack as the parameter. |
| // Runtime::TraceExit returns its parameter in v0. |
| __ push(v0); |
| __ CallRuntime(Runtime::kTraceExit, 1); |
| } |
| |
| #ifdef DEBUG |
| // Add a label for checking the size of the code used for returning. |
| Label check_exit_codesize; |
| masm_->bind(&check_exit_codesize); |
| #endif |
| // Make sure that the constant pool is not emitted inside of the return |
| // sequence. |
| { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| // Here we use masm_-> instead of the __ macro to avoid the code coverage |
| // tool from instrumenting as we rely on the code size here. |
| int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize; |
| CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); |
| __ RecordJSReturn(); |
| masm_->mov(sp, fp); |
| masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit())); |
| masm_->Addu(sp, sp, Operand(sp_delta)); |
| masm_->Jump(ra); |
| } |
| |
| #ifdef DEBUG |
| // Check that the size of the code used for returning is large enough |
| // for the debugger's requirements. |
| ASSERT(Assembler::kJSReturnSequenceInstructions <= |
| masm_->InstructionsGeneratedSince(&check_exit_codesize)); |
| #endif |
| } |
| } |
| |
| |
| void FullCodeGenerator::EffectContext::Plug(Variable* var) const { |
| ASSERT(var->IsStackAllocated() || var->IsContextSlot()); |
| } |
| |
| |
| void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { |
| ASSERT(var->IsStackAllocated() || var->IsContextSlot()); |
| codegen()->GetVar(result_register(), var); |
| } |
| |
| |
| void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { |
| ASSERT(var->IsStackAllocated() || var->IsContextSlot()); |
| codegen()->GetVar(result_register(), var); |
| __ push(result_register()); |
| } |
| |
| |
| void FullCodeGenerator::TestContext::Plug(Variable* var) const { |
| // For simplicity we always test the accumulator register. |
| codegen()->GetVar(result_register(), var); |
| codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); |
| codegen()->DoTest(this); |
| } |
| |
| |
| void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { |
| } |
| |
| |
| void FullCodeGenerator::AccumulatorValueContext::Plug( |
| Heap::RootListIndex index) const { |
| __ LoadRoot(result_register(), index); |
| } |
| |
| |
| void FullCodeGenerator::StackValueContext::Plug( |
| Heap::RootListIndex index) const { |
| __ LoadRoot(result_register(), index); |
| __ push(result_register()); |
| } |
| |
| |
| void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { |
| codegen()->PrepareForBailoutBeforeSplit(TOS_REG, |
| true, |
| true_label_, |
| false_label_); |
| if (index == Heap::kUndefinedValueRootIndex || |
| index == Heap::kNullValueRootIndex || |
| index == Heap::kFalseValueRootIndex) { |
| if (false_label_ != fall_through_) __ Branch(false_label_); |
| } else if (index == Heap::kTrueValueRootIndex) { |
| if (true_label_ != fall_through_) __ Branch(true_label_); |
| } else { |
| __ LoadRoot(result_register(), index); |
| codegen()->DoTest(this); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { |
| } |
| |
| |
| void FullCodeGenerator::AccumulatorValueContext::Plug( |
| Handle<Object> lit) const { |
| __ li(result_register(), Operand(lit)); |
| } |
| |
| |
| void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { |
| // Immediates cannot be pushed directly. |
| __ li(result_register(), Operand(lit)); |
| __ push(result_register()); |
| } |
| |
| |
| void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { |
| codegen()->PrepareForBailoutBeforeSplit(TOS_REG, |
| true, |
| true_label_, |
| false_label_); |
| ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals. |
| if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { |
| if (false_label_ != fall_through_) __ Branch(false_label_); |
| } else if (lit->IsTrue() || lit->IsJSObject()) { |
| if (true_label_ != fall_through_) __ Branch(true_label_); |
| } else if (lit->IsString()) { |
| if (String::cast(*lit)->length() == 0) { |
| if (false_label_ != fall_through_) __ Branch(false_label_); |
| } else { |
| if (true_label_ != fall_through_) __ Branch(true_label_); |
| } |
| } else if (lit->IsSmi()) { |
| if (Smi::cast(*lit)->value() == 0) { |
| if (false_label_ != fall_through_) __ Branch(false_label_); |
| } else { |
| if (true_label_ != fall_through_) __ Branch(true_label_); |
| } |
| } else { |
| // For simplicity we always test the accumulator register. |
| __ li(result_register(), Operand(lit)); |
| codegen()->DoTest(this); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EffectContext::DropAndPlug(int count, |
| Register reg) const { |
| ASSERT(count > 0); |
| __ Drop(count); |
| } |
| |
| |
| void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( |
| int count, |
| Register reg) const { |
| ASSERT(count > 0); |
| __ Drop(count); |
| __ Move(result_register(), reg); |
| } |
| |
| |
| void FullCodeGenerator::StackValueContext::DropAndPlug(int count, |
| Register reg) const { |
| ASSERT(count > 0); |
| if (count > 1) __ Drop(count - 1); |
| __ sw(reg, MemOperand(sp, 0)); |
| } |
| |
| |
| void FullCodeGenerator::TestContext::DropAndPlug(int count, |
| Register reg) const { |
| ASSERT(count > 0); |
| // For simplicity we always test the accumulator register. |
| __ Drop(count); |
| __ Move(result_register(), reg); |
| codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); |
| codegen()->DoTest(this); |
| } |
| |
| |
| void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, |
| Label* materialize_false) const { |
| ASSERT(materialize_true == materialize_false); |
| __ bind(materialize_true); |
| } |
| |
| |
| void FullCodeGenerator::AccumulatorValueContext::Plug( |
| Label* materialize_true, |
| Label* materialize_false) const { |
| Label done; |
| __ bind(materialize_true); |
| __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); |
| __ Branch(&done); |
| __ bind(materialize_false); |
| __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); |
| __ bind(&done); |
| } |
| |
| |
| void FullCodeGenerator::StackValueContext::Plug( |
| Label* materialize_true, |
| Label* materialize_false) const { |
| Label done; |
| __ bind(materialize_true); |
| __ LoadRoot(at, Heap::kTrueValueRootIndex); |
| __ push(at); |
| __ Branch(&done); |
| __ bind(materialize_false); |
| __ LoadRoot(at, Heap::kFalseValueRootIndex); |
| __ push(at); |
| __ bind(&done); |
| } |
| |
| |
| void FullCodeGenerator::TestContext::Plug(Label* materialize_true, |
| Label* materialize_false) const { |
| ASSERT(materialize_true == true_label_); |
| ASSERT(materialize_false == false_label_); |
| } |
| |
| |
| void FullCodeGenerator::EffectContext::Plug(bool flag) const { |
| } |
| |
| |
| void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { |
| Heap::RootListIndex value_root_index = |
| flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; |
| __ LoadRoot(result_register(), value_root_index); |
| } |
| |
| |
| void FullCodeGenerator::StackValueContext::Plug(bool flag) const { |
| Heap::RootListIndex value_root_index = |
| flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; |
| __ LoadRoot(at, value_root_index); |
| __ push(at); |
| } |
| |
| |
| void FullCodeGenerator::TestContext::Plug(bool flag) const { |
| codegen()->PrepareForBailoutBeforeSplit(TOS_REG, |
| true, |
| true_label_, |
| false_label_); |
| if (flag) { |
| if (true_label_ != fall_through_) __ Branch(true_label_); |
| } else { |
| if (false_label_ != fall_through_) __ Branch(false_label_); |
| } |
| } |
| |
| |
| void FullCodeGenerator::DoTest(Expression* condition, |
| Label* if_true, |
| Label* if_false, |
| Label* fall_through) { |
| if (CpuFeatures::IsSupported(FPU)) { |
| ToBooleanStub stub(result_register()); |
| __ CallStub(&stub); |
| __ mov(at, zero_reg); |
| } else { |
| // Call the runtime to find the boolean value of the source and then |
| // translate it into control flow to the pair of labels. |
| __ push(result_register()); |
| __ CallRuntime(Runtime::kToBool, 1); |
| __ LoadRoot(at, Heap::kFalseValueRootIndex); |
| } |
| Split(ne, v0, Operand(at), if_true, if_false, fall_through); |
| } |
| |
| |
| void FullCodeGenerator::Split(Condition cc, |
| Register lhs, |
| const Operand& rhs, |
| Label* if_true, |
| Label* if_false, |
| Label* fall_through) { |
| if (if_false == fall_through) { |
| __ Branch(if_true, cc, lhs, rhs); |
| } else if (if_true == fall_through) { |
| __ Branch(if_false, NegateCondition(cc), lhs, rhs); |
| } else { |
| __ Branch(if_true, cc, lhs, rhs); |
| __ Branch(if_false); |
| } |
| } |
| |
| |
| MemOperand FullCodeGenerator::StackOperand(Variable* var) { |
| ASSERT(var->IsStackAllocated()); |
| // Offset is negative because higher indexes are at lower addresses. |
| int offset = -var->index() * kPointerSize; |
| // Adjust by a (parameter or local) base offset. |
| if (var->IsParameter()) { |
| offset += (info_->scope()->num_parameters() + 1) * kPointerSize; |
| } else { |
| offset += JavaScriptFrameConstants::kLocal0Offset; |
| } |
| return MemOperand(fp, offset); |
| } |
| |
| |
| MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { |
| ASSERT(var->IsContextSlot() || var->IsStackAllocated()); |
| if (var->IsContextSlot()) { |
| int context_chain_length = scope()->ContextChainLength(var->scope()); |
| __ LoadContext(scratch, context_chain_length); |
| return ContextOperand(scratch, var->index()); |
| } else { |
| return StackOperand(var); |
| } |
| } |
| |
| |
| void FullCodeGenerator::GetVar(Register dest, Variable* var) { |
| // Use destination as scratch. |
| MemOperand location = VarOperand(var, dest); |
| __ lw(dest, location); |
| } |
| |
| |
| void FullCodeGenerator::SetVar(Variable* var, |
| Register src, |
| Register scratch0, |
| Register scratch1) { |
| ASSERT(var->IsContextSlot() || var->IsStackAllocated()); |
| ASSERT(!scratch0.is(src)); |
| ASSERT(!scratch0.is(scratch1)); |
| ASSERT(!scratch1.is(src)); |
| MemOperand location = VarOperand(var, scratch0); |
| __ sw(src, location); |
| // Emit the write barrier code if the location is in the heap. |
| if (var->IsContextSlot()) { |
| __ RecordWrite(scratch0, |
| Operand(Context::SlotOffset(var->index())), |
| scratch1, |
| src); |
| } |
| } |
| |
| |
| void FullCodeGenerator::PrepareForBailoutBeforeSplit(State state, |
| bool should_normalize, |
| Label* if_true, |
| Label* if_false) { |
| // Only prepare for bailouts before splits if we're in a test |
| // context. Otherwise, we let the Visit function deal with the |
| // preparation to avoid preparing with the same AST id twice. |
| if (!context()->IsTest() || !info_->IsOptimizable()) return; |
| |
| Label skip; |
| if (should_normalize) __ Branch(&skip); |
| |
| ForwardBailoutStack* current = forward_bailout_stack_; |
| while (current != NULL) { |
| PrepareForBailout(current->expr(), state); |
| current = current->parent(); |
| } |
| |
| if (should_normalize) { |
| __ LoadRoot(t0, Heap::kTrueValueRootIndex); |
| Split(eq, a0, Operand(t0), if_true, if_false, NULL); |
| __ bind(&skip); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy, |
| Variable::Mode mode, |
| FunctionLiteral* function, |
| int* global_count) { |
| // If it was not possible to allocate the variable at compile time, we |
| // need to "declare" it at runtime to make sure it actually exists in the |
| // local context. |
| Variable* variable = proxy->var(); |
| switch (variable->location()) { |
| case Variable::UNALLOCATED: |
| ++(*global_count); |
| break; |
| |
| case Variable::PARAMETER: |
| case Variable::LOCAL: |
| if (function != NULL) { |
| Comment cmnt(masm_, "[ Declaration"); |
| VisitForAccumulatorValue(function); |
| __ sw(result_register(), StackOperand(variable)); |
| } else if (mode == Variable::CONST || mode == Variable::LET) { |
| Comment cmnt(masm_, "[ Declaration"); |
| __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| __ sw(t0, StackOperand(variable)); |
| } |
| break; |
| |
| case Variable::CONTEXT: |
| // The variable in the decl always resides in the current function |
| // context. |
| ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); |
| if (FLAG_debug_code) { |
| // Check that we're not inside a with or catch context. |
| __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset)); |
| __ LoadRoot(t0, Heap::kWithContextMapRootIndex); |
| __ Check(ne, "Declaration in with context.", |
| a1, Operand(t0)); |
| __ LoadRoot(t0, Heap::kCatchContextMapRootIndex); |
| __ Check(ne, "Declaration in catch context.", |
| a1, Operand(t0)); |
| } |
| if (function != NULL) { |
| Comment cmnt(masm_, "[ Declaration"); |
| VisitForAccumulatorValue(function); |
| __ sw(result_register(), ContextOperand(cp, variable->index())); |
| int offset = Context::SlotOffset(variable->index()); |
| // We know that we have written a function, which is not a smi. |
| __ mov(a1, cp); |
| __ RecordWrite(a1, Operand(offset), a2, result_register()); |
| PrepareForBailoutForId(proxy->id(), NO_REGISTERS); |
| } else if (mode == Variable::CONST || mode == Variable::LET) { |
| Comment cmnt(masm_, "[ Declaration"); |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ sw(at, ContextOperand(cp, variable->index())); |
| // No write barrier since the_hole_value is in old space. |
| PrepareForBailoutForId(proxy->id(), NO_REGISTERS); |
| } |
| break; |
| |
| case Variable::LOOKUP: { |
| Comment cmnt(masm_, "[ Declaration"); |
| __ li(a2, Operand(variable->name())); |
| // Declaration nodes are always introduced in one of three modes. |
| ASSERT(mode == Variable::VAR || |
| mode == Variable::CONST || |
| mode == Variable::LET); |
| PropertyAttributes attr = (mode == Variable::CONST) ? READ_ONLY : NONE; |
| __ li(a1, Operand(Smi::FromInt(attr))); |
| // Push initial value, if any. |
| // Note: For variables we must not push an initial value (such as |
| // 'undefined') because we may have a (legal) redeclaration and we |
| // must not destroy the current value. |
| if (function != NULL) { |
| __ Push(cp, a2, a1); |
| // Push initial value for function declaration. |
| VisitForStackValue(function); |
| } else if (mode == Variable::CONST || mode == Variable::LET) { |
| __ LoadRoot(a0, Heap::kTheHoleValueRootIndex); |
| __ Push(cp, a2, a1, a0); |
| } else { |
| ASSERT(Smi::FromInt(0) == 0); |
| __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value. |
| __ Push(cp, a2, a1, a0); |
| } |
| __ CallRuntime(Runtime::kDeclareContextSlot, 4); |
| break; |
| } |
| } |
| } |
| |
| |
| void FullCodeGenerator::VisitDeclaration(Declaration* decl) { } |
| |
| |
| void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
| // Call the runtime to declare the globals. |
| // The context is the first argument. |
| __ li(a1, Operand(pairs)); |
| __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); |
| __ Push(cp, a1, a0); |
| __ CallRuntime(Runtime::kDeclareGlobals, 3); |
| // Return value is ignored. |
| } |
| |
| |
| void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { |
| Comment cmnt(masm_, "[ SwitchStatement"); |
| Breakable nested_statement(this, stmt); |
| SetStatementPosition(stmt); |
| |
| // Keep the switch value on the stack until a case matches. |
| VisitForStackValue(stmt->tag()); |
| PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); |
| |
| ZoneList<CaseClause*>* clauses = stmt->cases(); |
| CaseClause* default_clause = NULL; // Can occur anywhere in the list. |
| |
| Label next_test; // Recycled for each test. |
| // Compile all the tests with branches to their bodies. |
| for (int i = 0; i < clauses->length(); i++) { |
| CaseClause* clause = clauses->at(i); |
| clause->body_target()->Unuse(); |
| |
| // The default is not a test, but remember it as final fall through. |
| if (clause->is_default()) { |
| default_clause = clause; |
| continue; |
| } |
| |
| Comment cmnt(masm_, "[ Case comparison"); |
| __ bind(&next_test); |
| next_test.Unuse(); |
| |
| // Compile the label expression. |
| VisitForAccumulatorValue(clause->label()); |
| __ mov(a0, result_register()); // CompareStub requires args in a0, a1. |
| |
| // Perform the comparison as if via '==='. |
| __ lw(a1, MemOperand(sp, 0)); // Switch value. |
| bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); |
| JumpPatchSite patch_site(masm_); |
| if (inline_smi_code) { |
| Label slow_case; |
| __ or_(a2, a1, a0); |
| patch_site.EmitJumpIfNotSmi(a2, &slow_case); |
| |
| __ Branch(&next_test, ne, a1, Operand(a0)); |
| __ Drop(1); // Switch value is no longer needed. |
| __ Branch(clause->body_target()); |
| |
| __ bind(&slow_case); |
| } |
| |
| // Record position before stub call for type feedback. |
| SetSourcePosition(clause->position()); |
| Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT); |
| __ Call(ic, RelocInfo::CODE_TARGET, clause->CompareId()); |
| patch_site.EmitPatchInfo(); |
| |
| __ Branch(&next_test, ne, v0, Operand(zero_reg)); |
| __ Drop(1); // Switch value is no longer needed. |
| __ Branch(clause->body_target()); |
| } |
| |
| // Discard the test value and jump to the default if present, otherwise to |
| // the end of the statement. |
| __ bind(&next_test); |
| __ Drop(1); // Switch value is no longer needed. |
| if (default_clause == NULL) { |
| __ Branch(nested_statement.break_label()); |
| } else { |
| __ Branch(default_clause->body_target()); |
| } |
| |
| // Compile all the case bodies. |
| for (int i = 0; i < clauses->length(); i++) { |
| Comment cmnt(masm_, "[ Case body"); |
| CaseClause* clause = clauses->at(i); |
| __ bind(clause->body_target()); |
| PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); |
| VisitStatements(clause->statements()); |
| } |
| |
| __ bind(nested_statement.break_label()); |
| PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); |
| } |
| |
| |
| void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { |
| Comment cmnt(masm_, "[ ForInStatement"); |
| SetStatementPosition(stmt); |
| |
| Label loop, exit; |
| ForIn loop_statement(this, stmt); |
| increment_loop_depth(); |
| |
| // Get the object to enumerate over. Both SpiderMonkey and JSC |
| // ignore null and undefined in contrast to the specification; see |
| // ECMA-262 section 12.6.4. |
| VisitForAccumulatorValue(stmt->enumerable()); |
| __ mov(a0, result_register()); // Result as param to InvokeBuiltin below. |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(&exit, eq, a0, Operand(at)); |
| Register null_value = t1; |
| __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
| __ Branch(&exit, eq, a0, Operand(null_value)); |
| |
| // Convert the object to a JS object. |
| Label convert, done_convert; |
| __ JumpIfSmi(a0, &convert); |
| __ GetObjectType(a0, a1, a1); |
| __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| __ bind(&convert); |
| __ push(a0); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ mov(a0, v0); |
| __ bind(&done_convert); |
| __ push(a0); |
| |
| // Check cache validity in generated code. This is a fast case for |
| // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
| // guarantee cache validity, call the runtime system to check cache |
| // validity or get the property names in a fixed array. |
| Label next, call_runtime; |
| // Preload a couple of values used in the loop. |
| Register empty_fixed_array_value = t2; |
| __ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); |
| Register empty_descriptor_array_value = t3; |
| __ LoadRoot(empty_descriptor_array_value, |
| Heap::kEmptyDescriptorArrayRootIndex); |
| __ mov(a1, a0); |
| __ bind(&next); |
| |
| // Check that there are no elements. Register a1 contains the |
| // current JS object we've reached through the prototype chain. |
| __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset)); |
| __ Branch(&call_runtime, ne, a2, Operand(empty_fixed_array_value)); |
| |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in a2 for the subsequent |
| // prototype load. |
| __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset)); |
| __ JumpIfSmi(a3, &call_runtime); |
| |
| // Check that there is an enum cache in the non-empty instance |
| // descriptors (a3). This is the case if the next enumeration |
| // index field does not contain a smi. |
| __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset)); |
| __ JumpIfSmi(a3, &call_runtime); |
| |
| // For all objects but the receiver, check that the cache is empty. |
| Label check_prototype; |
| __ Branch(&check_prototype, eq, a1, Operand(a0)); |
| __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| __ Branch(&call_runtime, ne, a3, Operand(empty_fixed_array_value)); |
| |
| // Load the prototype from the map and loop if non-null. |
| __ bind(&check_prototype); |
| __ lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset)); |
| __ Branch(&next, ne, a1, Operand(null_value)); |
| |
| // The enum cache is valid. Load the map of the object being |
| // iterated over and use the cache for the iteration. |
| Label use_cache; |
| __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ Branch(&use_cache); |
| |
| // Get the set of properties to enumerate. |
| __ bind(&call_runtime); |
| __ push(a0); // Duplicate the enumerable object on the stack. |
| __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
| |
| // If we got a map from the runtime call, we can do a fast |
| // modification check. Otherwise, we got a fixed array, and we have |
| // to do a slow check. |
| Label fixed_array; |
| __ mov(a2, v0); |
| __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kMetaMapRootIndex); |
| __ Branch(&fixed_array, ne, a1, Operand(at)); |
| |
| // We got a map in register v0. Get the enumeration cache from it. |
| __ bind(&use_cache); |
| __ LoadInstanceDescriptors(v0, a1); |
| __ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset)); |
| __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| |
| // Setup the four remaining stack slots. |
| __ push(v0); // Map. |
| __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
| __ li(a0, Operand(Smi::FromInt(0))); |
| // Push enumeration cache, enumeration cache length (as smi) and zero. |
| __ Push(a2, a1, a0); |
| __ jmp(&loop); |
| |
| // We got a fixed array in register v0. Iterate through that. |
| __ bind(&fixed_array); |
| __ li(a1, Operand(Smi::FromInt(0))); // Map (0) - force slow check. |
| __ Push(a1, v0); |
| __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset)); |
| __ li(a0, Operand(Smi::FromInt(0))); |
| __ Push(a1, a0); // Fixed array length (as smi) and initial index. |
| |
| // Generate code for doing the condition check. |
| __ bind(&loop); |
| // Load the current count to a0, load the length to a1. |
| __ lw(a0, MemOperand(sp, 0 * kPointerSize)); |
| __ lw(a1, MemOperand(sp, 1 * kPointerSize)); |
| __ Branch(loop_statement.break_label(), hs, a0, Operand(a1)); |
| |
| // Get the current entry of the array into register a3. |
| __ lw(a2, MemOperand(sp, 2 * kPointerSize)); |
| __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); |
| __ addu(t0, a2, t0); // Array base + scaled (smi) index. |
| __ lw(a3, MemOperand(t0)); // Current entry. |
| |
| // Get the expected map from the stack or a zero map in the |
| // permanent slow case into register a2. |
| __ lw(a2, MemOperand(sp, 3 * kPointerSize)); |
| |
| // Check if the expected map still matches that of the enumerable. |
| // If not, we have to filter the key. |
| Label update_each; |
| __ lw(a1, MemOperand(sp, 4 * kPointerSize)); |
| __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ Branch(&update_each, eq, t0, Operand(a2)); |
| |
| // Convert the entry to a string or (smi) 0 if it isn't a property |
| // any more. If the property has been removed while iterating, we |
| // just skip it. |
| __ push(a1); // Enumerable. |
| __ push(a3); // Current entry. |
| __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); |
| __ mov(a3, result_register()); |
| __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg)); |
| |
| // Update the 'each' property or variable from the possibly filtered |
| // entry in register a3. |
| __ bind(&update_each); |
| __ mov(result_register(), a3); |
| // Perform the assignment as if via '='. |
| { EffectContext context(this); |
| EmitAssignment(stmt->each(), stmt->AssignmentId()); |
| } |
| |
| // Generate code for the body of the loop. |
| Visit(stmt->body()); |
| |
| // Generate code for the going to the next element by incrementing |
| // the index (smi) stored on top of the stack. |
| __ bind(loop_statement.continue_label()); |
| __ pop(a0); |
| __ Addu(a0, a0, Operand(Smi::FromInt(1))); |
| __ push(a0); |
| |
| EmitStackCheck(stmt); |
| __ Branch(&loop); |
| |
| // Remove the pointers stored on the stack. |
| __ bind(loop_statement.break_label()); |
| __ Drop(5); |
| |
| // Exit and decrement the loop depth. |
| __ bind(&exit); |
| decrement_loop_depth(); |
| } |
| |
| |
| void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, |
| bool pretenure) { |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. If |
| // we're running with the --always-opt or the --prepare-always-opt |
| // flag, we need to use the runtime function so that the new function |
| // we are creating here gets a chance to have its code optimized and |
| // doesn't just get a copy of the existing unoptimized code. |
| if (!FLAG_always_opt && |
| !FLAG_prepare_always_opt && |
| !pretenure && |
| scope()->is_function_scope() && |
| info->num_literals() == 0) { |
| FastNewClosureStub stub(info->strict_mode() ? kStrictMode : kNonStrictMode); |
| __ li(a0, Operand(info)); |
| __ push(a0); |
| __ CallStub(&stub); |
| } else { |
| __ li(a0, Operand(info)); |
| __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex |
| : Heap::kFalseValueRootIndex); |
| __ Push(cp, a0, a1); |
| __ CallRuntime(Runtime::kNewClosure, 3); |
| } |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { |
| Comment cmnt(masm_, "[ VariableProxy"); |
| EmitVariableLoad(expr); |
| } |
| |
| |
| void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var, |
| TypeofState typeof_state, |
| Label* slow) { |
| Register current = cp; |
| Register next = a1; |
| Register temp = a2; |
| |
| Scope* s = scope(); |
| while (s != NULL) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX)); |
| __ Branch(slow, ne, temp, Operand(zero_reg)); |
| } |
| // Load next context in chain. |
| __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX)); |
| // Walk the rest of the chain without clobbering cp. |
| current = next; |
| } |
| // If no outer scope calls eval, we do not need to check more |
| // context extensions. |
| if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
| s = s->outer_scope(); |
| } |
| |
| if (s->is_eval_scope()) { |
| Label loop, fast; |
| if (!current.is(next)) { |
| __ Move(next, current); |
| } |
| __ bind(&loop); |
| // Terminate at global context. |
| __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset)); |
| __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex); |
| __ Branch(&fast, eq, temp, Operand(t0)); |
| // Check that extension is NULL. |
| __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX)); |
| __ Branch(slow, ne, temp, Operand(zero_reg)); |
| // Load next context in chain. |
| __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX)); |
| __ Branch(&loop); |
| __ bind(&fast); |
| } |
| |
| __ lw(a0, GlobalObjectOperand()); |
| __ li(a2, Operand(var->name())); |
| RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) |
| ? RelocInfo::CODE_TARGET |
| : RelocInfo::CODE_TARGET_CONTEXT; |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| __ Call(ic, mode); |
| } |
| |
| |
| MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, |
| Label* slow) { |
| ASSERT(var->IsContextSlot()); |
| Register context = cp; |
| Register next = a3; |
| Register temp = t0; |
| |
| for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ Branch(slow, ne, temp, Operand(zero_reg)); |
| } |
| __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX)); |
| // Walk the rest of the chain without clobbering cp. |
| context = next; |
| } |
| } |
| // Check that last extension is NULL. |
| __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ Branch(slow, ne, temp, Operand(zero_reg)); |
| |
| // This function is used only for loads, not stores, so it's safe to |
| // return an cp-based operand (the write barrier cannot be allowed to |
| // destroy the cp register). |
| return ContextOperand(context, var->index()); |
| } |
| |
| |
| void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var, |
| TypeofState typeof_state, |
| Label* slow, |
| Label* done) { |
| // Generate fast-case code for variables that might be shadowed by |
| // eval-introduced variables. Eval is used a lot without |
| // introducing variables. In those cases, we do not want to |
| // perform a runtime call for all variables in the scope |
| // containing the eval. |
| if (var->mode() == Variable::DYNAMIC_GLOBAL) { |
| EmitLoadGlobalCheckExtensions(var, typeof_state, slow); |
| __ Branch(done); |
| } else if (var->mode() == Variable::DYNAMIC_LOCAL) { |
| Variable* local = var->local_if_not_shadowed(); |
| __ lw(v0, ContextSlotOperandCheckExtensions(local, slow)); |
| if (local->mode() == Variable::CONST) { |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ subu(at, v0, at); // Sub as compare: at == 0 on eq. |
| __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); |
| __ movz(v0, a0, at); // Conditional move: return Undefined if TheHole. |
| } |
| __ Branch(done); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { |
| // Record position before possible IC call. |
| SetSourcePosition(proxy->position()); |
| Variable* var = proxy->var(); |
| |
| // Three cases: global variables, lookup variables, and all other types of |
| // variables. |
| switch (var->location()) { |
| case Variable::UNALLOCATED: { |
| Comment cmnt(masm_, "Global variable"); |
| // Use inline caching. Variable name is passed in a2 and the global |
| // object (receiver) in a0. |
| __ lw(a0, GlobalObjectOperand()); |
| __ li(a2, Operand(var->name())); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); |
| context()->Plug(v0); |
| break; |
| } |
| |
| case Variable::PARAMETER: |
| case Variable::LOCAL: |
| case Variable::CONTEXT: { |
| Comment cmnt(masm_, var->IsContextSlot() |
| ? "Context variable" |
| : "Stack variable"); |
| if (var->mode() != Variable::LET && var->mode() != Variable::CONST) { |
| context()->Plug(var); |
| } else { |
| // Let and const need a read barrier. |
| GetVar(v0, var); |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ subu(at, v0, at); // Sub as compare: at == 0 on eq. |
| if (var->mode() == Variable::LET) { |
| Label done; |
| __ Branch(&done, ne, at, Operand(zero_reg)); |
| __ li(a0, Operand(var->name())); |
| __ push(a0); |
| __ CallRuntime(Runtime::kThrowReferenceError, 1); |
| __ bind(&done); |
| } else { |
| __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); |
| __ movz(v0, a0, at); // Conditional move: Undefined if TheHole. |
| } |
| context()->Plug(v0); |
| } |
| break; |
| } |
| |
| case Variable::LOOKUP: { |
| Label done, slow; |
| // Generate code for loading from variables potentially shadowed |
| // by eval-introduced variables. |
| EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done); |
| __ bind(&slow); |
| Comment cmnt(masm_, "Lookup variable"); |
| __ li(a1, Operand(var->name())); |
| __ Push(cp, a1); // Context and name. |
| __ CallRuntime(Runtime::kLoadContextSlot, 2); |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| } |
| } |
| |
| |
| void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { |
| Comment cmnt(masm_, "[ RegExpLiteral"); |
| Label materialized; |
| // Registers will be used as follows: |
| // t1 = materialized value (RegExp literal) |
| // t0 = JS function, literals array |
| // a3 = literal index |
| // a2 = RegExp pattern |
| // a1 = RegExp flags |
| // a0 = RegExp literal clone |
| __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset)); |
| int literal_offset = |
| FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; |
| __ lw(t1, FieldMemOperand(t0, literal_offset)); |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(&materialized, ne, t1, Operand(at)); |
| |
| // Create regexp literal using runtime function. |
| // Result will be in v0. |
| __ li(a3, Operand(Smi::FromInt(expr->literal_index()))); |
| __ li(a2, Operand(expr->pattern())); |
| __ li(a1, Operand(expr->flags())); |
| __ Push(t0, a3, a2, a1); |
| __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
| __ mov(t1, v0); |
| |
| __ bind(&materialized); |
| int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
| Label allocated, runtime_allocate; |
| __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); |
| __ jmp(&allocated); |
| |
| __ bind(&runtime_allocate); |
| __ push(t1); |
| __ li(a0, Operand(Smi::FromInt(size))); |
| __ push(a0); |
| __ CallRuntime(Runtime::kAllocateInNewSpace, 1); |
| __ pop(t1); |
| |
| __ bind(&allocated); |
| |
| // After this, registers are used as follows: |
| // v0: Newly allocated regexp. |
| // t1: Materialized regexp. |
| // a2: temp. |
| __ CopyFields(v0, t1, a2.bit(), size / kPointerSize); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { |
| Comment cmnt(masm_, "[ ObjectLiteral"); |
| __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); |
| __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); |
| __ li(a1, Operand(expr->constant_properties())); |
| int flags = expr->fast_elements() |
| ? ObjectLiteral::kFastElements |
| : ObjectLiteral::kNoFlags; |
| flags |= expr->has_function() |
| ? ObjectLiteral::kHasFunction |
| : ObjectLiteral::kNoFlags; |
| __ li(a0, Operand(Smi::FromInt(flags))); |
| __ Push(a3, a2, a1, a0); |
| if (expr->depth() > 1) { |
| __ CallRuntime(Runtime::kCreateObjectLiteral, 4); |
| } else { |
| __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); |
| } |
| |
| // If result_saved is true the result is on top of the stack. If |
| // result_saved is false the result is in v0. |
| bool result_saved = false; |
| |
| // Mark all computed expressions that are bound to a key that |
| // is shadowed by a later occurrence of the same key. For the |
| // marked expressions, no store code is emitted. |
| expr->CalculateEmitStore(); |
| |
| for (int i = 0; i < expr->properties()->length(); i++) { |
| ObjectLiteral::Property* property = expr->properties()->at(i); |
| if (property->IsCompileTimeValue()) continue; |
| |
| Literal* key = property->key(); |
| Expression* value = property->value(); |
| if (!result_saved) { |
| __ push(v0); // Save result on stack. |
| result_saved = true; |
| } |
| switch (property->kind()) { |
| case ObjectLiteral::Property::CONSTANT: |
| UNREACHABLE(); |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value())); |
| // Fall through. |
| case ObjectLiteral::Property::COMPUTED: |
| if (key->handle()->IsSymbol()) { |
| if (property->emit_store()) { |
| VisitForAccumulatorValue(value); |
| __ mov(a0, result_register()); |
| __ li(a2, Operand(key->handle())); |
| __ lw(a1, MemOperand(sp)); |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, key->id()); |
| PrepareForBailoutForId(key->id(), NO_REGISTERS); |
| } else { |
| VisitForEffect(value); |
| } |
| break; |
| } |
| // Fall through. |
| case ObjectLiteral::Property::PROTOTYPE: |
| // Duplicate receiver on stack. |
| __ lw(a0, MemOperand(sp)); |
| __ push(a0); |
| VisitForStackValue(key); |
| VisitForStackValue(value); |
| if (property->emit_store()) { |
| __ li(a0, Operand(Smi::FromInt(NONE))); // PropertyAttributes. |
| __ push(a0); |
| __ CallRuntime(Runtime::kSetProperty, 4); |
| } else { |
| __ Drop(3); |
| } |
| break; |
| case ObjectLiteral::Property::GETTER: |
| case ObjectLiteral::Property::SETTER: |
| // Duplicate receiver on stack. |
| __ lw(a0, MemOperand(sp)); |
| __ push(a0); |
| VisitForStackValue(key); |
| __ li(a1, Operand(property->kind() == ObjectLiteral::Property::SETTER ? |
| Smi::FromInt(1) : |
| Smi::FromInt(0))); |
| __ push(a1); |
| VisitForStackValue(value); |
| __ CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| } |
| |
| if (expr->has_function()) { |
| ASSERT(result_saved); |
| __ lw(a0, MemOperand(sp)); |
| __ push(a0); |
| __ CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| if (result_saved) { |
| context()->PlugTOS(); |
| } else { |
| context()->Plug(v0); |
| } |
| } |
| |
| |
| void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { |
| Comment cmnt(masm_, "[ ArrayLiteral"); |
| |
| ZoneList<Expression*>* subexprs = expr->values(); |
| int length = subexprs->length(); |
| __ mov(a0, result_register()); |
| __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); |
| __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); |
| __ li(a1, Operand(expr->constant_elements())); |
| __ Push(a3, a2, a1); |
| if (expr->constant_elements()->map() == |
| isolate()->heap()->fixed_cow_array_map()) { |
| FastCloneShallowArrayStub stub( |
| FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); |
| __ CallStub(&stub); |
| __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(), |
| 1, a1, a2); |
| } else if (expr->depth() > 1) { |
| __ CallRuntime(Runtime::kCreateArrayLiteral, 3); |
| } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
| __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
| } else { |
| FastCloneShallowArrayStub stub( |
| FastCloneShallowArrayStub::CLONE_ELEMENTS, length); |
| __ CallStub(&stub); |
| } |
| |
| bool result_saved = false; // Is the result saved to the stack? |
| |
| // Emit code to evaluate all the non-constant subexpressions and to store |
| // them into the newly cloned array. |
| for (int i = 0; i < length; i++) { |
| Expression* subexpr = subexprs->at(i); |
| // If the subexpression is a literal or a simple materialized literal it |
| // is already set in the cloned array. |
| if (subexpr->AsLiteral() != NULL || |
| CompileTimeValue::IsCompileTimeValue(subexpr)) { |
| continue; |
| } |
| |
| if (!result_saved) { |
| __ push(v0); |
| result_saved = true; |
| } |
| VisitForAccumulatorValue(subexpr); |
| |
| // Store the subexpression value in the array's elements. |
| __ lw(a1, MemOperand(sp)); // Copy of array literal. |
| __ lw(a1, FieldMemOperand(a1, JSObject::kElementsOffset)); |
| int offset = FixedArray::kHeaderSize + (i * kPointerSize); |
| __ sw(result_register(), FieldMemOperand(a1, offset)); |
| |
| // Update the write barrier for the array store with v0 as the scratch |
| // register. |
| __ RecordWrite(a1, Operand(offset), a2, result_register()); |
| |
| PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); |
| } |
| |
| if (result_saved) { |
| context()->PlugTOS(); |
| } else { |
| context()->Plug(v0); |
| } |
| } |
| |
| |
| void FullCodeGenerator::VisitAssignment(Assignment* expr) { |
| Comment cmnt(masm_, "[ Assignment"); |
| // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' |
| // on the left-hand side. |
| if (!expr->target()->IsValidLeftHandSide()) { |
| VisitForEffect(expr->target()); |
| return; |
| } |
| |
| // Left-hand side can only be a property, a global or a (parameter or local) |
| // slot. |
| enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; |
| LhsKind assign_type = VARIABLE; |
| Property* property = expr->target()->AsProperty(); |
| if (property != NULL) { |
| assign_type = (property->key()->IsPropertyName()) |
| ? NAMED_PROPERTY |
| : KEYED_PROPERTY; |
| } |
| |
| // Evaluate LHS expression. |
| switch (assign_type) { |
| case VARIABLE: |
| // Nothing to do here. |
| break; |
| case NAMED_PROPERTY: |
| if (expr->is_compound()) { |
| // We need the receiver both on the stack and in the accumulator. |
| VisitForAccumulatorValue(property->obj()); |
| __ push(result_register()); |
| } else { |
| VisitForStackValue(property->obj()); |
| } |
| break; |
| case KEYED_PROPERTY: |
| // We need the key and receiver on both the stack and in v0 and a1. |
| if (expr->is_compound()) { |
| VisitForStackValue(property->obj()); |
| VisitForAccumulatorValue(property->key()); |
| __ lw(a1, MemOperand(sp, 0)); |
| __ push(v0); |
| } else { |
| VisitForStackValue(property->obj()); |
| VisitForStackValue(property->key()); |
| } |
| break; |
| } |
| |
| // For compound assignments we need another deoptimization point after the |
| // variable/property load. |
| if (expr->is_compound()) { |
| { AccumulatorValueContext context(this); |
| switch (assign_type) { |
| case VARIABLE: |
| EmitVariableLoad(expr->target()->AsVariableProxy()); |
| PrepareForBailout(expr->target(), TOS_REG); |
| break; |
| case NAMED_PROPERTY: |
| EmitNamedPropertyLoad(property); |
| PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); |
| break; |
| case KEYED_PROPERTY: |
| EmitKeyedPropertyLoad(property); |
| PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); |
| break; |
| } |
| } |
| |
| Token::Value op = expr->binary_op(); |
| __ push(v0); // Left operand goes on the stack. |
| VisitForAccumulatorValue(expr->value()); |
| |
| OverwriteMode mode = expr->value()->ResultOverwriteAllowed() |
| ? OVERWRITE_RIGHT |
| : NO_OVERWRITE; |
| SetSourcePosition(expr->position() + 1); |
| AccumulatorValueContext context(this); |
| if (ShouldInlineSmiCase(op)) { |
| EmitInlineSmiBinaryOp(expr->binary_operation(), |
| op, |
| mode, |
| expr->target(), |
| expr->value()); |
| } else { |
| EmitBinaryOp(expr->binary_operation(), op, mode); |
| } |
| |
| // Deoptimization point in case the binary operation may have side effects. |
| PrepareForBailout(expr->binary_operation(), TOS_REG); |
| } else { |
| VisitForAccumulatorValue(expr->value()); |
| } |
| |
| // Record source position before possible IC call. |
| SetSourcePosition(expr->position()); |
| |
| // Store the value. |
| switch (assign_type) { |
| case VARIABLE: |
| EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), |
| expr->op()); |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| context()->Plug(v0); |
| break; |
| case NAMED_PROPERTY: |
| EmitNamedPropertyAssignment(expr); |
| break; |
| case KEYED_PROPERTY: |
| EmitKeyedPropertyAssignment(expr); |
| break; |
| } |
| } |
| |
| |
| void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { |
| SetSourcePosition(prop->position()); |
| Literal* key = prop->key()->AsLiteral(); |
| __ mov(a0, result_register()); |
| __ li(a2, Operand(key->handle())); |
| // Call load IC. It has arguments receiver and property name a0 and a2. |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, GetPropertyId(prop)); |
| } |
| |
| |
| void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { |
| SetSourcePosition(prop->position()); |
| __ mov(a0, result_register()); |
| // Call keyed load IC. It has arguments key and receiver in a0 and a1. |
| Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, GetPropertyId(prop)); |
| } |
| |
| |
| void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, |
| Token::Value op, |
| OverwriteMode mode, |
| Expression* left_expr, |
| Expression* right_expr) { |
| Label done, smi_case, stub_call; |
| |
| Register scratch1 = a2; |
| Register scratch2 = a3; |
| |
| // Get the arguments. |
| Register left = a1; |
| Register right = a0; |
| __ pop(left); |
| __ mov(a0, result_register()); |
| |
| // Perform combined smi check on both operands. |
| __ Or(scratch1, left, Operand(right)); |
| STATIC_ASSERT(kSmiTag == 0); |
| JumpPatchSite patch_site(masm_); |
| patch_site.EmitJumpIfSmi(scratch1, &smi_case); |
| |
| __ bind(&stub_call); |
| BinaryOpStub stub(op, mode); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); |
| patch_site.EmitPatchInfo(); |
| __ jmp(&done); |
| |
| __ bind(&smi_case); |
| // Smi case. This code works the same way as the smi-smi case in the type |
| // recording binary operation stub, see |
| // BinaryOpStub::GenerateSmiSmiOperation for comments. |
| switch (op) { |
| case Token::SAR: |
| __ Branch(&stub_call); |
| __ GetLeastBitsFromSmi(scratch1, right, 5); |
| __ srav(right, left, scratch1); |
| __ And(v0, right, Operand(~kSmiTagMask)); |
| break; |
| case Token::SHL: { |
| __ Branch(&stub_call); |
| __ SmiUntag(scratch1, left); |
| __ GetLeastBitsFromSmi(scratch2, right, 5); |
| __ sllv(scratch1, scratch1, scratch2); |
| __ Addu(scratch2, scratch1, Operand(0x40000000)); |
| __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); |
| __ SmiTag(v0, scratch1); |
| break; |
| } |
| case Token::SHR: { |
| __ Branch(&stub_call); |
| __ SmiUntag(scratch1, left); |
| __ GetLeastBitsFromSmi(scratch2, right, 5); |
| __ srlv(scratch1, scratch1, scratch2); |
| __ And(scratch2, scratch1, 0xc0000000); |
| __ Branch(&stub_call, ne, scratch2, Operand(zero_reg)); |
| __ SmiTag(v0, scratch1); |
| break; |
| } |
| case Token::ADD: |
| __ AdduAndCheckForOverflow(v0, left, right, scratch1); |
| __ BranchOnOverflow(&stub_call, scratch1); |
| break; |
| case Token::SUB: |
| __ SubuAndCheckForOverflow(v0, left, right, scratch1); |
| __ BranchOnOverflow(&stub_call, scratch1); |
| break; |
| case Token::MUL: { |
| __ SmiUntag(scratch1, right); |
| __ Mult(left, scratch1); |
| __ mflo(scratch1); |
| __ mfhi(scratch2); |
| __ sra(scratch1, scratch1, 31); |
| __ Branch(&stub_call, ne, scratch1, Operand(scratch2)); |
| __ mflo(v0); |
| __ Branch(&done, ne, v0, Operand(zero_reg)); |
| __ Addu(scratch2, right, left); |
| __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); |
| ASSERT(Smi::FromInt(0) == 0); |
| __ mov(v0, zero_reg); |
| break; |
| } |
| case Token::BIT_OR: |
| __ Or(v0, left, Operand(right)); |
| break; |
| case Token::BIT_AND: |
| __ And(v0, left, Operand(right)); |
| break; |
| case Token::BIT_XOR: |
| __ Xor(v0, left, Operand(right)); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, |
| Token::Value op, |
| OverwriteMode mode) { |
| __ mov(a0, result_register()); |
| __ pop(a1); |
| BinaryOpStub stub(op, mode); |
| JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); |
| patch_site.EmitPatchInfo(); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitAssignment(Expression* expr, int bailout_ast_id) { |
| // Invalid left-hand sides are rewritten to have a 'throw |
| // ReferenceError' on the left-hand side. |
| if (!expr->IsValidLeftHandSide()) { |
| VisitForEffect(expr); |
| return; |
| } |
| |
| // Left-hand side can only be a property, a global or a (parameter or local) |
| // slot. |
| enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; |
| LhsKind assign_type = VARIABLE; |
| Property* prop = expr->AsProperty(); |
| if (prop != NULL) { |
| assign_type = (prop->key()->IsPropertyName()) |
| ? NAMED_PROPERTY |
| : KEYED_PROPERTY; |
| } |
| |
| switch (assign_type) { |
| case VARIABLE: { |
| Variable* var = expr->AsVariableProxy()->var(); |
| EffectContext context(this); |
| EmitVariableAssignment(var, Token::ASSIGN); |
| break; |
| } |
| case NAMED_PROPERTY: { |
| __ push(result_register()); // Preserve value. |
| VisitForAccumulatorValue(prop->obj()); |
| __ mov(a1, result_register()); |
| __ pop(a0); // Restore value. |
| __ li(a2, Operand(prop->key()->AsLiteral()->handle())); |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| __ Call(ic); |
| break; |
| } |
| case KEYED_PROPERTY: { |
| __ push(result_register()); // Preserve value. |
| VisitForStackValue(prop->obj()); |
| VisitForAccumulatorValue(prop->key()); |
| __ mov(a1, result_register()); |
| __ pop(a2); |
| __ pop(a0); // Restore value. |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
| : isolate()->builtins()->KeyedStoreIC_Initialize(); |
| __ Call(ic); |
| break; |
| } |
| } |
| PrepareForBailoutForId(bailout_ast_id, TOS_REG); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitVariableAssignment(Variable* var, |
| Token::Value op) { |
| if (var->IsUnallocated()) { |
| // Global var, const, or let. |
| __ mov(a0, result_register()); |
| __ li(a2, Operand(var->name())); |
| __ lw(a1, GlobalObjectOperand()); |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); |
| |
| } else if (op == Token::INIT_CONST) { |
| // Const initializers need a write barrier. |
| ASSERT(!var->IsParameter()); // No const parameters. |
| if (var->IsStackLocal()) { |
| Label skip; |
| __ lw(a1, StackOperand(var)); |
| __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| __ Branch(&skip, ne, a1, Operand(t0)); |
| __ sw(result_register(), StackOperand(var)); |
| __ bind(&skip); |
| } else { |
| ASSERT(var->IsContextSlot() || var->IsLookupSlot()); |
| // Like var declarations, const declarations are hoisted to function |
| // scope. However, unlike var initializers, const initializers are |
| // able to drill a hole to that function context, even from inside a |
| // 'with' context. We thus bypass the normal static scope lookup for |
| // var->IsContextSlot(). |
| __ push(v0); |
| __ li(a0, Operand(var->name())); |
| __ Push(cp, a0); // Context and name. |
| __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
| } |
| |
| } else if (var->mode() == Variable::LET && op != Token::INIT_LET) { |
| // Non-initializing assignment to let variable needs a write barrier. |
| if (var->IsLookupSlot()) { |
| __ push(v0); // Value. |
| __ li(a1, Operand(var->name())); |
| __ li(a0, Operand(Smi::FromInt(strict_mode_flag()))); |
| __ Push(cp, a1, a0); // Context, name, strict mode. |
| __ CallRuntime(Runtime::kStoreContextSlot, 4); |
| } else { |
| ASSERT(var->IsStackAllocated() || var->IsContextSlot()); |
| Label assign; |
| MemOperand location = VarOperand(var, a1); |
| __ lw(a3, location); |
| __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| __ Branch(&assign, ne, a3, Operand(t0)); |
| __ li(a3, Operand(var->name())); |
| __ push(a3); |
| __ CallRuntime(Runtime::kThrowReferenceError, 1); |
| // Perform the assignment. |
| __ bind(&assign); |
| __ sw(result_register(), location); |
| if (var->IsContextSlot()) { |
| // RecordWrite may destroy all its register arguments. |
| __ mov(a3, result_register()); |
| int offset = Context::SlotOffset(var->index()); |
| __ RecordWrite(a1, Operand(offset), a2, a3); |
| } |
| } |
| |
| } else if (var->mode() != Variable::CONST) { |
| // Assignment to var or initializing assignment to let. |
| if (var->IsStackAllocated() || var->IsContextSlot()) { |
| MemOperand location = VarOperand(var, a1); |
| if (FLAG_debug_code && op == Token::INIT_LET) { |
| // Check for an uninitialized let binding. |
| __ lw(a2, location); |
| __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| __ Check(eq, "Let binding re-initialization.", a2, Operand(t0)); |
| } |
| // Perform the assignment. |
| __ sw(v0, location); |
| if (var->IsContextSlot()) { |
| __ mov(a3, v0); |
| __ RecordWrite(a1, Operand(Context::SlotOffset(var->index())), a2, a3); |
| } |
| } else { |
| ASSERT(var->IsLookupSlot()); |
| __ push(v0); // Value. |
| __ li(a1, Operand(var->name())); |
| __ li(a0, Operand(Smi::FromInt(strict_mode_flag()))); |
| __ Push(cp, a1, a0); // Context, name, strict mode. |
| __ CallRuntime(Runtime::kStoreContextSlot, 4); |
| } |
| } |
| // Non-initializing assignments to consts are ignored. |
| } |
| |
| |
| void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { |
| // Assignment to a property, using a named store IC. |
| Property* prop = expr->target()->AsProperty(); |
| ASSERT(prop != NULL); |
| ASSERT(prop->key()->AsLiteral() != NULL); |
| |
| // If the assignment starts a block of assignments to the same object, |
| // change to slow case to avoid the quadratic behavior of repeatedly |
| // adding fast properties. |
| if (expr->starts_initialization_block()) { |
| __ push(result_register()); |
| __ lw(t0, MemOperand(sp, kPointerSize)); // Receiver is now under value. |
| __ push(t0); |
| __ CallRuntime(Runtime::kToSlowProperties, 1); |
| __ pop(result_register()); |
| } |
| |
| // Record source code position before IC call. |
| SetSourcePosition(expr->position()); |
| __ mov(a0, result_register()); // Load the value. |
| __ li(a2, Operand(prop->key()->AsLiteral()->handle())); |
| // Load receiver to a1. Leave a copy in the stack if needed for turning the |
| // receiver into fast case. |
| if (expr->ends_initialization_block()) { |
| __ lw(a1, MemOperand(sp)); |
| } else { |
| __ pop(a1); |
| } |
| |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); |
| |
| // If the assignment ends an initialization block, revert to fast case. |
| if (expr->ends_initialization_block()) { |
| __ push(v0); // Result of assignment, saved even if not needed. |
| // Receiver is under the result value. |
| __ lw(t0, MemOperand(sp, kPointerSize)); |
| __ push(t0); |
| __ CallRuntime(Runtime::kToFastProperties, 1); |
| __ pop(v0); |
| __ Drop(1); |
| } |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { |
| // Assignment to a property, using a keyed store IC. |
| |
| // If the assignment starts a block of assignments to the same object, |
| // change to slow case to avoid the quadratic behavior of repeatedly |
| // adding fast properties. |
| if (expr->starts_initialization_block()) { |
| __ push(result_register()); |
| // Receiver is now under the key and value. |
| __ lw(t0, MemOperand(sp, 2 * kPointerSize)); |
| __ push(t0); |
| __ CallRuntime(Runtime::kToSlowProperties, 1); |
| __ pop(result_register()); |
| } |
| |
| // Record source code position before IC call. |
| SetSourcePosition(expr->position()); |
| // Call keyed store IC. |
| // The arguments are: |
| // - a0 is the value, |
| // - a1 is the key, |
| // - a2 is the receiver. |
| __ mov(a0, result_register()); |
| __ pop(a1); // Key. |
| // Load receiver to a2. Leave a copy in the stack if needed for turning the |
| // receiver into fast case. |
| if (expr->ends_initialization_block()) { |
| __ lw(a2, MemOperand(sp)); |
| } else { |
| __ pop(a2); |
| } |
| |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
| : isolate()->builtins()->KeyedStoreIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); |
| |
| // If the assignment ends an initialization block, revert to fast case. |
| if (expr->ends_initialization_block()) { |
| __ push(v0); // Result of assignment, saved even if not needed. |
| // Receiver is under the result value. |
| __ lw(t0, MemOperand(sp, kPointerSize)); |
| __ push(t0); |
| __ CallRuntime(Runtime::kToFastProperties, 1); |
| __ pop(v0); |
| __ Drop(1); |
| } |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::VisitProperty(Property* expr) { |
| Comment cmnt(masm_, "[ Property"); |
| Expression* key = expr->key(); |
| |
| if (key->IsPropertyName()) { |
| VisitForAccumulatorValue(expr->obj()); |
| EmitNamedPropertyLoad(expr); |
| context()->Plug(v0); |
| } else { |
| VisitForStackValue(expr->obj()); |
| VisitForAccumulatorValue(expr->key()); |
| __ pop(a1); |
| EmitKeyedPropertyLoad(expr); |
| context()->Plug(v0); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EmitCallWithIC(Call* expr, |
| Handle<Object> name, |
| RelocInfo::Mode mode) { |
| // Code common for calls using the IC. |
| ZoneList<Expression*>* args = expr->arguments(); |
| int arg_count = args->length(); |
| { PreservePositionScope scope(masm()->positions_recorder()); |
| for (int i = 0; i < arg_count; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| __ li(a2, Operand(name)); |
| } |
| // Record source position for debugger. |
| SetSourcePosition(expr->position()); |
| // Call the IC initialization code. |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); |
| __ Call(ic, mode, expr->id()); |
| RecordJSReturnSite(expr); |
| // Restore context register. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, |
| Expression* key) { |
| // Load the key. |
| VisitForAccumulatorValue(key); |
| |
| // Swap the name of the function and the receiver on the stack to follow |
| // the calling convention for call ICs. |
| __ pop(a1); |
| __ push(v0); |
| __ push(a1); |
| |
| // Code common for calls using the IC. |
| ZoneList<Expression*>* args = expr->arguments(); |
| int arg_count = args->length(); |
| { PreservePositionScope scope(masm()->positions_recorder()); |
| for (int i = 0; i < arg_count; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| } |
| // Record source position for debugger. |
| SetSourcePosition(expr->position()); |
| // Call the IC initialization code. |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count); |
| __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key. |
| __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); |
| RecordJSReturnSite(expr); |
| // Restore context register. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| context()->DropAndPlug(1, v0); // Drop the key still on the stack. |
| } |
| |
| |
| void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) { |
| // Code common for calls using the call stub. |
| ZoneList<Expression*>* args = expr->arguments(); |
| int arg_count = args->length(); |
| { PreservePositionScope scope(masm()->positions_recorder()); |
| for (int i = 0; i < arg_count; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| } |
| // Record source position for debugger. |
| SetSourcePosition(expr->position()); |
| CallFunctionStub stub(arg_count, flags); |
| __ CallStub(&stub); |
| RecordJSReturnSite(expr); |
| // Restore context register. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| context()->DropAndPlug(1, v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitResolvePossiblyDirectEval(ResolveEvalFlag flag, |
| int arg_count) { |
| // Push copy of the first argument or undefined if it doesn't exist. |
| if (arg_count > 0) { |
| __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); |
| } else { |
| __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); |
| } |
| __ push(a1); |
| |
| // Push the receiver of the enclosing function and do runtime call. |
| int receiver_offset = 2 + info_->scope()->num_parameters(); |
| __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize)); |
| __ push(a1); |
| // Push the strict mode flag. In harmony mode every eval call |
| // is a strict mode eval call. |
| StrictModeFlag strict_mode = strict_mode_flag(); |
| if (FLAG_harmony_block_scoping) { |
| strict_mode = kStrictMode; |
| } |
| __ li(a1, Operand(Smi::FromInt(strict_mode))); |
| __ push(a1); |
| |
| __ CallRuntime(flag == SKIP_CONTEXT_LOOKUP |
| ? Runtime::kResolvePossiblyDirectEvalNoLookup |
| : Runtime::kResolvePossiblyDirectEval, 4); |
| } |
| |
| |
| void FullCodeGenerator::VisitCall(Call* expr) { |
| #ifdef DEBUG |
| // We want to verify that RecordJSReturnSite gets called on all paths |
| // through this function. Avoid early returns. |
| expr->return_is_recorded_ = false; |
| #endif |
| |
| Comment cmnt(masm_, "[ Call"); |
| Expression* callee = expr->expression(); |
| VariableProxy* proxy = callee->AsVariableProxy(); |
| Property* property = callee->AsProperty(); |
| |
| if (proxy != NULL && proxy->var()->is_possibly_eval()) { |
| // In a call to eval, we first call %ResolvePossiblyDirectEval to |
| // resolve the function we need to call and the receiver of the |
| // call. Then we call the resolved function using the given |
| // arguments. |
| ZoneList<Expression*>* args = expr->arguments(); |
| int arg_count = args->length(); |
| |
| { PreservePositionScope pos_scope(masm()->positions_recorder()); |
| VisitForStackValue(callee); |
| __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); |
| __ push(a2); // Reserved receiver slot. |
| |
| // Push the arguments. |
| for (int i = 0; i < arg_count; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| |
| // If we know that eval can only be shadowed by eval-introduced |
| // variables we attempt to load the global eval function directly |
| // in generated code. If we succeed, there is no need to perform a |
| // context lookup in the runtime system. |
| Label done; |
| Variable* var = proxy->var(); |
| if (!var->IsUnallocated() && var->mode() == Variable::DYNAMIC_GLOBAL) { |
| Label slow; |
| EmitLoadGlobalCheckExtensions(var, NOT_INSIDE_TYPEOF, &slow); |
| // Push the function and resolve eval. |
| __ push(v0); |
| EmitResolvePossiblyDirectEval(SKIP_CONTEXT_LOOKUP, arg_count); |
| __ jmp(&done); |
| __ bind(&slow); |
| } |
| |
| // Push a copy of the function (found below the arguments) and |
| // resolve eval. |
| __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
| __ push(a1); |
| EmitResolvePossiblyDirectEval(PERFORM_CONTEXT_LOOKUP, arg_count); |
| __ bind(&done); |
| |
| // The runtime call returns a pair of values in v0 (function) and |
| // v1 (receiver). Touch up the stack with the right values. |
| __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
| __ sw(v1, MemOperand(sp, arg_count * kPointerSize)); |
| } |
| // Record source position for debugger. |
| SetSourcePosition(expr->position()); |
| CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT); |
| __ CallStub(&stub); |
| RecordJSReturnSite(expr); |
| // Restore context register. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| context()->DropAndPlug(1, v0); |
| } else if (proxy != NULL && proxy->var()->IsUnallocated()) { |
| // Push global object as receiver for the call IC. |
| __ lw(a0, GlobalObjectOperand()); |
| __ push(a0); |
| EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT); |
| } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { |
| // Call to a lookup slot (dynamically introduced variable). |
| Label slow, done; |
| |
| { PreservePositionScope scope(masm()->positions_recorder()); |
| // Generate code for loading from variables potentially shadowed |
| // by eval-introduced variables. |
| EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done); |
| } |
| |
| __ bind(&slow); |
| // Call the runtime to find the function to call (returned in v0) |
| // and the object holding it (returned in v1). |
| __ push(context_register()); |
| __ li(a2, Operand(proxy->name())); |
| __ push(a2); |
| __ CallRuntime(Runtime::kLoadContextSlot, 2); |
| __ Push(v0, v1); // Function, receiver. |
| |
| // If fast case code has been generated, emit code to push the |
| // function and receiver and have the slow path jump around this |
| // code. |
| if (done.is_linked()) { |
| Label call; |
| __ Branch(&call); |
| __ bind(&done); |
| // Push function. |
| __ push(v0); |
| // The receiver is implicitly the global receiver. Indicate this |
| // by passing the hole to the call function stub. |
| __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); |
| __ push(a1); |
| __ bind(&call); |
| } |
| |
| // The receiver is either the global receiver or an object found |
| // by LoadContextSlot. That object could be the hole if the |
| // receiver is implicitly the global object. |
| EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT); |
| } else if (property != NULL) { |
| { PreservePositionScope scope(masm()->positions_recorder()); |
| VisitForStackValue(property->obj()); |
| } |
| if (property->key()->IsPropertyName()) { |
| EmitCallWithIC(expr, |
| property->key()->AsLiteral()->handle(), |
| RelocInfo::CODE_TARGET); |
| } else { |
| EmitKeyedCallWithIC(expr, property->key()); |
| } |
| } else { |
| // Call to an arbitrary expression not handled specially above. |
| { PreservePositionScope scope(masm()->positions_recorder()); |
| VisitForStackValue(callee); |
| } |
| // Load global receiver object. |
| __ lw(a1, GlobalObjectOperand()); |
| __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset)); |
| __ push(a1); |
| // Emit function call. |
| EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS); |
| } |
| |
| #ifdef DEBUG |
| // RecordJSReturnSite should have been called. |
| ASSERT(expr->return_is_recorded_); |
| #endif |
| } |
| |
| |
| void FullCodeGenerator::VisitCallNew(CallNew* expr) { |
| Comment cmnt(masm_, "[ CallNew"); |
| // According to ECMA-262, section 11.2.2, page 44, the function |
| // expression in new calls must be evaluated before the |
| // arguments. |
| |
| // Push constructor on the stack. If it's not a function it's used as |
| // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is |
| // ignored. |
| VisitForStackValue(expr->expression()); |
| |
| // Push the arguments ("left-to-right") on the stack. |
| ZoneList<Expression*>* args = expr->arguments(); |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| |
| // Call the construct call builtin that handles allocation and |
| // constructor invocation. |
| SetSourcePosition(expr->position()); |
| |
| // Load function and argument count into a1 and a0. |
| __ li(a0, Operand(arg_count)); |
| __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); |
| |
| Handle<Code> construct_builtin = |
| isolate()->builtins()->JSConstructCall(); |
| __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| __ And(t0, v0, Operand(kSmiTagMask)); |
| Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| __ And(at, v0, Operand(kSmiTagMask | 0x80000000)); |
| Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ JumpIfSmi(v0, if_false); |
| __ LoadRoot(at, Heap::kNullValueRootIndex); |
| __ Branch(if_true, eq, v0, Operand(at)); |
| __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined when tested with typeof. |
| __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset)); |
| __ And(at, a1, Operand(1 << Map::kIsUndetectable)); |
| __ Branch(if_false, ne, at, Operand(zero_reg)); |
| __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset)); |
| __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE), |
| if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ JumpIfSmi(v0, if_false); |
| __ GetObjectType(v0, a1, a1); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE), |
| if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ JumpIfSmi(v0, if_false); |
| __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset)); |
| __ And(at, a1, Operand(1 << Map::kIsUndetectable)); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( |
| ZoneList<Expression*>* args) { |
| |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| if (FLAG_debug_code) __ AbortIfSmi(v0); |
| |
| __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset)); |
| __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf); |
| __ Branch(if_true, ne, t0, Operand(zero_reg)); |
| |
| // Check for fast case object. Generate false result for slow case object. |
| __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset)); |
| __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); |
| __ LoadRoot(t0, Heap::kHashTableMapRootIndex); |
| __ Branch(if_false, eq, a2, Operand(t0)); |
| |
| // Look for valueOf symbol in the descriptor array, and indicate false if |
| // found. The type is not checked, so if it is a transition it is a false |
| // negative. |
| __ LoadInstanceDescriptors(a1, t0); |
| __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset)); |
| // t0: descriptor array |
| // a3: length of descriptor array |
| // Calculate the end of the descriptor array. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kPointerSize == 4); |
| __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(a2, a2, t1); |
| |
| // Calculate location of the first key name. |
| __ Addu(t0, |
| t0, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag + |
| DescriptorArray::kFirstIndex * kPointerSize)); |
| // Loop through all the keys in the descriptor array. If one of these is the |
| // symbol valueOf the result is false. |
| Label entry, loop; |
| // The use of t2 to store the valueOf symbol asumes that it is not otherwise |
| // used in the loop below. |
| __ li(t2, Operand(FACTORY->value_of_symbol())); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ lw(a3, MemOperand(t0, 0)); |
| __ Branch(if_false, eq, a3, Operand(t2)); |
| __ Addu(t0, t0, Operand(kPointerSize)); |
| __ bind(&entry); |
| __ Branch(&loop, ne, t0, Operand(a2)); |
| |
| // If a valueOf property is not found on the object check that it's |
| // prototype is the un-modified String prototype. If not result is false. |
| __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); |
| __ JumpIfSmi(a2, if_false); |
| __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); |
| __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset)); |
| __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); |
| __ Branch(if_false, ne, a2, Operand(a3)); |
| |
| // Set the bit in the map to indicate that it has been checked safe for |
| // default valueOf and set true result. |
| __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset)); |
| __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
| __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset)); |
| __ jmp(if_true); |
| |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ JumpIfSmi(v0, if_false); |
| __ GetObjectType(v0, a1, a2); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE)); |
| __ Branch(if_false); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ JumpIfSmi(v0, if_false); |
| __ GetObjectType(v0, a1, a1); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(eq, a1, Operand(JS_ARRAY_TYPE), |
| if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ JumpIfSmi(v0, if_false); |
| __ GetObjectType(v0, a1, a1); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| // Get the frame pointer for the calling frame. |
| __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| Label check_frame_marker; |
| __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset)); |
| __ Branch(&check_frame_marker, ne, |
| a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Check the marker in the calling frame. |
| __ bind(&check_frame_marker); |
| __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset)); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)), |
| if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| // Load the two objects into registers and perform the comparison. |
| VisitForStackValue(args->at(0)); |
| VisitForAccumulatorValue(args->at(1)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ pop(a1); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(eq, v0, Operand(a1), if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| // ArgumentsAccessStub expects the key in a1 and the formal |
| // parameter count in a0. |
| VisitForAccumulatorValue(args->at(0)); |
| __ mov(a1, v0); |
| __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Label exit; |
| // Get the number of formal parameters. |
| __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); |
| __ Branch(&exit, ne, a3, |
| Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Arguments adaptor case: Read the arguments length from the |
| // adaptor frame. |
| __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| __ bind(&exit); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Label done, null, function, non_function_constructor; |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| // If the object is a smi, we return null. |
| __ JumpIfSmi(v0, &null); |
| |
| // Check that the object is a JS object but take special care of JS |
| // functions to make sure they have 'Function' as their class. |
| __ GetObjectType(v0, v0, a1); // Map is now in v0. |
| __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // As long as LAST_CALLABLE_SPEC_OBJECT_TYPE is the last instance type, and |
| // FIRST_CALLABLE_SPEC_OBJECT_TYPE comes right after |
| // LAST_NONCALLABLE_SPEC_OBJECT_TYPE, we can avoid checking for the latter. |
| STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE); |
| STATIC_ASSERT(FIRST_CALLABLE_SPEC_OBJECT_TYPE == |
| LAST_NONCALLABLE_SPEC_OBJECT_TYPE + 1); |
| __ Branch(&function, ge, a1, Operand(FIRST_CALLABLE_SPEC_OBJECT_TYPE)); |
| |
| // Check if the constructor in the map is a function. |
| __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset)); |
| __ GetObjectType(v0, a1, a1); |
| __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE)); |
| |
| // v0 now contains the constructor function. Grab the |
| // instance class name from there. |
| __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset)); |
| __ Branch(&done); |
| |
| // Functions have class 'Function'. |
| __ bind(&function); |
| __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex); |
| __ jmp(&done); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| __ bind(&non_function_constructor); |
| __ LoadRoot(v0, Heap::kObject_symbolRootIndex); |
| __ jmp(&done); |
| |
| // Non-JS objects have class null. |
| __ bind(&null); |
| __ LoadRoot(v0, Heap::kNullValueRootIndex); |
| |
| // All done. |
| __ bind(&done); |
| |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) { |
| // Conditionally generate a log call. |
| // Args: |
| // 0 (literal string): The type of logging (corresponds to the flags). |
| // This is used to determine whether or not to generate the log call. |
| // 1 (string): Format string. Access the string at argument index 2 |
| // with '%2s' (see Logger::LogRuntime for all the formats). |
| // 2 (array): Arguments to the format string. |
| ASSERT_EQ(args->length(), 3); |
| if (CodeGenerator::ShouldGenerateLog(args->at(0))) { |
| VisitForStackValue(args->at(1)); |
| VisitForStackValue(args->at(2)); |
| __ CallRuntime(Runtime::kLog, 2); |
| } |
| |
| // Finally, we're expected to leave a value on the top of the stack. |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Label slow_allocate_heapnumber; |
| Label heapnumber_allocated; |
| |
| // Save the new heap number in callee-saved register s0, since |
| // we call out to external C code below. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated); |
| |
| __ bind(&slow_allocate_heapnumber); |
| |
| // Allocate a heap number. |
| __ CallRuntime(Runtime::kNumberAlloc, 0); |
| __ mov(s0, v0); // Save result in s0, so it is saved thru CFunc call. |
| |
| __ bind(&heapnumber_allocated); |
| |
| // Convert 32 random bits in v0 to 0.(32 random bits) in a double |
| // by computing: |
| // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). |
| if (CpuFeatures::IsSupported(FPU)) { |
| __ PrepareCallCFunction(1, a0); |
| __ li(a0, Operand(ExternalReference::isolate_address())); |
| __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); |
| |
| |
| CpuFeatures::Scope scope(FPU); |
| // 0x41300000 is the top half of 1.0 x 2^20 as a double. |
| __ li(a1, Operand(0x41300000)); |
| // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU. |
| __ Move(f12, v0, a1); |
| // Move 0x4130000000000000 to FPU. |
| __ Move(f14, zero_reg, a1); |
| // Subtract and store the result in the heap number. |
| __ sub_d(f0, f12, f14); |
| __ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ mov(v0, s0); |
| } else { |
| __ PrepareCallCFunction(2, a0); |
| __ mov(a0, s0); |
| __ li(a1, Operand(ExternalReference::isolate_address())); |
| __ CallCFunction( |
| ExternalReference::fill_heap_number_with_random_function(isolate()), 2); |
| } |
| |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) { |
| // Load the arguments on the stack and call the stub. |
| SubStringStub stub; |
| ASSERT(args->length() == 3); |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| VisitForStackValue(args->at(2)); |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) { |
| // Load the arguments on the stack and call the stub. |
| RegExpExecStub stub; |
| ASSERT(args->length() == 4); |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| VisitForStackValue(args->at(2)); |
| VisitForStackValue(args->at(3)); |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); // Load the object. |
| |
| Label done; |
| // If the object is a smi return the object. |
| __ JumpIfSmi(v0, &done); |
| // If the object is not a value type, return the object. |
| __ GetObjectType(v0, a1, a1); |
| __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE)); |
| |
| __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset)); |
| |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) { |
| // Load the arguments on the stack and call the runtime function. |
| ASSERT(args->length() == 2); |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| MathPowStub stub; |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| VisitForStackValue(args->at(0)); // Load the object. |
| VisitForAccumulatorValue(args->at(1)); // Load the value. |
| __ pop(a1); // v0 = value. a1 = object. |
| |
| Label done; |
| // If the object is a smi, return the value. |
| __ JumpIfSmi(a1, &done); |
| |
| // If the object is not a value type, return the value. |
| __ GetObjectType(a1, a2, a2); |
| __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE)); |
| |
| // Store the value. |
| __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset)); |
| // Update the write barrier. Save the value as it will be |
| // overwritten by the write barrier code and is needed afterward. |
| __ RecordWrite(a1, Operand(JSValue::kValueOffset - kHeapObjectTag), a2, a3); |
| |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| |
| // Load the argument on the stack and call the stub. |
| VisitForStackValue(args->at(0)); |
| |
| NumberToStringStub stub; |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label done; |
| StringCharFromCodeGenerator generator(v0, a1); |
| generator.GenerateFast(masm_); |
| __ jmp(&done); |
| |
| NopRuntimeCallHelper call_helper; |
| generator.GenerateSlow(masm_, call_helper); |
| |
| __ bind(&done); |
| context()->Plug(a1); |
| } |
| |
| |
| void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| VisitForStackValue(args->at(0)); |
| VisitForAccumulatorValue(args->at(1)); |
| __ mov(a0, result_register()); |
| |
| Register object = a1; |
| Register index = a0; |
| Register scratch = a2; |
| Register result = v0; |
| |
| __ pop(object); |
| |
| Label need_conversion; |
| Label index_out_of_range; |
| Label done; |
| StringCharCodeAtGenerator generator(object, |
| index, |
| scratch, |
| result, |
| &need_conversion, |
| &need_conversion, |
| &index_out_of_range, |
| STRING_INDEX_IS_NUMBER); |
| generator.GenerateFast(masm_); |
| __ jmp(&done); |
| |
| __ bind(&index_out_of_range); |
| // When the index is out of range, the spec requires us to return |
| // NaN. |
| __ LoadRoot(result, Heap::kNanValueRootIndex); |
| __ jmp(&done); |
| |
| __ bind(&need_conversion); |
| // Load the undefined value into the result register, which will |
| // trigger conversion. |
| __ LoadRoot(result, Heap::kUndefinedValueRootIndex); |
| __ jmp(&done); |
| |
| NopRuntimeCallHelper call_helper; |
| generator.GenerateSlow(masm_, call_helper); |
| |
| __ bind(&done); |
| context()->Plug(result); |
| } |
| |
| |
| void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| VisitForStackValue(args->at(0)); |
| VisitForAccumulatorValue(args->at(1)); |
| __ mov(a0, result_register()); |
| |
| Register object = a1; |
| Register index = a0; |
| Register scratch1 = a2; |
| Register scratch2 = a3; |
| Register result = v0; |
| |
| __ pop(object); |
| |
| Label need_conversion; |
| Label index_out_of_range; |
| Label done; |
| StringCharAtGenerator generator(object, |
| index, |
| scratch1, |
| scratch2, |
| result, |
| &need_conversion, |
| &need_conversion, |
| &index_out_of_range, |
| STRING_INDEX_IS_NUMBER); |
| generator.GenerateFast(masm_); |
| __ jmp(&done); |
| |
| __ bind(&index_out_of_range); |
| // When the index is out of range, the spec requires us to return |
| // the empty string. |
| __ LoadRoot(result, Heap::kEmptyStringRootIndex); |
| __ jmp(&done); |
| |
| __ bind(&need_conversion); |
| // Move smi zero into the result register, which will trigger |
| // conversion. |
| __ li(result, Operand(Smi::FromInt(0))); |
| __ jmp(&done); |
| |
| NopRuntimeCallHelper call_helper; |
| generator.GenerateSlow(masm_, call_helper); |
| |
| __ bind(&done); |
| context()->Plug(result); |
| } |
| |
| |
| void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| |
| StringCompareStub stub; |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) { |
| // Load the argument on the stack and call the stub. |
| TranscendentalCacheStub stub(TranscendentalCache::SIN, |
| TranscendentalCacheStub::TAGGED); |
| ASSERT(args->length() == 1); |
| VisitForStackValue(args->at(0)); |
| __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) { |
| // Load the argument on the stack and call the stub. |
| TranscendentalCacheStub stub(TranscendentalCache::COS, |
| TranscendentalCacheStub::TAGGED); |
| ASSERT(args->length() == 1); |
| VisitForStackValue(args->at(0)); |
| __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitMathLog(ZoneList<Expression*>* args) { |
| // Load the argument on the stack and call the stub. |
| TranscendentalCacheStub stub(TranscendentalCache::LOG, |
| TranscendentalCacheStub::TAGGED); |
| ASSERT(args->length() == 1); |
| VisitForStackValue(args->at(0)); |
| __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) { |
| // Load the argument on the stack and call the runtime function. |
| ASSERT(args->length() == 1); |
| VisitForStackValue(args->at(0)); |
| __ CallRuntime(Runtime::kMath_sqrt, 1); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) { |
| ASSERT(args->length() >= 2); |
| |
| int arg_count = args->length() - 2; // 2 ~ receiver and function. |
| for (int i = 0; i < arg_count + 1; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| VisitForAccumulatorValue(args->last()); // Function. |
| |
| // InvokeFunction requires the function in a1. Move it in there. |
| __ mov(a1, result_register()); |
| ParameterCount count(arg_count); |
| __ InvokeFunction(a1, count, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) { |
| RegExpConstructResultStub stub; |
| ASSERT(args->length() == 3); |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| VisitForStackValue(args->at(2)); |
| __ CallStub(&stub); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 3); |
| VisitForStackValue(args->at(0)); |
| VisitForStackValue(args->at(1)); |
| VisitForStackValue(args->at(2)); |
| Label done; |
| Label slow_case; |
| Register object = a0; |
| Register index1 = a1; |
| Register index2 = a2; |
| Register elements = a3; |
| Register scratch1 = t0; |
| Register scratch2 = t1; |
| |
| __ lw(object, MemOperand(sp, 2 * kPointerSize)); |
| // Fetch the map and check if array is in fast case. |
| // Check that object doesn't require security checks and |
| // has no indexed interceptor. |
| __ GetObjectType(object, scratch1, scratch2); |
| __ Branch(&slow_case, ne, scratch2, Operand(JS_ARRAY_TYPE)); |
| // Map is now in scratch1. |
| |
| __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset)); |
| __ And(scratch2, scratch2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); |
| __ Branch(&slow_case, ne, scratch2, Operand(zero_reg)); |
| |
| // Check the object's elements are in fast case and writable. |
| __ lw(elements, FieldMemOperand(object, JSObject::kElementsOffset)); |
| __ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| __ LoadRoot(scratch2, Heap::kFixedArrayMapRootIndex); |
| __ Branch(&slow_case, ne, scratch1, Operand(scratch2)); |
| |
| // Check that both indices are smis. |
| __ lw(index1, MemOperand(sp, 1 * kPointerSize)); |
| __ lw(index2, MemOperand(sp, 0)); |
| __ JumpIfNotBothSmi(index1, index2, &slow_case); |
| |
| // Check that both indices are valid. |
| Label not_hi; |
| __ lw(scratch1, FieldMemOperand(object, JSArray::kLengthOffset)); |
| __ Branch(&slow_case, ls, scratch1, Operand(index1)); |
| __ Branch(¬_hi, NegateCondition(hi), scratch1, Operand(index1)); |
| __ Branch(&slow_case, ls, scratch1, Operand(index2)); |
| __ bind(¬_hi); |
| |
| // Bring the address of the elements into index1 and index2. |
| __ Addu(scratch1, elements, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ sll(index1, index1, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(index1, scratch1, index1); |
| __ sll(index2, index2, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(index2, scratch1, index2); |
| |
| // Swap elements. |
| __ lw(scratch1, MemOperand(index1, 0)); |
| __ lw(scratch2, MemOperand(index2, 0)); |
| __ sw(scratch1, MemOperand(index2, 0)); |
| __ sw(scratch2, MemOperand(index1, 0)); |
| |
| Label new_space; |
| __ InNewSpace(elements, scratch1, eq, &new_space); |
| // Possible optimization: do a check that both values are Smis |
| // (or them and test against Smi mask). |
| |
| __ mov(scratch1, elements); |
| __ RecordWriteHelper(elements, index1, scratch2); |
| __ RecordWriteHelper(scratch1, index2, scratch2); // scratch1 holds elements. |
| |
| __ bind(&new_space); |
| // We are done. Drop elements from the stack, and return undefined. |
| __ Drop(3); |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| __ jmp(&done); |
| |
| __ bind(&slow_case); |
| __ CallRuntime(Runtime::kSwapElements, 3); |
| |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| ASSERT_NE(NULL, args->at(0)->AsLiteral()); |
| int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); |
| |
| Handle<FixedArray> jsfunction_result_caches( |
| isolate()->global_context()->jsfunction_result_caches()); |
| if (jsfunction_result_caches->length() <= cache_id) { |
| __ Abort("Attempt to use undefined cache."); |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| context()->Plug(v0); |
| return; |
| } |
| |
| VisitForAccumulatorValue(args->at(1)); |
| |
| Register key = v0; |
| Register cache = a1; |
| __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset)); |
| __ lw(cache, |
| ContextOperand( |
| cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); |
| __ lw(cache, |
| FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); |
| |
| |
| Label done, not_found; |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); |
| // a2 now holds finger offset as a smi. |
| __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // a3 now points to the start of fixed array elements. |
| __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize); |
| __ addu(a3, a3, at); |
| // a3 now points to key of indexed element of cache. |
| __ lw(a2, MemOperand(a3)); |
| __ Branch(¬_found, ne, key, Operand(a2)); |
| |
| __ lw(v0, MemOperand(a3, kPointerSize)); |
| __ Branch(&done); |
| |
| __ bind(¬_found); |
| // Call runtime to perform the lookup. |
| __ Push(cache, key); |
| __ CallRuntime(Runtime::kGetFromCache, 2); |
| |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Register right = v0; |
| Register left = a1; |
| Register tmp = a2; |
| Register tmp2 = a3; |
| |
| VisitForStackValue(args->at(0)); |
| VisitForAccumulatorValue(args->at(1)); // Result (right) in v0. |
| __ pop(left); |
| |
| Label done, fail, ok; |
| __ Branch(&ok, eq, left, Operand(right)); |
| // Fail if either is a non-HeapObject. |
| __ And(tmp, left, Operand(right)); |
| __ And(at, tmp, Operand(kSmiTagMask)); |
| __ Branch(&fail, eq, at, Operand(zero_reg)); |
| __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); |
| __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); |
| __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE)); |
| __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
| __ Branch(&fail, ne, tmp, Operand(tmp2)); |
| __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); |
| __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); |
| __ Branch(&ok, eq, tmp, Operand(tmp2)); |
| __ bind(&fail); |
| __ LoadRoot(v0, Heap::kFalseValueRootIndex); |
| __ jmp(&done); |
| __ bind(&ok); |
| __ LoadRoot(v0, Heap::kTrueValueRootIndex); |
| __ bind(&done); |
| |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList<Expression*>* args) { |
| VisitForAccumulatorValue(args->at(0)); |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset)); |
| __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask)); |
| |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through); |
| |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| VisitForAccumulatorValue(args->at(0)); |
| |
| if (FLAG_debug_code) { |
| __ AbortIfNotString(v0); |
| } |
| |
| __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset)); |
| __ IndexFromHash(v0, v0); |
| |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::EmitFastAsciiArrayJoin(ZoneList<Expression*>* args) { |
| Label bailout, done, one_char_separator, long_separator, |
| non_trivial_array, not_size_one_array, loop, |
| empty_separator_loop, one_char_separator_loop, |
| one_char_separator_loop_entry, long_separator_loop; |
| |
| ASSERT(args->length() == 2); |
| VisitForStackValue(args->at(1)); |
| VisitForAccumulatorValue(args->at(0)); |
| |
| // All aliases of the same register have disjoint lifetimes. |
| Register array = v0; |
| Register elements = no_reg; // Will be v0. |
| Register result = no_reg; // Will be v0. |
| Register separator = a1; |
| Register array_length = a2; |
| Register result_pos = no_reg; // Will be a2. |
| Register string_length = a3; |
| Register string = t0; |
| Register element = t1; |
| Register elements_end = t2; |
| Register scratch1 = t3; |
| Register scratch2 = t5; |
| Register scratch3 = t4; |
| Register scratch4 = v1; |
| |
| // Separator operand is on the stack. |
| __ pop(separator); |
| |
| // Check that the array is a JSArray. |
| __ JumpIfSmi(array, &bailout); |
| __ GetObjectType(array, scratch1, scratch2); |
| __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE)); |
| |
| // Check that the array has fast elements. |
| __ CheckFastElements(scratch1, scratch2, &bailout); |
| |
| // If the array has length zero, return the empty string. |
| __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); |
| __ SmiUntag(array_length); |
| __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg)); |
| __ LoadRoot(v0, Heap::kEmptyStringRootIndex); |
| __ Branch(&done); |
| |
| __ bind(&non_trivial_array); |
| |
| // Get the FixedArray containing array's elements. |
| elements = array; |
| __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset)); |
| array = no_reg; // End of array's live range. |
| |
| // Check that all array elements are sequential ASCII strings, and |
| // accumulate the sum of their lengths, as a smi-encoded value. |
| __ mov(string_length, zero_reg); |
| __ Addu(element, |
| elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ sll(elements_end, array_length, kPointerSizeLog2); |
| __ Addu(elements_end, element, elements_end); |
| // Loop condition: while (element < elements_end). |
| // Live values in registers: |
| // elements: Fixed array of strings. |
| // array_length: Length of the fixed array of strings (not smi) |
| // separator: Separator string |
| // string_length: Accumulated sum of string lengths (smi). |
| // element: Current array element. |
| // elements_end: Array end. |
| if (FLAG_debug_code) { |
| __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin", |
| array_length, Operand(zero_reg)); |
| } |
| __ bind(&loop); |
| __ lw(string, MemOperand(element)); |
| __ Addu(element, element, kPointerSize); |
| __ JumpIfSmi(string, &bailout); |
| __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); |
| __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); |
| __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset)); |
| __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3); |
| __ BranchOnOverflow(&bailout, scratch3); |
| __ Branch(&loop, lt, element, Operand(elements_end)); |
| |
| // If array_length is 1, return elements[0], a string. |
| __ Branch(¬_size_one_array, ne, array_length, Operand(1)); |
| __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize)); |
| __ Branch(&done); |
| |
| __ bind(¬_size_one_array); |
| |
| // Live values in registers: |
| // separator: Separator string |
| // array_length: Length of the array. |
| // string_length: Sum of string lengths (smi). |
| // elements: FixedArray of strings. |
| |
| // Check that the separator is a flat ASCII string. |
| __ JumpIfSmi(separator, &bailout); |
| __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); |
| __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); |
| |
| // Add (separator length times array_length) - separator length to the |
| // string_length to get the length of the result string. array_length is not |
| // smi but the other values are, so the result is a smi. |
| __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset)); |
| __ Subu(string_length, string_length, Operand(scratch1)); |
| __ Mult(array_length, scratch1); |
| // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are |
| // zero. |
| __ mfhi(scratch2); |
| __ Branch(&bailout, ne, scratch2, Operand(zero_reg)); |
| __ mflo(scratch2); |
| __ And(scratch3, scratch2, Operand(0x80000000)); |
| __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); |
| __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3); |
| __ BranchOnOverflow(&bailout, scratch3); |
| __ SmiUntag(string_length); |
| |
| // Get first element in the array to free up the elements register to be used |
| // for the result. |
| __ Addu(element, |
| elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| result = elements; // End of live range for elements. |
| elements = no_reg; |
| // Live values in registers: |
| // element: First array element |
| // separator: Separator string |
| // string_length: Length of result string (not smi) |
| // array_length: Length of the array. |
| __ AllocateAsciiString(result, |
| string_length, |
| scratch1, |
| scratch2, |
| elements_end, |
| &bailout); |
| // Prepare for looping. Set up elements_end to end of the array. Set |
| // result_pos to the position of the result where to write the first |
| // character. |
| __ sll(elements_end, array_length, kPointerSizeLog2); |
| __ Addu(elements_end, element, elements_end); |
| result_pos = array_length; // End of live range for array_length. |
| array_length = no_reg; |
| __ Addu(result_pos, |
| result, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| |
| // Check the length of the separator. |
| __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset)); |
| __ li(at, Operand(Smi::FromInt(1))); |
| __ Branch(&one_char_separator, eq, scratch1, Operand(at)); |
| __ Branch(&long_separator, gt, scratch1, Operand(at)); |
| |
| // Empty separator case. |
| __ bind(&empty_separator_loop); |
| // Live values in registers: |
| // result_pos: the position to which we are currently copying characters. |
| // element: Current array element. |
| // elements_end: Array end. |
| |
| // Copy next array element to the result. |
| __ lw(string, MemOperand(element)); |
| __ Addu(element, element, kPointerSize); |
| __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); |
| __ SmiUntag(string_length); |
| __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); |
| __ CopyBytes(string, result_pos, string_length, scratch1); |
| // End while (element < elements_end). |
| __ Branch(&empty_separator_loop, lt, element, Operand(elements_end)); |
| ASSERT(result.is(v0)); |
| __ Branch(&done); |
| |
| // One-character separator case. |
| __ bind(&one_char_separator); |
| // Replace separator with its ascii character value. |
| __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize)); |
| // Jump into the loop after the code that copies the separator, so the first |
| // element is not preceded by a separator. |
| __ jmp(&one_char_separator_loop_entry); |
| |
| __ bind(&one_char_separator_loop); |
| // Live values in registers: |
| // result_pos: the position to which we are currently copying characters. |
| // element: Current array element. |
| // elements_end: Array end. |
| // separator: Single separator ascii char (in lower byte). |
| |
| // Copy the separator character to the result. |
| __ sb(separator, MemOperand(result_pos)); |
| __ Addu(result_pos, result_pos, 1); |
| |
| // Copy next array element to the result. |
| __ bind(&one_char_separator_loop_entry); |
| __ lw(string, MemOperand(element)); |
| __ Addu(element, element, kPointerSize); |
| __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); |
| __ SmiUntag(string_length); |
| __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); |
| __ CopyBytes(string, result_pos, string_length, scratch1); |
| // End while (element < elements_end). |
| __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end)); |
| ASSERT(result.is(v0)); |
| __ Branch(&done); |
| |
| // Long separator case (separator is more than one character). Entry is at the |
| // label long_separator below. |
| __ bind(&long_separator_loop); |
| // Live values in registers: |
| // result_pos: the position to which we are currently copying characters. |
| // element: Current array element. |
| // elements_end: Array end. |
| // separator: Separator string. |
| |
| // Copy the separator to the result. |
| __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset)); |
| __ SmiUntag(string_length); |
| __ Addu(string, |
| separator, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ CopyBytes(string, result_pos, string_length, scratch1); |
| |
| __ bind(&long_separator); |
| __ lw(string, MemOperand(element)); |
| __ Addu(element, element, kPointerSize); |
| __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); |
| __ SmiUntag(string_length); |
| __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); |
| __ CopyBytes(string, result_pos, string_length, scratch1); |
| // End while (element < elements_end). |
| __ Branch(&long_separator_loop, lt, element, Operand(elements_end)); |
| ASSERT(result.is(v0)); |
| __ Branch(&done); |
| |
| __ bind(&bailout); |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| __ bind(&done); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { |
| Handle<String> name = expr->name(); |
| if (name->length() > 0 && name->Get(0) == '_') { |
| Comment cmnt(masm_, "[ InlineRuntimeCall"); |
| EmitInlineRuntimeCall(expr); |
| return; |
| } |
| |
| Comment cmnt(masm_, "[ CallRuntime"); |
| ZoneList<Expression*>* args = expr->arguments(); |
| |
| if (expr->is_jsruntime()) { |
| // Prepare for calling JS runtime function. |
| __ lw(a0, GlobalObjectOperand()); |
| __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset)); |
| __ push(a0); |
| } |
| |
| // Push the arguments ("left-to-right"). |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| VisitForStackValue(args->at(i)); |
| } |
| |
| if (expr->is_jsruntime()) { |
| // Call the JS runtime function. |
| __ li(a2, Operand(expr->name())); |
| RelocInfo::Mode mode = RelocInfo::CODE_TARGET; |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); |
| __ Call(ic, mode, expr->id()); |
| // Restore context register. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } else { |
| // Call the C runtime function. |
| __ CallRuntime(expr->function(), arg_count); |
| } |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { |
| switch (expr->op()) { |
| case Token::DELETE: { |
| Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); |
| Property* property = expr->expression()->AsProperty(); |
| VariableProxy* proxy = expr->expression()->AsVariableProxy(); |
| |
| if (property != NULL) { |
| VisitForStackValue(property->obj()); |
| VisitForStackValue(property->key()); |
| __ li(a1, Operand(Smi::FromInt(strict_mode_flag()))); |
| __ push(a1); |
| __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); |
| context()->Plug(v0); |
| } else if (proxy != NULL) { |
| Variable* var = proxy->var(); |
| // Delete of an unqualified identifier is disallowed in strict mode |
| // but "delete this" is allowed. |
| ASSERT(strict_mode_flag() == kNonStrictMode || var->is_this()); |
| if (var->IsUnallocated()) { |
| __ lw(a2, GlobalObjectOperand()); |
| __ li(a1, Operand(var->name())); |
| __ li(a0, Operand(Smi::FromInt(kNonStrictMode))); |
| __ Push(a2, a1, a0); |
| __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); |
| context()->Plug(v0); |
| } else if (var->IsStackAllocated() || var->IsContextSlot()) { |
| // Result of deleting non-global, non-dynamic variables is false. |
| // The subexpression does not have side effects. |
| context()->Plug(var->is_this()); |
| } else { |
| // Non-global variable. Call the runtime to try to delete from the |
| // context where the variable was introduced. |
| __ push(context_register()); |
| __ li(a2, Operand(var->name())); |
| __ push(a2); |
| __ CallRuntime(Runtime::kDeleteContextSlot, 2); |
| context()->Plug(v0); |
| } |
| } else { |
| // Result of deleting non-property, non-variable reference is true. |
| // The subexpression may have side effects. |
| VisitForEffect(expr->expression()); |
| context()->Plug(true); |
| } |
| break; |
| } |
| |
| case Token::VOID: { |
| Comment cmnt(masm_, "[ UnaryOperation (VOID)"); |
| VisitForEffect(expr->expression()); |
| context()->Plug(Heap::kUndefinedValueRootIndex); |
| break; |
| } |
| |
| case Token::NOT: { |
| Comment cmnt(masm_, "[ UnaryOperation (NOT)"); |
| if (context()->IsEffect()) { |
| // Unary NOT has no side effects so it's only necessary to visit the |
| // subexpression. Match the optimizing compiler by not branching. |
| VisitForEffect(expr->expression()); |
| } else { |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| |
| // Notice that the labels are swapped. |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_false, &if_true, &fall_through); |
| if (context()->IsTest()) ForwardBailoutToChild(expr); |
| VisitForControl(expr->expression(), if_true, if_false, fall_through); |
| context()->Plug(if_false, if_true); // Labels swapped. |
| } |
| break; |
| } |
| |
| case Token::TYPEOF: { |
| Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); |
| { StackValueContext context(this); |
| VisitForTypeofValue(expr->expression()); |
| } |
| __ CallRuntime(Runtime::kTypeof, 1); |
| context()->Plug(v0); |
| break; |
| } |
| |
| case Token::ADD: { |
| Comment cmt(masm_, "[ UnaryOperation (ADD)"); |
| VisitForAccumulatorValue(expr->expression()); |
| Label no_conversion; |
| __ JumpIfSmi(result_register(), &no_conversion); |
| __ mov(a0, result_register()); |
| ToNumberStub convert_stub; |
| __ CallStub(&convert_stub); |
| __ bind(&no_conversion); |
| context()->Plug(result_register()); |
| break; |
| } |
| |
| case Token::SUB: |
| EmitUnaryOperation(expr, "[ UnaryOperation (SUB)"); |
| break; |
| |
| case Token::BIT_NOT: |
| EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)"); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr, |
| const char* comment) { |
| // TODO(svenpanne): Allowing format strings in Comment would be nice here... |
| Comment cmt(masm_, comment); |
| bool can_overwrite = expr->expression()->ResultOverwriteAllowed(); |
| UnaryOverwriteMode overwrite = |
| can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; |
| UnaryOpStub stub(expr->op(), overwrite); |
| // GenericUnaryOpStub expects the argument to be in a0. |
| VisitForAccumulatorValue(expr->expression()); |
| SetSourcePosition(expr->position()); |
| __ mov(a0, result_register()); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); |
| context()->Plug(v0); |
| } |
| |
| |
| void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { |
| Comment cmnt(masm_, "[ CountOperation"); |
| SetSourcePosition(expr->position()); |
| |
| // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' |
| // as the left-hand side. |
| if (!expr->expression()->IsValidLeftHandSide()) { |
| VisitForEffect(expr->expression()); |
| return; |
| } |
| |
| // Expression can only be a property, a global or a (parameter or local) |
| // slot. |
| enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; |
| LhsKind assign_type = VARIABLE; |
| Property* prop = expr->expression()->AsProperty(); |
| // In case of a property we use the uninitialized expression context |
| // of the key to detect a named property. |
| if (prop != NULL) { |
| assign_type = |
| (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; |
| } |
| |
| // Evaluate expression and get value. |
| if (assign_type == VARIABLE) { |
| ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); |
| AccumulatorValueContext context(this); |
| EmitVariableLoad(expr->expression()->AsVariableProxy()); |
| } else { |
| // Reserve space for result of postfix operation. |
| if (expr->is_postfix() && !context()->IsEffect()) { |
| __ li(at, Operand(Smi::FromInt(0))); |
| __ push(at); |
| } |
| if (assign_type == NAMED_PROPERTY) { |
| // Put the object both on the stack and in the accumulator. |
| VisitForAccumulatorValue(prop->obj()); |
| __ push(v0); |
| EmitNamedPropertyLoad(prop); |
| } else { |
| VisitForStackValue(prop->obj()); |
| VisitForAccumulatorValue(prop->key()); |
| __ lw(a1, MemOperand(sp, 0)); |
| __ push(v0); |
| EmitKeyedPropertyLoad(prop); |
| } |
| } |
| |
| // We need a second deoptimization point after loading the value |
| // in case evaluating the property load my have a side effect. |
| if (assign_type == VARIABLE) { |
| PrepareForBailout(expr->expression(), TOS_REG); |
| } else { |
| PrepareForBailoutForId(expr->CountId(), TOS_REG); |
| } |
| |
| // Call ToNumber only if operand is not a smi. |
| Label no_conversion; |
| __ JumpIfSmi(v0, &no_conversion); |
| __ mov(a0, v0); |
| ToNumberStub convert_stub; |
| __ CallStub(&convert_stub); |
| __ bind(&no_conversion); |
| |
| // Save result for postfix expressions. |
| if (expr->is_postfix()) { |
| if (!context()->IsEffect()) { |
| // Save the result on the stack. If we have a named or keyed property |
| // we store the result under the receiver that is currently on top |
| // of the stack. |
| switch (assign_type) { |
| case VARIABLE: |
| __ push(v0); |
| break; |
| case NAMED_PROPERTY: |
| __ sw(v0, MemOperand(sp, kPointerSize)); |
| break; |
| case KEYED_PROPERTY: |
| __ sw(v0, MemOperand(sp, 2 * kPointerSize)); |
| break; |
| } |
| } |
| } |
| __ mov(a0, result_register()); |
| |
| // Inline smi case if we are in a loop. |
| Label stub_call, done; |
| JumpPatchSite patch_site(masm_); |
| |
| int count_value = expr->op() == Token::INC ? 1 : -1; |
| __ li(a1, Operand(Smi::FromInt(count_value))); |
| |
| if (ShouldInlineSmiCase(expr->op())) { |
| __ AdduAndCheckForOverflow(v0, a0, a1, t0); |
| __ BranchOnOverflow(&stub_call, t0); // Do stub on overflow. |
| |
| // We could eliminate this smi check if we split the code at |
| // the first smi check before calling ToNumber. |
| patch_site.EmitJumpIfSmi(v0, &done); |
| __ bind(&stub_call); |
| } |
| |
| // Record position before stub call. |
| SetSourcePosition(expr->position()); |
| |
| BinaryOpStub stub(Token::ADD, NO_OVERWRITE); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId()); |
| patch_site.EmitPatchInfo(); |
| __ bind(&done); |
| |
| // Store the value returned in v0. |
| switch (assign_type) { |
| case VARIABLE: |
| if (expr->is_postfix()) { |
| { EffectContext context(this); |
| EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), |
| Token::ASSIGN); |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| context.Plug(v0); |
| } |
| // For all contexts except EffectConstant we have the result on |
| // top of the stack. |
| if (!context()->IsEffect()) { |
| context()->PlugTOS(); |
| } |
| } else { |
| EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), |
| Token::ASSIGN); |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| context()->Plug(v0); |
| } |
| break; |
| case NAMED_PROPERTY: { |
| __ mov(a0, result_register()); // Value. |
| __ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Name. |
| __ pop(a1); // Receiver. |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| if (expr->is_postfix()) { |
| if (!context()->IsEffect()) { |
| context()->PlugTOS(); |
| } |
| } else { |
| context()->Plug(v0); |
| } |
| break; |
| } |
| case KEYED_PROPERTY: { |
| __ mov(a0, result_register()); // Value. |
| __ pop(a1); // Key. |
| __ pop(a2); // Receiver. |
| Handle<Code> ic = is_strict_mode() |
| ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
| : isolate()->builtins()->KeyedStoreIC_Initialize(); |
| __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); |
| PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); |
| if (expr->is_postfix()) { |
| if (!context()->IsEffect()) { |
| context()->PlugTOS(); |
| } |
| } else { |
| context()->Plug(v0); |
| } |
| break; |
| } |
| } |
| } |
| |
| |
| void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { |
| ASSERT(!context()->IsEffect()); |
| ASSERT(!context()->IsTest()); |
| VariableProxy* proxy = expr->AsVariableProxy(); |
| if (proxy != NULL && proxy->var()->IsUnallocated()) { |
| Comment cmnt(masm_, "Global variable"); |
| __ lw(a0, GlobalObjectOperand()); |
| __ li(a2, Operand(proxy->name())); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| // Use a regular load, not a contextual load, to avoid a reference |
| // error. |
| __ Call(ic); |
| PrepareForBailout(expr, TOS_REG); |
| context()->Plug(v0); |
| } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { |
| Label done, slow; |
| |
| // Generate code for loading from variables potentially shadowed |
| // by eval-introduced variables. |
| EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done); |
| |
| __ bind(&slow); |
| __ li(a0, Operand(proxy->name())); |
| __ Push(cp, a0); |
| __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
| PrepareForBailout(expr, TOS_REG); |
| __ bind(&done); |
| |
| context()->Plug(v0); |
| } else { |
| // This expression cannot throw a reference error at the top level. |
| VisitInCurrentContext(expr); |
| } |
| } |
| |
| void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, |
| Handle<String> check, |
| Label* if_true, |
| Label* if_false, |
| Label* fall_through) { |
| { AccumulatorValueContext context(this); |
| VisitForTypeofValue(expr); |
| } |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| |
| if (check->Equals(isolate()->heap()->number_symbol())) { |
| __ JumpIfSmi(v0, if_true); |
| __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| Split(eq, v0, Operand(at), if_true, if_false, fall_through); |
| } else if (check->Equals(isolate()->heap()->string_symbol())) { |
| __ JumpIfSmi(v0, if_false); |
| // Check for undetectable objects => false. |
| __ GetObjectType(v0, v0, a1); |
| __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE)); |
| __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); |
| __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); |
| Split(eq, a1, Operand(zero_reg), |
| if_true, if_false, fall_through); |
| } else if (check->Equals(isolate()->heap()->boolean_symbol())) { |
| __ LoadRoot(at, Heap::kTrueValueRootIndex); |
| __ Branch(if_true, eq, v0, Operand(at)); |
| __ LoadRoot(at, Heap::kFalseValueRootIndex); |
| Split(eq, v0, Operand(at), if_true, if_false, fall_through); |
| } else if (FLAG_harmony_typeof && |
| check->Equals(isolate()->heap()->null_symbol())) { |
| __ LoadRoot(at, Heap::kNullValueRootIndex); |
| Split(eq, v0, Operand(at), if_true, if_false, fall_through); |
| } else if (check->Equals(isolate()->heap()->undefined_symbol())) { |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(if_true, eq, v0, Operand(at)); |
| __ JumpIfSmi(v0, if_false); |
| // Check for undetectable objects => true. |
| __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); |
| __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); |
| Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); |
| } else if (check->Equals(isolate()->heap()->function_symbol())) { |
| __ JumpIfSmi(v0, if_false); |
| __ GetObjectType(v0, a1, v0); // Leave map in a1. |
| Split(ge, v0, Operand(FIRST_CALLABLE_SPEC_OBJECT_TYPE), |
| if_true, if_false, fall_through); |
| |
| } else if (check->Equals(isolate()->heap()->object_symbol())) { |
| __ JumpIfSmi(v0, if_false); |
| if (!FLAG_harmony_typeof) { |
| __ LoadRoot(at, Heap::kNullValueRootIndex); |
| __ Branch(if_true, eq, v0, Operand(at)); |
| } |
| // Check for JS objects => true. |
| __ GetObjectType(v0, v0, a1); |
| __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset)); |
| __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| // Check for undetectable objects => false. |
| __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); |
| __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); |
| Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); |
| } else { |
| if (if_false != fall_through) __ jmp(if_false); |
| } |
| } |
| |
| |
| void FullCodeGenerator::EmitLiteralCompareUndefined(Expression* expr, |
| Label* if_true, |
| Label* if_false, |
| Label* fall_through) { |
| VisitForAccumulatorValue(expr); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| Split(eq, v0, Operand(at), if_true, if_false, fall_through); |
| } |
| |
| |
| void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { |
| Comment cmnt(masm_, "[ CompareOperation"); |
| SetSourcePosition(expr->position()); |
| |
| // Always perform the comparison for its control flow. Pack the result |
| // into the expression's context after the comparison is performed. |
| |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| // First we try a fast inlined version of the compare when one of |
| // the operands is a literal. |
| if (TryLiteralCompare(expr, if_true, if_false, fall_through)) { |
| context()->Plug(if_true, if_false); |
| return; |
| } |
| |
| Token::Value op = expr->op(); |
| VisitForStackValue(expr->left()); |
| switch (op) { |
| case Token::IN: |
| VisitForStackValue(expr->right()); |
| __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); |
| PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); |
| __ LoadRoot(t0, Heap::kTrueValueRootIndex); |
| Split(eq, v0, Operand(t0), if_true, if_false, fall_through); |
| break; |
| |
| case Token::INSTANCEOF: { |
| VisitForStackValue(expr->right()); |
| InstanceofStub stub(InstanceofStub::kNoFlags); |
| __ CallStub(&stub); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| // The stub returns 0 for true. |
| Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through); |
| break; |
| } |
| |
| default: { |
| VisitForAccumulatorValue(expr->right()); |
| Condition cc = eq; |
| switch (op) { |
| case Token::EQ_STRICT: |
| case Token::EQ: |
| cc = eq; |
| __ mov(a0, result_register()); |
| __ pop(a1); |
| break; |
| case Token::LT: |
| cc = lt; |
| __ mov(a0, result_register()); |
| __ pop(a1); |
| break; |
| case Token::GT: |
| // Reverse left and right sides to obtain ECMA-262 conversion order. |
| cc = lt; |
| __ mov(a1, result_register()); |
| __ pop(a0); |
| break; |
| case Token::LTE: |
| // Reverse left and right sides to obtain ECMA-262 conversion order. |
| cc = ge; |
| __ mov(a1, result_register()); |
| __ pop(a0); |
| break; |
| case Token::GTE: |
| cc = ge; |
| __ mov(a0, result_register()); |
| __ pop(a1); |
| break; |
| case Token::IN: |
| case Token::INSTANCEOF: |
| default: |
| UNREACHABLE(); |
| } |
| |
| bool inline_smi_code = ShouldInlineSmiCase(op); |
| JumpPatchSite patch_site(masm_); |
| if (inline_smi_code) { |
| Label slow_case; |
| __ Or(a2, a0, Operand(a1)); |
| patch_site.EmitJumpIfNotSmi(a2, &slow_case); |
| Split(cc, a1, Operand(a0), if_true, if_false, NULL); |
| __ bind(&slow_case); |
| } |
| // Record position and call the compare IC. |
| SetSourcePosition(expr->position()); |
| Handle<Code> ic = CompareIC::GetUninitialized(op); |
| __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); |
| patch_site.EmitPatchInfo(); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through); |
| } |
| } |
| |
| // Convert the result of the comparison into one expected for this |
| // expression's context. |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::VisitCompareToNull(CompareToNull* expr) { |
| Comment cmnt(masm_, "[ CompareToNull"); |
| Label materialize_true, materialize_false; |
| Label* if_true = NULL; |
| Label* if_false = NULL; |
| Label* fall_through = NULL; |
| context()->PrepareTest(&materialize_true, &materialize_false, |
| &if_true, &if_false, &fall_through); |
| |
| VisitForAccumulatorValue(expr->expression()); |
| PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); |
| __ mov(a0, result_register()); |
| __ LoadRoot(a1, Heap::kNullValueRootIndex); |
| if (expr->is_strict()) { |
| Split(eq, a0, Operand(a1), if_true, if_false, fall_through); |
| } else { |
| __ Branch(if_true, eq, a0, Operand(a1)); |
| __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); |
| __ Branch(if_true, eq, a0, Operand(a1)); |
| __ And(at, a0, Operand(kSmiTagMask)); |
| __ Branch(if_false, eq, at, Operand(zero_reg)); |
| // It can be an undetectable object. |
| __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset)); |
| __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); |
| Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); |
| } |
| context()->Plug(if_true, if_false); |
| } |
| |
| |
| void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { |
| __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| context()->Plug(v0); |
| } |
| |
| |
| Register FullCodeGenerator::result_register() { |
| return v0; |
| } |
| |
| |
| Register FullCodeGenerator::context_register() { |
| return cp; |
| } |
| |
| |
| void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { |
| ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); |
| __ sw(value, MemOperand(fp, frame_offset)); |
| } |
| |
| |
| void FullCodeGenerator::LoadContextField(Register dst, int context_index) { |
| __ lw(dst, ContextOperand(cp, context_index)); |
| } |
| |
| |
| void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { |
| Scope* declaration_scope = scope()->DeclarationScope(); |
| if (declaration_scope->is_global_scope()) { |
| // Contexts nested in the global context have a canonical empty function |
| // as their closure, not the anonymous closure containing the global |
| // code. Pass a smi sentinel and let the runtime look up the empty |
| // function. |
| __ li(at, Operand(Smi::FromInt(0))); |
| } else if (declaration_scope->is_eval_scope()) { |
| // Contexts created by a call to eval have the same closure as the |
| // context calling eval, not the anonymous closure containing the eval |
| // code. Fetch it from the context. |
| __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX)); |
| } else { |
| ASSERT(declaration_scope->is_function_scope()); |
| __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| } |
| __ push(at); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Non-local control flow support. |
| |
| void FullCodeGenerator::EnterFinallyBlock() { |
| ASSERT(!result_register().is(a1)); |
| // Store result register while executing finally block. |
| __ push(result_register()); |
| // Cook return address in link register to stack (smi encoded Code* delta). |
| __ Subu(a1, ra, Operand(masm_->CodeObject())); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| STATIC_ASSERT(0 == kSmiTag); |
| __ Addu(a1, a1, Operand(a1)); // Convert to smi. |
| __ push(a1); |
| } |
| |
| |
| void FullCodeGenerator::ExitFinallyBlock() { |
| ASSERT(!result_register().is(a1)); |
| // Restore result register from stack. |
| __ pop(a1); |
| // Uncook return address and return. |
| __ pop(result_register()); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| __ sra(a1, a1, 1); // Un-smi-tag value. |
| __ Addu(at, a1, Operand(masm_->CodeObject())); |
| __ Jump(at); |
| } |
| |
| |
| #undef __ |
| |
| #define __ ACCESS_MASM(masm()) |
| |
| FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( |
| int* stack_depth, |
| int* context_length) { |
| // The macros used here must preserve the result register. |
| |
| // Because the handler block contains the context of the finally |
| // code, we can restore it directly from there for the finally code |
| // rather than iteratively unwinding contexts via their previous |
| // links. |
| __ Drop(*stack_depth); // Down to the handler block. |
| if (*context_length > 0) { |
| // Restore the context to its dedicated register and the stack. |
| __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset)); |
| __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| __ PopTryHandler(); |
| __ Call(finally_entry_); |
| |
| *stack_depth = 0; |
| *context_length = 0; |
| return previous_; |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |