| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_OBJECTS_H_ |
| #define V8_OBJECTS_H_ |
| |
| #include "allocation.h" |
| #include "builtins.h" |
| #include "list.h" |
| #include "smart-array-pointer.h" |
| #include "unicode-inl.h" |
| #if V8_TARGET_ARCH_ARM |
| #include "arm/constants-arm.h" |
| #elif V8_TARGET_ARCH_MIPS |
| #include "mips/constants-mips.h" |
| #endif |
| |
| // |
| // Most object types in the V8 JavaScript are described in this file. |
| // |
| // Inheritance hierarchy: |
| // - MaybeObject (an object or a failure) |
| // - Failure (immediate for marking failed operation) |
| // - Object |
| // - Smi (immediate small integer) |
| // - HeapObject (superclass for everything allocated in the heap) |
| // - JSReceiver (suitable for property access) |
| // - JSObject |
| // - JSArray |
| // - JSWeakMap |
| // - JSRegExp |
| // - JSFunction |
| // - GlobalObject |
| // - JSGlobalObject |
| // - JSBuiltinsObject |
| // - JSGlobalProxy |
| // - JSValue |
| // - JSMessageObject |
| // - JSProxy |
| // - JSFunctionProxy |
| // - FixedArrayBase |
| // - ByteArray |
| // - FixedArray |
| // - DescriptorArray |
| // - HashTable |
| // - Dictionary |
| // - SymbolTable |
| // - CompilationCacheTable |
| // - CodeCacheHashTable |
| // - MapCache |
| // - Context |
| // - JSFunctionResultCache |
| // - SerializedScopeInfo |
| // - FixedDoubleArray |
| // - ExternalArray |
| // - ExternalPixelArray |
| // - ExternalByteArray |
| // - ExternalUnsignedByteArray |
| // - ExternalShortArray |
| // - ExternalUnsignedShortArray |
| // - ExternalIntArray |
| // - ExternalUnsignedIntArray |
| // - ExternalFloatArray |
| // - String |
| // - SeqString |
| // - SeqAsciiString |
| // - SeqTwoByteString |
| // - SlicedString |
| // - ConsString |
| // - ExternalString |
| // - ExternalAsciiString |
| // - ExternalTwoByteString |
| // - HeapNumber |
| // - Code |
| // - Map |
| // - Oddball |
| // - Foreign |
| // - SharedFunctionInfo |
| // - Struct |
| // - AccessorInfo |
| // - AccessCheckInfo |
| // - InterceptorInfo |
| // - CallHandlerInfo |
| // - TemplateInfo |
| // - FunctionTemplateInfo |
| // - ObjectTemplateInfo |
| // - Script |
| // - SignatureInfo |
| // - TypeSwitchInfo |
| // - DebugInfo |
| // - BreakPointInfo |
| // - CodeCache |
| // |
| // Formats of Object*: |
| // Smi: [31 bit signed int] 0 |
| // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01 |
| // Failure: [30 bit signed int] 11 |
| |
| // Ecma-262 3rd 8.6.1 |
| enum PropertyAttributes { |
| NONE = v8::None, |
| READ_ONLY = v8::ReadOnly, |
| DONT_ENUM = v8::DontEnum, |
| DONT_DELETE = v8::DontDelete, |
| ABSENT = 16 // Used in runtime to indicate a property is absent. |
| // ABSENT can never be stored in or returned from a descriptor's attributes |
| // bitfield. It is only used as a return value meaning the attributes of |
| // a non-existent property. |
| }; |
| |
| namespace v8 { |
| namespace internal { |
| |
| enum ElementsKind { |
| // The "fast" kind for tagged values. Must be first to make it possible |
| // to efficiently check maps if they have fast elements. |
| FAST_ELEMENTS, |
| |
| // The "fast" kind for unwrapped, non-tagged double values. |
| FAST_DOUBLE_ELEMENTS, |
| |
| // The "slow" kind. |
| DICTIONARY_ELEMENTS, |
| NON_STRICT_ARGUMENTS_ELEMENTS, |
| // The "fast" kind for external arrays |
| EXTERNAL_BYTE_ELEMENTS, |
| EXTERNAL_UNSIGNED_BYTE_ELEMENTS, |
| EXTERNAL_SHORT_ELEMENTS, |
| EXTERNAL_UNSIGNED_SHORT_ELEMENTS, |
| EXTERNAL_INT_ELEMENTS, |
| EXTERNAL_UNSIGNED_INT_ELEMENTS, |
| EXTERNAL_FLOAT_ELEMENTS, |
| EXTERNAL_DOUBLE_ELEMENTS, |
| EXTERNAL_PIXEL_ELEMENTS, |
| |
| // Derived constants from ElementsKind |
| FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND = EXTERNAL_BYTE_ELEMENTS, |
| LAST_EXTERNAL_ARRAY_ELEMENTS_KIND = EXTERNAL_PIXEL_ELEMENTS, |
| FIRST_ELEMENTS_KIND = FAST_ELEMENTS, |
| LAST_ELEMENTS_KIND = EXTERNAL_PIXEL_ELEMENTS |
| }; |
| |
| static const int kElementsKindCount = |
| LAST_ELEMENTS_KIND - FIRST_ELEMENTS_KIND + 1; |
| |
| // PropertyDetails captures type and attributes for a property. |
| // They are used both in property dictionaries and instance descriptors. |
| class PropertyDetails BASE_EMBEDDED { |
| public: |
| PropertyDetails(PropertyAttributes attributes, |
| PropertyType type, |
| int index = 0) { |
| ASSERT(type != ELEMENTS_TRANSITION); |
| ASSERT(TypeField::is_valid(type)); |
| ASSERT(AttributesField::is_valid(attributes)); |
| ASSERT(StorageField::is_valid(index)); |
| |
| value_ = TypeField::encode(type) |
| | AttributesField::encode(attributes) |
| | StorageField::encode(index); |
| |
| ASSERT(type == this->type()); |
| ASSERT(attributes == this->attributes()); |
| ASSERT(index == this->index()); |
| } |
| |
| PropertyDetails(PropertyAttributes attributes, |
| PropertyType type, |
| ElementsKind elements_kind) { |
| ASSERT(type == ELEMENTS_TRANSITION); |
| ASSERT(TypeField::is_valid(type)); |
| ASSERT(AttributesField::is_valid(attributes)); |
| ASSERT(StorageField::is_valid(static_cast<int>(elements_kind))); |
| |
| value_ = TypeField::encode(type) |
| | AttributesField::encode(attributes) |
| | StorageField::encode(static_cast<int>(elements_kind)); |
| |
| ASSERT(type == this->type()); |
| ASSERT(attributes == this->attributes()); |
| ASSERT(elements_kind == this->elements_kind()); |
| } |
| |
| // Conversion for storing details as Object*. |
| explicit inline PropertyDetails(Smi* smi); |
| inline Smi* AsSmi(); |
| |
| PropertyType type() { return TypeField::decode(value_); } |
| |
| bool IsTransition() { |
| PropertyType t = type(); |
| ASSERT(t != INTERCEPTOR); |
| return t == MAP_TRANSITION || t == CONSTANT_TRANSITION || |
| t == ELEMENTS_TRANSITION; |
| } |
| |
| bool IsProperty() { |
| return type() < FIRST_PHANTOM_PROPERTY_TYPE; |
| } |
| |
| PropertyAttributes attributes() { return AttributesField::decode(value_); } |
| |
| int index() { return StorageField::decode(value_); } |
| |
| ElementsKind elements_kind() { |
| ASSERT(type() == ELEMENTS_TRANSITION); |
| return static_cast<ElementsKind>(StorageField::decode(value_)); |
| } |
| |
| inline PropertyDetails AsDeleted(); |
| |
| static bool IsValidIndex(int index) { |
| return StorageField::is_valid(index); |
| } |
| |
| bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; } |
| bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; } |
| bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; } |
| bool IsDeleted() { return DeletedField::decode(value_) != 0;} |
| |
| // Bit fields in value_ (type, shift, size). Must be public so the |
| // constants can be embedded in generated code. |
| class TypeField: public BitField<PropertyType, 0, 4> {}; |
| class AttributesField: public BitField<PropertyAttributes, 4, 3> {}; |
| class DeletedField: public BitField<uint32_t, 7, 1> {}; |
| class StorageField: public BitField<uint32_t, 8, 32-8> {}; |
| |
| static const int kInitialIndex = 1; |
| |
| private: |
| uint32_t value_; |
| }; |
| |
| |
| // Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER. |
| enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER }; |
| |
| |
| // PropertyNormalizationMode is used to specify whether to keep |
| // inobject properties when normalizing properties of a JSObject. |
| enum PropertyNormalizationMode { |
| CLEAR_INOBJECT_PROPERTIES, |
| KEEP_INOBJECT_PROPERTIES |
| }; |
| |
| |
| // NormalizedMapSharingMode is used to specify whether a map may be shared |
| // by different objects with normalized properties. |
| enum NormalizedMapSharingMode { |
| UNIQUE_NORMALIZED_MAP, |
| SHARED_NORMALIZED_MAP |
| }; |
| |
| |
| // Instance size sentinel for objects of variable size. |
| static const int kVariableSizeSentinel = 0; |
| |
| |
| // All Maps have a field instance_type containing a InstanceType. |
| // It describes the type of the instances. |
| // |
| // As an example, a JavaScript object is a heap object and its map |
| // instance_type is JS_OBJECT_TYPE. |
| // |
| // The names of the string instance types are intended to systematically |
| // mirror their encoding in the instance_type field of the map. The default |
| // encoding is considered TWO_BYTE. It is not mentioned in the name. ASCII |
| // encoding is mentioned explicitly in the name. Likewise, the default |
| // representation is considered sequential. It is not mentioned in the |
| // name. The other representations (eg, CONS, EXTERNAL) are explicitly |
| // mentioned. Finally, the string is either a SYMBOL_TYPE (if it is a |
| // symbol) or a STRING_TYPE (if it is not a symbol). |
| // |
| // NOTE: The following things are some that depend on the string types having |
| // instance_types that are less than those of all other types: |
| // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and |
| // Object::IsString. |
| // |
| // NOTE: Everything following JS_VALUE_TYPE is considered a |
| // JSObject for GC purposes. The first four entries here have typeof |
| // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'. |
| #define INSTANCE_TYPE_LIST_ALL(V) \ |
| V(SYMBOL_TYPE) \ |
| V(ASCII_SYMBOL_TYPE) \ |
| V(CONS_SYMBOL_TYPE) \ |
| V(CONS_ASCII_SYMBOL_TYPE) \ |
| V(EXTERNAL_SYMBOL_TYPE) \ |
| V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE) \ |
| V(EXTERNAL_ASCII_SYMBOL_TYPE) \ |
| V(STRING_TYPE) \ |
| V(ASCII_STRING_TYPE) \ |
| V(CONS_STRING_TYPE) \ |
| V(CONS_ASCII_STRING_TYPE) \ |
| V(SLICED_STRING_TYPE) \ |
| V(EXTERNAL_STRING_TYPE) \ |
| V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE) \ |
| V(EXTERNAL_ASCII_STRING_TYPE) \ |
| V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE) \ |
| \ |
| V(MAP_TYPE) \ |
| V(CODE_TYPE) \ |
| V(ODDBALL_TYPE) \ |
| V(JS_GLOBAL_PROPERTY_CELL_TYPE) \ |
| \ |
| V(HEAP_NUMBER_TYPE) \ |
| V(FOREIGN_TYPE) \ |
| V(BYTE_ARRAY_TYPE) \ |
| /* Note: the order of these external array */ \ |
| /* types is relied upon in */ \ |
| /* Object::IsExternalArray(). */ \ |
| V(EXTERNAL_BYTE_ARRAY_TYPE) \ |
| V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) \ |
| V(EXTERNAL_SHORT_ARRAY_TYPE) \ |
| V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) \ |
| V(EXTERNAL_INT_ARRAY_TYPE) \ |
| V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) \ |
| V(EXTERNAL_FLOAT_ARRAY_TYPE) \ |
| V(EXTERNAL_PIXEL_ARRAY_TYPE) \ |
| V(FILLER_TYPE) \ |
| \ |
| V(ACCESSOR_INFO_TYPE) \ |
| V(ACCESS_CHECK_INFO_TYPE) \ |
| V(INTERCEPTOR_INFO_TYPE) \ |
| V(CALL_HANDLER_INFO_TYPE) \ |
| V(FUNCTION_TEMPLATE_INFO_TYPE) \ |
| V(OBJECT_TEMPLATE_INFO_TYPE) \ |
| V(SIGNATURE_INFO_TYPE) \ |
| V(TYPE_SWITCH_INFO_TYPE) \ |
| V(SCRIPT_TYPE) \ |
| V(CODE_CACHE_TYPE) \ |
| V(POLYMORPHIC_CODE_CACHE_TYPE) \ |
| \ |
| V(FIXED_ARRAY_TYPE) \ |
| V(FIXED_DOUBLE_ARRAY_TYPE) \ |
| V(SHARED_FUNCTION_INFO_TYPE) \ |
| \ |
| V(JS_MESSAGE_OBJECT_TYPE) \ |
| \ |
| V(JS_VALUE_TYPE) \ |
| V(JS_OBJECT_TYPE) \ |
| V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \ |
| V(JS_GLOBAL_OBJECT_TYPE) \ |
| V(JS_BUILTINS_OBJECT_TYPE) \ |
| V(JS_GLOBAL_PROXY_TYPE) \ |
| V(JS_ARRAY_TYPE) \ |
| V(JS_PROXY_TYPE) \ |
| V(JS_WEAK_MAP_TYPE) \ |
| V(JS_REGEXP_TYPE) \ |
| \ |
| V(JS_FUNCTION_TYPE) \ |
| V(JS_FUNCTION_PROXY_TYPE) \ |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| #define INSTANCE_TYPE_LIST_DEBUGGER(V) \ |
| V(DEBUG_INFO_TYPE) \ |
| V(BREAK_POINT_INFO_TYPE) |
| #else |
| #define INSTANCE_TYPE_LIST_DEBUGGER(V) |
| #endif |
| |
| #define INSTANCE_TYPE_LIST(V) \ |
| INSTANCE_TYPE_LIST_ALL(V) \ |
| INSTANCE_TYPE_LIST_DEBUGGER(V) |
| |
| |
| // Since string types are not consecutive, this macro is used to |
| // iterate over them. |
| #define STRING_TYPE_LIST(V) \ |
| V(SYMBOL_TYPE, \ |
| kVariableSizeSentinel, \ |
| symbol, \ |
| Symbol) \ |
| V(ASCII_SYMBOL_TYPE, \ |
| kVariableSizeSentinel, \ |
| ascii_symbol, \ |
| AsciiSymbol) \ |
| V(CONS_SYMBOL_TYPE, \ |
| ConsString::kSize, \ |
| cons_symbol, \ |
| ConsSymbol) \ |
| V(CONS_ASCII_SYMBOL_TYPE, \ |
| ConsString::kSize, \ |
| cons_ascii_symbol, \ |
| ConsAsciiSymbol) \ |
| V(EXTERNAL_SYMBOL_TYPE, \ |
| ExternalTwoByteString::kSize, \ |
| external_symbol, \ |
| ExternalSymbol) \ |
| V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE, \ |
| ExternalTwoByteString::kSize, \ |
| external_symbol_with_ascii_data, \ |
| ExternalSymbolWithAsciiData) \ |
| V(EXTERNAL_ASCII_SYMBOL_TYPE, \ |
| ExternalAsciiString::kSize, \ |
| external_ascii_symbol, \ |
| ExternalAsciiSymbol) \ |
| V(STRING_TYPE, \ |
| kVariableSizeSentinel, \ |
| string, \ |
| String) \ |
| V(ASCII_STRING_TYPE, \ |
| kVariableSizeSentinel, \ |
| ascii_string, \ |
| AsciiString) \ |
| V(CONS_STRING_TYPE, \ |
| ConsString::kSize, \ |
| cons_string, \ |
| ConsString) \ |
| V(CONS_ASCII_STRING_TYPE, \ |
| ConsString::kSize, \ |
| cons_ascii_string, \ |
| ConsAsciiString) \ |
| V(SLICED_STRING_TYPE, \ |
| SlicedString::kSize, \ |
| sliced_string, \ |
| SlicedString) \ |
| V(SLICED_ASCII_STRING_TYPE, \ |
| SlicedString::kSize, \ |
| sliced_ascii_string, \ |
| SlicedAsciiString) \ |
| V(EXTERNAL_STRING_TYPE, \ |
| ExternalTwoByteString::kSize, \ |
| external_string, \ |
| ExternalString) \ |
| V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE, \ |
| ExternalTwoByteString::kSize, \ |
| external_string_with_ascii_data, \ |
| ExternalStringWithAsciiData) \ |
| V(EXTERNAL_ASCII_STRING_TYPE, \ |
| ExternalAsciiString::kSize, \ |
| external_ascii_string, \ |
| ExternalAsciiString) |
| |
| // A struct is a simple object a set of object-valued fields. Including an |
| // object type in this causes the compiler to generate most of the boilerplate |
| // code for the class including allocation and garbage collection routines, |
| // casts and predicates. All you need to define is the class, methods and |
| // object verification routines. Easy, no? |
| // |
| // Note that for subtle reasons related to the ordering or numerical values of |
| // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST |
| // manually. |
| #define STRUCT_LIST_ALL(V) \ |
| V(ACCESSOR_INFO, AccessorInfo, accessor_info) \ |
| V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \ |
| V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \ |
| V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \ |
| V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \ |
| V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \ |
| V(SIGNATURE_INFO, SignatureInfo, signature_info) \ |
| V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \ |
| V(SCRIPT, Script, script) \ |
| V(CODE_CACHE, CodeCache, code_cache) \ |
| V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| #define STRUCT_LIST_DEBUGGER(V) \ |
| V(DEBUG_INFO, DebugInfo, debug_info) \ |
| V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) |
| #else |
| #define STRUCT_LIST_DEBUGGER(V) |
| #endif |
| |
| #define STRUCT_LIST(V) \ |
| STRUCT_LIST_ALL(V) \ |
| STRUCT_LIST_DEBUGGER(V) |
| |
| // We use the full 8 bits of the instance_type field to encode heap object |
| // instance types. The high-order bit (bit 7) is set if the object is not a |
| // string, and cleared if it is a string. |
| const uint32_t kIsNotStringMask = 0x80; |
| const uint32_t kStringTag = 0x0; |
| const uint32_t kNotStringTag = 0x80; |
| |
| // Bit 6 indicates that the object is a symbol (if set) or not (if cleared). |
| // There are not enough types that the non-string types (with bit 7 set) can |
| // have bit 6 set too. |
| const uint32_t kIsSymbolMask = 0x40; |
| const uint32_t kNotSymbolTag = 0x0; |
| const uint32_t kSymbolTag = 0x40; |
| |
| // If bit 7 is clear then bit 2 indicates whether the string consists of |
| // two-byte characters or one-byte characters. |
| const uint32_t kStringEncodingMask = 0x4; |
| const uint32_t kTwoByteStringTag = 0x0; |
| const uint32_t kAsciiStringTag = 0x4; |
| |
| // If bit 7 is clear, the low-order 2 bits indicate the representation |
| // of the string. |
| const uint32_t kStringRepresentationMask = 0x03; |
| enum StringRepresentationTag { |
| kSeqStringTag = 0x0, |
| kConsStringTag = 0x1, |
| kExternalStringTag = 0x2, |
| kSlicedStringTag = 0x3 |
| }; |
| const uint32_t kIsIndirectStringMask = 0x1; |
| const uint32_t kIsIndirectStringTag = 0x1; |
| STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); |
| STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); |
| STATIC_ASSERT( |
| (kConsStringTag & kIsIndirectStringMask) == kIsIndirectStringTag); |
| STATIC_ASSERT( |
| (kSlicedStringTag & kIsIndirectStringMask) == kIsIndirectStringTag); |
| |
| // Use this mask to distinguish between cons and slice only after making |
| // sure that the string is one of the two (an indirect string). |
| const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag; |
| STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask) && kSlicedNotConsMask != 0); |
| |
| // If bit 7 is clear, then bit 3 indicates whether this two-byte |
| // string actually contains ascii data. |
| const uint32_t kAsciiDataHintMask = 0x08; |
| const uint32_t kAsciiDataHintTag = 0x08; |
| |
| |
| // A ConsString with an empty string as the right side is a candidate |
| // for being shortcut by the garbage collector unless it is a |
| // symbol. It's not common to have non-flat symbols, so we do not |
| // shortcut them thereby avoiding turning symbols into strings. See |
| // heap.cc and mark-compact.cc. |
| const uint32_t kShortcutTypeMask = |
| kIsNotStringMask | |
| kIsSymbolMask | |
| kStringRepresentationMask; |
| const uint32_t kShortcutTypeTag = kConsStringTag; |
| |
| |
| enum InstanceType { |
| // String types. |
| SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kSeqStringTag, |
| ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag, |
| CONS_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kConsStringTag, |
| CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag, |
| EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kExternalStringTag, |
| EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE = |
| kTwoByteStringTag | kSymbolTag | kExternalStringTag | kAsciiDataHintTag, |
| EXTERNAL_ASCII_SYMBOL_TYPE = |
| kAsciiStringTag | kSymbolTag | kExternalStringTag, |
| STRING_TYPE = kTwoByteStringTag | kSeqStringTag, |
| ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag, |
| CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag, |
| CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag, |
| SLICED_STRING_TYPE = kTwoByteStringTag | kSlicedStringTag, |
| SLICED_ASCII_STRING_TYPE = kAsciiStringTag | kSlicedStringTag, |
| EXTERNAL_STRING_TYPE = kTwoByteStringTag | kExternalStringTag, |
| EXTERNAL_STRING_WITH_ASCII_DATA_TYPE = |
| kTwoByteStringTag | kExternalStringTag | kAsciiDataHintTag, |
| // LAST_STRING_TYPE |
| EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag, |
| PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE, |
| |
| // Objects allocated in their own spaces (never in new space). |
| MAP_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE |
| CODE_TYPE, |
| ODDBALL_TYPE, |
| JS_GLOBAL_PROPERTY_CELL_TYPE, |
| |
| // "Data", objects that cannot contain non-map-word pointers to heap |
| // objects. |
| HEAP_NUMBER_TYPE, |
| FOREIGN_TYPE, |
| BYTE_ARRAY_TYPE, |
| EXTERNAL_BYTE_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE |
| EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE, |
| EXTERNAL_SHORT_ARRAY_TYPE, |
| EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE, |
| EXTERNAL_INT_ARRAY_TYPE, |
| EXTERNAL_UNSIGNED_INT_ARRAY_TYPE, |
| EXTERNAL_FLOAT_ARRAY_TYPE, |
| EXTERNAL_DOUBLE_ARRAY_TYPE, |
| EXTERNAL_PIXEL_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE |
| FIXED_DOUBLE_ARRAY_TYPE, |
| FILLER_TYPE, // LAST_DATA_TYPE |
| |
| // Structs. |
| ACCESSOR_INFO_TYPE, |
| ACCESS_CHECK_INFO_TYPE, |
| INTERCEPTOR_INFO_TYPE, |
| CALL_HANDLER_INFO_TYPE, |
| FUNCTION_TEMPLATE_INFO_TYPE, |
| OBJECT_TEMPLATE_INFO_TYPE, |
| SIGNATURE_INFO_TYPE, |
| TYPE_SWITCH_INFO_TYPE, |
| SCRIPT_TYPE, |
| CODE_CACHE_TYPE, |
| POLYMORPHIC_CODE_CACHE_TYPE, |
| // The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT |
| // is defined. However as include/v8.h contain some of the instance type |
| // constants always having them avoids them getting different numbers |
| // depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not. |
| DEBUG_INFO_TYPE, |
| BREAK_POINT_INFO_TYPE, |
| |
| FIXED_ARRAY_TYPE, |
| SHARED_FUNCTION_INFO_TYPE, |
| |
| JS_MESSAGE_OBJECT_TYPE, |
| |
| JS_VALUE_TYPE, // FIRST_NON_CALLABLE_OBJECT_TYPE, FIRST_JS_RECEIVER_TYPE |
| JS_OBJECT_TYPE, |
| JS_CONTEXT_EXTENSION_OBJECT_TYPE, |
| JS_GLOBAL_OBJECT_TYPE, |
| JS_BUILTINS_OBJECT_TYPE, |
| JS_GLOBAL_PROXY_TYPE, |
| JS_ARRAY_TYPE, |
| JS_PROXY_TYPE, |
| JS_WEAK_MAP_TYPE, |
| |
| JS_REGEXP_TYPE, // LAST_NONCALLABLE_SPEC_OBJECT_TYPE |
| |
| JS_FUNCTION_TYPE, // FIRST_CALLABLE_SPEC_OBJECT_TYPE |
| JS_FUNCTION_PROXY_TYPE, // LAST_CALLABLE_SPEC_OBJECT_TYPE |
| |
| // Pseudo-types |
| FIRST_TYPE = 0x0, |
| LAST_TYPE = JS_FUNCTION_PROXY_TYPE, |
| INVALID_TYPE = FIRST_TYPE - 1, |
| FIRST_NONSTRING_TYPE = MAP_TYPE, |
| // Boundaries for testing for an external array. |
| FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE, |
| LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_PIXEL_ARRAY_TYPE, |
| // Boundary for promotion to old data space/old pointer space. |
| LAST_DATA_TYPE = FILLER_TYPE, |
| // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy). |
| // Note that there is no range for JSObject or JSProxy, since their subtypes |
| // are not continuous in this enum! The enum ranges instead reflect the |
| // external class names, where proxies are treated as either ordinary objects, |
| // or functions. |
| FIRST_JS_RECEIVER_TYPE = JS_VALUE_TYPE, |
| LAST_JS_RECEIVER_TYPE = LAST_TYPE, |
| // Boundaries for testing the types for which typeof is "object". |
| FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_VALUE_TYPE, |
| LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE, |
| // Boundaries for testing the types for which typeof is "function". |
| FIRST_CALLABLE_SPEC_OBJECT_TYPE = JS_FUNCTION_TYPE, |
| LAST_CALLABLE_SPEC_OBJECT_TYPE = JS_FUNCTION_PROXY_TYPE, |
| // Boundaries for testing whether the type is a JavaScript object. |
| FIRST_SPEC_OBJECT_TYPE = FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, |
| LAST_SPEC_OBJECT_TYPE = LAST_CALLABLE_SPEC_OBJECT_TYPE |
| }; |
| |
| static const int kExternalArrayTypeCount = LAST_EXTERNAL_ARRAY_TYPE - |
| FIRST_EXTERNAL_ARRAY_TYPE + 1; |
| |
| STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType); |
| STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType); |
| STATIC_CHECK(FOREIGN_TYPE == Internals::kForeignType); |
| |
| |
| enum CompareResult { |
| LESS = -1, |
| EQUAL = 0, |
| GREATER = 1, |
| |
| NOT_EQUAL = GREATER |
| }; |
| |
| |
| #define DECL_BOOLEAN_ACCESSORS(name) \ |
| inline bool name(); \ |
| inline void set_##name(bool value); \ |
| |
| |
| #define DECL_ACCESSORS(name, type) \ |
| inline type* name(); \ |
| inline void set_##name(type* value, \ |
| WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \ |
| |
| |
| class DictionaryElementsAccessor; |
| class ElementsAccessor; |
| class FixedArrayBase; |
| class ObjectVisitor; |
| class StringStream; |
| |
| struct ValueInfo : public Malloced { |
| ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { } |
| InstanceType type; |
| Object* ptr; |
| const char* str; |
| double number; |
| }; |
| |
| |
| // A template-ized version of the IsXXX functions. |
| template <class C> static inline bool Is(Object* obj); |
| |
| class Failure; |
| |
| class MaybeObject BASE_EMBEDDED { |
| public: |
| inline bool IsFailure(); |
| inline bool IsRetryAfterGC(); |
| inline bool IsOutOfMemory(); |
| inline bool IsException(); |
| INLINE(bool IsTheHole()); |
| inline bool ToObject(Object** obj) { |
| if (IsFailure()) return false; |
| *obj = reinterpret_cast<Object*>(this); |
| return true; |
| } |
| inline Failure* ToFailureUnchecked() { |
| ASSERT(IsFailure()); |
| return reinterpret_cast<Failure*>(this); |
| } |
| inline Object* ToObjectUnchecked() { |
| ASSERT(!IsFailure()); |
| return reinterpret_cast<Object*>(this); |
| } |
| inline Object* ToObjectChecked() { |
| CHECK(!IsFailure()); |
| return reinterpret_cast<Object*>(this); |
| } |
| |
| template<typename T> |
| inline bool To(T** obj) { |
| if (IsFailure()) return false; |
| *obj = T::cast(reinterpret_cast<Object*>(this)); |
| return true; |
| } |
| |
| #ifdef OBJECT_PRINT |
| // Prints this object with details. |
| inline void Print() { |
| Print(stdout); |
| }; |
| inline void PrintLn() { |
| PrintLn(stdout); |
| } |
| void Print(FILE* out); |
| void PrintLn(FILE* out); |
| #endif |
| #ifdef DEBUG |
| // Verifies the object. |
| void Verify(); |
| #endif |
| }; |
| |
| |
| #define OBJECT_TYPE_LIST(V) \ |
| V(Smi) \ |
| V(HeapObject) \ |
| V(Number) \ |
| |
| #define HEAP_OBJECT_TYPE_LIST(V) \ |
| V(HeapNumber) \ |
| V(String) \ |
| V(Symbol) \ |
| V(SeqString) \ |
| V(ExternalString) \ |
| V(ConsString) \ |
| V(SlicedString) \ |
| V(ExternalTwoByteString) \ |
| V(ExternalAsciiString) \ |
| V(SeqTwoByteString) \ |
| V(SeqAsciiString) \ |
| \ |
| V(ExternalArray) \ |
| V(ExternalByteArray) \ |
| V(ExternalUnsignedByteArray) \ |
| V(ExternalShortArray) \ |
| V(ExternalUnsignedShortArray) \ |
| V(ExternalIntArray) \ |
| V(ExternalUnsignedIntArray) \ |
| V(ExternalFloatArray) \ |
| V(ExternalDoubleArray) \ |
| V(ExternalPixelArray) \ |
| V(ByteArray) \ |
| V(JSReceiver) \ |
| V(JSObject) \ |
| V(JSContextExtensionObject) \ |
| V(Map) \ |
| V(DescriptorArray) \ |
| V(DeoptimizationInputData) \ |
| V(DeoptimizationOutputData) \ |
| V(FixedArray) \ |
| V(FixedDoubleArray) \ |
| V(Context) \ |
| V(GlobalContext) \ |
| V(SerializedScopeInfo) \ |
| V(JSFunction) \ |
| V(Code) \ |
| V(Oddball) \ |
| V(SharedFunctionInfo) \ |
| V(JSValue) \ |
| V(JSMessageObject) \ |
| V(StringWrapper) \ |
| V(Foreign) \ |
| V(Boolean) \ |
| V(JSArray) \ |
| V(JSProxy) \ |
| V(JSFunctionProxy) \ |
| V(JSWeakMap) \ |
| V(JSRegExp) \ |
| V(HashTable) \ |
| V(Dictionary) \ |
| V(SymbolTable) \ |
| V(JSFunctionResultCache) \ |
| V(NormalizedMapCache) \ |
| V(CompilationCacheTable) \ |
| V(CodeCacheHashTable) \ |
| V(PolymorphicCodeCacheHashTable) \ |
| V(MapCache) \ |
| V(Primitive) \ |
| V(GlobalObject) \ |
| V(JSGlobalObject) \ |
| V(JSBuiltinsObject) \ |
| V(JSGlobalProxy) \ |
| V(UndetectableObject) \ |
| V(AccessCheckNeeded) \ |
| V(JSGlobalPropertyCell) \ |
| |
| // Object is the abstract superclass for all classes in the |
| // object hierarchy. |
| // Object does not use any virtual functions to avoid the |
| // allocation of the C++ vtable. |
| // Since Smi and Failure are subclasses of Object no |
| // data members can be present in Object. |
| class Object : public MaybeObject { |
| public: |
| // Type testing. |
| #define IS_TYPE_FUNCTION_DECL(type_) inline bool Is##type_(); |
| OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL) |
| HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL) |
| #undef IS_TYPE_FUNCTION_DECL |
| |
| // Returns true if this object is an instance of the specified |
| // function template. |
| inline bool IsInstanceOf(FunctionTemplateInfo* type); |
| |
| inline bool IsStruct(); |
| #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name(); |
| STRUCT_LIST(DECLARE_STRUCT_PREDICATE) |
| #undef DECLARE_STRUCT_PREDICATE |
| |
| INLINE(bool IsSpecObject()); |
| |
| // Oddball testing. |
| INLINE(bool IsUndefined()); |
| INLINE(bool IsNull()); |
| INLINE(bool IsTheHole()); // Shadows MaybeObject's implementation. |
| INLINE(bool IsTrue()); |
| INLINE(bool IsFalse()); |
| inline bool IsArgumentsMarker(); |
| |
| // Extract the number. |
| inline double Number(); |
| |
| // Returns true if the object is of the correct type to be used as a |
| // implementation of a JSObject's elements. |
| inline bool HasValidElements(); |
| |
| inline bool HasSpecificClassOf(String* name); |
| |
| MUST_USE_RESULT MaybeObject* ToObject(); // ECMA-262 9.9. |
| Object* ToBoolean(); // ECMA-262 9.2. |
| |
| // Convert to a JSObject if needed. |
| // global_context is used when creating wrapper object. |
| MUST_USE_RESULT MaybeObject* ToObject(Context* global_context); |
| |
| // Converts this to a Smi if possible. |
| // Failure is returned otherwise. |
| MUST_USE_RESULT inline MaybeObject* ToSmi(); |
| |
| void Lookup(String* name, LookupResult* result); |
| |
| // Property access. |
| MUST_USE_RESULT inline MaybeObject* GetProperty(String* key); |
| MUST_USE_RESULT inline MaybeObject* GetProperty( |
| String* key, |
| PropertyAttributes* attributes); |
| MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver( |
| Object* receiver, |
| String* key, |
| PropertyAttributes* attributes); |
| MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver, |
| LookupResult* result, |
| String* key, |
| PropertyAttributes* attributes); |
| MUST_USE_RESULT MaybeObject* GetPropertyWithCallback(Object* receiver, |
| Object* structure, |
| String* name, |
| Object* holder); |
| MUST_USE_RESULT MaybeObject* GetPropertyWithHandler(Object* receiver, |
| String* name, |
| Object* handler); |
| MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver, |
| JSFunction* getter); |
| |
| inline MaybeObject* GetElement(uint32_t index); |
| // For use when we know that no exception can be thrown. |
| inline Object* GetElementNoExceptionThrown(uint32_t index); |
| MaybeObject* GetElementWithReceiver(Object* receiver, uint32_t index); |
| |
| // Return the object's prototype (might be Heap::null_value()). |
| Object* GetPrototype(); |
| |
| // Tries to convert an object to an array index. Returns true and sets |
| // the output parameter if it succeeds. |
| inline bool ToArrayIndex(uint32_t* index); |
| |
| // Returns true if this is a JSValue containing a string and the index is |
| // < the length of the string. Used to implement [] on strings. |
| inline bool IsStringObjectWithCharacterAt(uint32_t index); |
| |
| #ifdef DEBUG |
| // Verify a pointer is a valid object pointer. |
| static void VerifyPointer(Object* p); |
| #endif |
| |
| // Prints this object without details. |
| inline void ShortPrint() { |
| ShortPrint(stdout); |
| } |
| void ShortPrint(FILE* out); |
| |
| // Prints this object without details to a message accumulator. |
| void ShortPrint(StringStream* accumulator); |
| |
| // Casting: This cast is only needed to satisfy macros in objects-inl.h. |
| static Object* cast(Object* value) { return value; } |
| |
| // Layout description. |
| static const int kHeaderSize = 0; // Object does not take up any space. |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Object); |
| }; |
| |
| |
| // Smi represents integer Numbers that can be stored in 31 bits. |
| // Smis are immediate which means they are NOT allocated in the heap. |
| // The this pointer has the following format: [31 bit signed int] 0 |
| // For long smis it has the following format: |
| // [32 bit signed int] [31 bits zero padding] 0 |
| // Smi stands for small integer. |
| class Smi: public Object { |
| public: |
| // Returns the integer value. |
| inline int value(); |
| |
| // Convert a value to a Smi object. |
| static inline Smi* FromInt(int value); |
| |
| static inline Smi* FromIntptr(intptr_t value); |
| |
| // Returns whether value can be represented in a Smi. |
| static inline bool IsValid(intptr_t value); |
| |
| // Casting. |
| static inline Smi* cast(Object* object); |
| |
| // Dispatched behavior. |
| inline void SmiPrint() { |
| SmiPrint(stdout); |
| } |
| void SmiPrint(FILE* out); |
| void SmiPrint(StringStream* accumulator); |
| #ifdef DEBUG |
| void SmiVerify(); |
| #endif |
| |
| static const int kMinValue = (-1 << (kSmiValueSize - 1)); |
| static const int kMaxValue = -(kMinValue + 1); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Smi); |
| }; |
| |
| |
| // Failure is used for reporting out of memory situations and |
| // propagating exceptions through the runtime system. Failure objects |
| // are transient and cannot occur as part of the object graph. |
| // |
| // Failures are a single word, encoded as follows: |
| // +-------------------------+---+--+--+ |
| // |.........unused..........|sss|tt|11| |
| // +-------------------------+---+--+--+ |
| // 7 6 4 32 10 |
| // |
| // |
| // The low two bits, 0-1, are the failure tag, 11. The next two bits, |
| // 2-3, are a failure type tag 'tt' with possible values: |
| // 00 RETRY_AFTER_GC |
| // 01 EXCEPTION |
| // 10 INTERNAL_ERROR |
| // 11 OUT_OF_MEMORY_EXCEPTION |
| // |
| // The next three bits, 4-6, are an allocation space tag 'sss'. The |
| // allocation space tag is 000 for all failure types except |
| // RETRY_AFTER_GC. For RETRY_AFTER_GC, the possible values are the |
| // allocation spaces (the encoding is found in globals.h). |
| |
| // Failure type tag info. |
| const int kFailureTypeTagSize = 2; |
| const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1; |
| |
| class Failure: public MaybeObject { |
| public: |
| // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code. |
| enum Type { |
| RETRY_AFTER_GC = 0, |
| EXCEPTION = 1, // Returning this marker tells the real exception |
| // is in Isolate::pending_exception. |
| INTERNAL_ERROR = 2, |
| OUT_OF_MEMORY_EXCEPTION = 3 |
| }; |
| |
| inline Type type() const; |
| |
| // Returns the space that needs to be collected for RetryAfterGC failures. |
| inline AllocationSpace allocation_space() const; |
| |
| inline bool IsInternalError() const; |
| inline bool IsOutOfMemoryException() const; |
| |
| static inline Failure* RetryAfterGC(AllocationSpace space); |
| static inline Failure* RetryAfterGC(); // NEW_SPACE |
| static inline Failure* Exception(); |
| static inline Failure* InternalError(); |
| static inline Failure* OutOfMemoryException(); |
| // Casting. |
| static inline Failure* cast(MaybeObject* object); |
| |
| // Dispatched behavior. |
| inline void FailurePrint() { |
| FailurePrint(stdout); |
| } |
| void FailurePrint(FILE* out); |
| void FailurePrint(StringStream* accumulator); |
| #ifdef DEBUG |
| void FailureVerify(); |
| #endif |
| |
| private: |
| inline intptr_t value() const; |
| static inline Failure* Construct(Type type, intptr_t value = 0); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Failure); |
| }; |
| |
| |
| // Heap objects typically have a map pointer in their first word. However, |
| // during GC other data (eg, mark bits, forwarding addresses) is sometimes |
| // encoded in the first word. The class MapWord is an abstraction of the |
| // value in a heap object's first word. |
| class MapWord BASE_EMBEDDED { |
| public: |
| // Normal state: the map word contains a map pointer. |
| |
| // Create a map word from a map pointer. |
| static inline MapWord FromMap(Map* map); |
| |
| // View this map word as a map pointer. |
| inline Map* ToMap(); |
| |
| |
| // Scavenge collection: the map word of live objects in the from space |
| // contains a forwarding address (a heap object pointer in the to space). |
| |
| // True if this map word is a forwarding address for a scavenge |
| // collection. Only valid during a scavenge collection (specifically, |
| // when all map words are heap object pointers, ie. not during a full GC). |
| inline bool IsForwardingAddress(); |
| |
| // Create a map word from a forwarding address. |
| static inline MapWord FromForwardingAddress(HeapObject* object); |
| |
| // View this map word as a forwarding address. |
| inline HeapObject* ToForwardingAddress(); |
| |
| // Marking phase of full collection: the map word of live objects is |
| // marked, and may be marked as overflowed (eg, the object is live, its |
| // children have not been visited, and it does not fit in the marking |
| // stack). |
| |
| // True if this map word's mark bit is set. |
| inline bool IsMarked(); |
| |
| // Return this map word but with its mark bit set. |
| inline void SetMark(); |
| |
| // Return this map word but with its mark bit cleared. |
| inline void ClearMark(); |
| |
| // True if this map word's overflow bit is set. |
| inline bool IsOverflowed(); |
| |
| // Return this map word but with its overflow bit set. |
| inline void SetOverflow(); |
| |
| // Return this map word but with its overflow bit cleared. |
| inline void ClearOverflow(); |
| |
| |
| // Compacting phase of a full compacting collection: the map word of live |
| // objects contains an encoding of the original map address along with the |
| // forwarding address (represented as an offset from the first live object |
| // in the same page as the (old) object address). |
| |
| // Create a map word from a map address and a forwarding address offset. |
| static inline MapWord EncodeAddress(Address map_address, int offset); |
| |
| // Return the map address encoded in this map word. |
| inline Address DecodeMapAddress(MapSpace* map_space); |
| |
| // Return the forwarding offset encoded in this map word. |
| inline int DecodeOffset(); |
| |
| |
| // During serialization: the map word is used to hold an encoded |
| // address, and possibly a mark bit (set and cleared with SetMark |
| // and ClearMark). |
| |
| // Create a map word from an encoded address. |
| static inline MapWord FromEncodedAddress(Address address); |
| |
| inline Address ToEncodedAddress(); |
| |
| // Bits used by the marking phase of the garbage collector. |
| // |
| // The first word of a heap object is normally a map pointer. The last two |
| // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to |
| // mark an object as live and/or overflowed: |
| // last bit = 0, marked as alive |
| // second bit = 1, overflowed |
| // An object is only marked as overflowed when it is marked as live while |
| // the marking stack is overflowed. |
| static const int kMarkingBit = 0; // marking bit |
| static const int kMarkingMask = (1 << kMarkingBit); // marking mask |
| static const int kOverflowBit = 1; // overflow bit |
| static const int kOverflowMask = (1 << kOverflowBit); // overflow mask |
| |
| // Forwarding pointers and map pointer encoding. On 32 bit all the bits are |
| // used. |
| // +-----------------+------------------+-----------------+ |
| // |forwarding offset|page offset of map|page index of map| |
| // +-----------------+------------------+-----------------+ |
| // ^ ^ ^ |
| // | | | |
| // | | kMapPageIndexBits |
| // | kMapPageOffsetBits |
| // kForwardingOffsetBits |
| static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits; |
| static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits; |
| #ifdef V8_HOST_ARCH_64_BIT |
| static const int kMapPageIndexBits = 16; |
| #else |
| // Use all the 32-bits to encode on a 32-bit platform. |
| static const int kMapPageIndexBits = |
| 32 - (kMapPageOffsetBits + kForwardingOffsetBits); |
| #endif |
| |
| static const int kMapPageIndexShift = 0; |
| static const int kMapPageOffsetShift = |
| kMapPageIndexShift + kMapPageIndexBits; |
| static const int kForwardingOffsetShift = |
| kMapPageOffsetShift + kMapPageOffsetBits; |
| |
| // Bit masks covering the different parts the encoding. |
| static const uintptr_t kMapPageIndexMask = |
| (1 << kMapPageOffsetShift) - 1; |
| static const uintptr_t kMapPageOffsetMask = |
| ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask; |
| static const uintptr_t kForwardingOffsetMask = |
| ~(kMapPageIndexMask | kMapPageOffsetMask); |
| |
| private: |
| // HeapObject calls the private constructor and directly reads the value. |
| friend class HeapObject; |
| |
| explicit MapWord(uintptr_t value) : value_(value) {} |
| |
| uintptr_t value_; |
| }; |
| |
| |
| // HeapObject is the superclass for all classes describing heap allocated |
| // objects. |
| class HeapObject: public Object { |
| public: |
| // [map]: Contains a map which contains the object's reflective |
| // information. |
| inline Map* map(); |
| inline void set_map(Map* value); |
| |
| // During garbage collection, the map word of a heap object does not |
| // necessarily contain a map pointer. |
| inline MapWord map_word(); |
| inline void set_map_word(MapWord map_word); |
| |
| // The Heap the object was allocated in. Used also to access Isolate. |
| // This method can not be used during GC, it ASSERTs this. |
| inline Heap* GetHeap(); |
| // Convenience method to get current isolate. This method can be |
| // accessed only when its result is the same as |
| // Isolate::Current(), it ASSERTs this. See also comment for GetHeap. |
| inline Isolate* GetIsolate(); |
| |
| // Converts an address to a HeapObject pointer. |
| static inline HeapObject* FromAddress(Address address); |
| |
| // Returns the address of this HeapObject. |
| inline Address address(); |
| |
| // Iterates over pointers contained in the object (including the Map) |
| void Iterate(ObjectVisitor* v); |
| |
| // Iterates over all pointers contained in the object except the |
| // first map pointer. The object type is given in the first |
| // parameter. This function does not access the map pointer in the |
| // object, and so is safe to call while the map pointer is modified. |
| void IterateBody(InstanceType type, int object_size, ObjectVisitor* v); |
| |
| // Returns the heap object's size in bytes |
| inline int Size(); |
| |
| // Given a heap object's map pointer, returns the heap size in bytes |
| // Useful when the map pointer field is used for other purposes. |
| // GC internal. |
| inline int SizeFromMap(Map* map); |
| |
| // Support for the marking heap objects during the marking phase of GC. |
| // True if the object is marked live. |
| inline bool IsMarked(); |
| |
| // Mutate this object's map pointer to indicate that the object is live. |
| inline void SetMark(); |
| |
| // Mutate this object's map pointer to remove the indication that the |
| // object is live (ie, partially restore the map pointer). |
| inline void ClearMark(); |
| |
| // True if this object is marked as overflowed. Overflowed objects have |
| // been reached and marked during marking of the heap, but their children |
| // have not necessarily been marked and they have not been pushed on the |
| // marking stack. |
| inline bool IsOverflowed(); |
| |
| // Mutate this object's map pointer to indicate that the object is |
| // overflowed. |
| inline void SetOverflow(); |
| |
| // Mutate this object's map pointer to remove the indication that the |
| // object is overflowed (ie, partially restore the map pointer). |
| inline void ClearOverflow(); |
| |
| // Returns the field at offset in obj, as a read/write Object* reference. |
| // Does no checking, and is safe to use during GC, while maps are invalid. |
| // Does not invoke write barrier, so should only be assigned to |
| // during marking GC. |
| static inline Object** RawField(HeapObject* obj, int offset); |
| |
| // Casting. |
| static inline HeapObject* cast(Object* obj); |
| |
| // Return the write barrier mode for this. Callers of this function |
| // must be able to present a reference to an AssertNoAllocation |
| // object as a sign that they are not going to use this function |
| // from code that allocates and thus invalidates the returned write |
| // barrier mode. |
| inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&); |
| |
| // Dispatched behavior. |
| void HeapObjectShortPrint(StringStream* accumulator); |
| #ifdef OBJECT_PRINT |
| inline void HeapObjectPrint() { |
| HeapObjectPrint(stdout); |
| } |
| void HeapObjectPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void HeapObjectVerify(); |
| inline void VerifyObjectField(int offset); |
| inline void VerifySmiField(int offset); |
| #endif |
| |
| #ifdef OBJECT_PRINT |
| void PrintHeader(FILE* out, const char* id); |
| #endif |
| |
| #ifdef DEBUG |
| // Verify a pointer is a valid HeapObject pointer that points to object |
| // areas in the heap. |
| static void VerifyHeapPointer(Object* p); |
| #endif |
| |
| // Layout description. |
| // First field in a heap object is map. |
| static const int kMapOffset = Object::kHeaderSize; |
| static const int kHeaderSize = kMapOffset + kPointerSize; |
| |
| STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset); |
| |
| protected: |
| // helpers for calling an ObjectVisitor to iterate over pointers in the |
| // half-open range [start, end) specified as integer offsets |
| inline void IteratePointers(ObjectVisitor* v, int start, int end); |
| // as above, for the single element at "offset" |
| inline void IteratePointer(ObjectVisitor* v, int offset); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject); |
| }; |
| |
| |
| #define SLOT_ADDR(obj, offset) \ |
| reinterpret_cast<Object**>((obj)->address() + offset) |
| |
| // This class describes a body of an object of a fixed size |
| // in which all pointer fields are located in the [start_offset, end_offset) |
| // interval. |
| template<int start_offset, int end_offset, int size> |
| class FixedBodyDescriptor { |
| public: |
| static const int kStartOffset = start_offset; |
| static const int kEndOffset = end_offset; |
| static const int kSize = size; |
| |
| static inline void IterateBody(HeapObject* obj, ObjectVisitor* v); |
| |
| template<typename StaticVisitor> |
| static inline void IterateBody(HeapObject* obj) { |
| StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset), |
| SLOT_ADDR(obj, end_offset)); |
| } |
| }; |
| |
| |
| // This class describes a body of an object of a variable size |
| // in which all pointer fields are located in the [start_offset, object_size) |
| // interval. |
| template<int start_offset> |
| class FlexibleBodyDescriptor { |
| public: |
| static const int kStartOffset = start_offset; |
| |
| static inline void IterateBody(HeapObject* obj, |
| int object_size, |
| ObjectVisitor* v); |
| |
| template<typename StaticVisitor> |
| static inline void IterateBody(HeapObject* obj, int object_size) { |
| StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset), |
| SLOT_ADDR(obj, object_size)); |
| } |
| }; |
| |
| #undef SLOT_ADDR |
| |
| |
| // The HeapNumber class describes heap allocated numbers that cannot be |
| // represented in a Smi (small integer) |
| class HeapNumber: public HeapObject { |
| public: |
| // [value]: number value. |
| inline double value(); |
| inline void set_value(double value); |
| |
| // Casting. |
| static inline HeapNumber* cast(Object* obj); |
| |
| // Dispatched behavior. |
| Object* HeapNumberToBoolean(); |
| inline void HeapNumberPrint() { |
| HeapNumberPrint(stdout); |
| } |
| void HeapNumberPrint(FILE* out); |
| void HeapNumberPrint(StringStream* accumulator); |
| #ifdef DEBUG |
| void HeapNumberVerify(); |
| #endif |
| |
| inline int get_exponent(); |
| inline int get_sign(); |
| |
| // Layout description. |
| static const int kValueOffset = HeapObject::kHeaderSize; |
| // IEEE doubles are two 32 bit words. The first is just mantissa, the second |
| // is a mixture of sign, exponent and mantissa. Our current platforms are all |
| // little endian apart from non-EABI arm which is little endian with big |
| // endian floating point word ordering! |
| static const int kMantissaOffset = kValueOffset; |
| static const int kExponentOffset = kValueOffset + 4; |
| |
| static const int kSize = kValueOffset + kDoubleSize; |
| static const uint32_t kSignMask = 0x80000000u; |
| static const uint32_t kExponentMask = 0x7ff00000u; |
| static const uint32_t kMantissaMask = 0xfffffu; |
| static const int kMantissaBits = 52; |
| static const int kExponentBits = 11; |
| static const int kExponentBias = 1023; |
| static const int kExponentShift = 20; |
| static const int kMantissaBitsInTopWord = 20; |
| static const int kNonMantissaBitsInTopWord = 12; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber); |
| }; |
| |
| |
| // JSReceiver includes types on which properties can be defined, i.e., |
| // JSObject and JSProxy. |
| class JSReceiver: public HeapObject { |
| public: |
| enum DeleteMode { |
| NORMAL_DELETION, |
| STRICT_DELETION, |
| FORCE_DELETION |
| }; |
| |
| // Casting. |
| static inline JSReceiver* cast(Object* obj); |
| |
| // Can cause GC. |
| MUST_USE_RESULT MaybeObject* SetProperty(String* key, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetProperty(LookupResult* result, |
| String* key, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| |
| MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode); |
| |
| // Returns the class name ([[Class]] property in the specification). |
| String* class_name(); |
| |
| // Returns the constructor name (the name (possibly, inferred name) of the |
| // function that was used to instantiate the object). |
| String* constructor_name(); |
| |
| inline PropertyAttributes GetPropertyAttribute(String* name); |
| PropertyAttributes GetPropertyAttributeWithReceiver(JSReceiver* receiver, |
| String* name); |
| PropertyAttributes GetLocalPropertyAttribute(String* name); |
| |
| // Can cause a GC. |
| inline bool HasProperty(String* name); |
| inline bool HasLocalProperty(String* name); |
| |
| // Return the object's prototype (might be Heap::null_value()). |
| inline Object* GetPrototype(); |
| |
| // Set the object's prototype (only JSReceiver and null are allowed). |
| MUST_USE_RESULT MaybeObject* SetPrototype(Object* value, |
| bool skip_hidden_prototypes); |
| |
| // Lookup a property. If found, the result is valid and has |
| // detailed information. |
| void LocalLookup(String* name, LookupResult* result); |
| void Lookup(String* name, LookupResult* result); |
| |
| private: |
| PropertyAttributes GetPropertyAttribute(JSReceiver* receiver, |
| LookupResult* result, |
| String* name, |
| bool continue_search); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver); |
| }; |
| |
| // The JSObject describes real heap allocated JavaScript objects with |
| // properties. |
| // Note that the map of JSObject changes during execution to enable inline |
| // caching. |
| class JSObject: public JSReceiver { |
| public: |
| // [properties]: Backing storage for properties. |
| // properties is a FixedArray in the fast case and a Dictionary in the |
| // slow case. |
| DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties. |
| inline void initialize_properties(); |
| inline bool HasFastProperties(); |
| inline StringDictionary* property_dictionary(); // Gets slow properties. |
| |
| // [elements]: The elements (properties with names that are integers). |
| // |
| // Elements can be in two general modes: fast and slow. Each mode |
| // corrensponds to a set of object representations of elements that |
| // have something in common. |
| // |
| // In the fast mode elements is a FixedArray and so each element can |
| // be quickly accessed. This fact is used in the generated code. The |
| // elements array can have one of three maps in this mode: |
| // fixed_array_map, non_strict_arguments_elements_map or |
| // fixed_cow_array_map (for copy-on-write arrays). In the latter case |
| // the elements array may be shared by a few objects and so before |
| // writing to any element the array must be copied. Use |
| // EnsureWritableFastElements in this case. |
| // |
| // In the slow mode the elements is either a NumberDictionary, an |
| // ExternalArray, or a FixedArray parameter map for a (non-strict) |
| // arguments object. |
| DECL_ACCESSORS(elements, FixedArrayBase) |
| inline void initialize_elements(); |
| MUST_USE_RESULT inline MaybeObject* ResetElements(); |
| inline ElementsKind GetElementsKind(); |
| inline ElementsAccessor* GetElementsAccessor(); |
| inline bool HasFastElements(); |
| inline bool HasFastDoubleElements(); |
| inline bool HasDictionaryElements(); |
| inline bool HasExternalPixelElements(); |
| inline bool HasExternalArrayElements(); |
| inline bool HasExternalByteElements(); |
| inline bool HasExternalUnsignedByteElements(); |
| inline bool HasExternalShortElements(); |
| inline bool HasExternalUnsignedShortElements(); |
| inline bool HasExternalIntElements(); |
| inline bool HasExternalUnsignedIntElements(); |
| inline bool HasExternalFloatElements(); |
| inline bool HasExternalDoubleElements(); |
| bool HasFastArgumentsElements(); |
| bool HasDictionaryArgumentsElements(); |
| inline bool AllowsSetElementsLength(); |
| inline SeededNumberDictionary* element_dictionary(); // Gets slow elements. |
| |
| // Requires: HasFastElements(). |
| MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements(); |
| |
| // Collects elements starting at index 0. |
| // Undefined values are placed after non-undefined values. |
| // Returns the number of non-undefined values. |
| MUST_USE_RESULT MaybeObject* PrepareElementsForSort(uint32_t limit); |
| // As PrepareElementsForSort, but only on objects where elements is |
| // a dictionary, and it will stay a dictionary. |
| MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit); |
| |
| MUST_USE_RESULT MaybeObject* SetPropertyForResult(LookupResult* result, |
| String* key, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetPropertyWithFailedAccessCheck( |
| LookupResult* result, |
| String* name, |
| Object* value, |
| bool check_prototype, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetPropertyWithCallback( |
| Object* structure, |
| String* name, |
| Object* value, |
| JSObject* holder, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetPropertyWithDefinedSetter(JSFunction* setter, |
| Object* value); |
| MUST_USE_RESULT MaybeObject* SetPropertyWithInterceptor( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetPropertyPostInterceptor( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetLocalPropertyIgnoreAttributes( |
| String* key, |
| Object* value, |
| PropertyAttributes attributes); |
| |
| // Retrieve a value in a normalized object given a lookup result. |
| // Handles the special representation of JS global objects. |
| Object* GetNormalizedProperty(LookupResult* result); |
| |
| // Sets the property value in a normalized object given a lookup result. |
| // Handles the special representation of JS global objects. |
| Object* SetNormalizedProperty(LookupResult* result, Object* value); |
| |
| // Sets the property value in a normalized object given (key, value, details). |
| // Handles the special representation of JS global objects. |
| MUST_USE_RESULT MaybeObject* SetNormalizedProperty(String* name, |
| Object* value, |
| PropertyDetails details); |
| |
| // Deletes the named property in a normalized object. |
| MUST_USE_RESULT MaybeObject* DeleteNormalizedProperty(String* name, |
| DeleteMode mode); |
| |
| // Retrieve interceptors. |
| InterceptorInfo* GetNamedInterceptor(); |
| InterceptorInfo* GetIndexedInterceptor(); |
| |
| // Used from JSReceiver. |
| PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver, |
| String* name, |
| bool continue_search); |
| PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver, |
| String* name, |
| bool continue_search); |
| PropertyAttributes GetPropertyAttributeWithFailedAccessCheck( |
| Object* receiver, |
| LookupResult* result, |
| String* name, |
| bool continue_search); |
| |
| MUST_USE_RESULT MaybeObject* DefineAccessor(String* name, |
| bool is_getter, |
| Object* fun, |
| PropertyAttributes attributes); |
| Object* LookupAccessor(String* name, bool is_getter); |
| |
| MUST_USE_RESULT MaybeObject* DefineAccessor(AccessorInfo* info); |
| |
| // Used from Object::GetProperty(). |
| MaybeObject* GetPropertyWithFailedAccessCheck( |
| Object* receiver, |
| LookupResult* result, |
| String* name, |
| PropertyAttributes* attributes); |
| MaybeObject* GetPropertyWithInterceptor( |
| JSReceiver* receiver, |
| String* name, |
| PropertyAttributes* attributes); |
| MaybeObject* GetPropertyPostInterceptor( |
| JSReceiver* receiver, |
| String* name, |
| PropertyAttributes* attributes); |
| MaybeObject* GetLocalPropertyPostInterceptor(JSReceiver* receiver, |
| String* name, |
| PropertyAttributes* attributes); |
| |
| // Returns true if this is an instance of an api function and has |
| // been modified since it was created. May give false positives. |
| bool IsDirty(); |
| |
| // If the receiver is a JSGlobalProxy this method will return its prototype, |
| // otherwise the result is the receiver itself. |
| inline Object* BypassGlobalProxy(); |
| |
| // Accessors for hidden properties object. |
| // |
| // Hidden properties are not local properties of the object itself. |
| // Instead they are stored on an auxiliary JSObject stored as a local |
| // property with a special name Heap::hidden_symbol(). But if the |
| // receiver is a JSGlobalProxy then the auxiliary object is a property |
| // of its prototype. |
| // |
| // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be |
| // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real |
| // holder. |
| // |
| // These accessors do not touch interceptors or accessors. |
| inline bool HasHiddenPropertiesObject(); |
| inline Object* GetHiddenPropertiesObject(); |
| MUST_USE_RESULT inline MaybeObject* SetHiddenPropertiesObject( |
| Object* hidden_obj); |
| |
| // Indicates whether the hidden properties object should be created. |
| enum HiddenPropertiesFlag { ALLOW_CREATION, OMIT_CREATION }; |
| |
| // Retrieves the hidden properties object. |
| // |
| // The undefined value might be returned in case no hidden properties object |
| // is present and creation was omitted. |
| inline bool HasHiddenProperties(); |
| MUST_USE_RESULT MaybeObject* GetHiddenProperties(HiddenPropertiesFlag flag); |
| |
| // Retrieves a permanent object identity hash code. |
| // |
| // The identity hash is stored as a hidden property. The undefined value might |
| // be returned in case no hidden properties object is present and creation was |
| // omitted. |
| MUST_USE_RESULT MaybeObject* GetIdentityHash(HiddenPropertiesFlag flag); |
| |
| MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode); |
| MUST_USE_RESULT MaybeObject* DeleteElement(uint32_t index, DeleteMode mode); |
| |
| // Tests for the fast common case for property enumeration. |
| bool IsSimpleEnum(); |
| |
| // Do we want to keep the elements in fast case when increasing the |
| // capacity? |
| bool ShouldConvertToSlowElements(int new_capacity); |
| // Returns true if the backing storage for the slow-case elements of |
| // this object takes up nearly as much space as a fast-case backing |
| // storage would. In that case the JSObject should have fast |
| // elements. |
| bool ShouldConvertToFastElements(); |
| // Returns true if the elements of JSObject contains only values that can be |
| // represented in a FixedDoubleArray. |
| bool CanConvertToFastDoubleElements(); |
| |
| // Tells whether the index'th element is present. |
| inline bool HasElement(uint32_t index); |
| bool HasElementWithReceiver(JSReceiver* receiver, uint32_t index); |
| |
| // Computes the new capacity when expanding the elements of a JSObject. |
| static int NewElementsCapacity(int old_capacity) { |
| // (old_capacity + 50%) + 16 |
| return old_capacity + (old_capacity >> 1) + 16; |
| } |
| |
| // Tells whether the index'th element is present and how it is stored. |
| enum LocalElementType { |
| // There is no element with given index. |
| UNDEFINED_ELEMENT, |
| |
| // Element with given index is handled by interceptor. |
| INTERCEPTED_ELEMENT, |
| |
| // Element with given index is character in string. |
| STRING_CHARACTER_ELEMENT, |
| |
| // Element with given index is stored in fast backing store. |
| FAST_ELEMENT, |
| |
| // Element with given index is stored in slow backing store. |
| DICTIONARY_ELEMENT |
| }; |
| |
| LocalElementType HasLocalElement(uint32_t index); |
| |
| bool HasElementWithInterceptor(JSReceiver* receiver, uint32_t index); |
| bool HasElementPostInterceptor(JSReceiver* receiver, uint32_t index); |
| |
| MUST_USE_RESULT MaybeObject* SetFastElement(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype); |
| MUST_USE_RESULT MaybeObject* SetDictionaryElement(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype); |
| |
| MUST_USE_RESULT MaybeObject* SetFastDoubleElement( |
| uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype = true); |
| |
| // Set the index'th array element. |
| // A Failure object is returned if GC is needed. |
| MUST_USE_RESULT MaybeObject* SetElement(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype); |
| |
| // Returns the index'th element. |
| // The undefined object if index is out of bounds. |
| MaybeObject* GetElementWithInterceptor(Object* receiver, uint32_t index); |
| |
| // Replace the elements' backing store with fast elements of the given |
| // capacity. Update the length for JSArrays. Returns the new backing |
| // store. |
| MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(int capacity, |
| int length); |
| MUST_USE_RESULT MaybeObject* SetFastDoubleElementsCapacityAndLength( |
| int capacity, |
| int length); |
| MUST_USE_RESULT MaybeObject* SetSlowElements(Object* length); |
| |
| // Lookup interceptors are used for handling properties controlled by host |
| // objects. |
| inline bool HasNamedInterceptor(); |
| inline bool HasIndexedInterceptor(); |
| |
| // Support functions for v8 api (needed for correct interceptor behavior). |
| bool HasRealNamedProperty(String* key); |
| bool HasRealElementProperty(uint32_t index); |
| bool HasRealNamedCallbackProperty(String* key); |
| |
| // Initializes the array to a certain length |
| MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length); |
| |
| // Get the header size for a JSObject. Used to compute the index of |
| // internal fields as well as the number of internal fields. |
| inline int GetHeaderSize(); |
| |
| inline int GetInternalFieldCount(); |
| inline int GetInternalFieldOffset(int index); |
| inline Object* GetInternalField(int index); |
| inline void SetInternalField(int index, Object* value); |
| |
| // Lookup a property. If found, the result is valid and has |
| // detailed information. |
| void LocalLookup(String* name, LookupResult* result); |
| |
| // The following lookup functions skip interceptors. |
| void LocalLookupRealNamedProperty(String* name, LookupResult* result); |
| void LookupRealNamedProperty(String* name, LookupResult* result); |
| void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result); |
| void LookupCallbackSetterInPrototypes(String* name, LookupResult* result); |
| MUST_USE_RESULT MaybeObject* SetElementWithCallbackSetterInPrototypes( |
| uint32_t index, Object* value, bool* found, StrictModeFlag strict_mode); |
| void LookupCallback(String* name, LookupResult* result); |
| |
| // Returns the number of properties on this object filtering out properties |
| // with the specified attributes (ignoring interceptors). |
| int NumberOfLocalProperties(PropertyAttributes filter); |
| // Returns the number of enumerable properties (ignoring interceptors). |
| int NumberOfEnumProperties(); |
| // Fill in details for properties into storage starting at the specified |
| // index. |
| void GetLocalPropertyNames(FixedArray* storage, int index); |
| |
| // Returns the number of properties on this object filtering out properties |
| // with the specified attributes (ignoring interceptors). |
| int NumberOfLocalElements(PropertyAttributes filter); |
| // Returns the number of enumerable elements (ignoring interceptors). |
| int NumberOfEnumElements(); |
| // Returns the number of elements on this object filtering out elements |
| // with the specified attributes (ignoring interceptors). |
| int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter); |
| // Count and fill in the enumerable elements into storage. |
| // (storage->length() == NumberOfEnumElements()). |
| // If storage is NULL, will count the elements without adding |
| // them to any storage. |
| // Returns the number of enumerable elements. |
| int GetEnumElementKeys(FixedArray* storage); |
| |
| // Add a property to a fast-case object using a map transition to |
| // new_map. |
| MUST_USE_RESULT MaybeObject* AddFastPropertyUsingMap(Map* new_map, |
| String* name, |
| Object* value); |
| |
| // Add a constant function property to a fast-case object. |
| // This leaves a CONSTANT_TRANSITION in the old map, and |
| // if it is called on a second object with this map, a |
| // normal property is added instead, with a map transition. |
| // This avoids the creation of many maps with the same constant |
| // function, all orphaned. |
| MUST_USE_RESULT MaybeObject* AddConstantFunctionProperty( |
| String* name, |
| JSFunction* function, |
| PropertyAttributes attributes); |
| |
| MUST_USE_RESULT MaybeObject* ReplaceSlowProperty( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes); |
| |
| // Converts a descriptor of any other type to a real field, |
| // backed by the properties array. Descriptors of visible |
| // types, such as CONSTANT_FUNCTION, keep their enumeration order. |
| // Converts the descriptor on the original object's map to a |
| // map transition, and the the new field is on the object's new map. |
| MUST_USE_RESULT MaybeObject* ConvertDescriptorToFieldAndMapTransition( |
| String* name, |
| Object* new_value, |
| PropertyAttributes attributes); |
| |
| // Converts a descriptor of any other type to a real field, |
| // backed by the properties array. Descriptors of visible |
| // types, such as CONSTANT_FUNCTION, keep their enumeration order. |
| MUST_USE_RESULT MaybeObject* ConvertDescriptorToField( |
| String* name, |
| Object* new_value, |
| PropertyAttributes attributes); |
| |
| // Add a property to a fast-case object. |
| MUST_USE_RESULT MaybeObject* AddFastProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes); |
| |
| // Add a property to a slow-case object. |
| MUST_USE_RESULT MaybeObject* AddSlowProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes); |
| |
| // Add a property to an object. |
| MUST_USE_RESULT MaybeObject* AddProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| |
| // Convert the object to use the canonical dictionary |
| // representation. If the object is expected to have additional properties |
| // added this number can be indicated to have the backing store allocated to |
| // an initial capacity for holding these properties. |
| MUST_USE_RESULT MaybeObject* NormalizeProperties( |
| PropertyNormalizationMode mode, |
| int expected_additional_properties); |
| |
| MUST_USE_RESULT MaybeObject* NormalizeElements(); |
| |
| MUST_USE_RESULT MaybeObject* UpdateMapCodeCache(String* name, Code* code); |
| |
| // Transform slow named properties to fast variants. |
| // Returns failure if allocation failed. |
| MUST_USE_RESULT MaybeObject* TransformToFastProperties( |
| int unused_property_fields); |
| |
| // Access fast-case object properties at index. |
| inline Object* FastPropertyAt(int index); |
| inline Object* FastPropertyAtPut(int index, Object* value); |
| |
| // Access to in object properties. |
| inline int GetInObjectPropertyOffset(int index); |
| inline Object* InObjectPropertyAt(int index); |
| inline Object* InObjectPropertyAtPut(int index, |
| Object* value, |
| WriteBarrierMode mode |
| = UPDATE_WRITE_BARRIER); |
| |
| // initializes the body after properties slot, properties slot is |
| // initialized by set_properties |
| // Note: this call does not update write barrier, it is caller's |
| // reponsibility to ensure that *v* can be collected without WB here. |
| inline void InitializeBody(int object_size, Object* value); |
| |
| // Check whether this object references another object |
| bool ReferencesObject(Object* obj); |
| |
| // Casting. |
| static inline JSObject* cast(Object* obj); |
| |
| // Disalow further properties to be added to the object. |
| MUST_USE_RESULT MaybeObject* PreventExtensions(); |
| |
| |
| // Dispatched behavior. |
| void JSObjectShortPrint(StringStream* accumulator); |
| #ifdef OBJECT_PRINT |
| inline void JSObjectPrint() { |
| JSObjectPrint(stdout); |
| } |
| void JSObjectPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSObjectVerify(); |
| #endif |
| #ifdef OBJECT_PRINT |
| inline void PrintProperties() { |
| PrintProperties(stdout); |
| } |
| void PrintProperties(FILE* out); |
| |
| inline void PrintElements() { |
| PrintElements(stdout); |
| } |
| void PrintElements(FILE* out); |
| #endif |
| |
| #ifdef DEBUG |
| // Structure for collecting spill information about JSObjects. |
| class SpillInformation { |
| public: |
| void Clear(); |
| void Print(); |
| int number_of_objects_; |
| int number_of_objects_with_fast_properties_; |
| int number_of_objects_with_fast_elements_; |
| int number_of_fast_used_fields_; |
| int number_of_fast_unused_fields_; |
| int number_of_slow_used_properties_; |
| int number_of_slow_unused_properties_; |
| int number_of_fast_used_elements_; |
| int number_of_fast_unused_elements_; |
| int number_of_slow_used_elements_; |
| int number_of_slow_unused_elements_; |
| }; |
| |
| void IncrementSpillStatistics(SpillInformation* info); |
| #endif |
| Object* SlowReverseLookup(Object* value); |
| |
| // Maximal number of fast properties for the JSObject. Used to |
| // restrict the number of map transitions to avoid an explosion in |
| // the number of maps for objects used as dictionaries. |
| inline int MaxFastProperties(); |
| |
| // Maximal number of elements (numbered 0 .. kMaxElementCount - 1). |
| // Also maximal value of JSArray's length property. |
| static const uint32_t kMaxElementCount = 0xffffffffu; |
| |
| // Constants for heuristics controlling conversion of fast elements |
| // to slow elements. |
| |
| // Maximal gap that can be introduced by adding an element beyond |
| // the current elements length. |
| static const uint32_t kMaxGap = 1024; |
| |
| // Maximal length of fast elements array that won't be checked for |
| // being dense enough on expansion. |
| static const int kMaxUncheckedFastElementsLength = 5000; |
| |
| // Same as above but for old arrays. This limit is more strict. We |
| // don't want to be wasteful with long lived objects. |
| static const int kMaxUncheckedOldFastElementsLength = 500; |
| |
| static const int kInitialMaxFastElementArray = 100000; |
| static const int kMaxFastProperties = 12; |
| static const int kMaxInstanceSize = 255 * kPointerSize; |
| // When extending the backing storage for property values, we increase |
| // its size by more than the 1 entry necessary, so sequentially adding fields |
| // to the same object requires fewer allocations and copies. |
| static const int kFieldsAdded = 3; |
| |
| // Layout description. |
| static const int kPropertiesOffset = HeapObject::kHeaderSize; |
| static const int kElementsOffset = kPropertiesOffset + kPointerSize; |
| static const int kHeaderSize = kElementsOffset + kPointerSize; |
| |
| STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize); |
| |
| class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> { |
| public: |
| static inline int SizeOf(Map* map, HeapObject* object); |
| }; |
| |
| private: |
| friend class DictionaryElementsAccessor; |
| |
| MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver, |
| Object* structure, |
| uint32_t index, |
| Object* holder); |
| MaybeObject* SetElementWithCallback(Object* structure, |
| uint32_t index, |
| Object* value, |
| JSObject* holder, |
| StrictModeFlag strict_mode); |
| MUST_USE_RESULT MaybeObject* SetElementWithInterceptor( |
| uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype); |
| MUST_USE_RESULT MaybeObject* SetElementWithoutInterceptor( |
| uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype); |
| |
| MUST_USE_RESULT MaybeObject* DeletePropertyPostInterceptor(String* name, |
| DeleteMode mode); |
| MUST_USE_RESULT MaybeObject* DeletePropertyWithInterceptor(String* name); |
| |
| MUST_USE_RESULT MaybeObject* DeleteElementWithInterceptor(uint32_t index); |
| |
| MUST_USE_RESULT MaybeObject* DeleteFastElement(uint32_t index); |
| MUST_USE_RESULT MaybeObject* DeleteDictionaryElement(uint32_t index, |
| DeleteMode mode); |
| |
| bool ReferencesObjectFromElements(FixedArray* elements, |
| ElementsKind kind, |
| Object* object); |
| bool HasElementInElements(FixedArray* elements, |
| ElementsKind kind, |
| uint32_t index); |
| |
| // Returns true if most of the elements backing storage is used. |
| bool HasDenseElements(); |
| |
| // Gets the current elements capacity and the number of used elements. |
| void GetElementsCapacityAndUsage(int* capacity, int* used); |
| |
| bool CanSetCallback(String* name); |
| MUST_USE_RESULT MaybeObject* SetElementCallback( |
| uint32_t index, |
| Object* structure, |
| PropertyAttributes attributes); |
| MUST_USE_RESULT MaybeObject* SetPropertyCallback( |
| String* name, |
| Object* structure, |
| PropertyAttributes attributes); |
| MUST_USE_RESULT MaybeObject* DefineGetterSetter( |
| String* name, |
| PropertyAttributes attributes); |
| |
| void LookupInDescriptor(String* name, LookupResult* result); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject); |
| }; |
| |
| |
| // Common superclass for FixedArrays that allow implementations to share |
| // common accessors and some code paths. |
| class FixedArrayBase: public HeapObject { |
| public: |
| // [length]: length of the array. |
| inline int length(); |
| inline void set_length(int value); |
| |
| inline static FixedArrayBase* cast(Object* object); |
| |
| // Layout description. |
| // Length is smi tagged when it is stored. |
| static const int kLengthOffset = HeapObject::kHeaderSize; |
| static const int kHeaderSize = kLengthOffset + kPointerSize; |
| }; |
| |
| |
| class FixedDoubleArray; |
| |
| // FixedArray describes fixed-sized arrays with element type Object*. |
| class FixedArray: public FixedArrayBase { |
| public: |
| // Setter and getter for elements. |
| inline Object* get(int index); |
| // Setter that uses write barrier. |
| inline void set(int index, Object* value); |
| inline bool is_the_hole(int index); |
| |
| // Setter that doesn't need write barrier). |
| inline void set(int index, Smi* value); |
| // Setter with explicit barrier mode. |
| inline void set(int index, Object* value, WriteBarrierMode mode); |
| |
| // Setters for frequently used oddballs located in old space. |
| inline void set_undefined(int index); |
| // TODO(isolates): duplicate. |
| inline void set_undefined(Heap* heap, int index); |
| inline void set_null(int index); |
| // TODO(isolates): duplicate. |
| inline void set_null(Heap* heap, int index); |
| inline void set_the_hole(int index); |
| |
| // Setters with less debug checks for the GC to use. |
| inline void set_unchecked(int index, Smi* value); |
| inline void set_null_unchecked(Heap* heap, int index); |
| inline void set_unchecked(Heap* heap, int index, Object* value, |
| WriteBarrierMode mode); |
| |
| // Gives access to raw memory which stores the array's data. |
| inline Object** data_start(); |
| |
| // Copy operations. |
| MUST_USE_RESULT inline MaybeObject* Copy(); |
| MUST_USE_RESULT MaybeObject* CopySize(int new_length); |
| |
| // Add the elements of a JSArray to this FixedArray. |
| MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array); |
| |
| // Compute the union of this and other. |
| MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other); |
| |
| // Copy a sub array from the receiver to dest. |
| void CopyTo(int pos, FixedArray* dest, int dest_pos, int len); |
| |
| // Garbage collection support. |
| static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; } |
| |
| // Code Generation support. |
| static int OffsetOfElementAt(int index) { return SizeFor(index); } |
| |
| // Casting. |
| static inline FixedArray* cast(Object* obj); |
| |
| // Maximal allowed size, in bytes, of a single FixedArray. |
| // Prevents overflowing size computations, as well as extreme memory |
| // consumption. |
| static const int kMaxSize = 128 * MB * kPointerSize; |
| // Maximally allowed length of a FixedArray. |
| static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize; |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void FixedArrayPrint() { |
| FixedArrayPrint(stdout); |
| } |
| void FixedArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void FixedArrayVerify(); |
| // Checks if two FixedArrays have identical contents. |
| bool IsEqualTo(FixedArray* other); |
| #endif |
| |
| // Swap two elements in a pair of arrays. If this array and the |
| // numbers array are the same object, the elements are only swapped |
| // once. |
| void SwapPairs(FixedArray* numbers, int i, int j); |
| |
| // Sort prefix of this array and the numbers array as pairs wrt. the |
| // numbers. If the numbers array and the this array are the same |
| // object, the prefix of this array is sorted. |
| void SortPairs(FixedArray* numbers, uint32_t len); |
| |
| class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> { |
| public: |
| static inline int SizeOf(Map* map, HeapObject* object) { |
| return SizeFor(reinterpret_cast<FixedArray*>(object)->length()); |
| } |
| }; |
| |
| protected: |
| // Set operation on FixedArray without using write barriers. Can |
| // only be used for storing old space objects or smis. |
| static inline void fast_set(FixedArray* array, int index, Object* value); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray); |
| }; |
| |
| |
| // FixedDoubleArray describes fixed-sized arrays with element type double. |
| class FixedDoubleArray: public FixedArrayBase { |
| public: |
| inline void Initialize(FixedArray* from); |
| inline void Initialize(FixedDoubleArray* from); |
| inline void Initialize(SeededNumberDictionary* from); |
| |
| // Setter and getter for elements. |
| inline double get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, double value); |
| inline void set_the_hole(int index); |
| |
| // Checking for the hole. |
| inline bool is_the_hole(int index); |
| |
| // Garbage collection support. |
| inline static int SizeFor(int length) { |
| return kHeaderSize + length * kDoubleSize; |
| } |
| |
| // Code Generation support. |
| static int OffsetOfElementAt(int index) { return SizeFor(index); } |
| |
| inline static bool is_the_hole_nan(double value); |
| inline static double hole_nan_as_double(); |
| inline static double canonical_not_the_hole_nan_as_double(); |
| |
| // Casting. |
| static inline FixedDoubleArray* cast(Object* obj); |
| |
| // Maximal allowed size, in bytes, of a single FixedDoubleArray. |
| // Prevents overflowing size computations, as well as extreme memory |
| // consumption. |
| static const int kMaxSize = 512 * MB; |
| // Maximally allowed length of a FixedArray. |
| static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize; |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void FixedDoubleArrayPrint() { |
| FixedDoubleArrayPrint(stdout); |
| } |
| void FixedDoubleArrayPrint(FILE* out); |
| #endif |
| |
| #ifdef DEBUG |
| void FixedDoubleArrayVerify(); |
| #endif |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray); |
| }; |
| |
| |
| // DescriptorArrays are fixed arrays used to hold instance descriptors. |
| // The format of the these objects is: |
| // TODO(1399): It should be possible to make room for bit_field3 in the map |
| // without overloading the instance descriptors field in the map |
| // (and storing it in the DescriptorArray when the map has one). |
| // [0]: storage for bit_field3 for Map owning this object (Smi) |
| // [1]: point to a fixed array with (value, detail) pairs. |
| // [2]: next enumeration index (Smi), or pointer to small fixed array: |
| // [0]: next enumeration index (Smi) |
| // [1]: pointer to fixed array with enum cache |
| // [3]: first key |
| // [length() - 1]: last key |
| // |
| class DescriptorArray: public FixedArray { |
| public: |
| // Returns true for both shared empty_descriptor_array and for smis, which the |
| // map uses to encode additional bit fields when the descriptor array is not |
| // yet used. |
| inline bool IsEmpty(); |
| |
| // Returns the number of descriptors in the array. |
| int number_of_descriptors() { |
| ASSERT(length() > kFirstIndex || IsEmpty()); |
| int len = length(); |
| return len <= kFirstIndex ? 0 : len - kFirstIndex; |
| } |
| |
| int NextEnumerationIndex() { |
| if (IsEmpty()) return PropertyDetails::kInitialIndex; |
| Object* obj = get(kEnumerationIndexIndex); |
| if (obj->IsSmi()) { |
| return Smi::cast(obj)->value(); |
| } else { |
| Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex); |
| return Smi::cast(index)->value(); |
| } |
| } |
| |
| // Set next enumeration index and flush any enum cache. |
| void SetNextEnumerationIndex(int value) { |
| if (!IsEmpty()) { |
| fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value)); |
| } |
| } |
| bool HasEnumCache() { |
| return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi(); |
| } |
| |
| Object* GetEnumCache() { |
| ASSERT(HasEnumCache()); |
| FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex)); |
| return bridge->get(kEnumCacheBridgeCacheIndex); |
| } |
| |
| // TODO(1399): It should be possible to make room for bit_field3 in the map |
| // without overloading the instance descriptors field in the map |
| // (and storing it in the DescriptorArray when the map has one). |
| inline int bit_field3_storage(); |
| inline void set_bit_field3_storage(int value); |
| |
| // Initialize or change the enum cache, |
| // using the supplied storage for the small "bridge". |
| void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache); |
| |
| // Accessors for fetching instance descriptor at descriptor number. |
| inline String* GetKey(int descriptor_number); |
| inline Object* GetValue(int descriptor_number); |
| inline Smi* GetDetails(int descriptor_number); |
| inline PropertyType GetType(int descriptor_number); |
| inline int GetFieldIndex(int descriptor_number); |
| inline JSFunction* GetConstantFunction(int descriptor_number); |
| inline Object* GetCallbacksObject(int descriptor_number); |
| inline AccessorDescriptor* GetCallbacks(int descriptor_number); |
| inline bool IsProperty(int descriptor_number); |
| inline bool IsTransition(int descriptor_number); |
| inline bool IsNullDescriptor(int descriptor_number); |
| inline bool IsDontEnum(int descriptor_number); |
| |
| // Accessor for complete descriptor. |
| inline void Get(int descriptor_number, Descriptor* desc); |
| inline void Set(int descriptor_number, Descriptor* desc); |
| |
| // Transfer complete descriptor from another descriptor array to |
| // this one. |
| inline void CopyFrom(int index, DescriptorArray* src, int src_index); |
| |
| // Copy the descriptor array, insert a new descriptor and optionally |
| // remove map transitions. If the descriptor is already present, it is |
| // replaced. If a replaced descriptor is a real property (not a transition |
| // or null), its enumeration index is kept as is. |
| // If adding a real property, map transitions must be removed. If adding |
| // a transition, they must not be removed. All null descriptors are removed. |
| MUST_USE_RESULT MaybeObject* CopyInsert(Descriptor* descriptor, |
| TransitionFlag transition_flag); |
| |
| // Remove all transitions. Return a copy of the array with all transitions |
| // removed, or a Failure object if the new array could not be allocated. |
| MUST_USE_RESULT MaybeObject* RemoveTransitions(); |
| |
| // Sort the instance descriptors by the hash codes of their keys. |
| // Does not check for duplicates. |
| void SortUnchecked(); |
| |
| // Sort the instance descriptors by the hash codes of their keys. |
| // Checks the result for duplicates. |
| void Sort(); |
| |
| // Search the instance descriptors for given name. |
| inline int Search(String* name); |
| |
| // As the above, but uses DescriptorLookupCache and updates it when |
| // necessary. |
| inline int SearchWithCache(String* name); |
| |
| // Tells whether the name is present int the array. |
| bool Contains(String* name) { return kNotFound != Search(name); } |
| |
| // Perform a binary search in the instance descriptors represented |
| // by this fixed array. low and high are descriptor indices. If there |
| // are three instance descriptors in this array it should be called |
| // with low=0 and high=2. |
| int BinarySearch(String* name, int low, int high); |
| |
| // Perform a linear search in the instance descriptors represented |
| // by this fixed array. len is the number of descriptor indices that are |
| // valid. Does not require the descriptors to be sorted. |
| int LinearSearch(String* name, int len); |
| |
| // Allocates a DescriptorArray, but returns the singleton |
| // empty descriptor array object if number_of_descriptors is 0. |
| MUST_USE_RESULT static MaybeObject* Allocate(int number_of_descriptors); |
| |
| // Casting. |
| static inline DescriptorArray* cast(Object* obj); |
| |
| // Constant for denoting key was not found. |
| static const int kNotFound = -1; |
| |
| static const int kBitField3StorageIndex = 0; |
| static const int kContentArrayIndex = 1; |
| static const int kEnumerationIndexIndex = 2; |
| static const int kFirstIndex = 3; |
| |
| // The length of the "bridge" to the enum cache. |
| static const int kEnumCacheBridgeLength = 2; |
| static const int kEnumCacheBridgeEnumIndex = 0; |
| static const int kEnumCacheBridgeCacheIndex = 1; |
| |
| // Layout description. |
| static const int kBitField3StorageOffset = FixedArray::kHeaderSize; |
| static const int kContentArrayOffset = kBitField3StorageOffset + kPointerSize; |
| static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize; |
| static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize; |
| |
| // Layout description for the bridge array. |
| static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize; |
| static const int kEnumCacheBridgeCacheOffset = |
| kEnumCacheBridgeEnumOffset + kPointerSize; |
| |
| #ifdef OBJECT_PRINT |
| // Print all the descriptors. |
| inline void PrintDescriptors() { |
| PrintDescriptors(stdout); |
| } |
| void PrintDescriptors(FILE* out); |
| #endif |
| |
| #ifdef DEBUG |
| // Is the descriptor array sorted and without duplicates? |
| bool IsSortedNoDuplicates(); |
| |
| // Are two DescriptorArrays equal? |
| bool IsEqualTo(DescriptorArray* other); |
| #endif |
| |
| // The maximum number of descriptors we want in a descriptor array (should |
| // fit in a page). |
| static const int kMaxNumberOfDescriptors = 1024 + 512; |
| |
| private: |
| // Conversion from descriptor number to array indices. |
| static int ToKeyIndex(int descriptor_number) { |
| return descriptor_number+kFirstIndex; |
| } |
| |
| static int ToDetailsIndex(int descriptor_number) { |
| return (descriptor_number << 1) + 1; |
| } |
| |
| static int ToValueIndex(int descriptor_number) { |
| return descriptor_number << 1; |
| } |
| |
| bool is_null_descriptor(int descriptor_number) { |
| return PropertyDetails(GetDetails(descriptor_number)).type() == |
| NULL_DESCRIPTOR; |
| } |
| // Swap operation on FixedArray without using write barriers. |
| static inline void fast_swap(FixedArray* array, int first, int second); |
| |
| // Swap descriptor first and second. |
| inline void Swap(int first, int second); |
| |
| FixedArray* GetContentArray() { |
| return FixedArray::cast(get(kContentArrayIndex)); |
| } |
| DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray); |
| }; |
| |
| |
| // HashTable is a subclass of FixedArray that implements a hash table |
| // that uses open addressing and quadratic probing. |
| // |
| // In order for the quadratic probing to work, elements that have not |
| // yet been used and elements that have been deleted are |
| // distinguished. Probing continues when deleted elements are |
| // encountered and stops when unused elements are encountered. |
| // |
| // - Elements with key == undefined have not been used yet. |
| // - Elements with key == null have been deleted. |
| // |
| // The hash table class is parameterized with a Shape and a Key. |
| // Shape must be a class with the following interface: |
| // class ExampleShape { |
| // public: |
| // // Tells whether key matches other. |
| // static bool IsMatch(Key key, Object* other); |
| // // Returns the hash value for key. |
| // static uint32_t Hash(Key key); |
| // // Returns the hash value for object. |
| // static uint32_t HashForObject(Key key, Object* object); |
| // // Convert key to an object. |
| // static inline Object* AsObject(Key key); |
| // // The prefix size indicates number of elements in the beginning |
| // // of the backing storage. |
| // static const int kPrefixSize = ..; |
| // // The Element size indicates number of elements per entry. |
| // static const int kEntrySize = ..; |
| // }; |
| // The prefix size indicates an amount of memory in the |
| // beginning of the backing storage that can be used for non-element |
| // information by subclasses. |
| |
| template<typename Key> |
| class BaseShape { |
| public: |
| static const bool UsesSeed = false; |
| static uint32_t Hash(Key key) { return 0; } |
| static uint32_t SeededHash(Key key, uint32_t seed) { |
| ASSERT(UsesSeed); |
| return Hash(key); |
| } |
| static uint32_t HashForObject(Key key, Object* object) { return 0; } |
| static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) { |
| // Won't be called if UsesSeed isn't overridden by child class. |
| return HashForObject(key, object); |
| } |
| }; |
| |
| template<typename Shape, typename Key> |
| class HashTable: public FixedArray { |
| public: |
| // Wrapper methods |
| inline uint32_t Hash(Key key) { |
| if (Shape::UsesSeed) { |
| return Shape::SeededHash(key, GetHeap()->HashSeed()); |
| } else { |
| return Shape::Hash(key); |
| } |
| } |
| |
| inline uint32_t HashForObject(Key key, Object* object) { |
| if (Shape::UsesSeed) { |
| return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object); |
| } else { |
| return Shape::HashForObject(key, object); |
| } |
| } |
| |
| // Returns the number of elements in the hash table. |
| int NumberOfElements() { |
| return Smi::cast(get(kNumberOfElementsIndex))->value(); |
| } |
| |
| // Returns the number of deleted elements in the hash table. |
| int NumberOfDeletedElements() { |
| return Smi::cast(get(kNumberOfDeletedElementsIndex))->value(); |
| } |
| |
| // Returns the capacity of the hash table. |
| int Capacity() { |
| return Smi::cast(get(kCapacityIndex))->value(); |
| } |
| |
| // ElementAdded should be called whenever an element is added to a |
| // hash table. |
| void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); } |
| |
| // ElementRemoved should be called whenever an element is removed from |
| // a hash table. |
| void ElementRemoved() { |
| SetNumberOfElements(NumberOfElements() - 1); |
| SetNumberOfDeletedElements(NumberOfDeletedElements() + 1); |
| } |
| void ElementsRemoved(int n) { |
| SetNumberOfElements(NumberOfElements() - n); |
| SetNumberOfDeletedElements(NumberOfDeletedElements() + n); |
| } |
| |
| // Returns a new HashTable object. Might return Failure. |
| MUST_USE_RESULT static MaybeObject* Allocate( |
| int at_least_space_for, |
| PretenureFlag pretenure = NOT_TENURED); |
| |
| // Computes the required capacity for a table holding the given |
| // number of elements. May be more than HashTable::kMaxCapacity. |
| static int ComputeCapacity(int at_least_space_for); |
| |
| // Returns the key at entry. |
| Object* KeyAt(int entry) { return get(EntryToIndex(entry)); } |
| |
| // Tells whether k is a real key. Null and undefined are not allowed |
| // as keys and can be used to indicate missing or deleted elements. |
| bool IsKey(Object* k) { |
| return !k->IsNull() && !k->IsUndefined(); |
| } |
| |
| // Garbage collection support. |
| void IteratePrefix(ObjectVisitor* visitor); |
| void IterateElements(ObjectVisitor* visitor); |
| |
| // Casting. |
| static inline HashTable* cast(Object* obj); |
| |
| // Compute the probe offset (quadratic probing). |
| INLINE(static uint32_t GetProbeOffset(uint32_t n)) { |
| return (n + n * n) >> 1; |
| } |
| |
| static const int kNumberOfElementsIndex = 0; |
| static const int kNumberOfDeletedElementsIndex = 1; |
| static const int kCapacityIndex = 2; |
| static const int kPrefixStartIndex = 3; |
| static const int kElementsStartIndex = |
| kPrefixStartIndex + Shape::kPrefixSize; |
| static const int kEntrySize = Shape::kEntrySize; |
| static const int kElementsStartOffset = |
| kHeaderSize + kElementsStartIndex * kPointerSize; |
| static const int kCapacityOffset = |
| kHeaderSize + kCapacityIndex * kPointerSize; |
| |
| // Constant used for denoting a absent entry. |
| static const int kNotFound = -1; |
| |
| // Maximal capacity of HashTable. Based on maximal length of underlying |
| // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex |
| // cannot overflow. |
| static const int kMaxCapacity = |
| (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize; |
| |
| // Find entry for key otherwise return kNotFound. |
| inline int FindEntry(Key key); |
| int FindEntry(Isolate* isolate, Key key); |
| |
| protected: |
| // Find the entry at which to insert element with the given key that |
| // has the given hash value. |
| uint32_t FindInsertionEntry(uint32_t hash); |
| |
| // Returns the index for an entry (of the key) |
| static inline int EntryToIndex(int entry) { |
| return (entry * kEntrySize) + kElementsStartIndex; |
| } |
| |
| // Update the number of elements in the hash table. |
| void SetNumberOfElements(int nof) { |
| fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof)); |
| } |
| |
| // Update the number of deleted elements in the hash table. |
| void SetNumberOfDeletedElements(int nod) { |
| fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod)); |
| } |
| |
| // Sets the capacity of the hash table. |
| void SetCapacity(int capacity) { |
| // To scale a computed hash code to fit within the hash table, we |
| // use bit-wise AND with a mask, so the capacity must be positive |
| // and non-zero. |
| ASSERT(capacity > 0); |
| ASSERT(capacity <= kMaxCapacity); |
| fast_set(this, kCapacityIndex, Smi::FromInt(capacity)); |
| } |
| |
| |
| // Returns probe entry. |
| static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) { |
| ASSERT(IsPowerOf2(size)); |
| return (hash + GetProbeOffset(number)) & (size - 1); |
| } |
| |
| static uint32_t FirstProbe(uint32_t hash, uint32_t size) { |
| return hash & (size - 1); |
| } |
| |
| static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) { |
| return (last + number) & (size - 1); |
| } |
| |
| // Rehashes this hash-table into the new table. |
| MUST_USE_RESULT MaybeObject* Rehash(HashTable* new_table, Key key); |
| |
| // Attempt to shrink hash table after removal of key. |
| MUST_USE_RESULT MaybeObject* Shrink(Key key); |
| |
| // Ensure enough space for n additional elements. |
| MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key); |
| }; |
| |
| |
| // HashTableKey is an abstract superclass for virtual key behavior. |
| class HashTableKey { |
| public: |
| // Returns whether the other object matches this key. |
| virtual bool IsMatch(Object* other) = 0; |
| // Returns the hash value for this key. |
| virtual uint32_t Hash() = 0; |
| // Returns the hash value for object. |
| virtual uint32_t HashForObject(Object* key) = 0; |
| // Returns the key object for storing into the hash table. |
| // If allocations fails a failure object is returned. |
| MUST_USE_RESULT virtual MaybeObject* AsObject() = 0; |
| // Required. |
| virtual ~HashTableKey() {} |
| }; |
| |
| |
| class SymbolTableShape : public BaseShape<HashTableKey*> { |
| public: |
| static inline bool IsMatch(HashTableKey* key, Object* value) { |
| return key->IsMatch(value); |
| } |
| static inline uint32_t Hash(HashTableKey* key) { |
| return key->Hash(); |
| } |
| static inline uint32_t HashForObject(HashTableKey* key, Object* object) { |
| return key->HashForObject(object); |
| } |
| MUST_USE_RESULT static inline MaybeObject* AsObject(HashTableKey* key) { |
| return key->AsObject(); |
| } |
| |
| static const int kPrefixSize = 0; |
| static const int kEntrySize = 1; |
| }; |
| |
| class SeqAsciiString; |
| |
| // SymbolTable. |
| // |
| // No special elements in the prefix and the element size is 1 |
| // because only the symbol itself (the key) needs to be stored. |
| class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> { |
| public: |
| // Find symbol in the symbol table. If it is not there yet, it is |
| // added. The return value is the symbol table which might have |
| // been enlarged. If the return value is not a failure, the symbol |
| // pointer *s is set to the symbol found. |
| MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str, Object** s); |
| MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(Vector<const char> str, |
| Object** s); |
| MUST_USE_RESULT MaybeObject* LookupSubStringAsciiSymbol( |
| Handle<SeqAsciiString> str, |
| int from, |
| int length, |
| Object** s); |
| MUST_USE_RESULT MaybeObject* LookupTwoByteSymbol(Vector<const uc16> str, |
| Object** s); |
| MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s); |
| |
| // Looks up a symbol that is equal to the given string and returns |
| // true if it is found, assigning the symbol to the given output |
| // parameter. |
| bool LookupSymbolIfExists(String* str, String** symbol); |
| bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol); |
| |
| // Casting. |
| static inline SymbolTable* cast(Object* obj); |
| |
| private: |
| MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable); |
| }; |
| |
| |
| class MapCacheShape : public BaseShape<HashTableKey*> { |
| public: |
| static inline bool IsMatch(HashTableKey* key, Object* value) { |
| return key->IsMatch(value); |
| } |
| static inline uint32_t Hash(HashTableKey* key) { |
| return key->Hash(); |
| } |
| |
| static inline uint32_t HashForObject(HashTableKey* key, Object* object) { |
| return key->HashForObject(object); |
| } |
| |
| MUST_USE_RESULT static inline MaybeObject* AsObject(HashTableKey* key) { |
| return key->AsObject(); |
| } |
| |
| static const int kPrefixSize = 0; |
| static const int kEntrySize = 2; |
| }; |
| |
| |
| // MapCache. |
| // |
| // Maps keys that are a fixed array of symbols to a map. |
| // Used for canonicalize maps for object literals. |
| class MapCache: public HashTable<MapCacheShape, HashTableKey*> { |
| public: |
| // Find cached value for a string key, otherwise return null. |
| Object* Lookup(FixedArray* key); |
| MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value); |
| static inline MapCache* cast(Object* obj); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache); |
| }; |
| |
| |
| template <typename Shape, typename Key> |
| class Dictionary: public HashTable<Shape, Key> { |
| public: |
| static inline Dictionary<Shape, Key>* cast(Object* obj) { |
| return reinterpret_cast<Dictionary<Shape, Key>*>(obj); |
| } |
| |
| // Returns the value at entry. |
| Object* ValueAt(int entry) { |
| return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1); |
| } |
| |
| // Set the value for entry. |
| // Returns false if the put wasn't performed due to property being read only. |
| // Returns true on successful put. |
| bool ValueAtPut(int entry, Object* value) { |
| // Check that this value can actually be written. |
| PropertyDetails details = DetailsAt(entry); |
| // If a value has not been initilized we allow writing to it even if |
| // it is read only (a declared const that has not been initialized). |
| if (details.IsReadOnly() && !ValueAt(entry)->IsTheHole()) { |
| return false; |
| } |
| this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 1, value); |
| return true; |
| } |
| |
| // Returns the property details for the property at entry. |
| PropertyDetails DetailsAt(int entry) { |
| ASSERT(entry >= 0); // Not found is -1, which is not caught by get(). |
| return PropertyDetails( |
| Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2))); |
| } |
| |
| // Set the details for entry. |
| void DetailsAtPut(int entry, PropertyDetails value) { |
| this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi()); |
| } |
| |
| // Sorting support |
| void CopyValuesTo(FixedArray* elements); |
| |
| // Delete a property from the dictionary. |
| Object* DeleteProperty(int entry, JSObject::DeleteMode mode); |
| |
| // Attempt to shrink the dictionary after deletion of key. |
| MUST_USE_RESULT MaybeObject* Shrink(Key key); |
| |
| // Returns the number of elements in the dictionary filtering out properties |
| // with the specified attributes. |
| int NumberOfElementsFilterAttributes(PropertyAttributes filter); |
| |
| // Returns the number of enumerable elements in the dictionary. |
| int NumberOfEnumElements(); |
| |
| enum SortMode { UNSORTED, SORTED }; |
| // Copies keys to preallocated fixed array. |
| void CopyKeysTo(FixedArray* storage, |
| PropertyAttributes filter, |
| SortMode sort_mode); |
| // Fill in details for properties into storage. |
| void CopyKeysTo(FixedArray* storage, int index, SortMode sort_mode); |
| |
| // Accessors for next enumeration index. |
| void SetNextEnumerationIndex(int index) { |
| this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index)); |
| } |
| |
| int NextEnumerationIndex() { |
| return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value(); |
| } |
| |
| // Returns a new array for dictionary usage. Might return Failure. |
| MUST_USE_RESULT static MaybeObject* Allocate(int at_least_space_for); |
| |
| // Ensure enough space for n additional elements. |
| MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key); |
| |
| #ifdef OBJECT_PRINT |
| inline void Print() { |
| Print(stdout); |
| } |
| void Print(FILE* out); |
| #endif |
| // Returns the key (slow). |
| Object* SlowReverseLookup(Object* value); |
| |
| // Sets the entry to (key, value) pair. |
| inline void SetEntry(int entry, |
| Object* key, |
| Object* value); |
| inline void SetEntry(int entry, |
| Object* key, |
| Object* value, |
| PropertyDetails details); |
| |
| MUST_USE_RESULT MaybeObject* Add(Key key, |
| Object* value, |
| PropertyDetails details); |
| |
| protected: |
| // Generic at put operation. |
| MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value); |
| |
| // Add entry to dictionary. |
| MUST_USE_RESULT MaybeObject* AddEntry(Key key, |
| Object* value, |
| PropertyDetails details, |
| uint32_t hash); |
| |
| // Generate new enumeration indices to avoid enumeration index overflow. |
| MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices(); |
| static const int kMaxNumberKeyIndex = |
| HashTable<Shape, Key>::kPrefixStartIndex; |
| static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1; |
| }; |
| |
| |
| class StringDictionaryShape : public BaseShape<String*> { |
| public: |
| static inline bool IsMatch(String* key, Object* other); |
| static inline uint32_t Hash(String* key); |
| static inline uint32_t HashForObject(String* key, Object* object); |
| MUST_USE_RESULT static inline MaybeObject* AsObject(String* key); |
| static const int kPrefixSize = 2; |
| static const int kEntrySize = 3; |
| static const bool kIsEnumerable = true; |
| }; |
| |
| |
| class StringDictionary: public Dictionary<StringDictionaryShape, String*> { |
| public: |
| static inline StringDictionary* cast(Object* obj) { |
| ASSERT(obj->IsDictionary()); |
| return reinterpret_cast<StringDictionary*>(obj); |
| } |
| |
| // Copies enumerable keys to preallocated fixed array. |
| void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array); |
| |
| // For transforming properties of a JSObject. |
| MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor( |
| JSObject* obj, |
| int unused_property_fields); |
| |
| // Find entry for key otherwise return kNotFound. Optimzed version of |
| // HashTable::FindEntry. |
| int FindEntry(String* key); |
| }; |
| |
| |
| class NumberDictionaryShape : public BaseShape<uint32_t> { |
| public: |
| static inline bool IsMatch(uint32_t key, Object* other); |
| MUST_USE_RESULT static inline MaybeObject* AsObject(uint32_t key); |
| static const int kEntrySize = 3; |
| static const bool kIsEnumerable = false; |
| }; |
| |
| |
| class SeededNumberDictionaryShape : public NumberDictionaryShape { |
| public: |
| static const bool UsesSeed = true; |
| static const int kPrefixSize = 2; |
| |
| static inline uint32_t SeededHash(uint32_t key, uint32_t seed); |
| static inline uint32_t SeededHashForObject(uint32_t key, |
| uint32_t seed, |
| Object* object); |
| }; |
| |
| |
| class UnseededNumberDictionaryShape : public NumberDictionaryShape { |
| public: |
| static const int kPrefixSize = 0; |
| |
| static inline uint32_t Hash(uint32_t key); |
| static inline uint32_t HashForObject(uint32_t key, Object* object); |
| }; |
| |
| |
| class SeededNumberDictionary |
| : public Dictionary<SeededNumberDictionaryShape, uint32_t> { |
| public: |
| static SeededNumberDictionary* cast(Object* obj) { |
| ASSERT(obj->IsDictionary()); |
| return reinterpret_cast<SeededNumberDictionary*>(obj); |
| } |
| |
| // Type specific at put (default NONE attributes is used when adding). |
| MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value); |
| MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key, |
| Object* value, |
| PropertyDetails details); |
| |
| // Set an existing entry or add a new one if needed. |
| MUST_USE_RESULT MaybeObject* Set(uint32_t key, |
| Object* value, |
| PropertyDetails details); |
| |
| void UpdateMaxNumberKey(uint32_t key); |
| |
| // If slow elements are required we will never go back to fast-case |
| // for the elements kept in this dictionary. We require slow |
| // elements if an element has been added at an index larger than |
| // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called |
| // when defining a getter or setter with a number key. |
| inline bool requires_slow_elements(); |
| inline void set_requires_slow_elements(); |
| |
| // Get the value of the max number key that has been added to this |
| // dictionary. max_number_key can only be called if |
| // requires_slow_elements returns false. |
| inline uint32_t max_number_key(); |
| |
| // Remove all entries were key is a number and (from <= key && key < to). |
| void RemoveNumberEntries(uint32_t from, uint32_t to); |
| |
| // Bit masks. |
| static const int kRequiresSlowElementsMask = 1; |
| static const int kRequiresSlowElementsTagSize = 1; |
| static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1; |
| }; |
| |
| |
| class UnseededNumberDictionary |
| : public Dictionary<UnseededNumberDictionaryShape, uint32_t> { |
| public: |
| static UnseededNumberDictionary* cast(Object* obj) { |
| ASSERT(obj->IsDictionary()); |
| return reinterpret_cast<UnseededNumberDictionary*>(obj); |
| } |
| |
| // Type specific at put (default NONE attributes is used when adding). |
| MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value); |
| MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key, Object* value); |
| |
| // Set an existing entry or add a new one if needed. |
| MUST_USE_RESULT MaybeObject* Set(uint32_t key, Object* value); |
| }; |
| |
| |
| class ObjectHashTableShape : public BaseShape<Object*> { |
| public: |
| static inline bool IsMatch(JSObject* key, Object* other); |
| static inline uint32_t Hash(JSObject* key); |
| static inline uint32_t HashForObject(JSObject* key, Object* object); |
| MUST_USE_RESULT static inline MaybeObject* AsObject(JSObject* key); |
| static const int kPrefixSize = 0; |
| static const int kEntrySize = 2; |
| }; |
| |
| |
| // ObjectHashTable maps keys that are JavaScript objects to object values by |
| // using the identity hash of the key for hashing purposes. |
| class ObjectHashTable: public HashTable<ObjectHashTableShape, JSObject*> { |
| public: |
| static inline ObjectHashTable* cast(Object* obj) { |
| ASSERT(obj->IsHashTable()); |
| return reinterpret_cast<ObjectHashTable*>(obj); |
| } |
| |
| // Looks up the value associated with the given key. The undefined value is |
| // returned in case the key is not present. |
| Object* Lookup(JSObject* key); |
| |
| // Adds (or overwrites) the value associated with the given key. Mapping a |
| // key to the undefined value causes removal of the whole entry. |
| MUST_USE_RESULT MaybeObject* Put(JSObject* key, Object* value); |
| |
| private: |
| friend class MarkCompactCollector; |
| |
| void AddEntry(int entry, JSObject* key, Object* value); |
| void RemoveEntry(int entry, Heap* heap); |
| inline void RemoveEntry(int entry); |
| |
| // Returns the index to the value of an entry. |
| static inline int EntryToValueIndex(int entry) { |
| return EntryToIndex(entry) + 1; |
| } |
| }; |
| |
| |
| // JSFunctionResultCache caches results of some JSFunction invocation. |
| // It is a fixed array with fixed structure: |
| // [0]: factory function |
| // [1]: finger index |
| // [2]: current cache size |
| // [3]: dummy field. |
| // The rest of array are key/value pairs. |
| class JSFunctionResultCache: public FixedArray { |
| public: |
| static const int kFactoryIndex = 0; |
| static const int kFingerIndex = kFactoryIndex + 1; |
| static const int kCacheSizeIndex = kFingerIndex + 1; |
| static const int kDummyIndex = kCacheSizeIndex + 1; |
| static const int kEntriesIndex = kDummyIndex + 1; |
| |
| static const int kEntrySize = 2; // key + value |
| |
| static const int kFactoryOffset = kHeaderSize; |
| static const int kFingerOffset = kFactoryOffset + kPointerSize; |
| static const int kCacheSizeOffset = kFingerOffset + kPointerSize; |
| |
| inline void MakeZeroSize(); |
| inline void Clear(); |
| |
| inline int size(); |
| inline void set_size(int size); |
| inline int finger_index(); |
| inline void set_finger_index(int finger_index); |
| |
| // Casting |
| static inline JSFunctionResultCache* cast(Object* obj); |
| |
| #ifdef DEBUG |
| void JSFunctionResultCacheVerify(); |
| #endif |
| }; |
| |
| |
| // The cache for maps used by normalized (dictionary mode) objects. |
| // Such maps do not have property descriptors, so a typical program |
| // needs very limited number of distinct normalized maps. |
| class NormalizedMapCache: public FixedArray { |
| public: |
| static const int kEntries = 64; |
| |
| MUST_USE_RESULT MaybeObject* Get(JSObject* object, |
| PropertyNormalizationMode mode); |
| |
| void Clear(); |
| |
| // Casting |
| static inline NormalizedMapCache* cast(Object* obj); |
| |
| #ifdef DEBUG |
| void NormalizedMapCacheVerify(); |
| #endif |
| }; |
| |
| |
| // ByteArray represents fixed sized byte arrays. Used by the outside world, |
| // such as PCRE, and also by the memory allocator and garbage collector to |
| // fill in free blocks in the heap. |
| class ByteArray: public FixedArrayBase { |
| public: |
| // Setter and getter. |
| inline byte get(int index); |
| inline void set(int index, byte value); |
| |
| // Treat contents as an int array. |
| inline int get_int(int index); |
| |
| static int SizeFor(int length) { |
| return OBJECT_POINTER_ALIGN(kHeaderSize + length); |
| } |
| // We use byte arrays for free blocks in the heap. Given a desired size in |
| // bytes that is a multiple of the word size and big enough to hold a byte |
| // array, this function returns the number of elements a byte array should |
| // have. |
| static int LengthFor(int size_in_bytes) { |
| ASSERT(IsAligned(size_in_bytes, kPointerSize)); |
| ASSERT(size_in_bytes >= kHeaderSize); |
| return size_in_bytes - kHeaderSize; |
| } |
| |
| // Returns data start address. |
| inline Address GetDataStartAddress(); |
| |
| // Returns a pointer to the ByteArray object for a given data start address. |
| static inline ByteArray* FromDataStartAddress(Address address); |
| |
| // Casting. |
| static inline ByteArray* cast(Object* obj); |
| |
| // Dispatched behavior. |
| inline int ByteArraySize() { |
| return SizeFor(this->length()); |
| } |
| #ifdef OBJECT_PRINT |
| inline void ByteArrayPrint() { |
| ByteArrayPrint(stdout); |
| } |
| void ByteArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ByteArrayVerify(); |
| #endif |
| |
| // Layout description. |
| static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize); |
| |
| // Maximal memory consumption for a single ByteArray. |
| static const int kMaxSize = 512 * MB; |
| // Maximal length of a single ByteArray. |
| static const int kMaxLength = kMaxSize - kHeaderSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray); |
| }; |
| |
| |
| // An ExternalArray represents a fixed-size array of primitive values |
| // which live outside the JavaScript heap. Its subclasses are used to |
| // implement the CanvasArray types being defined in the WebGL |
| // specification. As of this writing the first public draft is not yet |
| // available, but Khronos members can access the draft at: |
| // https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html |
| // |
| // The semantics of these arrays differ from CanvasPixelArray. |
| // Out-of-range values passed to the setter are converted via a C |
| // cast, not clamping. Out-of-range indices cause exceptions to be |
| // raised rather than being silently ignored. |
| class ExternalArray: public FixedArrayBase { |
| public: |
| inline bool is_the_hole(int index) { return false; } |
| |
| // [external_pointer]: The pointer to the external memory area backing this |
| // external array. |
| DECL_ACCESSORS(external_pointer, void) // Pointer to the data store. |
| |
| // Casting. |
| static inline ExternalArray* cast(Object* obj); |
| |
| // Maximal acceptable length for an external array. |
| static const int kMaxLength = 0x3fffffff; |
| |
| // ExternalArray headers are not quadword aligned. |
| static const int kExternalPointerOffset = |
| POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize); |
| static const int kHeaderSize = kExternalPointerOffset + kPointerSize; |
| static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray); |
| }; |
| |
| |
| // A ExternalPixelArray represents a fixed-size byte array with special |
| // semantics used for implementing the CanvasPixelArray object. Please see the |
| // specification at: |
| |
| // http://www.whatwg.org/specs/web-apps/current-work/ |
| // multipage/the-canvas-element.html#canvaspixelarray |
| // In particular, write access clamps the value written to 0 or 255 if the |
| // value written is outside this range. |
| class ExternalPixelArray: public ExternalArray { |
| public: |
| inline uint8_t* external_pixel_pointer(); |
| |
| // Setter and getter. |
| inline uint8_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, uint8_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber and |
| // undefined and clamps the converted value between 0 and 255. |
| Object* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalPixelArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalPixelArrayPrint() { |
| ExternalPixelArrayPrint(stdout); |
| } |
| void ExternalPixelArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalPixelArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalPixelArray); |
| }; |
| |
| |
| class ExternalByteArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline int8_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, int8_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalByteArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalByteArrayPrint() { |
| ExternalByteArrayPrint(stdout); |
| } |
| void ExternalByteArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalByteArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray); |
| }; |
| |
| |
| class ExternalUnsignedByteArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline uint8_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, uint8_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalUnsignedByteArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalUnsignedByteArrayPrint() { |
| ExternalUnsignedByteArrayPrint(stdout); |
| } |
| void ExternalUnsignedByteArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalUnsignedByteArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray); |
| }; |
| |
| |
| class ExternalShortArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline int16_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, int16_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalShortArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalShortArrayPrint() { |
| ExternalShortArrayPrint(stdout); |
| } |
| void ExternalShortArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalShortArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray); |
| }; |
| |
| |
| class ExternalUnsignedShortArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline uint16_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, uint16_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalUnsignedShortArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalUnsignedShortArrayPrint() { |
| ExternalUnsignedShortArrayPrint(stdout); |
| } |
| void ExternalUnsignedShortArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalUnsignedShortArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray); |
| }; |
| |
| |
| class ExternalIntArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline int32_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, int32_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalIntArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalIntArrayPrint() { |
| ExternalIntArrayPrint(stdout); |
| } |
| void ExternalIntArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalIntArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray); |
| }; |
| |
| |
| class ExternalUnsignedIntArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline uint32_t get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, uint32_t value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalUnsignedIntArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalUnsignedIntArrayPrint() { |
| ExternalUnsignedIntArrayPrint(stdout); |
| } |
| void ExternalUnsignedIntArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalUnsignedIntArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray); |
| }; |
| |
| |
| class ExternalFloatArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline float get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, float value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalFloatArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalFloatArrayPrint() { |
| ExternalFloatArrayPrint(stdout); |
| } |
| void ExternalFloatArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ExternalFloatArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray); |
| }; |
| |
| |
| class ExternalDoubleArray: public ExternalArray { |
| public: |
| // Setter and getter. |
| inline double get_scalar(int index); |
| inline MaybeObject* get(int index); |
| inline void set(int index, double value); |
| |
| // This accessor applies the correct conversion from Smi, HeapNumber |
| // and undefined. |
| MaybeObject* SetValue(uint32_t index, Object* value); |
| |
| // Casting. |
| static inline ExternalDoubleArray* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ExternalDoubleArrayPrint() { |
| ExternalDoubleArrayPrint(stdout); |
| } |
| void ExternalDoubleArrayPrint(FILE* out); |
| #endif // OBJECT_PRINT |
| #ifdef DEBUG |
| void ExternalDoubleArrayVerify(); |
| #endif // DEBUG |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalDoubleArray); |
| }; |
| |
| |
| // DeoptimizationInputData is a fixed array used to hold the deoptimization |
| // data for code generated by the Hydrogen/Lithium compiler. It also |
| // contains information about functions that were inlined. If N different |
| // functions were inlined then first N elements of the literal array will |
| // contain these functions. |
| // |
| // It can be empty. |
| class DeoptimizationInputData: public FixedArray { |
| public: |
| // Layout description. Indices in the array. |
| static const int kTranslationByteArrayIndex = 0; |
| static const int kInlinedFunctionCountIndex = 1; |
| static const int kLiteralArrayIndex = 2; |
| static const int kOsrAstIdIndex = 3; |
| static const int kOsrPcOffsetIndex = 4; |
| static const int kFirstDeoptEntryIndex = 5; |
| |
| // Offsets of deopt entry elements relative to the start of the entry. |
| static const int kAstIdOffset = 0; |
| static const int kTranslationIndexOffset = 1; |
| static const int kArgumentsStackHeightOffset = 2; |
| static const int kPcOffset = 3; |
| static const int kDeoptEntrySize = 4; |
| |
| // Simple element accessors. |
| #define DEFINE_ELEMENT_ACCESSORS(name, type) \ |
| type* name() { \ |
| return type::cast(get(k##name##Index)); \ |
| } \ |
| void Set##name(type* value) { \ |
| set(k##name##Index, value); \ |
| } |
| |
| DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray) |
| DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi) |
| DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray) |
| DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi) |
| DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi) |
| |
| // Unchecked accessor to be used during GC. |
| FixedArray* UncheckedLiteralArray() { |
| return reinterpret_cast<FixedArray*>(get(kLiteralArrayIndex)); |
| } |
| |
| #undef DEFINE_ELEMENT_ACCESSORS |
| |
| // Accessors for elements of the ith deoptimization entry. |
| #define DEFINE_ENTRY_ACCESSORS(name, type) \ |
| type* name(int i) { \ |
| return type::cast(get(IndexForEntry(i) + k##name##Offset)); \ |
| } \ |
| void Set##name(int i, type* value) { \ |
| set(IndexForEntry(i) + k##name##Offset, value); \ |
| } |
| |
| DEFINE_ENTRY_ACCESSORS(AstId, Smi) |
| DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi) |
| DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi) |
| DEFINE_ENTRY_ACCESSORS(Pc, Smi) |
| |
| #undef DEFINE_ENTRY_ACCESSORS |
| |
| int DeoptCount() { |
| return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize; |
| } |
| |
| // Allocates a DeoptimizationInputData. |
| MUST_USE_RESULT static MaybeObject* Allocate(int deopt_entry_count, |
| PretenureFlag pretenure); |
| |
| // Casting. |
| static inline DeoptimizationInputData* cast(Object* obj); |
| |
| #ifdef ENABLE_DISASSEMBLER |
| void DeoptimizationInputDataPrint(FILE* out); |
| #endif |
| |
| private: |
| static int IndexForEntry(int i) { |
| return kFirstDeoptEntryIndex + (i * kDeoptEntrySize); |
| } |
| |
| static int LengthFor(int entry_count) { |
| return IndexForEntry(entry_count); |
| } |
| }; |
| |
| |
| // DeoptimizationOutputData is a fixed array used to hold the deoptimization |
| // data for code generated by the full compiler. |
| // The format of the these objects is |
| // [i * 2]: Ast ID for ith deoptimization. |
| // [i * 2 + 1]: PC and state of ith deoptimization |
| class DeoptimizationOutputData: public FixedArray { |
| public: |
| int DeoptPoints() { return length() / 2; } |
| Smi* AstId(int index) { return Smi::cast(get(index * 2)); } |
| void SetAstId(int index, Smi* id) { set(index * 2, id); } |
| Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); } |
| void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); } |
| |
| static int LengthOfFixedArray(int deopt_points) { |
| return deopt_points * 2; |
| } |
| |
| // Allocates a DeoptimizationOutputData. |
| MUST_USE_RESULT static MaybeObject* Allocate(int number_of_deopt_points, |
| PretenureFlag pretenure); |
| |
| // Casting. |
| static inline DeoptimizationOutputData* cast(Object* obj); |
| |
| #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER) |
| void DeoptimizationOutputDataPrint(FILE* out); |
| #endif |
| }; |
| |
| |
| class SafepointEntry; |
| |
| |
| // Code describes objects with on-the-fly generated machine code. |
| class Code: public HeapObject { |
| public: |
| // Opaque data type for encapsulating code flags like kind, inline |
| // cache state, and arguments count. |
| // FLAGS_MIN_VALUE and FLAGS_MAX_VALUE are specified to ensure that |
| // enumeration type has correct value range (see Issue 830 for more details). |
| enum Flags { |
| FLAGS_MIN_VALUE = kMinInt, |
| FLAGS_MAX_VALUE = kMaxInt |
| }; |
| |
| enum Kind { |
| FUNCTION, |
| OPTIMIZED_FUNCTION, |
| STUB, |
| BUILTIN, |
| LOAD_IC, |
| KEYED_LOAD_IC, |
| CALL_IC, |
| KEYED_CALL_IC, |
| STORE_IC, |
| KEYED_STORE_IC, |
| UNARY_OP_IC, |
| BINARY_OP_IC, |
| COMPARE_IC, |
| TO_BOOLEAN_IC, |
| // No more than 16 kinds. The value currently encoded in four bits in |
| // Flags. |
| |
| // Pseudo-kinds. |
| REGEXP = BUILTIN, |
| FIRST_IC_KIND = LOAD_IC, |
| LAST_IC_KIND = TO_BOOLEAN_IC |
| }; |
| |
| enum { |
| NUMBER_OF_KINDS = LAST_IC_KIND + 1 |
| }; |
| |
| typedef int ExtraICState; |
| |
| static const ExtraICState kNoExtraICState = 0; |
| |
| #ifdef ENABLE_DISASSEMBLER |
| // Printing |
| static const char* Kind2String(Kind kind); |
| static const char* ICState2String(InlineCacheState state); |
| static const char* PropertyType2String(PropertyType type); |
| static void PrintExtraICState(FILE* out, Kind kind, ExtraICState extra); |
| inline void Disassemble(const char* name) { |
| Disassemble(name, stdout); |
| } |
| void Disassemble(const char* name, FILE* out); |
| #endif // ENABLE_DISASSEMBLER |
| |
| // [instruction_size]: Size of the native instructions |
| inline int instruction_size(); |
| inline void set_instruction_size(int value); |
| |
| // [relocation_info]: Code relocation information |
| DECL_ACCESSORS(relocation_info, ByteArray) |
| void InvalidateRelocation(); |
| |
| // [deoptimization_data]: Array containing data for deopt. |
| DECL_ACCESSORS(deoptimization_data, FixedArray) |
| |
| // [code_flushing_candidate]: Field only used during garbage |
| // collection to hold code flushing candidates. The contents of this |
| // field does not have to be traced during garbage collection since |
| // it is only used by the garbage collector itself. |
| DECL_ACCESSORS(next_code_flushing_candidate, Object) |
| |
| // Unchecked accessors to be used during GC. |
| inline ByteArray* unchecked_relocation_info(); |
| inline FixedArray* unchecked_deoptimization_data(); |
| |
| inline int relocation_size(); |
| |
| // [flags]: Various code flags. |
| inline Flags flags(); |
| inline void set_flags(Flags flags); |
| |
| // [flags]: Access to specific code flags. |
| inline Kind kind(); |
| inline InlineCacheState ic_state(); // Only valid for IC stubs. |
| inline ExtraICState extra_ic_state(); // Only valid for IC stubs. |
| inline PropertyType type(); // Only valid for monomorphic IC stubs. |
| inline int arguments_count(); // Only valid for call IC stubs. |
| |
| // Testers for IC stub kinds. |
| inline bool is_inline_cache_stub(); |
| inline bool is_load_stub() { return kind() == LOAD_IC; } |
| inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; } |
| inline bool is_store_stub() { return kind() == STORE_IC; } |
| inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; } |
| inline bool is_call_stub() { return kind() == CALL_IC; } |
| inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; } |
| inline bool is_unary_op_stub() { return kind() == UNARY_OP_IC; } |
| inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; } |
| inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; } |
| inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; } |
| |
| // [major_key]: For kind STUB or BINARY_OP_IC, the major key. |
| inline int major_key(); |
| inline void set_major_key(int value); |
| |
| // [optimizable]: For FUNCTION kind, tells if it is optimizable. |
| inline bool optimizable(); |
| inline void set_optimizable(bool value); |
| |
| // [has_deoptimization_support]: For FUNCTION kind, tells if it has |
| // deoptimization support. |
| inline bool has_deoptimization_support(); |
| inline void set_has_deoptimization_support(bool value); |
| |
| // [has_debug_break_slots]: For FUNCTION kind, tells if it has |
| // been compiled with debug break slots. |
| inline bool has_debug_break_slots(); |
| inline void set_has_debug_break_slots(bool value); |
| |
| // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for |
| // how long the function has been marked for OSR and therefore which |
| // level of loop nesting we are willing to do on-stack replacement |
| // for. |
| inline void set_allow_osr_at_loop_nesting_level(int level); |
| inline int allow_osr_at_loop_nesting_level(); |
| |
| // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots |
| // reserved in the code prologue. |
| inline unsigned stack_slots(); |
| inline void set_stack_slots(unsigned slots); |
| |
| // [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in |
| // the instruction stream where the safepoint table starts. |
| inline unsigned safepoint_table_offset(); |
| inline void set_safepoint_table_offset(unsigned offset); |
| |
| // [stack_check_table_start]: For kind FUNCTION, the offset in the |
| // instruction stream where the stack check table starts. |
| inline unsigned stack_check_table_offset(); |
| inline void set_stack_check_table_offset(unsigned offset); |
| |
| // [check type]: For kind CALL_IC, tells how to check if the |
| // receiver is valid for the given call. |
| inline CheckType check_type(); |
| inline void set_check_type(CheckType value); |
| |
| // [type-recording unary op type]: For kind UNARY_OP_IC. |
| inline byte unary_op_type(); |
| inline void set_unary_op_type(byte value); |
| |
| // [type-recording binary op type]: For kind BINARY_OP_IC. |
| inline byte binary_op_type(); |
| inline void set_binary_op_type(byte value); |
| inline byte binary_op_result_type(); |
| inline void set_binary_op_result_type(byte value); |
| |
| // [compare state]: For kind COMPARE_IC, tells what state the stub is in. |
| inline byte compare_state(); |
| inline void set_compare_state(byte value); |
| |
| // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in. |
| inline byte to_boolean_state(); |
| inline void set_to_boolean_state(byte value); |
| |
| // Get the safepoint entry for the given pc. |
| SafepointEntry GetSafepointEntry(Address pc); |
| |
| // Mark this code object as not having a stack check table. Assumes kind |
| // is FUNCTION. |
| void SetNoStackCheckTable(); |
| |
| // Find the first map in an IC stub. |
| Map* FindFirstMap(); |
| |
| // Flags operations. |
| static inline Flags ComputeFlags( |
| Kind kind, |
| InlineCacheState ic_state = UNINITIALIZED, |
| ExtraICState extra_ic_state = kNoExtraICState, |
| PropertyType type = NORMAL, |
| int argc = -1, |
| InlineCacheHolderFlag holder = OWN_MAP); |
| |
| static inline Flags ComputeMonomorphicFlags( |
| Kind kind, |
| PropertyType type, |
| ExtraICState extra_ic_state = kNoExtraICState, |
| InlineCacheHolderFlag holder = OWN_MAP, |
| int argc = -1); |
| |
| static inline InlineCacheState ExtractICStateFromFlags(Flags flags); |
| static inline PropertyType ExtractTypeFromFlags(Flags flags); |
| static inline Kind ExtractKindFromFlags(Flags flags); |
| static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags); |
| static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags); |
| static inline int ExtractArgumentsCountFromFlags(Flags flags); |
| |
| static inline Flags RemoveTypeFromFlags(Flags flags); |
| |
| // Convert a target address into a code object. |
| static inline Code* GetCodeFromTargetAddress(Address address); |
| |
| // Convert an entry address into an object. |
| static inline Object* GetObjectFromEntryAddress(Address location_of_address); |
| |
| // Returns the address of the first instruction. |
| inline byte* instruction_start(); |
| |
| // Returns the address right after the last instruction. |
| inline byte* instruction_end(); |
| |
| // Returns the size of the instructions, padding, and relocation information. |
| inline int body_size(); |
| |
| // Returns the address of the first relocation info (read backwards!). |
| inline byte* relocation_start(); |
| |
| // Code entry point. |
| inline byte* entry(); |
| |
| // Returns true if pc is inside this object's instructions. |
| inline bool contains(byte* pc); |
| |
| // Relocate the code by delta bytes. Called to signal that this code |
| // object has been moved by delta bytes. |
| void Relocate(intptr_t delta); |
| |
| // Migrate code described by desc. |
| void CopyFrom(const CodeDesc& desc); |
| |
| // Returns the object size for a given body (used for allocation). |
| static int SizeFor(int body_size) { |
| ASSERT_SIZE_TAG_ALIGNED(body_size); |
| return RoundUp(kHeaderSize + body_size, kCodeAlignment); |
| } |
| |
| // Calculate the size of the code object to report for log events. This takes |
| // the layout of the code object into account. |
| int ExecutableSize() { |
| // Check that the assumptions about the layout of the code object holds. |
| ASSERT_EQ(static_cast<int>(instruction_start() - address()), |
| Code::kHeaderSize); |
| return instruction_size() + Code::kHeaderSize; |
| } |
| |
| // Locating source position. |
| int SourcePosition(Address pc); |
| int SourceStatementPosition(Address pc); |
| |
| // Casting. |
| static inline Code* cast(Object* obj); |
| |
| // Dispatched behavior. |
| int CodeSize() { return SizeFor(body_size()); } |
| inline void CodeIterateBody(ObjectVisitor* v); |
| |
| template<typename StaticVisitor> |
| inline void CodeIterateBody(Heap* heap); |
| #ifdef OBJECT_PRINT |
| inline void CodePrint() { |
| CodePrint(stdout); |
| } |
| void CodePrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void CodeVerify(); |
| #endif |
| |
| // Returns the isolate/heap this code object belongs to. |
| inline Isolate* isolate(); |
| inline Heap* heap(); |
| |
| // Max loop nesting marker used to postpose OSR. We don't take loop |
| // nesting that is deeper than 5 levels into account. |
| static const int kMaxLoopNestingMarker = 6; |
| |
| // Layout description. |
| static const int kInstructionSizeOffset = HeapObject::kHeaderSize; |
| static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize; |
| static const int kDeoptimizationDataOffset = |
| kRelocationInfoOffset + kPointerSize; |
| static const int kNextCodeFlushingCandidateOffset = |
| kDeoptimizationDataOffset + kPointerSize; |
| static const int kFlagsOffset = |
| kNextCodeFlushingCandidateOffset + kPointerSize; |
| |
| static const int kKindSpecificFlagsOffset = kFlagsOffset + kIntSize; |
| static const int kKindSpecificFlagsSize = 2 * kIntSize; |
| |
| static const int kHeaderPaddingStart = kKindSpecificFlagsOffset + |
| kKindSpecificFlagsSize; |
| |
| // Add padding to align the instruction start following right after |
| // the Code object header. |
| static const int kHeaderSize = |
| (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask; |
| |
| // Byte offsets within kKindSpecificFlagsOffset. |
| static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset; |
| static const int kOptimizableOffset = kKindSpecificFlagsOffset; |
| static const int kStackSlotsOffset = kKindSpecificFlagsOffset; |
| static const int kCheckTypeOffset = kKindSpecificFlagsOffset; |
| |
| static const int kUnaryOpTypeOffset = kStubMajorKeyOffset + 1; |
| static const int kBinaryOpTypeOffset = kStubMajorKeyOffset + 1; |
| static const int kCompareStateOffset = kStubMajorKeyOffset + 1; |
| static const int kToBooleanTypeOffset = kStubMajorKeyOffset + 1; |
| |
| static const int kFullCodeFlags = kOptimizableOffset + 1; |
| class FullCodeFlagsHasDeoptimizationSupportField: |
| public BitField<bool, 0, 1> {}; // NOLINT |
| class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {}; |
| |
| static const int kBinaryOpReturnTypeOffset = kBinaryOpTypeOffset + 1; |
| |
| static const int kAllowOSRAtLoopNestingLevelOffset = kFullCodeFlags + 1; |
| |
| static const int kSafepointTableOffsetOffset = kStackSlotsOffset + kIntSize; |
| static const int kStackCheckTableOffsetOffset = kStackSlotsOffset + kIntSize; |
| |
| // Flags layout. BitField<type, shift, size>. |
| class ICStateField: public BitField<InlineCacheState, 0, 3> {}; |
| class TypeField: public BitField<PropertyType, 3, 4> {}; |
| class KindField: public BitField<Kind, 7, 4> {}; |
| class CacheHolderField: public BitField<InlineCacheHolderFlag, 11, 1> {}; |
| class ExtraICStateField: public BitField<ExtraICState, 12, 2> {}; |
| |
| // Signed field cannot be encoded using the BitField class. |
| static const int kArgumentsCountShift = 14; |
| static const int kArgumentsCountMask = ~((1 << kArgumentsCountShift) - 1); |
| |
| static const int kFlagsNotUsedInLookup = |
| TypeField::kMask | CacheHolderField::kMask; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Code); |
| }; |
| |
| |
| // All heap objects have a Map that describes their structure. |
| // A Map contains information about: |
| // - Size information about the object |
| // - How to iterate over an object (for garbage collection) |
| class Map: public HeapObject { |
| public: |
| // Instance size. |
| // Size in bytes or kVariableSizeSentinel if instances do not have |
| // a fixed size. |
| inline int instance_size(); |
| inline void set_instance_size(int value); |
| |
| // Count of properties allocated in the object. |
| inline int inobject_properties(); |
| inline void set_inobject_properties(int value); |
| |
| // Count of property fields pre-allocated in the object when first allocated. |
| inline int pre_allocated_property_fields(); |
| inline void set_pre_allocated_property_fields(int value); |
| |
| // Instance type. |
| inline InstanceType instance_type(); |
| inline void set_instance_type(InstanceType value); |
| |
| // Tells how many unused property fields are available in the |
| // instance (only used for JSObject in fast mode). |
| inline int unused_property_fields(); |
| inline void set_unused_property_fields(int value); |
| |
| // Bit field. |
| inline byte bit_field(); |
| inline void set_bit_field(byte value); |
| |
| // Bit field 2. |
| inline byte bit_field2(); |
| inline void set_bit_field2(byte value); |
| |
| // Bit field 3. |
| // TODO(1399): It should be possible to make room for bit_field3 in the map |
| // without overloading the instance descriptors field (and storing it in the |
| // DescriptorArray when the map has one). |
| inline int bit_field3(); |
| inline void set_bit_field3(int value); |
| |
| // Tells whether the object in the prototype property will be used |
| // for instances created from this function. If the prototype |
| // property is set to a value that is not a JSObject, the prototype |
| // property will not be used to create instances of the function. |
| // See ECMA-262, 13.2.2. |
| inline void set_non_instance_prototype(bool value); |
| inline bool has_non_instance_prototype(); |
| |
| // Tells whether function has special prototype property. If not, prototype |
| // property will not be created when accessed (will return undefined), |
| // and construction from this function will not be allowed. |
| inline void set_function_with_prototype(bool value); |
| inline bool function_with_prototype(); |
| |
| // Tells whether the instance with this map should be ignored by the |
| // __proto__ accessor. |
| inline void set_is_hidden_prototype() { |
| set_bit_field(bit_field() | (1 << kIsHiddenPrototype)); |
| } |
| |
| inline bool is_hidden_prototype() { |
| return ((1 << kIsHiddenPrototype) & bit_field()) != 0; |
| } |
| |
| // Records and queries whether the instance has a named interceptor. |
| inline void set_has_named_interceptor() { |
| set_bit_field(bit_field() | (1 << kHasNamedInterceptor)); |
| } |
| |
| inline bool has_named_interceptor() { |
| return ((1 << kHasNamedInterceptor) & bit_field()) != 0; |
| } |
| |
| // Records and queries whether the instance has an indexed interceptor. |
| inline void set_has_indexed_interceptor() { |
| set_bit_field(bit_field() | (1 << kHasIndexedInterceptor)); |
| } |
| |
| inline bool has_indexed_interceptor() { |
| return ((1 << kHasIndexedInterceptor) & bit_field()) != 0; |
| } |
| |
| // Tells whether the instance is undetectable. |
| // An undetectable object is a special class of JSObject: 'typeof' operator |
| // returns undefined, ToBoolean returns false. Otherwise it behaves like |
| // a normal JS object. It is useful for implementing undetectable |
| // document.all in Firefox & Safari. |
| // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549. |
| inline void set_is_undetectable() { |
| set_bit_field(bit_field() | (1 << kIsUndetectable)); |
| } |
| |
| inline bool is_undetectable() { |
| return ((1 << kIsUndetectable) & bit_field()) != 0; |
| } |
| |
| // Tells whether the instance has a call-as-function handler. |
| inline void set_has_instance_call_handler() { |
| set_bit_field(bit_field() | (1 << kHasInstanceCallHandler)); |
| } |
| |
| inline bool has_instance_call_handler() { |
| return ((1 << kHasInstanceCallHandler) & bit_field()) != 0; |
| } |
| |
| inline void set_is_extensible(bool value); |
| inline bool is_extensible(); |
| |
| inline void set_elements_kind(ElementsKind elements_kind) { |
| ASSERT(elements_kind < kElementsKindCount); |
| ASSERT(kElementsKindCount <= (1 << kElementsKindBitCount)); |
| set_bit_field2((bit_field2() & ~kElementsKindMask) | |
| (elements_kind << kElementsKindShift)); |
| ASSERT(this->elements_kind() == elements_kind); |
| } |
| |
| inline ElementsKind elements_kind() { |
| return static_cast<ElementsKind>( |
| (bit_field2() & kElementsKindMask) >> kElementsKindShift); |
| } |
| |
| // Tells whether the instance has fast elements. |
| // Equivalent to instance->GetElementsKind() == FAST_ELEMENTS. |
| inline bool has_fast_elements() { |
| return elements_kind() == FAST_ELEMENTS; |
| } |
| |
| inline bool has_fast_double_elements() { |
| return elements_kind() == FAST_DOUBLE_ELEMENTS; |
| } |
| |
| inline bool has_external_array_elements() { |
| ElementsKind kind(elements_kind()); |
| return kind >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND && |
| kind <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND; |
| } |
| |
| inline bool has_dictionary_elements() { |
| return elements_kind() == DICTIONARY_ELEMENTS; |
| } |
| |
| // Tells whether the map is attached to SharedFunctionInfo |
| // (for inobject slack tracking). |
| inline void set_attached_to_shared_function_info(bool value); |
| |
| inline bool attached_to_shared_function_info(); |
| |
| // Tells whether the map is shared between objects that may have different |
| // behavior. If true, the map should never be modified, instead a clone |
| // should be created and modified. |
| inline void set_is_shared(bool value); |
| |
| inline bool is_shared(); |
| |
| // Tells whether the instance needs security checks when accessing its |
| // properties. |
| inline void set_is_access_check_needed(bool access_check_needed); |
| inline bool is_access_check_needed(); |
| |
| // [prototype]: implicit prototype object. |
| DECL_ACCESSORS(prototype, Object) |
| |
| // [constructor]: points back to the function responsible for this map. |
| DECL_ACCESSORS(constructor, Object) |
| |
| inline JSFunction* unchecked_constructor(); |
| |
| // Should only be called by the code that initializes map to set initial valid |
| // value of the instance descriptor member. |
| inline void init_instance_descriptors(); |
| |
| // [instance descriptors]: describes the object. |
| DECL_ACCESSORS(instance_descriptors, DescriptorArray) |
| |
| // Sets the instance descriptor array for the map to be an empty descriptor |
| // array. |
| inline void clear_instance_descriptors(); |
| |
| // [stub cache]: contains stubs compiled for this map. |
| DECL_ACCESSORS(code_cache, Object) |
| |
| // [prototype transitions]: cache of prototype transitions. |
| // Prototype transition is a transition that happens |
| // when we change object's prototype to a new one. |
| // Cache format: |
| // 0: finger - index of the first free cell in the cache |
| // 1 + 2 * i: prototype |
| // 2 + 2 * i: target map |
| DECL_ACCESSORS(prototype_transitions, FixedArray) |
| inline FixedArray* unchecked_prototype_transitions(); |
| |
| static const int kProtoTransitionHeaderSize = 1; |
| static const int kProtoTransitionNumberOfEntriesOffset = 0; |
| static const int kProtoTransitionElementsPerEntry = 2; |
| static const int kProtoTransitionPrototypeOffset = 0; |
| static const int kProtoTransitionMapOffset = 1; |
| |
| inline int NumberOfProtoTransitions() { |
| FixedArray* cache = unchecked_prototype_transitions(); |
| if (cache->length() == 0) return 0; |
| return |
| Smi::cast(cache->get(kProtoTransitionNumberOfEntriesOffset))->value(); |
| } |
| |
| inline void SetNumberOfProtoTransitions(int value) { |
| FixedArray* cache = unchecked_prototype_transitions(); |
| ASSERT(cache->length() != 0); |
| cache->set_unchecked(kProtoTransitionNumberOfEntriesOffset, |
| Smi::FromInt(value)); |
| } |
| |
| // Lookup in the map's instance descriptors and fill out the result |
| // with the given holder if the name is found. The holder may be |
| // NULL when this function is used from the compiler. |
| void LookupInDescriptors(JSObject* holder, |
| String* name, |
| LookupResult* result); |
| |
| MUST_USE_RESULT MaybeObject* CopyDropDescriptors(); |
| |
| MUST_USE_RESULT MaybeObject* CopyNormalized(PropertyNormalizationMode mode, |
| NormalizedMapSharingMode sharing); |
| |
| // Returns a copy of the map, with all transitions dropped from the |
| // instance descriptors. |
| MUST_USE_RESULT MaybeObject* CopyDropTransitions(); |
| |
| // Returns this map if it already has elements that are fast, otherwise |
| // returns a copy of the map, with all transitions dropped from the |
| // descriptors and the ElementsKind set to FAST_ELEMENTS. |
| MUST_USE_RESULT inline MaybeObject* GetFastElementsMap(); |
| |
| // Returns this map if it already has fast elements that are doubles, |
| // otherwise returns a copy of the map, with all transitions dropped from the |
| // descriptors and the ElementsKind set to FAST_DOUBLE_ELEMENTS. |
| MUST_USE_RESULT inline MaybeObject* GetFastDoubleElementsMap(); |
| |
| // Returns this map if already has dictionary elements, otherwise returns a |
| // copy of the map, with all transitions dropped from the descriptors and the |
| // ElementsKind set to DICTIONARY_ELEMENTS. |
| MUST_USE_RESULT inline MaybeObject* GetSlowElementsMap(); |
| |
| // Returns a new map with all transitions dropped from the descriptors and the |
| // ElementsKind set. |
| MUST_USE_RESULT MaybeObject* GetElementsTransitionMap( |
| ElementsKind elements_kind, |
| bool safe_to_add_transition); |
| |
| // Returns the property index for name (only valid for FAST MODE). |
| int PropertyIndexFor(String* name); |
| |
| // Returns the next free property index (only valid for FAST MODE). |
| int NextFreePropertyIndex(); |
| |
| // Returns the number of properties described in instance_descriptors. |
| int NumberOfDescribedProperties(); |
| |
| // Casting. |
| static inline Map* cast(Object* obj); |
| |
| // Locate an accessor in the instance descriptor. |
| AccessorDescriptor* FindAccessor(String* name); |
| |
| // Code cache operations. |
| |
| // Clears the code cache. |
| inline void ClearCodeCache(Heap* heap); |
| |
| // Update code cache. |
| MUST_USE_RESULT MaybeObject* UpdateCodeCache(String* name, Code* code); |
| |
| // Returns the found code or undefined if absent. |
| Object* FindInCodeCache(String* name, Code::Flags flags); |
| |
| // Returns the non-negative index of the code object if it is in the |
| // cache and -1 otherwise. |
| int IndexInCodeCache(Object* name, Code* code); |
| |
| // Removes a code object from the code cache at the given index. |
| void RemoveFromCodeCache(String* name, Code* code, int index); |
| |
| // For every transition in this map, makes the transition's |
| // target's prototype pointer point back to this map. |
| // This is undone in MarkCompactCollector::ClearNonLiveTransitions(). |
| void CreateBackPointers(); |
| |
| // Set all map transitions from this map to dead maps to null. |
| // Also, restore the original prototype on the targets of these |
| // transitions, so that we do not process this map again while |
| // following back pointers. |
| void ClearNonLiveTransitions(Heap* heap, Object* real_prototype); |
| |
| // Computes a hash value for this map, to be used in HashTables and such. |
| int Hash(); |
| |
| // Compares this map to another to see if they describe equivalent objects. |
| // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if |
| // it had exactly zero inobject properties. |
| // The "shared" flags of both this map and |other| are ignored. |
| bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode); |
| |
| // Returns true if this map and |other| describe equivalent objects. |
| // The "shared" flags of both this map and |other| are ignored. |
| bool EquivalentTo(Map* other) { |
| return EquivalentToForNormalization(other, KEEP_INOBJECT_PROPERTIES); |
| } |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void MapPrint() { |
| MapPrint(stdout); |
| } |
| void MapPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void MapVerify(); |
| void SharedMapVerify(); |
| #endif |
| |
| inline int visitor_id(); |
| inline void set_visitor_id(int visitor_id); |
| |
| // Returns the isolate/heap this map belongs to. |
| inline Isolate* isolate(); |
| inline Heap* heap(); |
| |
| typedef void (*TraverseCallback)(Map* map, void* data); |
| |
| void TraverseTransitionTree(TraverseCallback callback, void* data); |
| |
| static const int kMaxCachedPrototypeTransitions = 256; |
| |
| Object* GetPrototypeTransition(Object* prototype); |
| |
| MaybeObject* PutPrototypeTransition(Object* prototype, Map* map); |
| |
| static const int kMaxPreAllocatedPropertyFields = 255; |
| |
| // Layout description. |
| static const int kInstanceSizesOffset = HeapObject::kHeaderSize; |
| static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize; |
| static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize; |
| static const int kConstructorOffset = kPrototypeOffset + kPointerSize; |
| // Storage for instance descriptors is overloaded to also contain additional |
| // map flags when unused (bit_field3). When the map has instance descriptors, |
| // the flags are transferred to the instance descriptor array and accessed |
| // through an extra indirection. |
| // TODO(1399): It should be possible to make room for bit_field3 in the map |
| // without overloading the instance descriptors field, but the map is |
| // currently perfectly aligned to 32 bytes and extending it at all would |
| // double its size. After the increment GC work lands, this size restriction |
| // could be loosened and bit_field3 moved directly back in the map. |
| static const int kInstanceDescriptorsOrBitField3Offset = |
| kConstructorOffset + kPointerSize; |
| static const int kCodeCacheOffset = |
| kInstanceDescriptorsOrBitField3Offset + kPointerSize; |
| static const int kPrototypeTransitionsOffset = |
| kCodeCacheOffset + kPointerSize; |
| static const int kPadStart = kPrototypeTransitionsOffset + kPointerSize; |
| static const int kSize = MAP_POINTER_ALIGN(kPadStart); |
| |
| // Layout of pointer fields. Heap iteration code relies on them |
| // being continiously allocated. |
| static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset; |
| static const int kPointerFieldsEndOffset = |
| Map::kPrototypeTransitionsOffset + kPointerSize; |
| |
| // Byte offsets within kInstanceSizesOffset. |
| static const int kInstanceSizeOffset = kInstanceSizesOffset + 0; |
| static const int kInObjectPropertiesByte = 1; |
| static const int kInObjectPropertiesOffset = |
| kInstanceSizesOffset + kInObjectPropertiesByte; |
| static const int kPreAllocatedPropertyFieldsByte = 2; |
| static const int kPreAllocatedPropertyFieldsOffset = |
| kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte; |
| static const int kVisitorIdByte = 3; |
| static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte; |
| |
| // Byte offsets within kInstanceAttributesOffset attributes. |
| static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0; |
| static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1; |
| static const int kBitFieldOffset = kInstanceAttributesOffset + 2; |
| static const int kBitField2Offset = kInstanceAttributesOffset + 3; |
| |
| STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset); |
| |
| // Bit positions for bit field. |
| static const int kUnused = 0; // To be used for marking recently used maps. |
| static const int kHasNonInstancePrototype = 1; |
| static const int kIsHiddenPrototype = 2; |
| static const int kHasNamedInterceptor = 3; |
| static const int kHasIndexedInterceptor = 4; |
| static const int kIsUndetectable = 5; |
| static const int kHasInstanceCallHandler = 6; |
| static const int kIsAccessCheckNeeded = 7; |
| |
| // Bit positions for bit field 2 |
| static const int kIsExtensible = 0; |
| static const int kFunctionWithPrototype = 1; |
| static const int kStringWrapperSafeForDefaultValueOf = 2; |
| static const int kAttachedToSharedFunctionInfo = 3; |
| // No bits can be used after kElementsKindFirstBit, they are all reserved for |
| // storing ElementKind. for anything other than storing the ElementKind. |
| static const int kElementsKindShift = 4; |
| static const int kElementsKindBitCount = 4; |
| |
| // Derived values from bit field 2 |
| static const int kElementsKindMask = (-1 << kElementsKindShift) & |
| ((1 << (kElementsKindShift + kElementsKindBitCount)) - 1); |
| static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>( |
| (FAST_ELEMENTS + 1) << Map::kElementsKindShift) - 1; |
| |
| // Bit positions for bit field 3 |
| static const int kIsShared = 0; |
| |
| // Layout of the default cache. It holds alternating name and code objects. |
| static const int kCodeCacheEntrySize = 2; |
| static const int kCodeCacheEntryNameOffset = 0; |
| static const int kCodeCacheEntryCodeOffset = 1; |
| |
| typedef FixedBodyDescriptor<kPointerFieldsBeginOffset, |
| kPointerFieldsEndOffset, |
| kSize> BodyDescriptor; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Map); |
| }; |
| |
| |
| // An abstract superclass, a marker class really, for simple structure classes. |
| // It doesn't carry much functionality but allows struct classes to be |
| // identified in the type system. |
| class Struct: public HeapObject { |
| public: |
| inline void InitializeBody(int object_size); |
| static inline Struct* cast(Object* that); |
| }; |
| |
| |
| // Script describes a script which has been added to the VM. |
| class Script: public Struct { |
| public: |
| // Script types. |
| enum Type { |
| TYPE_NATIVE = 0, |
| TYPE_EXTENSION = 1, |
| TYPE_NORMAL = 2 |
| }; |
| |
| // Script compilation types. |
| enum CompilationType { |
| COMPILATION_TYPE_HOST = 0, |
| COMPILATION_TYPE_EVAL = 1 |
| }; |
| |
| // [source]: the script source. |
| DECL_ACCESSORS(source, Object) |
| |
| // [name]: the script name. |
| DECL_ACCESSORS(name, Object) |
| |
| // [id]: the script id. |
| DECL_ACCESSORS(id, Object) |
| |
| // [line_offset]: script line offset in resource from where it was extracted. |
| DECL_ACCESSORS(line_offset, Smi) |
| |
| // [column_offset]: script column offset in resource from where it was |
| // extracted. |
| DECL_ACCESSORS(column_offset, Smi) |
| |
| // [data]: additional data associated with this script. |
| DECL_ACCESSORS(data, Object) |
| |
| // [context_data]: context data for the context this script was compiled in. |
| DECL_ACCESSORS(context_data, Object) |
| |
| // [wrapper]: the wrapper cache. |
| DECL_ACCESSORS(wrapper, Foreign) |
| |
| // [type]: the script type. |
| DECL_ACCESSORS(type, Smi) |
| |
| // [compilation]: how the the script was compiled. |
| DECL_ACCESSORS(compilation_type, Smi) |
| |
| // [line_ends]: FixedArray of line ends positions. |
| DECL_ACCESSORS(line_ends, Object) |
| |
| // [eval_from_shared]: for eval scripts the shared funcion info for the |
| // function from which eval was called. |
| DECL_ACCESSORS(eval_from_shared, Object) |
| |
| // [eval_from_instructions_offset]: the instruction offset in the code for the |
| // function from which eval was called where eval was called. |
| DECL_ACCESSORS(eval_from_instructions_offset, Smi) |
| |
| static inline Script* cast(Object* obj); |
| |
| // If script source is an external string, check that the underlying |
| // resource is accessible. Otherwise, always return true. |
| inline bool HasValidSource(); |
| |
| #ifdef OBJECT_PRINT |
| inline void ScriptPrint() { |
| ScriptPrint(stdout); |
| } |
| void ScriptPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ScriptVerify(); |
| #endif |
| |
| static const int kSourceOffset = HeapObject::kHeaderSize; |
| static const int kNameOffset = kSourceOffset + kPointerSize; |
| static const int kLineOffsetOffset = kNameOffset + kPointerSize; |
| static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize; |
| static const int kDataOffset = kColumnOffsetOffset + kPointerSize; |
| static const int kContextOffset = kDataOffset + kPointerSize; |
| static const int kWrapperOffset = kContextOffset + kPointerSize; |
| static const int kTypeOffset = kWrapperOffset + kPointerSize; |
| static const int kCompilationTypeOffset = kTypeOffset + kPointerSize; |
| static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize; |
| static const int kIdOffset = kLineEndsOffset + kPointerSize; |
| static const int kEvalFromSharedOffset = kIdOffset + kPointerSize; |
| static const int kEvalFrominstructionsOffsetOffset = |
| kEvalFromSharedOffset + kPointerSize; |
| static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Script); |
| }; |
| |
| |
| // List of builtin functions we want to identify to improve code |
| // generation. |
| // |
| // Each entry has a name of a global object property holding an object |
| // optionally followed by ".prototype", a name of a builtin function |
| // on the object (the one the id is set for), and a label. |
| // |
| // Installation of ids for the selected builtin functions is handled |
| // by the bootstrapper. |
| // |
| // NOTE: Order is important: math functions should be at the end of |
| // the list and MathFloor should be the first math function. |
| #define FUNCTIONS_WITH_ID_LIST(V) \ |
| V(Array.prototype, push, ArrayPush) \ |
| V(Array.prototype, pop, ArrayPop) \ |
| V(Function.prototype, apply, FunctionApply) \ |
| V(String.prototype, charCodeAt, StringCharCodeAt) \ |
| V(String.prototype, charAt, StringCharAt) \ |
| V(String, fromCharCode, StringFromCharCode) \ |
| V(Math, floor, MathFloor) \ |
| V(Math, round, MathRound) \ |
| V(Math, ceil, MathCeil) \ |
| V(Math, abs, MathAbs) \ |
| V(Math, log, MathLog) \ |
| V(Math, sin, MathSin) \ |
| V(Math, cos, MathCos) \ |
| V(Math, tan, MathTan) \ |
| V(Math, asin, MathASin) \ |
| V(Math, acos, MathACos) \ |
| V(Math, atan, MathATan) \ |
| V(Math, exp, MathExp) \ |
| V(Math, sqrt, MathSqrt) \ |
| V(Math, pow, MathPow) |
| |
| |
| enum BuiltinFunctionId { |
| #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \ |
| k##name, |
| FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID) |
| #undef DECLARE_FUNCTION_ID |
| // Fake id for a special case of Math.pow. Note, it continues the |
| // list of math functions. |
| kMathPowHalf, |
| kFirstMathFunctionId = kMathFloor |
| }; |
| |
| |
| // SharedFunctionInfo describes the JSFunction information that can be |
| // shared by multiple instances of the function. |
| class SharedFunctionInfo: public HeapObject { |
| public: |
| // [name]: Function name. |
| DECL_ACCESSORS(name, Object) |
| |
| // [code]: Function code. |
| DECL_ACCESSORS(code, Code) |
| |
| // [scope_info]: Scope info. |
| DECL_ACCESSORS(scope_info, SerializedScopeInfo) |
| |
| // [construct stub]: Code stub for constructing instances of this function. |
| DECL_ACCESSORS(construct_stub, Code) |
| |
| inline Code* unchecked_code(); |
| |
| // Returns if this function has been compiled to native code yet. |
| inline bool is_compiled(); |
| |
| // [length]: The function length - usually the number of declared parameters. |
| // Use up to 2^30 parameters. |
| inline int length(); |
| inline void set_length(int value); |
| |
| // [formal parameter count]: The declared number of parameters. |
| inline int formal_parameter_count(); |
| inline void set_formal_parameter_count(int value); |
| |
| // Set the formal parameter count so the function code will be |
| // called without using argument adaptor frames. |
| inline void DontAdaptArguments(); |
| |
| // [expected_nof_properties]: Expected number of properties for the function. |
| inline int expected_nof_properties(); |
| inline void set_expected_nof_properties(int value); |
| |
| // Inobject slack tracking is the way to reclaim unused inobject space. |
| // |
| // The instance size is initially determined by adding some slack to |
| // expected_nof_properties (to allow for a few extra properties added |
| // after the constructor). There is no guarantee that the extra space |
| // will not be wasted. |
| // |
| // Here is the algorithm to reclaim the unused inobject space: |
| // - Detect the first constructor call for this SharedFunctionInfo. |
| // When it happens enter the "in progress" state: remember the |
| // constructor's initial_map and install a special construct stub that |
| // counts constructor calls. |
| // - While the tracking is in progress create objects filled with |
| // one_pointer_filler_map instead of undefined_value. This way they can be |
| // resized quickly and safely. |
| // - Once enough (kGenerousAllocationCount) objects have been created |
| // compute the 'slack' (traverse the map transition tree starting from the |
| // initial_map and find the lowest value of unused_property_fields). |
| // - Traverse the transition tree again and decrease the instance size |
| // of every map. Existing objects will resize automatically (they are |
| // filled with one_pointer_filler_map). All further allocations will |
| // use the adjusted instance size. |
| // - Decrease expected_nof_properties so that an allocations made from |
| // another context will use the adjusted instance size too. |
| // - Exit "in progress" state by clearing the reference to the initial_map |
| // and setting the regular construct stub (generic or inline). |
| // |
| // The above is the main event sequence. Some special cases are possible |
| // while the tracking is in progress: |
| // |
| // - GC occurs. |
| // Check if the initial_map is referenced by any live objects (except this |
| // SharedFunctionInfo). If it is, continue tracking as usual. |
| // If it is not, clear the reference and reset the tracking state. The |
| // tracking will be initiated again on the next constructor call. |
| // |
| // - The constructor is called from another context. |
| // Immediately complete the tracking, perform all the necessary changes |
| // to maps. This is necessary because there is no efficient way to track |
| // multiple initial_maps. |
| // Proceed to create an object in the current context (with the adjusted |
| // size). |
| // |
| // - A different constructor function sharing the same SharedFunctionInfo is |
| // called in the same context. This could be another closure in the same |
| // context, or the first function could have been disposed. |
| // This is handled the same way as the previous case. |
| // |
| // Important: inobject slack tracking is not attempted during the snapshot |
| // creation. |
| |
| static const int kGenerousAllocationCount = 8; |
| |
| // [construction_count]: Counter for constructor calls made during |
| // the tracking phase. |
| inline int construction_count(); |
| inline void set_construction_count(int value); |
| |
| // [initial_map]: initial map of the first function called as a constructor. |
| // Saved for the duration of the tracking phase. |
| // This is a weak link (GC resets it to undefined_value if no other live |
| // object reference this map). |
| DECL_ACCESSORS(initial_map, Object) |
| |
| // True if the initial_map is not undefined and the countdown stub is |
| // installed. |
| inline bool IsInobjectSlackTrackingInProgress(); |
| |
| // Starts the tracking. |
| // Stores the initial map and installs the countdown stub. |
| // IsInobjectSlackTrackingInProgress is normally true after this call, |
| // except when tracking have not been started (e.g. the map has no unused |
| // properties or the snapshot is being built). |
| void StartInobjectSlackTracking(Map* map); |
| |
| // Completes the tracking. |
| // IsInobjectSlackTrackingInProgress is false after this call. |
| void CompleteInobjectSlackTracking(); |
| |
| // Clears the initial_map before the GC marking phase to ensure the reference |
| // is weak. IsInobjectSlackTrackingInProgress is false after this call. |
| void DetachInitialMap(); |
| |
| // Restores the link to the initial map after the GC marking phase. |
| // IsInobjectSlackTrackingInProgress is true after this call. |
| void AttachInitialMap(Map* map); |
| |
| // False if there are definitely no live objects created from this function. |
| // True if live objects _may_ exist (existence not guaranteed). |
| // May go back from true to false after GC. |
| DECL_BOOLEAN_ACCESSORS(live_objects_may_exist) |
| |
| // [instance class name]: class name for instances. |
| DECL_ACCESSORS(instance_class_name, Object) |
| |
| // [function data]: This field holds some additional data for function. |
| // Currently it either has FunctionTemplateInfo to make benefit the API |
| // or Smi identifying a builtin function. |
| // In the long run we don't want all functions to have this field but |
| // we can fix that when we have a better model for storing hidden data |
| // on objects. |
| DECL_ACCESSORS(function_data, Object) |
| |
| inline bool IsApiFunction(); |
| inline FunctionTemplateInfo* get_api_func_data(); |
| inline bool HasBuiltinFunctionId(); |
| inline BuiltinFunctionId builtin_function_id(); |
| |
| // [script info]: Script from which the function originates. |
| DECL_ACCESSORS(script, Object) |
| |
| // [num_literals]: Number of literals used by this function. |
| inline int num_literals(); |
| inline void set_num_literals(int value); |
| |
| // [start_position_and_type]: Field used to store both the source code |
| // position, whether or not the function is a function expression, |
| // and whether or not the function is a toplevel function. The two |
| // least significants bit indicates whether the function is an |
| // expression and the rest contains the source code position. |
| inline int start_position_and_type(); |
| inline void set_start_position_and_type(int value); |
| |
| // [debug info]: Debug information. |
| DECL_ACCESSORS(debug_info, Object) |
| |
| // [inferred name]: Name inferred from variable or property |
| // assignment of this function. Used to facilitate debugging and |
| // profiling of JavaScript code written in OO style, where almost |
| // all functions are anonymous but are assigned to object |
| // properties. |
| DECL_ACCESSORS(inferred_name, String) |
| |
| // The function's name if it is non-empty, otherwise the inferred name. |
| String* DebugName(); |
| |
| // Position of the 'function' token in the script source. |
| inline int function_token_position(); |
| inline void set_function_token_position(int function_token_position); |
| |
| // Position of this function in the script source. |
| inline int start_position(); |
| inline void set_start_position(int start_position); |
| |
| // End position of this function in the script source. |
| inline int end_position(); |
| inline void set_end_position(int end_position); |
| |
| // Is this function a function expression in the source code. |
| DECL_BOOLEAN_ACCESSORS(is_expression) |
| |
| // Is this function a top-level function (scripts, evals). |
| DECL_BOOLEAN_ACCESSORS(is_toplevel) |
| |
| // Bit field containing various information collected by the compiler to |
| // drive optimization. |
| inline int compiler_hints(); |
| inline void set_compiler_hints(int value); |
| |
| // A counter used to determine when to stress the deoptimizer with a |
| // deopt. |
| inline Smi* deopt_counter(); |
| inline void set_deopt_counter(Smi* counter); |
| |
| // Add information on assignments of the form this.x = ...; |
| void SetThisPropertyAssignmentsInfo( |
| bool has_only_simple_this_property_assignments, |
| FixedArray* this_property_assignments); |
| |
| // Clear information on assignments of the form this.x = ...; |
| void ClearThisPropertyAssignmentsInfo(); |
| |
| // Indicate that this function only consists of assignments of the form |
| // this.x = y; where y is either a constant or refers to an argument. |
| inline bool has_only_simple_this_property_assignments(); |
| |
| // Indicates if this function can be lazy compiled. |
| // This is used to determine if we can safely flush code from a function |
| // when doing GC if we expect that the function will no longer be used. |
| DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation) |
| |
| // Indicates how many full GCs this function has survived with assigned |
| // code object. Used to determine when it is relatively safe to flush |
| // this code object and replace it with lazy compilation stub. |
| // Age is reset when GC notices that the code object is referenced |
| // from the stack or compilation cache. |
| inline int code_age(); |
| inline void set_code_age(int age); |
| |
| // Indicates whether optimizations have been disabled for this |
| // shared function info. If a function is repeatedly optimized or if |
| // we cannot optimize the function we disable optimization to avoid |
| // spending time attempting to optimize it again. |
| DECL_BOOLEAN_ACCESSORS(optimization_disabled) |
| |
| // Indicates whether the function is a strict mode function. |
| DECL_BOOLEAN_ACCESSORS(strict_mode) |
| |
| // False if the function definitely does not allocate an arguments object. |
| DECL_BOOLEAN_ACCESSORS(uses_arguments) |
| |
| // True if the function has any duplicated parameter names. |
| DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters) |
| |
| // Indicates whether the function is a native function. |
| // These needs special treatment in .call and .apply since |
| // null passed as the receiver should not be translated to the |
| // global object. |
| DECL_BOOLEAN_ACCESSORS(native) |
| |
| // Indicates that the function was created by the Function function. |
| // Though it's anonymous, toString should treat it as if it had the name |
| // "anonymous". We don't set the name itself so that the system does not |
| // see a binding for it. |
| DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous) |
| |
| // Indicates whether the function is a bound function created using |
| // the bind function. |
| DECL_BOOLEAN_ACCESSORS(bound) |
| |
| // Indicates that the function is anonymous (the name field can be set |
| // through the API, which does not change this flag). |
| DECL_BOOLEAN_ACCESSORS(is_anonymous) |
| |
| // Indicates whether or not the code in the shared function support |
| // deoptimization. |
| inline bool has_deoptimization_support(); |
| |
| // Enable deoptimization support through recompiled code. |
| void EnableDeoptimizationSupport(Code* recompiled); |
| |
| // Disable (further) attempted optimization of all functions sharing this |
| // shared function info. The function is the one we actually tried to |
| // optimize. |
| void DisableOptimization(JSFunction* function); |
| |
| // Lookup the bailout ID and ASSERT that it exists in the non-optimized |
| // code, returns whether it asserted (i.e., always true if assertions are |
| // disabled). |
| bool VerifyBailoutId(int id); |
| |
| // Check whether a inlined constructor can be generated with the given |
| // prototype. |
| bool CanGenerateInlineConstructor(Object* prototype); |
| |
| // Prevents further attempts to generate inline constructors. |
| // To be called if generation failed for any reason. |
| void ForbidInlineConstructor(); |
| |
| // For functions which only contains this property assignments this provides |
| // access to the names for the properties assigned. |
| DECL_ACCESSORS(this_property_assignments, Object) |
| inline int this_property_assignments_count(); |
| inline void set_this_property_assignments_count(int value); |
| String* GetThisPropertyAssignmentName(int index); |
| bool IsThisPropertyAssignmentArgument(int index); |
| int GetThisPropertyAssignmentArgument(int index); |
| Object* GetThisPropertyAssignmentConstant(int index); |
| |
| // [source code]: Source code for the function. |
| bool HasSourceCode(); |
| Object* GetSourceCode(); |
| |
| inline int opt_count(); |
| inline void set_opt_count(int opt_count); |
| |
| // Source size of this function. |
| int SourceSize(); |
| |
| // Calculate the instance size. |
| int CalculateInstanceSize(); |
| |
| // Calculate the number of in-object properties. |
| int CalculateInObjectProperties(); |
| |
| // Dispatched behavior. |
| // Set max_length to -1 for unlimited length. |
| void SourceCodePrint(StringStream* accumulator, int max_length); |
| #ifdef OBJECT_PRINT |
| inline void SharedFunctionInfoPrint() { |
| SharedFunctionInfoPrint(stdout); |
| } |
| void SharedFunctionInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void SharedFunctionInfoVerify(); |
| #endif |
| |
| // Casting. |
| static inline SharedFunctionInfo* cast(Object* obj); |
| |
| // Constants. |
| static const int kDontAdaptArgumentsSentinel = -1; |
| |
| // Layout description. |
| // Pointer fields. |
| static const int kNameOffset = HeapObject::kHeaderSize; |
| static const int kCodeOffset = kNameOffset + kPointerSize; |
| static const int kScopeInfoOffset = kCodeOffset + kPointerSize; |
| static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize; |
| static const int kInstanceClassNameOffset = |
| kConstructStubOffset + kPointerSize; |
| static const int kFunctionDataOffset = |
| kInstanceClassNameOffset + kPointerSize; |
| static const int kScriptOffset = kFunctionDataOffset + kPointerSize; |
| static const int kDebugInfoOffset = kScriptOffset + kPointerSize; |
| static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize; |
| static const int kInitialMapOffset = |
| kInferredNameOffset + kPointerSize; |
| static const int kThisPropertyAssignmentsOffset = |
| kInitialMapOffset + kPointerSize; |
| static const int kDeoptCounterOffset = |
| kThisPropertyAssignmentsOffset + kPointerSize; |
| #if V8_HOST_ARCH_32_BIT |
| // Smi fields. |
| static const int kLengthOffset = |
| kDeoptCounterOffset + kPointerSize; |
| static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize; |
| static const int kExpectedNofPropertiesOffset = |
| kFormalParameterCountOffset + kPointerSize; |
| static const int kNumLiteralsOffset = |
| kExpectedNofPropertiesOffset + kPointerSize; |
| static const int kStartPositionAndTypeOffset = |
| kNumLiteralsOffset + kPointerSize; |
| static const int kEndPositionOffset = |
| kStartPositionAndTypeOffset + kPointerSize; |
| static const int kFunctionTokenPositionOffset = |
| kEndPositionOffset + kPointerSize; |
| static const int kCompilerHintsOffset = |
| kFunctionTokenPositionOffset + kPointerSize; |
| static const int kThisPropertyAssignmentsCountOffset = |
| kCompilerHintsOffset + kPointerSize; |
| static const int kOptCountOffset = |
| kThisPropertyAssignmentsCountOffset + kPointerSize; |
| // Total size. |
| static const int kSize = kOptCountOffset + kPointerSize; |
| #else |
| // The only reason to use smi fields instead of int fields |
| // is to allow iteration without maps decoding during |
| // garbage collections. |
| // To avoid wasting space on 64-bit architectures we use |
| // the following trick: we group integer fields into pairs |
| // First integer in each pair is shifted left by 1. |
| // By doing this we guarantee that LSB of each kPointerSize aligned |
| // word is not set and thus this word cannot be treated as pointer |
| // to HeapObject during old space traversal. |
| static const int kLengthOffset = |
| kDeoptCounterOffset + kPointerSize; |
| static const int kFormalParameterCountOffset = |
| kLengthOffset + kIntSize; |
| |
| static const int kExpectedNofPropertiesOffset = |
| kFormalParameterCountOffset + kIntSize; |
| static const int kNumLiteralsOffset = |
| kExpectedNofPropertiesOffset + kIntSize; |
| |
| static const int kEndPositionOffset = |
| kNumLiteralsOffset + kIntSize; |
| static const int kStartPositionAndTypeOffset = |
| kEndPositionOffset + kIntSize; |
| |
| static const int kFunctionTokenPositionOffset = |
| kStartPositionAndTypeOffset + kIntSize; |
| static const int kCompilerHintsOffset = |
| kFunctionTokenPositionOffset + kIntSize; |
| |
| static const int kThisPropertyAssignmentsCountOffset = |
| kCompilerHintsOffset + kIntSize; |
| static const int kOptCountOffset = |
| kThisPropertyAssignmentsCountOffset + kIntSize; |
| |
| // Total size. |
| static const int kSize = kOptCountOffset + kIntSize; |
| |
| #endif |
| |
| // The construction counter for inobject slack tracking is stored in the |
| // most significant byte of compiler_hints which is otherwise unused. |
| // Its offset depends on the endian-ness of the architecture. |
| #if __BYTE_ORDER == __LITTLE_ENDIAN |
| static const int kConstructionCountOffset = kCompilerHintsOffset + 3; |
| #elif __BYTE_ORDER == __BIG_ENDIAN |
| static const int kConstructionCountOffset = kCompilerHintsOffset + 0; |
| #else |
| #error Unknown byte ordering |
| #endif |
| |
| static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize); |
| |
| typedef FixedBodyDescriptor<kNameOffset, |
| kThisPropertyAssignmentsOffset + kPointerSize, |
| kSize> BodyDescriptor; |
| |
| // Bit positions in start_position_and_type. |
| // The source code start position is in the 30 most significant bits of |
| // the start_position_and_type field. |
| static const int kIsExpressionBit = 0; |
| static const int kIsTopLevelBit = 1; |
| static const int kStartPositionShift = 2; |
| static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1); |
| |
| // Bit positions in compiler_hints. |
| static const int kCodeAgeSize = 3; |
| static const int kCodeAgeMask = (1 << kCodeAgeSize) - 1; |
| |
| enum CompilerHints { |
| kHasOnlySimpleThisPropertyAssignments, |
| kAllowLazyCompilation, |
| kLiveObjectsMayExist, |
| kCodeAgeShift, |
| kOptimizationDisabled = kCodeAgeShift + kCodeAgeSize, |
| kStrictModeFunction, |
| kUsesArguments, |
| kHasDuplicateParameters, |
| kNative, |
| kBoundFunction, |
| kIsAnonymous, |
| kNameShouldPrintAsAnonymous, |
| kCompilerHintsCount // Pseudo entry |
| }; |
| |
| private: |
| #if V8_HOST_ARCH_32_BIT |
| // On 32 bit platforms, compiler hints is a smi. |
| static const int kCompilerHintsSmiTagSize = kSmiTagSize; |
| static const int kCompilerHintsSize = kPointerSize; |
| #else |
| // On 64 bit platforms, compiler hints is not a smi, see comment above. |
| static const int kCompilerHintsSmiTagSize = 0; |
| static const int kCompilerHintsSize = kIntSize; |
| #endif |
| |
| STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <= |
| SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte); |
| |
| public: |
| // Constants for optimizing codegen for strict mode function and |
| // native tests. |
| // Allows to use byte-widgh instructions. |
| static const int kStrictModeBitWithinByte = |
| (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte; |
| |
| static const int kNativeBitWithinByte = |
| (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte; |
| |
| #if __BYTE_ORDER == __LITTLE_ENDIAN |
| static const int kStrictModeByteOffset = kCompilerHintsOffset + |
| (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte; |
| static const int kNativeByteOffset = kCompilerHintsOffset + |
| (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte; |
| #elif __BYTE_ORDER == __BIG_ENDIAN |
| static const int kStrictModeByteOffset = kCompilerHintsOffset + |
| (kCompilerHintsSize - 1) - |
| ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte); |
| static const int kNativeByteOffset = kCompilerHintsOffset + |
| (kCompilerHintsSize - 1) - |
| ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte); |
| #else |
| #error Unknown byte ordering |
| #endif |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo); |
| }; |
| |
| |
| // JSFunction describes JavaScript functions. |
| class JSFunction: public JSObject { |
| public: |
| // [prototype_or_initial_map]: |
| DECL_ACCESSORS(prototype_or_initial_map, Object) |
| |
| // [shared]: The information about the function that |
| // can be shared by instances. |
| DECL_ACCESSORS(shared, SharedFunctionInfo) |
| |
| inline SharedFunctionInfo* unchecked_shared(); |
| |
| // [context]: The context for this function. |
| inline Context* context(); |
| inline Object* unchecked_context(); |
| inline void set_context(Object* context); |
| |
| // [code]: The generated code object for this function. Executed |
| // when the function is invoked, e.g. foo() or new foo(). See |
| // [[Call]] and [[Construct]] description in ECMA-262, section |
| // 8.6.2, page 27. |
| inline Code* code(); |
| inline void set_code(Code* code); |
| inline void ReplaceCode(Code* code); |
| |
| inline Code* unchecked_code(); |
| |
| // Tells whether this function is builtin. |
| inline bool IsBuiltin(); |
| |
| // Tells whether or not the function needs arguments adaption. |
| inline bool NeedsArgumentsAdaption(); |
| |
| // Tells whether or not this function has been optimized. |
| inline bool IsOptimized(); |
| |
| // Tells whether or not this function can be optimized. |
| inline bool IsOptimizable(); |
| |
| // Mark this function for lazy recompilation. The function will be |
| // recompiled the next time it is executed. |
| void MarkForLazyRecompilation(); |
| |
| // Tells whether or not the function is already marked for lazy |
| // recompilation. |
| inline bool IsMarkedForLazyRecompilation(); |
| |
| // Check whether or not this function is inlineable. |
| bool IsInlineable(); |
| |
| // [literals]: Fixed array holding the materialized literals. |
| // |
| // If the function contains object, regexp or array literals, the |
| // literals array prefix contains the object, regexp, and array |
| // function to be used when creating these literals. This is |
| // necessary so that we do not dynamically lookup the object, regexp |
| // or array functions. Performing a dynamic lookup, we might end up |
| // using the functions from a new context that we should not have |
| // access to. |
| DECL_ACCESSORS(literals, FixedArray) |
| |
| // The initial map for an object created by this constructor. |
| inline Map* initial_map(); |
| inline void set_initial_map(Map* value); |
| inline bool has_initial_map(); |
| |
| // Get and set the prototype property on a JSFunction. If the |
| // function has an initial map the prototype is set on the initial |
| // map. Otherwise, the prototype is put in the initial map field |
| // until an initial map is needed. |
| inline bool has_prototype(); |
| inline bool has_instance_prototype(); |
| inline Object* prototype(); |
| inline Object* instance_prototype(); |
| Object* SetInstancePrototype(Object* value); |
| MUST_USE_RESULT MaybeObject* SetPrototype(Object* value); |
| |
| // After prototype is removed, it will not be created when accessed, and |
| // [[Construct]] from this function will not be allowed. |
| Object* RemovePrototype(); |
| inline bool should_have_prototype(); |
| |
| // Accessor for this function's initial map's [[class]] |
| // property. This is primarily used by ECMA native functions. This |
| // method sets the class_name field of this function's initial map |
| // to a given value. It creates an initial map if this function does |
| // not have one. Note that this method does not copy the initial map |
| // if it has one already, but simply replaces it with the new value. |
| // Instances created afterwards will have a map whose [[class]] is |
| // set to 'value', but there is no guarantees on instances created |
| // before. |
| Object* SetInstanceClassName(String* name); |
| |
| // Returns if this function has been compiled to native code yet. |
| inline bool is_compiled(); |
| |
| // [next_function_link]: Field for linking functions. This list is treated as |
| // a weak list by the GC. |
| DECL_ACCESSORS(next_function_link, Object) |
| |
| // Prints the name of the function using PrintF. |
| inline void PrintName() { |
| PrintName(stdout); |
| } |
| void PrintName(FILE* out); |
| |
| // Casting. |
| static inline JSFunction* cast(Object* obj); |
| |
| // Iterates the objects, including code objects indirectly referenced |
| // through pointers to the first instruction in the code object. |
| void JSFunctionIterateBody(int object_size, ObjectVisitor* v); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSFunctionPrint() { |
| JSFunctionPrint(stdout); |
| } |
| void JSFunctionPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSFunctionVerify(); |
| #endif |
| |
| // Returns the number of allocated literals. |
| inline int NumberOfLiterals(); |
| |
| // Retrieve the global context from a function's literal array. |
| static Context* GlobalContextFromLiterals(FixedArray* literals); |
| |
| // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to |
| // kSize) is weak and has special handling during garbage collection. |
| static const int kCodeEntryOffset = JSObject::kHeaderSize; |
| static const int kPrototypeOrInitialMapOffset = |
| kCodeEntryOffset + kPointerSize; |
| static const int kSharedFunctionInfoOffset = |
| kPrototypeOrInitialMapOffset + kPointerSize; |
| static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize; |
| static const int kLiteralsOffset = kContextOffset + kPointerSize; |
| static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize; |
| static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset; |
| static const int kSize = kNextFunctionLinkOffset + kPointerSize; |
| |
| // Layout of the literals array. |
| static const int kLiteralsPrefixSize = 1; |
| static const int kLiteralGlobalContextIndex = 0; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction); |
| }; |
| |
| |
| // JSGlobalProxy's prototype must be a JSGlobalObject or null, |
| // and the prototype is hidden. JSGlobalProxy always delegates |
| // property accesses to its prototype if the prototype is not null. |
| // |
| // A JSGlobalProxy can be reinitialized which will preserve its identity. |
| // |
| // Accessing a JSGlobalProxy requires security check. |
| |
| class JSGlobalProxy : public JSObject { |
| public: |
| // [context]: the owner global context of this global proxy object. |
| // It is null value if this object is not used by any context. |
| DECL_ACCESSORS(context, Object) |
| |
| // Casting. |
| static inline JSGlobalProxy* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSGlobalProxyPrint() { |
| JSGlobalProxyPrint(stdout); |
| } |
| void JSGlobalProxyPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSGlobalProxyVerify(); |
| #endif |
| |
| // Layout description. |
| static const int kContextOffset = JSObject::kHeaderSize; |
| static const int kSize = kContextOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy); |
| }; |
| |
| |
| // Forward declaration. |
| class JSBuiltinsObject; |
| class JSGlobalPropertyCell; |
| |
| // Common super class for JavaScript global objects and the special |
| // builtins global objects. |
| class GlobalObject: public JSObject { |
| public: |
| // [builtins]: the object holding the runtime routines written in JS. |
| DECL_ACCESSORS(builtins, JSBuiltinsObject) |
| |
| // [global context]: the global context corresponding to this global object. |
| DECL_ACCESSORS(global_context, Context) |
| |
| // [global receiver]: the global receiver object of the context |
| DECL_ACCESSORS(global_receiver, JSObject) |
| |
| // Retrieve the property cell used to store a property. |
| JSGlobalPropertyCell* GetPropertyCell(LookupResult* result); |
| |
| // This is like GetProperty, but is used when you know the lookup won't fail |
| // by throwing an exception. This is for the debug and builtins global |
| // objects, where it is known which properties can be expected to be present |
| // on the object. |
| Object* GetPropertyNoExceptionThrown(String* key) { |
| Object* answer = GetProperty(key)->ToObjectUnchecked(); |
| return answer; |
| } |
| |
| // Ensure that the global object has a cell for the given property name. |
| MUST_USE_RESULT MaybeObject* EnsurePropertyCell(String* name); |
| |
| // Casting. |
| static inline GlobalObject* cast(Object* obj); |
| |
| // Layout description. |
| static const int kBuiltinsOffset = JSObject::kHeaderSize; |
| static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize; |
| static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize; |
| static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize; |
| |
| private: |
| friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject); |
| }; |
| |
| |
| // JavaScript global object. |
| class JSGlobalObject: public GlobalObject { |
| public: |
| // Casting. |
| static inline JSGlobalObject* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSGlobalObjectPrint() { |
| JSGlobalObjectPrint(stdout); |
| } |
| void JSGlobalObjectPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSGlobalObjectVerify(); |
| #endif |
| |
| // Layout description. |
| static const int kSize = GlobalObject::kHeaderSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject); |
| }; |
| |
| |
| // Builtins global object which holds the runtime routines written in |
| // JavaScript. |
| class JSBuiltinsObject: public GlobalObject { |
| public: |
| // Accessors for the runtime routines written in JavaScript. |
| inline Object* javascript_builtin(Builtins::JavaScript id); |
| inline void set_javascript_builtin(Builtins::JavaScript id, Object* value); |
| |
| // Accessors for code of the runtime routines written in JavaScript. |
| inline Code* javascript_builtin_code(Builtins::JavaScript id); |
| inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value); |
| |
| // Casting. |
| static inline JSBuiltinsObject* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSBuiltinsObjectPrint() { |
| JSBuiltinsObjectPrint(stdout); |
| } |
| void JSBuiltinsObjectPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSBuiltinsObjectVerify(); |
| #endif |
| |
| // Layout description. The size of the builtins object includes |
| // room for two pointers per runtime routine written in javascript |
| // (function and code object). |
| static const int kJSBuiltinsCount = Builtins::id_count; |
| static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize; |
| static const int kJSBuiltinsCodeOffset = |
| GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize); |
| static const int kSize = |
| kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize); |
| |
| static int OffsetOfFunctionWithId(Builtins::JavaScript id) { |
| return kJSBuiltinsOffset + id * kPointerSize; |
| } |
| |
| static int OffsetOfCodeWithId(Builtins::JavaScript id) { |
| return kJSBuiltinsCodeOffset + id * kPointerSize; |
| } |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject); |
| }; |
| |
| |
| // Representation for JS Wrapper objects, String, Number, Boolean, Date, etc. |
| class JSValue: public JSObject { |
| public: |
| // [value]: the object being wrapped. |
| DECL_ACCESSORS(value, Object) |
| |
| // Casting. |
| static inline JSValue* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSValuePrint() { |
| JSValuePrint(stdout); |
| } |
| void JSValuePrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSValueVerify(); |
| #endif |
| |
| // Layout description. |
| static const int kValueOffset = JSObject::kHeaderSize; |
| static const int kSize = kValueOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue); |
| }; |
| |
| |
| // Representation of message objects used for error reporting through |
| // the API. The messages are formatted in JavaScript so this object is |
| // a real JavaScript object. The information used for formatting the |
| // error messages are not directly accessible from JavaScript to |
| // prevent leaking information to user code called during error |
| // formatting. |
| class JSMessageObject: public JSObject { |
| public: |
| // [type]: the type of error message. |
| DECL_ACCESSORS(type, String) |
| |
| // [arguments]: the arguments for formatting the error message. |
| DECL_ACCESSORS(arguments, JSArray) |
| |
| // [script]: the script from which the error message originated. |
| DECL_ACCESSORS(script, Object) |
| |
| // [stack_trace]: the stack trace for this error message. |
| DECL_ACCESSORS(stack_trace, Object) |
| |
| // [stack_frames]: an array of stack frames for this error object. |
| DECL_ACCESSORS(stack_frames, Object) |
| |
| // [start_position]: the start position in the script for the error message. |
| inline int start_position(); |
| inline void set_start_position(int value); |
| |
| // [end_position]: the end position in the script for the error message. |
| inline int end_position(); |
| inline void set_end_position(int value); |
| |
| // Casting. |
| static inline JSMessageObject* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSMessageObjectPrint() { |
| JSMessageObjectPrint(stdout); |
| } |
| void JSMessageObjectPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSMessageObjectVerify(); |
| #endif |
| |
| // Layout description. |
| static const int kTypeOffset = JSObject::kHeaderSize; |
| static const int kArgumentsOffset = kTypeOffset + kPointerSize; |
| static const int kScriptOffset = kArgumentsOffset + kPointerSize; |
| static const int kStackTraceOffset = kScriptOffset + kPointerSize; |
| static const int kStackFramesOffset = kStackTraceOffset + kPointerSize; |
| static const int kStartPositionOffset = kStackFramesOffset + kPointerSize; |
| static const int kEndPositionOffset = kStartPositionOffset + kPointerSize; |
| static const int kSize = kEndPositionOffset + kPointerSize; |
| |
| typedef FixedBodyDescriptor<HeapObject::kMapOffset, |
| kStackFramesOffset + kPointerSize, |
| kSize> BodyDescriptor; |
| }; |
| |
| |
| // Regular expressions |
| // The regular expression holds a single reference to a FixedArray in |
| // the kDataOffset field. |
| // The FixedArray contains the following data: |
| // - tag : type of regexp implementation (not compiled yet, atom or irregexp) |
| // - reference to the original source string |
| // - reference to the original flag string |
| // If it is an atom regexp |
| // - a reference to a literal string to search for |
| // If it is an irregexp regexp: |
| // - a reference to code for ASCII inputs (bytecode or compiled), or a smi |
| // used for tracking the last usage (used for code flushing). |
| // - a reference to code for UC16 inputs (bytecode or compiled), or a smi |
| // used for tracking the last usage (used for code flushing).. |
| // - max number of registers used by irregexp implementations. |
| // - number of capture registers (output values) of the regexp. |
| class JSRegExp: public JSObject { |
| public: |
| // Meaning of Type: |
| // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet. |
| // ATOM: A simple string to match against using an indexOf operation. |
| // IRREGEXP: Compiled with Irregexp. |
| // IRREGEXP_NATIVE: Compiled to native code with Irregexp. |
| enum Type { NOT_COMPILED, ATOM, IRREGEXP }; |
| enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 }; |
| |
| class Flags { |
| public: |
| explicit Flags(uint32_t value) : value_(value) { } |
| bool is_global() { return (value_ & GLOBAL) != 0; } |
| bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; } |
| bool is_multiline() { return (value_ & MULTILINE) != 0; } |
| uint32_t value() { return value_; } |
| private: |
| uint32_t value_; |
| }; |
| |
| DECL_ACCESSORS(data, Object) |
| |
| inline Type TypeTag(); |
| inline int CaptureCount(); |
| inline Flags GetFlags(); |
| inline String* Pattern(); |
| inline Object* DataAt(int index); |
| // Set implementation data after the object has been prepared. |
| inline void SetDataAt(int index, Object* value); |
| |
| // Used during GC when flushing code or setting age. |
| inline Object* DataAtUnchecked(int index); |
| inline void SetDataAtUnchecked(int index, Object* value, Heap* heap); |
| inline Type TypeTagUnchecked(); |
| |
| static int code_index(bool is_ascii) { |
| if (is_ascii) { |
| return kIrregexpASCIICodeIndex; |
| } else { |
| return kIrregexpUC16CodeIndex; |
| } |
| } |
| |
| static int saved_code_index(bool is_ascii) { |
| if (is_ascii) { |
| return kIrregexpASCIICodeSavedIndex; |
| } else { |
| return kIrregexpUC16CodeSavedIndex; |
| } |
| } |
| |
| static inline JSRegExp* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef DEBUG |
| void JSRegExpVerify(); |
| #endif |
| |
| static const int kDataOffset = JSObject::kHeaderSize; |
| static const int kSize = kDataOffset + kPointerSize; |
| |
| // Indices in the data array. |
| static const int kTagIndex = 0; |
| static const int kSourceIndex = kTagIndex + 1; |
| static const int kFlagsIndex = kSourceIndex + 1; |
| static const int kDataIndex = kFlagsIndex + 1; |
| // The data fields are used in different ways depending on the |
| // value of the tag. |
| // Atom regexps (literal strings). |
| static const int kAtomPatternIndex = kDataIndex; |
| |
| static const int kAtomDataSize = kAtomPatternIndex + 1; |
| |
| // Irregexp compiled code or bytecode for ASCII. If compilation |
| // fails, this fields hold an exception object that should be |
| // thrown if the regexp is used again. |
| static const int kIrregexpASCIICodeIndex = kDataIndex; |
| // Irregexp compiled code or bytecode for UC16. If compilation |
| // fails, this fields hold an exception object that should be |
| // thrown if the regexp is used again. |
| static const int kIrregexpUC16CodeIndex = kDataIndex + 1; |
| |
| // Saved instance of Irregexp compiled code or bytecode for ASCII that |
| // is a potential candidate for flushing. |
| static const int kIrregexpASCIICodeSavedIndex = kDataIndex + 2; |
| // Saved instance of Irregexp compiled code or bytecode for UC16 that is |
| // a potential candidate for flushing. |
| static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3; |
| |
| // Maximal number of registers used by either ASCII or UC16. |
| // Only used to check that there is enough stack space |
| static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4; |
| // Number of captures in the compiled regexp. |
| static const int kIrregexpCaptureCountIndex = kDataIndex + 5; |
| |
| static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1; |
| |
| // Offsets directly into the data fixed array. |
| static const int kDataTagOffset = |
| FixedArray::kHeaderSize + kTagIndex * kPointerSize; |
| static const int kDataAsciiCodeOffset = |
| FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize; |
| static const int kDataUC16CodeOffset = |
| FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize; |
| static const int kIrregexpCaptureCountOffset = |
| FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize; |
| |
| // In-object fields. |
| static const int kSourceFieldIndex = 0; |
| static const int kGlobalFieldIndex = 1; |
| static const int kIgnoreCaseFieldIndex = 2; |
| static const int kMultilineFieldIndex = 3; |
| static const int kLastIndexFieldIndex = 4; |
| static const int kInObjectFieldCount = 5; |
| |
| // The uninitialized value for a regexp code object. |
| static const int kUninitializedValue = -1; |
| |
| // The compilation error value for the regexp code object. The real error |
| // object is in the saved code field. |
| static const int kCompilationErrorValue = -2; |
| |
| // When we store the sweep generation at which we moved the code from the |
| // code index to the saved code index we mask it of to be in the [0:255] |
| // range. |
| static const int kCodeAgeMask = 0xff; |
| }; |
| |
| |
| class CompilationCacheShape : public BaseShape<HashTableKey*> { |
| public: |
| static inline bool IsMatch(HashTableKey* key, Object* value) { |
| return key->IsMatch(value); |
| } |
| |
| static inline uint32_t Hash(HashTableKey* key) { |
| return key->Hash(); |
| } |
| |
| static inline uint32_t HashForObject(HashTableKey* key, Object* object) { |
| return key->HashForObject(object); |
| } |
| |
| MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) { |
| return key->AsObject(); |
| } |
| |
| static const int kPrefixSize = 0; |
| static const int kEntrySize = 2; |
| }; |
| |
| |
| class CompilationCacheTable: public HashTable<CompilationCacheShape, |
| HashTableKey*> { |
| public: |
| // Find cached value for a string key, otherwise return null. |
| Object* Lookup(String* src); |
| Object* LookupEval(String* src, Context* context, StrictModeFlag strict_mode); |
| Object* LookupRegExp(String* source, JSRegExp::Flags flags); |
| MaybeObject* Put(String* src, Object* value); |
| MaybeObject* PutEval(String* src, |
| Context* context, |
| SharedFunctionInfo* value); |
| MaybeObject* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value); |
| |
| // Remove given value from cache. |
| void Remove(Object* value); |
| |
| static inline CompilationCacheTable* cast(Object* obj); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable); |
| }; |
| |
| |
| class CodeCache: public Struct { |
| public: |
| DECL_ACCESSORS(default_cache, FixedArray) |
| DECL_ACCESSORS(normal_type_cache, Object) |
| |
| // Add the code object to the cache. |
| MUST_USE_RESULT MaybeObject* Update(String* name, Code* code); |
| |
| // Lookup code object in the cache. Returns code object if found and undefined |
| // if not. |
| Object* Lookup(String* name, Code::Flags flags); |
| |
| // Get the internal index of a code object in the cache. Returns -1 if the |
| // code object is not in that cache. This index can be used to later call |
| // RemoveByIndex. The cache cannot be modified between a call to GetIndex and |
| // RemoveByIndex. |
| int GetIndex(Object* name, Code* code); |
| |
| // Remove an object from the cache with the provided internal index. |
| void RemoveByIndex(Object* name, Code* code, int index); |
| |
| static inline CodeCache* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void CodeCachePrint() { |
| CodeCachePrint(stdout); |
| } |
| void CodeCachePrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void CodeCacheVerify(); |
| #endif |
| |
| static const int kDefaultCacheOffset = HeapObject::kHeaderSize; |
| static const int kNormalTypeCacheOffset = |
| kDefaultCacheOffset + kPointerSize; |
| static const int kSize = kNormalTypeCacheOffset + kPointerSize; |
| |
| private: |
| MUST_USE_RESULT MaybeObject* UpdateDefaultCache(String* name, Code* code); |
| MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(String* name, Code* code); |
| Object* LookupDefaultCache(String* name, Code::Flags flags); |
| Object* LookupNormalTypeCache(String* name, Code::Flags flags); |
| |
| // Code cache layout of the default cache. Elements are alternating name and |
| // code objects for non normal load/store/call IC's. |
| static const int kCodeCacheEntrySize = 2; |
| static const int kCodeCacheEntryNameOffset = 0; |
| static const int kCodeCacheEntryCodeOffset = 1; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache); |
| }; |
| |
| |
| class CodeCacheHashTableShape : public BaseShape<HashTableKey*> { |
| public: |
| static inline bool IsMatch(HashTableKey* key, Object* value) { |
| return key->IsMatch(value); |
| } |
| |
| static inline uint32_t Hash(HashTableKey* key) { |
| return key->Hash(); |
| } |
| |
| static inline uint32_t HashForObject(HashTableKey* key, Object* object) { |
| return key->HashForObject(object); |
| } |
| |
| MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) { |
| return key->AsObject(); |
| } |
| |
| static const int kPrefixSize = 0; |
| static const int kEntrySize = 2; |
| }; |
| |
| |
| class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape, |
| HashTableKey*> { |
| public: |
| Object* Lookup(String* name, Code::Flags flags); |
| MUST_USE_RESULT MaybeObject* Put(String* name, Code* code); |
| |
| int GetIndex(String* name, Code::Flags flags); |
| void RemoveByIndex(int index); |
| |
| static inline CodeCacheHashTable* cast(Object* obj); |
| |
| // Initial size of the fixed array backing the hash table. |
| static const int kInitialSize = 64; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable); |
| }; |
| |
| |
| class PolymorphicCodeCache: public Struct { |
| public: |
| DECL_ACCESSORS(cache, Object) |
| |
| MUST_USE_RESULT MaybeObject* Update(MapList* maps, |
| Code::Flags flags, |
| Code* code); |
| Object* Lookup(MapList* maps, Code::Flags flags); |
| |
| static inline PolymorphicCodeCache* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void PolymorphicCodeCachePrint() { |
| PolymorphicCodeCachePrint(stdout); |
| } |
| void PolymorphicCodeCachePrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void PolymorphicCodeCacheVerify(); |
| #endif |
| |
| static const int kCacheOffset = HeapObject::kHeaderSize; |
| static const int kSize = kCacheOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache); |
| }; |
| |
| |
| class PolymorphicCodeCacheHashTable |
| : public HashTable<CodeCacheHashTableShape, HashTableKey*> { |
| public: |
| Object* Lookup(MapList* maps, int code_kind); |
| MUST_USE_RESULT MaybeObject* Put(MapList* maps, int code_kind, Code* code); |
| |
| static inline PolymorphicCodeCacheHashTable* cast(Object* obj); |
| |
| static const int kInitialSize = 64; |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable); |
| }; |
| |
| |
| enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS}; |
| enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL}; |
| |
| |
| class StringHasher { |
| public: |
| explicit inline StringHasher(int length, uint32_t seed); |
| |
| // Returns true if the hash of this string can be computed without |
| // looking at the contents. |
| inline bool has_trivial_hash(); |
| |
| // Add a character to the hash and update the array index calculation. |
| inline void AddCharacter(uc32 c); |
| |
| // Adds a character to the hash but does not update the array index |
| // calculation. This can only be called when it has been verified |
| // that the input is not an array index. |
| inline void AddCharacterNoIndex(uc32 c); |
| |
| // Returns the value to store in the hash field of a string with |
| // the given length and contents. |
| uint32_t GetHashField(); |
| |
| // Returns true if the characters seen so far make up a legal array |
| // index. |
| bool is_array_index() { return is_array_index_; } |
| |
| bool is_valid() { return is_valid_; } |
| |
| void invalidate() { is_valid_ = false; } |
| |
| // Calculated hash value for a string consisting of 1 to |
| // String::kMaxArrayIndexSize digits with no leading zeros (except "0"). |
| // value is represented decimal value. |
| static uint32_t MakeArrayIndexHash(uint32_t value, int length); |
| |
| // No string is allowed to have a hash of zero. That value is reserved |
| // for internal properties. If the hash calculation yields zero then we |
| // use 27 instead. |
| static const int kZeroHash = 27; |
| |
| private: |
| uint32_t array_index() { |
| ASSERT(is_array_index()); |
| return array_index_; |
| } |
| |
| inline uint32_t GetHash(); |
| |
| int length_; |
| uint32_t raw_running_hash_; |
| uint32_t array_index_; |
| bool is_array_index_; |
| bool is_first_char_; |
| bool is_valid_; |
| friend class TwoCharHashTableKey; |
| }; |
| |
| |
| // Calculates string hash. |
| template <typename schar> |
| inline uint32_t HashSequentialString(const schar* chars, |
| int length, |
| uint32_t seed); |
| |
| |
| // The characteristics of a string are stored in its map. Retrieving these |
| // few bits of information is moderately expensive, involving two memory |
| // loads where the second is dependent on the first. To improve efficiency |
| // the shape of the string is given its own class so that it can be retrieved |
| // once and used for several string operations. A StringShape is small enough |
| // to be passed by value and is immutable, but be aware that flattening a |
| // string can potentially alter its shape. Also be aware that a GC caused by |
| // something else can alter the shape of a string due to ConsString |
| // shortcutting. Keeping these restrictions in mind has proven to be error- |
| // prone and so we no longer put StringShapes in variables unless there is a |
| // concrete performance benefit at that particular point in the code. |
| class StringShape BASE_EMBEDDED { |
| public: |
| inline explicit StringShape(String* s); |
| inline explicit StringShape(Map* s); |
| inline explicit StringShape(InstanceType t); |
| inline bool IsSequential(); |
| inline bool IsExternal(); |
| inline bool IsCons(); |
| inline bool IsSliced(); |
| inline bool IsIndirect(); |
| inline bool IsExternalAscii(); |
| inline bool IsExternalTwoByte(); |
| inline bool IsSequentialAscii(); |
| inline bool IsSequentialTwoByte(); |
| inline bool IsSymbol(); |
| inline StringRepresentationTag representation_tag(); |
| inline uint32_t encoding_tag(); |
| inline uint32_t full_representation_tag(); |
| inline uint32_t size_tag(); |
| #ifdef DEBUG |
| inline uint32_t type() { return type_; } |
| inline void invalidate() { valid_ = false; } |
| inline bool valid() { return valid_; } |
| #else |
| inline void invalidate() { } |
| #endif |
| |
| private: |
| uint32_t type_; |
| #ifdef DEBUG |
| inline void set_valid() { valid_ = true; } |
| bool valid_; |
| #else |
| inline void set_valid() { } |
| #endif |
| }; |
| |
| |
| // The String abstract class captures JavaScript string values: |
| // |
| // Ecma-262: |
| // 4.3.16 String Value |
| // A string value is a member of the type String and is a finite |
| // ordered sequence of zero or more 16-bit unsigned integer values. |
| // |
| // All string values have a length field. |
| class String: public HeapObject { |
| public: |
| // Representation of the flat content of a String. |
| // A non-flat string doesn't have flat content. |
| // A flat string has content that's encoded as a sequence of either |
| // ASCII chars or two-byte UC16. |
| // Returned by String::GetFlatContent(). |
| class FlatContent { |
| public: |
| // Returns true if the string is flat and this structure contains content. |
| bool IsFlat() { return state_ != NON_FLAT; } |
| // Returns true if the structure contains ASCII content. |
| bool IsAscii() { return state_ == ASCII; } |
| // Returns true if the structure contains two-byte content. |
| bool IsTwoByte() { return state_ == TWO_BYTE; } |
| |
| // Return the ASCII content of the string. Only use if IsAscii() returns |
| // true. |
| Vector<const char> ToAsciiVector() { |
| ASSERT_EQ(ASCII, state_); |
| return Vector<const char>::cast(buffer_); |
| } |
| // Return the two-byte content of the string. Only use if IsTwoByte() |
| // returns true. |
| Vector<const uc16> ToUC16Vector() { |
| ASSERT_EQ(TWO_BYTE, state_); |
| return Vector<const uc16>::cast(buffer_); |
| } |
| |
| private: |
| enum State { NON_FLAT, ASCII, TWO_BYTE }; |
| |
| // Constructors only used by String::GetFlatContent(). |
| explicit FlatContent(Vector<const char> chars) |
| : buffer_(Vector<const byte>::cast(chars)), |
| state_(ASCII) { } |
| explicit FlatContent(Vector<const uc16> chars) |
| : buffer_(Vector<const byte>::cast(chars)), |
| state_(TWO_BYTE) { } |
| FlatContent() : buffer_(), state_(NON_FLAT) { } |
| |
| Vector<const byte> buffer_; |
| State state_; |
| |
| friend class String; |
| }; |
| |
| // Get and set the length of the string. |
| inline int length(); |
| inline void set_length(int value); |
| |
| // Get and set the hash field of the string. |
| inline uint32_t hash_field(); |
| inline void set_hash_field(uint32_t value); |
| |
| // Returns whether this string has only ASCII chars, i.e. all of them can |
| // be ASCII encoded. This might be the case even if the string is |
| // two-byte. Such strings may appear when the embedder prefers |
| // two-byte external representations even for ASCII data. |
| inline bool IsAsciiRepresentation(); |
| inline bool IsTwoByteRepresentation(); |
| |
| // Cons and slices have an encoding flag that may not represent the actual |
| // encoding of the underlying string. This is taken into account here. |
| // Requires: this->IsFlat() |
| inline bool IsAsciiRepresentationUnderneath(); |
| inline bool IsTwoByteRepresentationUnderneath(); |
| |
| // NOTE: this should be considered only a hint. False negatives are |
| // possible. |
| inline bool HasOnlyAsciiChars(); |
| |
| // Get and set individual two byte chars in the string. |
| inline void Set(int index, uint16_t value); |
| // Get individual two byte char in the string. Repeated calls |
| // to this method are not efficient unless the string is flat. |
| inline uint16_t Get(int index); |
| |
| // Try to flatten the string. Checks first inline to see if it is |
| // necessary. Does nothing if the string is not a cons string. |
| // Flattening allocates a sequential string with the same data as |
| // the given string and mutates the cons string to a degenerate |
| // form, where the first component is the new sequential string and |
| // the second component is the empty string. If allocation fails, |
| // this function returns a failure. If flattening succeeds, this |
| // function returns the sequential string that is now the first |
| // component of the cons string. |
| // |
| // Degenerate cons strings are handled specially by the garbage |
| // collector (see IsShortcutCandidate). |
| // |
| // Use FlattenString from Handles.cc to flatten even in case an |
| // allocation failure happens. |
| inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED); |
| |
| // Convenience function. Has exactly the same behavior as |
| // TryFlatten(), except in the case of failure returns the original |
| // string. |
| inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED); |
| |
| // Tries to return the content of a flat string as a structure holding either |
| // a flat vector of char or of uc16. |
| // If the string isn't flat, and therefore doesn't have flat content, the |
| // returned structure will report so, and can't provide a vector of either |
| // kind. |
| FlatContent GetFlatContent(); |
| |
| // Returns the parent of a sliced string or first part of a flat cons string. |
| // Requires: StringShape(this).IsIndirect() && this->IsFlat() |
| inline String* GetUnderlying(); |
| |
| // Mark the string as an undetectable object. It only applies to |
| // ascii and two byte string types. |
| bool MarkAsUndetectable(); |
| |
| // Return a substring. |
| MUST_USE_RESULT MaybeObject* SubString(int from, |
| int to, |
| PretenureFlag pretenure = NOT_TENURED); |
| |
| // String equality operations. |
| inline bool Equals(String* other); |
| bool IsEqualTo(Vector<const char> str); |
| bool IsAsciiEqualTo(Vector<const char> str); |
| bool IsTwoByteEqualTo(Vector<const uc16> str); |
| |
| // Return a UTF8 representation of the string. The string is null |
| // terminated but may optionally contain nulls. Length is returned |
| // in length_output if length_output is not a null pointer The string |
| // should be nearly flat, otherwise the performance of this method may |
| // be very slow (quadratic in the length). Setting robustness_flag to |
| // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it |
| // handles unexpected data without causing assert failures and it does not |
| // do any heap allocations. This is useful when printing stack traces. |
| SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls, |
| RobustnessFlag robustness_flag, |
| int offset, |
| int length, |
| int* length_output = 0); |
| SmartArrayPointer<char> ToCString( |
| AllowNullsFlag allow_nulls = DISALLOW_NULLS, |
| RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL, |
| int* length_output = 0); |
| |
| int Utf8Length(); |
| |
| // Return a 16 bit Unicode representation of the string. |
| // The string should be nearly flat, otherwise the performance of |
| // of this method may be very bad. Setting robustness_flag to |
| // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it |
| // handles unexpected data without causing assert failures and it does not |
| // do any heap allocations. This is useful when printing stack traces. |
| SmartArrayPointer<uc16> ToWideCString( |
| RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL); |
| |
| // Tells whether the hash code has been computed. |
| inline bool HasHashCode(); |
| |
| // Returns a hash value used for the property table |
| inline uint32_t Hash(); |
| |
| static uint32_t ComputeHashField(unibrow::CharacterStream* buffer, |
| int length, |
| uint32_t seed); |
| |
| static bool ComputeArrayIndex(unibrow::CharacterStream* buffer, |
| uint32_t* index, |
| int length); |
| |
| // Externalization. |
| bool MakeExternal(v8::String::ExternalStringResource* resource); |
| bool MakeExternal(v8::String::ExternalAsciiStringResource* resource); |
| |
| // Conversion. |
| inline bool AsArrayIndex(uint32_t* index); |
| |
| // Casting. |
| static inline String* cast(Object* obj); |
| |
| void PrintOn(FILE* out); |
| |
| // For use during stack traces. Performs rudimentary sanity check. |
| bool LooksValid(); |
| |
| // Dispatched behavior. |
| void StringShortPrint(StringStream* accumulator); |
| #ifdef OBJECT_PRINT |
| inline void StringPrint() { |
| StringPrint(stdout); |
| } |
| void StringPrint(FILE* out); |
| |
| char* ToAsciiArray(); |
| #endif |
| #ifdef DEBUG |
| void StringVerify(); |
| #endif |
| inline bool IsFlat(); |
| |
| // Layout description. |
| static const int kLengthOffset = HeapObject::kHeaderSize; |
| static const int kHashFieldOffset = kLengthOffset + kPointerSize; |
| static const int kSize = kHashFieldOffset + kPointerSize; |
| |
| // Maximum number of characters to consider when trying to convert a string |
| // value into an array index. |
| static const int kMaxArrayIndexSize = 10; |
| |
| // Max ascii char code. |
| static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar; |
| static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar; |
| static const int kMaxUC16CharCode = 0xffff; |
| |
| // Minimum length for a cons string. |
| static const int kMinNonFlatLength = 13; |
| |
| // Mask constant for checking if a string has a computed hash code |
| // and if it is an array index. The least significant bit indicates |
| // whether a hash code has been computed. If the hash code has been |
| // computed the 2nd bit tells whether the string can be used as an |
| // array index. |
| static const int kHashNotComputedMask = 1; |
| static const int kIsNotArrayIndexMask = 1 << 1; |
| static const int kNofHashBitFields = 2; |
| |
| // Shift constant retrieving hash code from hash field. |
| static const int kHashShift = kNofHashBitFields; |
| |
| // Only these bits are relevant in the hash, since the top two are shifted |
| // out. |
| static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift; |
| |
| // Array index strings this short can keep their index in the hash |
| // field. |
| static const int kMaxCachedArrayIndexLength = 7; |
| |
| // For strings which are array indexes the hash value has the string length |
| // mixed into the hash, mainly to avoid a hash value of zero which would be |
| // the case for the string '0'. 24 bits are used for the array index value. |
| static const int kArrayIndexValueBits = 24; |
| static const int kArrayIndexLengthBits = |
| kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields; |
| |
| STATIC_CHECK((kArrayIndexLengthBits > 0)); |
| STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits)); |
| |
| static const int kArrayIndexHashLengthShift = |
| kArrayIndexValueBits + kNofHashBitFields; |
| |
| static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1; |
| |
| static const int kArrayIndexValueMask = |
| ((1 << kArrayIndexValueBits) - 1) << kHashShift; |
| |
| // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we |
| // could use a mask to test if the length of string is less than or equal to |
| // kMaxCachedArrayIndexLength. |
| STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1)); |
| |
| static const int kContainsCachedArrayIndexMask = |
| (~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) | |
| kIsNotArrayIndexMask; |
| |
| // Value of empty hash field indicating that the hash is not computed. |
| static const int kEmptyHashField = |
| kIsNotArrayIndexMask | kHashNotComputedMask; |
| |
| // Value of hash field containing computed hash equal to zero. |
| static const int kZeroHash = kIsNotArrayIndexMask; |
| |
| // Maximal string length. |
| static const int kMaxLength = (1 << (32 - 2)) - 1; |
| |
| // Max length for computing hash. For strings longer than this limit the |
| // string length is used as the hash value. |
| static const int kMaxHashCalcLength = 16383; |
| |
| // Limit for truncation in short printing. |
| static const int kMaxShortPrintLength = 1024; |
| |
| // Support for regular expressions. |
| const uc16* GetTwoByteData(); |
| const uc16* GetTwoByteData(unsigned start); |
| |
| // Support for StringInputBuffer |
| static const unibrow::byte* ReadBlock(String* input, |
| unibrow::byte* util_buffer, |
| unsigned capacity, |
| unsigned* remaining, |
| unsigned* offset); |
| static const unibrow::byte* ReadBlock(String** input, |
| unibrow::byte* util_buffer, |
| unsigned capacity, |
| unsigned* remaining, |
| unsigned* offset); |
| |
| // Helper function for flattening strings. |
| template <typename sinkchar> |
| static void WriteToFlat(String* source, |
| sinkchar* sink, |
| int from, |
| int to); |
| |
| static inline bool IsAscii(const char* chars, int length) { |
| const char* limit = chars + length; |
| #ifdef V8_HOST_CAN_READ_UNALIGNED |
| ASSERT(kMaxAsciiCharCode == 0x7F); |
| const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80; |
| while (chars <= limit - sizeof(uintptr_t)) { |
| if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) { |
| return false; |
| } |
| chars += sizeof(uintptr_t); |
| } |
| #endif |
| while (chars < limit) { |
| if (static_cast<uint8_t>(*chars) > kMaxAsciiCharCodeU) return false; |
| ++chars; |
| } |
| return true; |
| } |
| |
| static inline bool IsAscii(const uc16* chars, int length) { |
| const uc16* limit = chars + length; |
| while (chars < limit) { |
| if (*chars > kMaxAsciiCharCodeU) return false; |
| ++chars; |
| } |
| return true; |
| } |
| |
| protected: |
| class ReadBlockBuffer { |
| public: |
| ReadBlockBuffer(unibrow::byte* util_buffer_, |
| unsigned cursor_, |
| unsigned capacity_, |
| unsigned remaining_) : |
| util_buffer(util_buffer_), |
| cursor(cursor_), |
| capacity(capacity_), |
| remaining(remaining_) { |
| } |
| unibrow::byte* util_buffer; |
| unsigned cursor; |
| unsigned capacity; |
| unsigned remaining; |
| }; |
| |
| static inline const unibrow::byte* ReadBlock(String* input, |
| ReadBlockBuffer* buffer, |
| unsigned* offset, |
| unsigned max_chars); |
| static void ReadBlockIntoBuffer(String* input, |
| ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned max_chars); |
| |
| private: |
| // Try to flatten the top level ConsString that is hiding behind this |
| // string. This is a no-op unless the string is a ConsString. Flatten |
| // mutates the ConsString and might return a failure. |
| MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure); |
| |
| static inline bool IsHashFieldComputed(uint32_t field); |
| |
| // Slow case of String::Equals. This implementation works on any strings |
| // but it is most efficient on strings that are almost flat. |
| bool SlowEquals(String* other); |
| |
| // Slow case of AsArrayIndex. |
| bool SlowAsArrayIndex(uint32_t* index); |
| |
| // Compute and set the hash code. |
| uint32_t ComputeAndSetHash(); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(String); |
| }; |
| |
| |
| // The SeqString abstract class captures sequential string values. |
| class SeqString: public String { |
| public: |
| // Casting. |
| static inline SeqString* cast(Object* obj); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString); |
| }; |
| |
| |
| // The AsciiString class captures sequential ascii string objects. |
| // Each character in the AsciiString is an ascii character. |
| class SeqAsciiString: public SeqString { |
| public: |
| static const bool kHasAsciiEncoding = true; |
| |
| // Dispatched behavior. |
| inline uint16_t SeqAsciiStringGet(int index); |
| inline void SeqAsciiStringSet(int index, uint16_t value); |
| |
| // Get the address of the characters in this string. |
| inline Address GetCharsAddress(); |
| |
| inline char* GetChars(); |
| |
| // Casting |
| static inline SeqAsciiString* cast(Object* obj); |
| |
| // Garbage collection support. This method is called by the |
| // garbage collector to compute the actual size of an AsciiString |
| // instance. |
| inline int SeqAsciiStringSize(InstanceType instance_type); |
| |
| // Computes the size for an AsciiString instance of a given length. |
| static int SizeFor(int length) { |
| return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize); |
| } |
| |
| // Layout description. |
| static const int kHeaderSize = String::kSize; |
| static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize); |
| |
| // Maximal memory usage for a single sequential ASCII string. |
| static const int kMaxSize = 512 * MB; |
| // Maximal length of a single sequential ASCII string. |
| // Q.v. String::kMaxLength which is the maximal size of concatenated strings. |
| static const int kMaxLength = (kMaxSize - kHeaderSize); |
| |
| // Support for StringInputBuffer. |
| inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer, |
| unsigned* offset, |
| unsigned chars); |
| inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining, |
| unsigned* offset, |
| unsigned chars); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString); |
| }; |
| |
| |
| // The TwoByteString class captures sequential unicode string objects. |
| // Each character in the TwoByteString is a two-byte uint16_t. |
| class SeqTwoByteString: public SeqString { |
| public: |
| static const bool kHasAsciiEncoding = false; |
| |
| // Dispatched behavior. |
| inline uint16_t SeqTwoByteStringGet(int index); |
| inline void SeqTwoByteStringSet(int index, uint16_t value); |
| |
| // Get the address of the characters in this string. |
| inline Address GetCharsAddress(); |
| |
| inline uc16* GetChars(); |
| |
| // For regexp code. |
| const uint16_t* SeqTwoByteStringGetData(unsigned start); |
| |
| // Casting |
| static inline SeqTwoByteString* cast(Object* obj); |
| |
| // Garbage collection support. This method is called by the |
| // garbage collector to compute the actual size of a TwoByteString |
| // instance. |
| inline int SeqTwoByteStringSize(InstanceType instance_type); |
| |
| // Computes the size for a TwoByteString instance of a given length. |
| static int SizeFor(int length) { |
| return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize); |
| } |
| |
| // Layout description. |
| static const int kHeaderSize = String::kSize; |
| static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize); |
| |
| // Maximal memory usage for a single sequential two-byte string. |
| static const int kMaxSize = 512 * MB; |
| // Maximal length of a single sequential two-byte string. |
| // Q.v. String::kMaxLength which is the maximal size of concatenated strings. |
| static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t); |
| |
| // Support for StringInputBuffer. |
| inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned chars); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString); |
| }; |
| |
| |
| // The ConsString class describes string values built by using the |
| // addition operator on strings. A ConsString is a pair where the |
| // first and second components are pointers to other string values. |
| // One or both components of a ConsString can be pointers to other |
| // ConsStrings, creating a binary tree of ConsStrings where the leaves |
| // are non-ConsString string values. The string value represented by |
| // a ConsString can be obtained by concatenating the leaf string |
| // values in a left-to-right depth-first traversal of the tree. |
| class ConsString: public String { |
| public: |
| // First string of the cons cell. |
| inline String* first(); |
| // Doesn't check that the result is a string, even in debug mode. This is |
| // useful during GC where the mark bits confuse the checks. |
| inline Object* unchecked_first(); |
| inline void set_first(String* first, |
| WriteBarrierMode mode = UPDATE_WRITE_BARRIER); |
| |
| // Second string of the cons cell. |
| inline String* second(); |
| // Doesn't check that the result is a string, even in debug mode. This is |
| // useful during GC where the mark bits confuse the checks. |
| inline Object* unchecked_second(); |
| inline void set_second(String* second, |
| WriteBarrierMode mode = UPDATE_WRITE_BARRIER); |
| |
| // Dispatched behavior. |
| uint16_t ConsStringGet(int index); |
| |
| // Casting. |
| static inline ConsString* cast(Object* obj); |
| |
| // Layout description. |
| static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize); |
| static const int kSecondOffset = kFirstOffset + kPointerSize; |
| static const int kSize = kSecondOffset + kPointerSize; |
| |
| // Support for StringInputBuffer. |
| inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned chars); |
| inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned chars); |
| |
| // Minimum length for a cons string. |
| static const int kMinLength = 13; |
| |
| typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize> |
| BodyDescriptor; |
| |
| #ifdef DEBUG |
| void ConsStringVerify(); |
| #endif |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString); |
| }; |
| |
| |
| // The Sliced String class describes strings that are substrings of another |
| // sequential string. The motivation is to save time and memory when creating |
| // a substring. A Sliced String is described as a pointer to the parent, |
| // the offset from the start of the parent string and the length. Using |
| // a Sliced String therefore requires unpacking of the parent string and |
| // adding the offset to the start address. A substring of a Sliced String |
| // are not nested since the double indirection is simplified when creating |
| // such a substring. |
| // Currently missing features are: |
| // - handling externalized parent strings |
| // - external strings as parent |
| // - truncating sliced string to enable otherwise unneeded parent to be GC'ed. |
| class SlicedString: public String { |
| public: |
| inline String* parent(); |
| inline void set_parent(String* parent); |
| inline int offset(); |
| inline void set_offset(int offset); |
| |
| // Dispatched behavior. |
| uint16_t SlicedStringGet(int index); |
| |
| // Casting. |
| static inline SlicedString* cast(Object* obj); |
| |
| // Layout description. |
| static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize); |
| static const int kOffsetOffset = kParentOffset + kPointerSize; |
| static const int kSize = kOffsetOffset + kPointerSize; |
| |
| // Support for StringInputBuffer |
| inline const unibrow::byte* SlicedStringReadBlock(ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned chars); |
| inline void SlicedStringReadBlockIntoBuffer(ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned chars); |
| // Minimum length for a sliced string. |
| static const int kMinLength = 13; |
| |
| typedef FixedBodyDescriptor<kParentOffset, |
| kOffsetOffset + kPointerSize, kSize> |
| BodyDescriptor; |
| |
| #ifdef DEBUG |
| void SlicedStringVerify(); |
| #endif |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString); |
| }; |
| |
| |
| // The ExternalString class describes string values that are backed by |
| // a string resource that lies outside the V8 heap. ExternalStrings |
| // consist of the length field common to all strings, a pointer to the |
| // external resource. It is important to ensure (externally) that the |
| // resource is not deallocated while the ExternalString is live in the |
| // V8 heap. |
| // |
| // The API expects that all ExternalStrings are created through the |
| // API. Therefore, ExternalStrings should not be used internally. |
| class ExternalString: public String { |
| public: |
| // Casting |
| static inline ExternalString* cast(Object* obj); |
| |
| // Layout description. |
| static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize); |
| static const int kSize = kResourceOffset + kPointerSize; |
| |
| STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString); |
| }; |
| |
| |
| // The ExternalAsciiString class is an external string backed by an |
| // ASCII string. |
| class ExternalAsciiString: public ExternalString { |
| public: |
| static const bool kHasAsciiEncoding = true; |
| |
| typedef v8::String::ExternalAsciiStringResource Resource; |
| |
| // The underlying resource. |
| inline Resource* resource(); |
| inline void set_resource(Resource* buffer); |
| |
| // Dispatched behavior. |
| uint16_t ExternalAsciiStringGet(int index); |
| |
| // Casting. |
| static inline ExternalAsciiString* cast(Object* obj); |
| |
| // Garbage collection support. |
| inline void ExternalAsciiStringIterateBody(ObjectVisitor* v); |
| |
| template<typename StaticVisitor> |
| inline void ExternalAsciiStringIterateBody(); |
| |
| // Support for StringInputBuffer. |
| const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining, |
| unsigned* offset, |
| unsigned chars); |
| inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer, |
| unsigned* offset, |
| unsigned chars); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString); |
| }; |
| |
| |
| // The ExternalTwoByteString class is an external string backed by a UTF-16 |
| // encoded string. |
| class ExternalTwoByteString: public ExternalString { |
| public: |
| static const bool kHasAsciiEncoding = false; |
| |
| typedef v8::String::ExternalStringResource Resource; |
| |
| // The underlying string resource. |
| inline Resource* resource(); |
| inline void set_resource(Resource* buffer); |
| |
| // Dispatched behavior. |
| uint16_t ExternalTwoByteStringGet(int index); |
| |
| // For regexp code. |
| const uint16_t* ExternalTwoByteStringGetData(unsigned start); |
| |
| // Casting. |
| static inline ExternalTwoByteString* cast(Object* obj); |
| |
| // Garbage collection support. |
| inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v); |
| |
| template<typename StaticVisitor> |
| inline void ExternalTwoByteStringIterateBody(); |
| |
| |
| // Support for StringInputBuffer. |
| void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer, |
| unsigned* offset_ptr, |
| unsigned chars); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString); |
| }; |
| |
| |
| // Utility superclass for stack-allocated objects that must be updated |
| // on gc. It provides two ways for the gc to update instances, either |
| // iterating or updating after gc. |
| class Relocatable BASE_EMBEDDED { |
| public: |
| explicit inline Relocatable(Isolate* isolate); |
| inline virtual ~Relocatable(); |
| virtual void IterateInstance(ObjectVisitor* v) { } |
| virtual void PostGarbageCollection() { } |
| |
| static void PostGarbageCollectionProcessing(); |
| static int ArchiveSpacePerThread(); |
| static char* ArchiveState(Isolate* isolate, char* to); |
| static char* RestoreState(Isolate* isolate, char* from); |
| static void Iterate(ObjectVisitor* v); |
| static void Iterate(ObjectVisitor* v, Relocatable* top); |
| static char* Iterate(ObjectVisitor* v, char* t); |
| private: |
| Isolate* isolate_; |
| Relocatable* prev_; |
| }; |
| |
| |
| // A flat string reader provides random access to the contents of a |
| // string independent of the character width of the string. The handle |
| // must be valid as long as the reader is being used. |
| class FlatStringReader : public Relocatable { |
| public: |
| FlatStringReader(Isolate* isolate, Handle<String> str); |
| FlatStringReader(Isolate* isolate, Vector<const char> input); |
| void PostGarbageCollection(); |
| inline uc32 Get(int index); |
| int length() { return length_; } |
| private: |
| String** str_; |
| bool is_ascii_; |
| int length_; |
| const void* start_; |
| }; |
| |
| |
| // Note that StringInputBuffers are not valid across a GC! To fix this |
| // it would have to store a String Handle instead of a String* and |
| // AsciiStringReadBlock would have to be modified to use memcpy. |
| // |
| // StringInputBuffer is able to traverse any string regardless of how |
| // deeply nested a sequence of ConsStrings it is made of. However, |
| // performance will be better if deep strings are flattened before they |
| // are traversed. Since flattening requires memory allocation this is |
| // not always desirable, however (esp. in debugging situations). |
| class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> { |
| public: |
| virtual void Seek(unsigned pos); |
| inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {} |
| explicit inline StringInputBuffer(String* backing): |
| unibrow::InputBuffer<String, String*, 1024>(backing) {} |
| }; |
| |
| |
| class SafeStringInputBuffer |
| : public unibrow::InputBuffer<String, String**, 256> { |
| public: |
| virtual void Seek(unsigned pos); |
| inline SafeStringInputBuffer() |
| : unibrow::InputBuffer<String, String**, 256>() {} |
| explicit inline SafeStringInputBuffer(String** backing) |
| : unibrow::InputBuffer<String, String**, 256>(backing) {} |
| }; |
| |
| |
| template <typename T> |
| class VectorIterator { |
| public: |
| VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { } |
| explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { } |
| T GetNext() { return data_[index_++]; } |
| bool has_more() { return index_ < data_.length(); } |
| private: |
| Vector<const T> data_; |
| int index_; |
| }; |
| |
| |
| // The Oddball describes objects null, undefined, true, and false. |
| class Oddball: public HeapObject { |
| public: |
| // [to_string]: Cached to_string computed at startup. |
| DECL_ACCESSORS(to_string, String) |
| |
| // [to_number]: Cached to_number computed at startup. |
| DECL_ACCESSORS(to_number, Object) |
| |
| inline byte kind(); |
| inline void set_kind(byte kind); |
| |
| // Casting. |
| static inline Oddball* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef DEBUG |
| void OddballVerify(); |
| #endif |
| |
| // Initialize the fields. |
| MUST_USE_RESULT MaybeObject* Initialize(const char* to_string, |
| Object* to_number, |
| byte kind); |
| |
| // Layout description. |
| static const int kToStringOffset = HeapObject::kHeaderSize; |
| static const int kToNumberOffset = kToStringOffset + kPointerSize; |
| static const int kKindOffset = kToNumberOffset + kPointerSize; |
| static const int kSize = kKindOffset + kPointerSize; |
| |
| static const byte kFalse = 0; |
| static const byte kTrue = 1; |
| static const byte kNotBooleanMask = ~1; |
| static const byte kTheHole = 2; |
| static const byte kNull = 3; |
| static const byte kArgumentMarker = 4; |
| static const byte kUndefined = 5; |
| static const byte kOther = 6; |
| |
| typedef FixedBodyDescriptor<kToStringOffset, |
| kToNumberOffset + kPointerSize, |
| kSize> BodyDescriptor; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball); |
| }; |
| |
| |
| class JSGlobalPropertyCell: public HeapObject { |
| public: |
| // [value]: value of the global property. |
| DECL_ACCESSORS(value, Object) |
| |
| // Casting. |
| static inline JSGlobalPropertyCell* cast(Object* obj); |
| |
| #ifdef DEBUG |
| void JSGlobalPropertyCellVerify(); |
| #endif |
| #ifdef OBJECT_PRINT |
| inline void JSGlobalPropertyCellPrint() { |
| JSGlobalPropertyCellPrint(stdout); |
| } |
| void JSGlobalPropertyCellPrint(FILE* out); |
| #endif |
| |
| // Layout description. |
| static const int kValueOffset = HeapObject::kHeaderSize; |
| static const int kSize = kValueOffset + kPointerSize; |
| |
| typedef FixedBodyDescriptor<kValueOffset, |
| kValueOffset + kPointerSize, |
| kSize> BodyDescriptor; |
| |
| // Returns the isolate/heap this cell object belongs to. |
| inline Isolate* isolate(); |
| inline Heap* heap(); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell); |
| }; |
| |
| |
| // The JSProxy describes EcmaScript Harmony proxies |
| class JSProxy: public JSReceiver { |
| public: |
| // [handler]: The handler property. |
| DECL_ACCESSORS(handler, Object) |
| |
| // Casting. |
| static inline JSProxy* cast(Object* obj); |
| |
| bool HasPropertyWithHandler(String* name); |
| |
| MUST_USE_RESULT MaybeObject* SetPropertyWithHandler( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode); |
| |
| MUST_USE_RESULT MaybeObject* DeletePropertyWithHandler( |
| String* name, |
| DeleteMode mode); |
| |
| MUST_USE_RESULT PropertyAttributes GetPropertyAttributeWithHandler( |
| JSReceiver* receiver, |
| String* name, |
| bool* has_exception); |
| |
| // Turn this into an (empty) JSObject. |
| void Fix(); |
| |
| // Initializes the body after the handler slot. |
| inline void InitializeBody(int object_size, Object* value); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSProxyPrint() { |
| JSProxyPrint(stdout); |
| } |
| void JSProxyPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSProxyVerify(); |
| #endif |
| |
| // Layout description. We add padding so that a proxy has the same |
| // size as a virgin JSObject. This is essential for becoming a JSObject |
| // upon freeze. |
| static const int kHandlerOffset = HeapObject::kHeaderSize; |
| static const int kPaddingOffset = kHandlerOffset + kPointerSize; |
| static const int kSize = JSObject::kHeaderSize; |
| static const int kHeaderSize = kPaddingOffset; |
| static const int kPaddingSize = kSize - kPaddingOffset; |
| |
| STATIC_CHECK(kPaddingSize >= 0); |
| |
| typedef FixedBodyDescriptor<kHandlerOffset, |
| kHandlerOffset + kPointerSize, |
| kSize> BodyDescriptor; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy); |
| }; |
| |
| |
| class JSFunctionProxy: public JSProxy { |
| public: |
| // [call_trap]: The call trap. |
| DECL_ACCESSORS(call_trap, Object) |
| |
| // [construct_trap]: The construct trap. |
| DECL_ACCESSORS(construct_trap, Object) |
| |
| // Casting. |
| static inline JSFunctionProxy* cast(Object* obj); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSFunctionProxyPrint() { |
| JSFunctionProxyPrint(stdout); |
| } |
| void JSFunctionProxyPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSFunctionProxyVerify(); |
| #endif |
| |
| // Layout description. |
| static const int kCallTrapOffset = kHandlerOffset + kPointerSize; |
| static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize; |
| static const int kPaddingOffset = kConstructTrapOffset + kPointerSize; |
| static const int kSize = JSFunction::kSize; |
| static const int kPaddingSize = kSize - kPaddingOffset; |
| |
| STATIC_CHECK(kPaddingSize >= 0); |
| |
| typedef FixedBodyDescriptor<kHandlerOffset, |
| kConstructTrapOffset + kPointerSize, |
| kSize> BodyDescriptor; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy); |
| }; |
| |
| |
| // The JSWeakMap describes EcmaScript Harmony weak maps |
| class JSWeakMap: public JSObject { |
| public: |
| // [table]: the backing hash table mapping keys to values. |
| DECL_ACCESSORS(table, ObjectHashTable) |
| |
| // [next]: linked list of encountered weak maps during GC. |
| DECL_ACCESSORS(next, Object) |
| |
| // Unchecked accessors to be used during GC. |
| inline ObjectHashTable* unchecked_table(); |
| |
| // Casting. |
| static inline JSWeakMap* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void JSWeakMapPrint() { |
| JSWeakMapPrint(stdout); |
| } |
| void JSWeakMapPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSWeakMapVerify(); |
| #endif |
| |
| static const int kTableOffset = JSObject::kHeaderSize; |
| static const int kNextOffset = kTableOffset + kPointerSize; |
| static const int kSize = kNextOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap); |
| }; |
| |
| |
| // Foreign describes objects pointing from JavaScript to C structures. |
| // Since they cannot contain references to JS HeapObjects they can be |
| // placed in old_data_space. |
| class Foreign: public HeapObject { |
| public: |
| // [address]: field containing the address. |
| inline Address address(); |
| inline void set_address(Address value); |
| |
| // Casting. |
| static inline Foreign* cast(Object* obj); |
| |
| // Dispatched behavior. |
| inline void ForeignIterateBody(ObjectVisitor* v); |
| |
| template<typename StaticVisitor> |
| inline void ForeignIterateBody(); |
| |
| #ifdef OBJECT_PRINT |
| inline void ForeignPrint() { |
| ForeignPrint(stdout); |
| } |
| void ForeignPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ForeignVerify(); |
| #endif |
| |
| // Layout description. |
| |
| static const int kAddressOffset = HeapObject::kHeaderSize; |
| static const int kSize = kAddressOffset + kPointerSize; |
| |
| STATIC_CHECK(kAddressOffset == Internals::kForeignAddressOffset); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign); |
| }; |
| |
| |
| // The JSArray describes JavaScript Arrays |
| // Such an array can be in one of two modes: |
| // - fast, backing storage is a FixedArray and length <= elements.length(); |
| // Please note: push and pop can be used to grow and shrink the array. |
| // - slow, backing storage is a HashTable with numbers as keys. |
| class JSArray: public JSObject { |
| public: |
| // [length]: The length property. |
| DECL_ACCESSORS(length, Object) |
| |
| // Overload the length setter to skip write barrier when the length |
| // is set to a smi. This matches the set function on FixedArray. |
| inline void set_length(Smi* length); |
| |
| MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index, |
| Object* value); |
| |
| // Initialize the array with the given capacity. The function may |
| // fail due to out-of-memory situations, but only if the requested |
| // capacity is non-zero. |
| MUST_USE_RESULT MaybeObject* Initialize(int capacity); |
| |
| // Set the content of the array to the content of storage. |
| inline void SetContent(FixedArray* storage); |
| |
| // Casting. |
| static inline JSArray* cast(Object* obj); |
| |
| // Uses handles. Ensures that the fixed array backing the JSArray has at |
| // least the stated size. |
| inline void EnsureSize(int minimum_size_of_backing_fixed_array); |
| |
| // Dispatched behavior. |
| #ifdef OBJECT_PRINT |
| inline void JSArrayPrint() { |
| JSArrayPrint(stdout); |
| } |
| void JSArrayPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void JSArrayVerify(); |
| #endif |
| |
| // Number of element slots to pre-allocate for an empty array. |
| static const int kPreallocatedArrayElements = 4; |
| |
| // Layout description. |
| static const int kLengthOffset = JSObject::kHeaderSize; |
| static const int kSize = kLengthOffset + kPointerSize; |
| |
| private: |
| // Expand the fixed array backing of a fast-case JSArray to at least |
| // the requested size. |
| void Expand(int minimum_size_of_backing_fixed_array); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray); |
| }; |
| |
| |
| // JSRegExpResult is just a JSArray with a specific initial map. |
| // This initial map adds in-object properties for "index" and "input" |
| // properties, as assigned by RegExp.prototype.exec, which allows |
| // faster creation of RegExp exec results. |
| // This class just holds constants used when creating the result. |
| // After creation the result must be treated as a JSArray in all regards. |
| class JSRegExpResult: public JSArray { |
| public: |
| // Offsets of object fields. |
| static const int kIndexOffset = JSArray::kSize; |
| static const int kInputOffset = kIndexOffset + kPointerSize; |
| static const int kSize = kInputOffset + kPointerSize; |
| // Indices of in-object properties. |
| static const int kIndexIndex = 0; |
| static const int kInputIndex = 1; |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult); |
| }; |
| |
| |
| // An accessor must have a getter, but can have no setter. |
| // |
| // When setting a property, V8 searches accessors in prototypes. |
| // If an accessor was found and it does not have a setter, |
| // the request is ignored. |
| // |
| // If the accessor in the prototype has the READ_ONLY property attribute, then |
| // a new value is added to the local object when the property is set. |
| // This shadows the accessor in the prototype. |
| class AccessorInfo: public Struct { |
| public: |
| DECL_ACCESSORS(getter, Object) |
| DECL_ACCESSORS(setter, Object) |
| DECL_ACCESSORS(data, Object) |
| DECL_ACCESSORS(name, Object) |
| DECL_ACCESSORS(flag, Smi) |
| |
| inline bool all_can_read(); |
| inline void set_all_can_read(bool value); |
| |
| inline bool all_can_write(); |
| inline void set_all_can_write(bool value); |
| |
| inline bool prohibits_overwriting(); |
| inline void set_prohibits_overwriting(bool value); |
| |
| inline PropertyAttributes property_attributes(); |
| inline void set_property_attributes(PropertyAttributes attributes); |
| |
| static inline AccessorInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void AccessorInfoPrint() { |
| AccessorInfoPrint(stdout); |
| } |
| void AccessorInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void AccessorInfoVerify(); |
| #endif |
| |
| static const int kGetterOffset = HeapObject::kHeaderSize; |
| static const int kSetterOffset = kGetterOffset + kPointerSize; |
| static const int kDataOffset = kSetterOffset + kPointerSize; |
| static const int kNameOffset = kDataOffset + kPointerSize; |
| static const int kFlagOffset = kNameOffset + kPointerSize; |
| static const int kSize = kFlagOffset + kPointerSize; |
| |
| private: |
| // Bit positions in flag. |
| static const int kAllCanReadBit = 0; |
| static const int kAllCanWriteBit = 1; |
| static const int kProhibitsOverwritingBit = 2; |
| class AttributesField: public BitField<PropertyAttributes, 3, 3> {}; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo); |
| }; |
| |
| |
| class AccessCheckInfo: public Struct { |
| public: |
| DECL_ACCESSORS(named_callback, Object) |
| DECL_ACCESSORS(indexed_callback, Object) |
| DECL_ACCESSORS(data, Object) |
| |
| static inline AccessCheckInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void AccessCheckInfoPrint() { |
| AccessCheckInfoPrint(stdout); |
| } |
| void AccessCheckInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void AccessCheckInfoVerify(); |
| #endif |
| |
| static const int kNamedCallbackOffset = HeapObject::kHeaderSize; |
| static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize; |
| static const int kDataOffset = kIndexedCallbackOffset + kPointerSize; |
| static const int kSize = kDataOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo); |
| }; |
| |
| |
| class InterceptorInfo: public Struct { |
| public: |
| DECL_ACCESSORS(getter, Object) |
| DECL_ACCESSORS(setter, Object) |
| DECL_ACCESSORS(query, Object) |
| DECL_ACCESSORS(deleter, Object) |
| DECL_ACCESSORS(enumerator, Object) |
| DECL_ACCESSORS(data, Object) |
| |
| static inline InterceptorInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void InterceptorInfoPrint() { |
| InterceptorInfoPrint(stdout); |
| } |
| void InterceptorInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void InterceptorInfoVerify(); |
| #endif |
| |
| static const int kGetterOffset = HeapObject::kHeaderSize; |
| static const int kSetterOffset = kGetterOffset + kPointerSize; |
| static const int kQueryOffset = kSetterOffset + kPointerSize; |
| static const int kDeleterOffset = kQueryOffset + kPointerSize; |
| static const int kEnumeratorOffset = kDeleterOffset + kPointerSize; |
| static const int kDataOffset = kEnumeratorOffset + kPointerSize; |
| static const int kSize = kDataOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo); |
| }; |
| |
| |
| class CallHandlerInfo: public Struct { |
| public: |
| DECL_ACCESSORS(callback, Object) |
| DECL_ACCESSORS(data, Object) |
| |
| static inline CallHandlerInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void CallHandlerInfoPrint() { |
| CallHandlerInfoPrint(stdout); |
| } |
| void CallHandlerInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void CallHandlerInfoVerify(); |
| #endif |
| |
| static const int kCallbackOffset = HeapObject::kHeaderSize; |
| static const int kDataOffset = kCallbackOffset + kPointerSize; |
| static const int kSize = kDataOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo); |
| }; |
| |
| |
| class TemplateInfo: public Struct { |
| public: |
| DECL_ACCESSORS(tag, Object) |
| DECL_ACCESSORS(property_list, Object) |
| |
| #ifdef DEBUG |
| void TemplateInfoVerify(); |
| #endif |
| |
| static const int kTagOffset = HeapObject::kHeaderSize; |
| static const int kPropertyListOffset = kTagOffset + kPointerSize; |
| static const int kHeaderSize = kPropertyListOffset + kPointerSize; |
| protected: |
| friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs; |
| DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo); |
| }; |
| |
| |
| class FunctionTemplateInfo: public TemplateInfo { |
| public: |
| DECL_ACCESSORS(serial_number, Object) |
| DECL_ACCESSORS(call_code, Object) |
| DECL_ACCESSORS(property_accessors, Object) |
| DECL_ACCESSORS(prototype_template, Object) |
| DECL_ACCESSORS(parent_template, Object) |
| DECL_ACCESSORS(named_property_handler, Object) |
| DECL_ACCESSORS(indexed_property_handler, Object) |
| DECL_ACCESSORS(instance_template, Object) |
| DECL_ACCESSORS(class_name, Object) |
| DECL_ACCESSORS(signature, Object) |
| DECL_ACCESSORS(instance_call_handler, Object) |
| DECL_ACCESSORS(access_check_info, Object) |
| DECL_ACCESSORS(flag, Smi) |
| |
| // Following properties use flag bits. |
| DECL_BOOLEAN_ACCESSORS(hidden_prototype) |
| DECL_BOOLEAN_ACCESSORS(undetectable) |
| // If the bit is set, object instances created by this function |
| // requires access check. |
| DECL_BOOLEAN_ACCESSORS(needs_access_check) |
| DECL_BOOLEAN_ACCESSORS(read_only_prototype) |
| |
| static inline FunctionTemplateInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void FunctionTemplateInfoPrint() { |
| FunctionTemplateInfoPrint(stdout); |
| } |
| void FunctionTemplateInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void FunctionTemplateInfoVerify(); |
| #endif |
| |
| static const int kSerialNumberOffset = TemplateInfo::kHeaderSize; |
| static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize; |
| static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize; |
| static const int kPrototypeTemplateOffset = |
| kPropertyAccessorsOffset + kPointerSize; |
| static const int kParentTemplateOffset = |
| kPrototypeTemplateOffset + kPointerSize; |
| static const int kNamedPropertyHandlerOffset = |
| kParentTemplateOffset + kPointerSize; |
| static const int kIndexedPropertyHandlerOffset = |
| kNamedPropertyHandlerOffset + kPointerSize; |
| static const int kInstanceTemplateOffset = |
| kIndexedPropertyHandlerOffset + kPointerSize; |
| static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize; |
| static const int kSignatureOffset = kClassNameOffset + kPointerSize; |
| static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize; |
| static const int kAccessCheckInfoOffset = |
| kInstanceCallHandlerOffset + kPointerSize; |
| static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize; |
| static const int kSize = kFlagOffset + kPointerSize; |
| |
| private: |
| // Bit position in the flag, from least significant bit position. |
| static const int kHiddenPrototypeBit = 0; |
| static const int kUndetectableBit = 1; |
| static const int kNeedsAccessCheckBit = 2; |
| static const int kReadOnlyPrototypeBit = 3; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo); |
| }; |
| |
| |
| class ObjectTemplateInfo: public TemplateInfo { |
| public: |
| DECL_ACCESSORS(constructor, Object) |
| DECL_ACCESSORS(internal_field_count, Object) |
| |
| static inline ObjectTemplateInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void ObjectTemplateInfoPrint() { |
| ObjectTemplateInfoPrint(stdout); |
| } |
| void ObjectTemplateInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void ObjectTemplateInfoVerify(); |
| #endif |
| |
| static const int kConstructorOffset = TemplateInfo::kHeaderSize; |
| static const int kInternalFieldCountOffset = |
| kConstructorOffset + kPointerSize; |
| static const int kSize = kInternalFieldCountOffset + kPointerSize; |
| }; |
| |
| |
| class SignatureInfo: public Struct { |
| public: |
| DECL_ACCESSORS(receiver, Object) |
| DECL_ACCESSORS(args, Object) |
| |
| static inline SignatureInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void SignatureInfoPrint() { |
| SignatureInfoPrint(stdout); |
| } |
| void SignatureInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void SignatureInfoVerify(); |
| #endif |
| |
| static const int kReceiverOffset = Struct::kHeaderSize; |
| static const int kArgsOffset = kReceiverOffset + kPointerSize; |
| static const int kSize = kArgsOffset + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo); |
| }; |
| |
| |
| class TypeSwitchInfo: public Struct { |
| public: |
| DECL_ACCESSORS(types, Object) |
| |
| static inline TypeSwitchInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void TypeSwitchInfoPrint() { |
| TypeSwitchInfoPrint(stdout); |
| } |
| void TypeSwitchInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void TypeSwitchInfoVerify(); |
| #endif |
| |
| static const int kTypesOffset = Struct::kHeaderSize; |
| static const int kSize = kTypesOffset + kPointerSize; |
| }; |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // The DebugInfo class holds additional information for a function being |
| // debugged. |
| class DebugInfo: public Struct { |
| public: |
| // The shared function info for the source being debugged. |
| DECL_ACCESSORS(shared, SharedFunctionInfo) |
| // Code object for the original code. |
| DECL_ACCESSORS(original_code, Code) |
| // Code object for the patched code. This code object is the code object |
| // currently active for the function. |
| DECL_ACCESSORS(code, Code) |
| // Fixed array holding status information for each active break point. |
| DECL_ACCESSORS(break_points, FixedArray) |
| |
| // Check if there is a break point at a code position. |
| bool HasBreakPoint(int code_position); |
| // Get the break point info object for a code position. |
| Object* GetBreakPointInfo(int code_position); |
| // Clear a break point. |
| static void ClearBreakPoint(Handle<DebugInfo> debug_info, |
| int code_position, |
| Handle<Object> break_point_object); |
| // Set a break point. |
| static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position, |
| int source_position, int statement_position, |
| Handle<Object> break_point_object); |
| // Get the break point objects for a code position. |
| Object* GetBreakPointObjects(int code_position); |
| // Find the break point info holding this break point object. |
| static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info, |
| Handle<Object> break_point_object); |
| // Get the number of break points for this function. |
| int GetBreakPointCount(); |
| |
| static inline DebugInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void DebugInfoPrint() { |
| DebugInfoPrint(stdout); |
| } |
| void DebugInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void DebugInfoVerify(); |
| #endif |
| |
| static const int kSharedFunctionInfoIndex = Struct::kHeaderSize; |
| static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize; |
| static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize; |
| static const int kActiveBreakPointsCountIndex = |
| kPatchedCodeIndex + kPointerSize; |
| static const int kBreakPointsStateIndex = |
| kActiveBreakPointsCountIndex + kPointerSize; |
| static const int kSize = kBreakPointsStateIndex + kPointerSize; |
| |
| private: |
| static const int kNoBreakPointInfo = -1; |
| |
| // Lookup the index in the break_points array for a code position. |
| int GetBreakPointInfoIndex(int code_position); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo); |
| }; |
| |
| |
| // The BreakPointInfo class holds information for break points set in a |
| // function. The DebugInfo object holds a BreakPointInfo object for each code |
| // position with one or more break points. |
| class BreakPointInfo: public Struct { |
| public: |
| // The position in the code for the break point. |
| DECL_ACCESSORS(code_position, Smi) |
| // The position in the source for the break position. |
| DECL_ACCESSORS(source_position, Smi) |
| // The position in the source for the last statement before this break |
| // position. |
| DECL_ACCESSORS(statement_position, Smi) |
| // List of related JavaScript break points. |
| DECL_ACCESSORS(break_point_objects, Object) |
| |
| // Removes a break point. |
| static void ClearBreakPoint(Handle<BreakPointInfo> info, |
| Handle<Object> break_point_object); |
| // Set a break point. |
| static void SetBreakPoint(Handle<BreakPointInfo> info, |
| Handle<Object> break_point_object); |
| // Check if break point info has this break point object. |
| static bool HasBreakPointObject(Handle<BreakPointInfo> info, |
| Handle<Object> break_point_object); |
| // Get the number of break points for this code position. |
| int GetBreakPointCount(); |
| |
| static inline BreakPointInfo* cast(Object* obj); |
| |
| #ifdef OBJECT_PRINT |
| inline void BreakPointInfoPrint() { |
| BreakPointInfoPrint(stdout); |
| } |
| void BreakPointInfoPrint(FILE* out); |
| #endif |
| #ifdef DEBUG |
| void BreakPointInfoVerify(); |
| #endif |
| |
| static const int kCodePositionIndex = Struct::kHeaderSize; |
| static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize; |
| static const int kStatementPositionIndex = |
| kSourcePositionIndex + kPointerSize; |
| static const int kBreakPointObjectsIndex = |
| kStatementPositionIndex + kPointerSize; |
| static const int kSize = kBreakPointObjectsIndex + kPointerSize; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo); |
| }; |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| #undef DECL_BOOLEAN_ACCESSORS |
| #undef DECL_ACCESSORS |
| |
| |
| // Abstract base class for visiting, and optionally modifying, the |
| // pointers contained in Objects. Used in GC and serialization/deserialization. |
| class ObjectVisitor BASE_EMBEDDED { |
| public: |
| virtual ~ObjectVisitor() {} |
| |
| // Visits a contiguous arrays of pointers in the half-open range |
| // [start, end). Any or all of the values may be modified on return. |
| virtual void VisitPointers(Object** start, Object** end) = 0; |
| |
| // To allow lazy clearing of inline caches the visitor has |
| // a rich interface for iterating over Code objects.. |
| |
| // Visits a code target in the instruction stream. |
| virtual void VisitCodeTarget(RelocInfo* rinfo); |
| |
| // Visits a code entry in a JS function. |
| virtual void VisitCodeEntry(Address entry_address); |
| |
| // Visits a global property cell reference in the instruction stream. |
| virtual void VisitGlobalPropertyCell(RelocInfo* rinfo); |
| |
| // Visits a runtime entry in the instruction stream. |
| virtual void VisitRuntimeEntry(RelocInfo* rinfo) {} |
| |
| // Visits the resource of an ASCII or two-byte string. |
| virtual void VisitExternalAsciiString( |
| v8::String::ExternalAsciiStringResource** resource) {} |
| virtual void VisitExternalTwoByteString( |
| v8::String::ExternalStringResource** resource) {} |
| |
| // Visits a debug call target in the instruction stream. |
| virtual void VisitDebugTarget(RelocInfo* rinfo); |
| |
| // Handy shorthand for visiting a single pointer. |
| virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); } |
| |
| // Visits a contiguous arrays of external references (references to the C++ |
| // heap) in the half-open range [start, end). Any or all of the values |
| // may be modified on return. |
| virtual void VisitExternalReferences(Address* start, Address* end) {} |
| |
| inline void VisitExternalReference(Address* p) { |
| VisitExternalReferences(p, p + 1); |
| } |
| |
| // Visits a handle that has an embedder-assigned class ID. |
| virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {} |
| |
| #ifdef DEBUG |
| // Intended for serialization/deserialization checking: insert, or |
| // check for the presence of, a tag at this position in the stream. |
| virtual void Synchronize(const char* tag) {} |
| #else |
| inline void Synchronize(const char* tag) {} |
| #endif |
| }; |
| |
| |
| class StructBodyDescriptor : public |
| FlexibleBodyDescriptor<HeapObject::kHeaderSize> { |
| public: |
| static inline int SizeOf(Map* map, HeapObject* object) { |
| return map->instance_size(); |
| } |
| }; |
| |
| |
| // BooleanBit is a helper class for setting and getting a bit in an |
| // integer or Smi. |
| class BooleanBit : public AllStatic { |
| public: |
| static inline bool get(Smi* smi, int bit_position) { |
| return get(smi->value(), bit_position); |
| } |
| |
| static inline bool get(int value, int bit_position) { |
| return (value & (1 << bit_position)) != 0; |
| } |
| |
| static inline Smi* set(Smi* smi, int bit_position, bool v) { |
| return Smi::FromInt(set(smi->value(), bit_position, v)); |
| } |
| |
| static inline int set(int value, int bit_position, bool v) { |
| if (v) { |
| value |= (1 << bit_position); |
| } else { |
| value &= ~(1 << bit_position); |
| } |
| return value; |
| } |
| }; |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_OBJECTS_H_ |