| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_SPACES_H_ |
| #define V8_SPACES_H_ |
| |
| #include "allocation.h" |
| #include "list.h" |
| #include "log.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class Isolate; |
| |
| // ----------------------------------------------------------------------------- |
| // Heap structures: |
| // |
| // A JS heap consists of a young generation, an old generation, and a large |
| // object space. The young generation is divided into two semispaces. A |
| // scavenger implements Cheney's copying algorithm. The old generation is |
| // separated into a map space and an old object space. The map space contains |
| // all (and only) map objects, the rest of old objects go into the old space. |
| // The old generation is collected by a mark-sweep-compact collector. |
| // |
| // The semispaces of the young generation are contiguous. The old and map |
| // spaces consists of a list of pages. A page has a page header and an object |
| // area. A page size is deliberately chosen as 8K bytes. |
| // The first word of a page is an opaque page header that has the |
| // address of the next page and its ownership information. The second word may |
| // have the allocation top address of this page. Heap objects are aligned to the |
| // pointer size. |
| // |
| // There is a separate large object space for objects larger than |
| // Page::kMaxHeapObjectSize, so that they do not have to move during |
| // collection. The large object space is paged. Pages in large object space |
| // may be larger than 8K. |
| // |
| // A card marking write barrier is used to keep track of intergenerational |
| // references. Old space pages are divided into regions of Page::kRegionSize |
| // size. Each region has a corresponding dirty bit in the page header which is |
| // set if the region might contain pointers to new space. For details about |
| // dirty bits encoding see comments in the Page::GetRegionNumberForAddress() |
| // method body. |
| // |
| // During scavenges and mark-sweep collections we iterate intergenerational |
| // pointers without decoding heap object maps so if the page belongs to old |
| // pointer space or large object space it is essential to guarantee that |
| // the page does not contain any garbage pointers to new space: every pointer |
| // aligned word which satisfies the Heap::InNewSpace() predicate must be a |
| // pointer to a live heap object in new space. Thus objects in old pointer |
| // and large object spaces should have a special layout (e.g. no bare integer |
| // fields). This requirement does not apply to map space which is iterated in |
| // a special fashion. However we still require pointer fields of dead maps to |
| // be cleaned. |
| // |
| // To enable lazy cleaning of old space pages we use a notion of allocation |
| // watermark. Every pointer under watermark is considered to be well formed. |
| // Page allocation watermark is not necessarily equal to page allocation top but |
| // all alive objects on page should reside under allocation watermark. |
| // During scavenge allocation watermark might be bumped and invalid pointers |
| // might appear below it. To avoid following them we store a valid watermark |
| // into special field in the page header and set a page WATERMARK_INVALIDATED |
| // flag. For details see comments in the Page::SetAllocationWatermark() method |
| // body. |
| // |
| |
| // Some assertion macros used in the debugging mode. |
| |
| #define ASSERT_PAGE_ALIGNED(address) \ |
| ASSERT((OffsetFrom(address) & Page::kPageAlignmentMask) == 0) |
| |
| #define ASSERT_OBJECT_ALIGNED(address) \ |
| ASSERT((OffsetFrom(address) & kObjectAlignmentMask) == 0) |
| |
| #define ASSERT_MAP_ALIGNED(address) \ |
| ASSERT((OffsetFrom(address) & kMapAlignmentMask) == 0) |
| |
| #define ASSERT_OBJECT_SIZE(size) \ |
| ASSERT((0 < size) && (size <= Page::kMaxHeapObjectSize)) |
| |
| #define ASSERT_PAGE_OFFSET(offset) \ |
| ASSERT((Page::kObjectStartOffset <= offset) \ |
| && (offset <= Page::kPageSize)) |
| |
| #define ASSERT_MAP_PAGE_INDEX(index) \ |
| ASSERT((0 <= index) && (index <= MapSpace::kMaxMapPageIndex)) |
| |
| |
| class PagedSpace; |
| class MemoryAllocator; |
| class AllocationInfo; |
| |
| // ----------------------------------------------------------------------------- |
| // A page normally has 8K bytes. Large object pages may be larger. A page |
| // address is always aligned to the 8K page size. |
| // |
| // Each page starts with a header of Page::kPageHeaderSize size which contains |
| // bookkeeping data. |
| // |
| // The mark-compact collector transforms a map pointer into a page index and a |
| // page offset. The exact encoding is described in the comments for |
| // class MapWord in objects.h. |
| // |
| // The only way to get a page pointer is by calling factory methods: |
| // Page* p = Page::FromAddress(addr); or |
| // Page* p = Page::FromAllocationTop(top); |
| class Page { |
| public: |
| // Returns the page containing a given address. The address ranges |
| // from [page_addr .. page_addr + kPageSize[ |
| // |
| // Note that this function only works for addresses in normal paged |
| // spaces and addresses in the first 8K of large object pages (i.e., |
| // the start of large objects but not necessarily derived pointers |
| // within them). |
| INLINE(static Page* FromAddress(Address a)) { |
| return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask); |
| } |
| |
| // Returns the page containing an allocation top. Because an allocation |
| // top address can be the upper bound of the page, we need to subtract |
| // it with kPointerSize first. The address ranges from |
| // [page_addr + kObjectStartOffset .. page_addr + kPageSize]. |
| INLINE(static Page* FromAllocationTop(Address top)) { |
| Page* p = FromAddress(top - kPointerSize); |
| ASSERT_PAGE_OFFSET(p->Offset(top)); |
| return p; |
| } |
| |
| // Returns the start address of this page. |
| Address address() { return reinterpret_cast<Address>(this); } |
| |
| // Checks whether this is a valid page address. |
| bool is_valid() { return address() != NULL; } |
| |
| // Returns the next page of this page. |
| inline Page* next_page(); |
| |
| // Return the end of allocation in this page. Undefined for unused pages. |
| inline Address AllocationTop(); |
| |
| // Return the allocation watermark for the page. |
| // For old space pages it is guaranteed that the area under the watermark |
| // does not contain any garbage pointers to new space. |
| inline Address AllocationWatermark(); |
| |
| // Return the allocation watermark offset from the beginning of the page. |
| inline uint32_t AllocationWatermarkOffset(); |
| |
| inline void SetAllocationWatermark(Address allocation_watermark); |
| |
| inline void SetCachedAllocationWatermark(Address allocation_watermark); |
| inline Address CachedAllocationWatermark(); |
| |
| // Returns the start address of the object area in this page. |
| Address ObjectAreaStart() { return address() + kObjectStartOffset; } |
| |
| // Returns the end address (exclusive) of the object area in this page. |
| Address ObjectAreaEnd() { return address() + Page::kPageSize; } |
| |
| // Checks whether an address is page aligned. |
| static bool IsAlignedToPageSize(Address a) { |
| return 0 == (OffsetFrom(a) & kPageAlignmentMask); |
| } |
| |
| // True if this page was in use before current compaction started. |
| // Result is valid only for pages owned by paged spaces and |
| // only after PagedSpace::PrepareForMarkCompact was called. |
| inline bool WasInUseBeforeMC(); |
| |
| inline void SetWasInUseBeforeMC(bool was_in_use); |
| |
| // True if this page is a large object page. |
| inline bool IsLargeObjectPage(); |
| |
| inline void SetIsLargeObjectPage(bool is_large_object_page); |
| |
| inline Executability PageExecutability(); |
| |
| inline void SetPageExecutability(Executability executable); |
| |
| // Returns the offset of a given address to this page. |
| INLINE(int Offset(Address a)) { |
| int offset = static_cast<int>(a - address()); |
| ASSERT_PAGE_OFFSET(offset); |
| return offset; |
| } |
| |
| // Returns the address for a given offset to the this page. |
| Address OffsetToAddress(int offset) { |
| ASSERT_PAGE_OFFSET(offset); |
| return address() + offset; |
| } |
| |
| // --------------------------------------------------------------------- |
| // Card marking support |
| |
| static const uint32_t kAllRegionsCleanMarks = 0x0; |
| static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF; |
| |
| inline uint32_t GetRegionMarks(); |
| inline void SetRegionMarks(uint32_t dirty); |
| |
| inline uint32_t GetRegionMaskForAddress(Address addr); |
| inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes); |
| inline int GetRegionNumberForAddress(Address addr); |
| |
| inline void MarkRegionDirty(Address addr); |
| inline bool IsRegionDirty(Address addr); |
| |
| inline void ClearRegionMarks(Address start, |
| Address end, |
| bool reaches_limit); |
| |
| // Page size in bytes. This must be a multiple of the OS page size. |
| static const int kPageSize = 1 << kPageSizeBits; |
| |
| // Page size mask. |
| static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; |
| |
| static const int kPageHeaderSize = kPointerSize + kPointerSize + kIntSize + |
| kIntSize + kPointerSize + kPointerSize; |
| |
| // The start offset of the object area in a page. Aligned to both maps and |
| // code alignment to be suitable for both. |
| static const int kObjectStartOffset = |
| CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kPageHeaderSize)); |
| |
| // Object area size in bytes. |
| static const int kObjectAreaSize = kPageSize - kObjectStartOffset; |
| |
| // Maximum object size that fits in a page. |
| static const int kMaxHeapObjectSize = kObjectAreaSize; |
| |
| static const int kDirtyFlagOffset = 2 * kPointerSize; |
| static const int kRegionSizeLog2 = 8; |
| static const int kRegionSize = 1 << kRegionSizeLog2; |
| static const intptr_t kRegionAlignmentMask = (kRegionSize - 1); |
| |
| STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt); |
| |
| enum PageFlag { |
| IS_NORMAL_PAGE = 0, |
| WAS_IN_USE_BEFORE_MC, |
| |
| // Page allocation watermark was bumped by preallocation during scavenge. |
| // Correct watermark can be retrieved by CachedAllocationWatermark() method |
| WATERMARK_INVALIDATED, |
| IS_EXECUTABLE, |
| NUM_PAGE_FLAGS // Must be last |
| }; |
| static const int kPageFlagMask = (1 << NUM_PAGE_FLAGS) - 1; |
| |
| // To avoid an additional WATERMARK_INVALIDATED flag clearing pass during |
| // scavenge we just invalidate the watermark on each old space page after |
| // processing it. And then we flip the meaning of the WATERMARK_INVALIDATED |
| // flag at the beginning of the next scavenge and each page becomes marked as |
| // having a valid watermark. |
| // |
| // The following invariant must hold for pages in old pointer and map spaces: |
| // If page is in use then page is marked as having invalid watermark at |
| // the beginning and at the end of any GC. |
| // |
| // This invariant guarantees that after flipping flag meaning at the |
| // beginning of scavenge all pages in use will be marked as having valid |
| // watermark. |
| static inline void FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap); |
| |
| // Returns true if the page allocation watermark was not altered during |
| // scavenge. |
| inline bool IsWatermarkValid(); |
| |
| inline void InvalidateWatermark(bool value); |
| |
| inline bool GetPageFlag(PageFlag flag); |
| inline void SetPageFlag(PageFlag flag, bool value); |
| inline void ClearPageFlags(); |
| |
| inline void ClearGCFields(); |
| |
| static const int kAllocationWatermarkOffsetShift = WATERMARK_INVALIDATED + 1; |
| static const int kAllocationWatermarkOffsetBits = kPageSizeBits + 1; |
| static const uint32_t kAllocationWatermarkOffsetMask = |
| ((1 << kAllocationWatermarkOffsetBits) - 1) << |
| kAllocationWatermarkOffsetShift; |
| |
| static const uint32_t kFlagsMask = |
| ((1 << kAllocationWatermarkOffsetShift) - 1); |
| |
| STATIC_CHECK(kBitsPerInt - kAllocationWatermarkOffsetShift >= |
| kAllocationWatermarkOffsetBits); |
| |
| //--------------------------------------------------------------------------- |
| // Page header description. |
| // |
| // If a page is not in the large object space, the first word, |
| // opaque_header, encodes the next page address (aligned to kPageSize 8K) |
| // and the chunk number (0 ~ 8K-1). Only MemoryAllocator should use |
| // opaque_header. The value range of the opaque_header is [0..kPageSize[, |
| // or [next_page_start, next_page_end[. It cannot point to a valid address |
| // in the current page. If a page is in the large object space, the first |
| // word *may* (if the page start and large object chunk start are the |
| // same) contain the address of the next large object chunk. |
| intptr_t opaque_header; |
| |
| // If the page is not in the large object space, the low-order bit of the |
| // second word is set. If the page is in the large object space, the |
| // second word *may* (if the page start and large object chunk start are |
| // the same) contain the large object chunk size. In either case, the |
| // low-order bit for large object pages will be cleared. |
| // For normal pages this word is used to store page flags and |
| // offset of allocation top. |
| intptr_t flags_; |
| |
| // This field contains dirty marks for regions covering the page. Only dirty |
| // regions might contain intergenerational references. |
| // Only 32 dirty marks are supported so for large object pages several regions |
| // might be mapped to a single dirty mark. |
| uint32_t dirty_regions_; |
| |
| // The index of the page in its owner space. |
| int mc_page_index; |
| |
| // During mark-compact collections this field contains the forwarding address |
| // of the first live object in this page. |
| // During scavenge collection this field is used to store allocation watermark |
| // if it is altered during scavenge. |
| Address mc_first_forwarded; |
| |
| Heap* heap_; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Space is the abstract superclass for all allocation spaces. |
| class Space : public Malloced { |
| public: |
| Space(Heap* heap, AllocationSpace id, Executability executable) |
| : heap_(heap), id_(id), executable_(executable) {} |
| |
| virtual ~Space() {} |
| |
| Heap* heap() const { return heap_; } |
| |
| // Does the space need executable memory? |
| Executability executable() { return executable_; } |
| |
| // Identity used in error reporting. |
| AllocationSpace identity() { return id_; } |
| |
| // Returns allocated size. |
| virtual intptr_t Size() = 0; |
| |
| // Returns size of objects. Can differ from the allocated size |
| // (e.g. see LargeObjectSpace). |
| virtual intptr_t SizeOfObjects() { return Size(); } |
| |
| #ifdef DEBUG |
| virtual void Print() = 0; |
| #endif |
| |
| // After calling this we can allocate a certain number of bytes using only |
| // linear allocation (with a LinearAllocationScope and an AlwaysAllocateScope) |
| // without using freelists or causing a GC. This is used by partial |
| // snapshots. It returns true of space was reserved or false if a GC is |
| // needed. For paged spaces the space requested must include the space wasted |
| // at the end of each when allocating linearly. |
| virtual bool ReserveSpace(int bytes) = 0; |
| |
| private: |
| Heap* heap_; |
| AllocationSpace id_; |
| Executability executable_; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // All heap objects containing executable code (code objects) must be allocated |
| // from a 2 GB range of memory, so that they can call each other using 32-bit |
| // displacements. This happens automatically on 32-bit platforms, where 32-bit |
| // displacements cover the entire 4GB virtual address space. On 64-bit |
| // platforms, we support this using the CodeRange object, which reserves and |
| // manages a range of virtual memory. |
| class CodeRange { |
| public: |
| explicit CodeRange(Isolate* isolate); |
| ~CodeRange() { TearDown(); } |
| |
| // Reserves a range of virtual memory, but does not commit any of it. |
| // Can only be called once, at heap initialization time. |
| // Returns false on failure. |
| bool Setup(const size_t requested_size); |
| |
| // Frees the range of virtual memory, and frees the data structures used to |
| // manage it. |
| void TearDown(); |
| |
| bool exists() { return this != NULL && code_range_ != NULL; } |
| bool contains(Address address) { |
| if (this == NULL || code_range_ == NULL) return false; |
| Address start = static_cast<Address>(code_range_->address()); |
| return start <= address && address < start + code_range_->size(); |
| } |
| |
| // Allocates a chunk of memory from the large-object portion of |
| // the code range. On platforms with no separate code range, should |
| // not be called. |
| MUST_USE_RESULT void* AllocateRawMemory(const size_t requested, |
| size_t* allocated); |
| void FreeRawMemory(void* buf, size_t length); |
| |
| private: |
| Isolate* isolate_; |
| |
| // The reserved range of virtual memory that all code objects are put in. |
| VirtualMemory* code_range_; |
| // Plain old data class, just a struct plus a constructor. |
| class FreeBlock { |
| public: |
| FreeBlock(Address start_arg, size_t size_arg) |
| : start(start_arg), size(size_arg) {} |
| FreeBlock(void* start_arg, size_t size_arg) |
| : start(static_cast<Address>(start_arg)), size(size_arg) {} |
| |
| Address start; |
| size_t size; |
| }; |
| |
| // Freed blocks of memory are added to the free list. When the allocation |
| // list is exhausted, the free list is sorted and merged to make the new |
| // allocation list. |
| List<FreeBlock> free_list_; |
| // Memory is allocated from the free blocks on the allocation list. |
| // The block at current_allocation_block_index_ is the current block. |
| List<FreeBlock> allocation_list_; |
| int current_allocation_block_index_; |
| |
| // Finds a block on the allocation list that contains at least the |
| // requested amount of memory. If none is found, sorts and merges |
| // the existing free memory blocks, and searches again. |
| // If none can be found, terminates V8 with FatalProcessOutOfMemory. |
| void GetNextAllocationBlock(size_t requested); |
| // Compares the start addresses of two free blocks. |
| static int CompareFreeBlockAddress(const FreeBlock* left, |
| const FreeBlock* right); |
| |
| DISALLOW_COPY_AND_ASSIGN(CodeRange); |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // A space acquires chunks of memory from the operating system. The memory |
| // allocator manages chunks for the paged heap spaces (old space and map |
| // space). A paged chunk consists of pages. Pages in a chunk have contiguous |
| // addresses and are linked as a list. |
| // |
| // The allocator keeps an initial chunk which is used for the new space. The |
| // leftover regions of the initial chunk are used for the initial chunks of |
| // old space and map space if they are big enough to hold at least one page. |
| // The allocator assumes that there is one old space and one map space, each |
| // expands the space by allocating kPagesPerChunk pages except the last |
| // expansion (before running out of space). The first chunk may contain fewer |
| // than kPagesPerChunk pages as well. |
| // |
| // The memory allocator also allocates chunks for the large object space, but |
| // they are managed by the space itself. The new space does not expand. |
| // |
| // The fact that pages for paged spaces are allocated and deallocated in chunks |
| // induces a constraint on the order of pages in a linked lists. We say that |
| // pages are linked in the chunk-order if and only if every two consecutive |
| // pages from the same chunk are consecutive in the linked list. |
| // |
| |
| |
| class MemoryAllocator { |
| public: |
| explicit MemoryAllocator(Isolate* isolate); |
| |
| // Initializes its internal bookkeeping structures. |
| // Max capacity of the total space and executable memory limit. |
| bool Setup(intptr_t max_capacity, intptr_t capacity_executable); |
| |
| // Deletes valid chunks. |
| void TearDown(); |
| |
| // Reserves an initial address range of virtual memory to be split between |
| // the two new space semispaces, the old space, and the map space. The |
| // memory is not yet committed or assigned to spaces and split into pages. |
| // The initial chunk is unmapped when the memory allocator is torn down. |
| // This function should only be called when there is not already a reserved |
| // initial chunk (initial_chunk_ should be NULL). It returns the start |
| // address of the initial chunk if successful, with the side effect of |
| // setting the initial chunk, or else NULL if unsuccessful and leaves the |
| // initial chunk NULL. |
| void* ReserveInitialChunk(const size_t requested); |
| |
| // Commits pages from an as-yet-unmanaged block of virtual memory into a |
| // paged space. The block should be part of the initial chunk reserved via |
| // a call to ReserveInitialChunk. The number of pages is always returned in |
| // the output parameter num_pages. This function assumes that the start |
| // address is non-null and that it is big enough to hold at least one |
| // page-aligned page. The call always succeeds, and num_pages is always |
| // greater than zero. |
| Page* CommitPages(Address start, size_t size, PagedSpace* owner, |
| int* num_pages); |
| |
| // Commit a contiguous block of memory from the initial chunk. Assumes that |
| // the address is not NULL, the size is greater than zero, and that the |
| // block is contained in the initial chunk. Returns true if it succeeded |
| // and false otherwise. |
| bool CommitBlock(Address start, size_t size, Executability executable); |
| |
| // Uncommit a contiguous block of memory [start..(start+size)[. |
| // start is not NULL, the size is greater than zero, and the |
| // block is contained in the initial chunk. Returns true if it succeeded |
| // and false otherwise. |
| bool UncommitBlock(Address start, size_t size); |
| |
| // Zaps a contiguous block of memory [start..(start+size)[ thus |
| // filling it up with a recognizable non-NULL bit pattern. |
| void ZapBlock(Address start, size_t size); |
| |
| // Attempts to allocate the requested (non-zero) number of pages from the |
| // OS. Fewer pages might be allocated than requested. If it fails to |
| // allocate memory for the OS or cannot allocate a single page, this |
| // function returns an invalid page pointer (NULL). The caller must check |
| // whether the returned page is valid (by calling Page::is_valid()). It is |
| // guaranteed that allocated pages have contiguous addresses. The actual |
| // number of allocated pages is returned in the output parameter |
| // allocated_pages. If the PagedSpace owner is executable and there is |
| // a code range, the pages are allocated from the code range. |
| Page* AllocatePages(int requested_pages, int* allocated_pages, |
| PagedSpace* owner); |
| |
| // Frees pages from a given page and after. Requires pages to be |
| // linked in chunk-order (see comment for class). |
| // If 'p' is the first page of a chunk, pages from 'p' are freed |
| // and this function returns an invalid page pointer. |
| // Otherwise, the function searches a page after 'p' that is |
| // the first page of a chunk. Pages after the found page |
| // are freed and the function returns 'p'. |
| Page* FreePages(Page* p); |
| |
| // Frees all pages owned by given space. |
| void FreeAllPages(PagedSpace* space); |
| |
| // Allocates and frees raw memory of certain size. |
| // These are just thin wrappers around OS::Allocate and OS::Free, |
| // but keep track of allocated bytes as part of heap. |
| // If the flag is EXECUTABLE and a code range exists, the requested |
| // memory is allocated from the code range. If a code range exists |
| // and the freed memory is in it, the code range manages the freed memory. |
| MUST_USE_RESULT void* AllocateRawMemory(const size_t requested, |
| size_t* allocated, |
| Executability executable); |
| void FreeRawMemory(void* buf, |
| size_t length, |
| Executability executable); |
| void PerformAllocationCallback(ObjectSpace space, |
| AllocationAction action, |
| size_t size); |
| |
| void AddMemoryAllocationCallback(MemoryAllocationCallback callback, |
| ObjectSpace space, |
| AllocationAction action); |
| void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback); |
| bool MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback); |
| |
| // Returns the maximum available bytes of heaps. |
| intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; } |
| |
| // Returns allocated spaces in bytes. |
| intptr_t Size() { return size_; } |
| |
| // Returns the maximum available executable bytes of heaps. |
| intptr_t AvailableExecutable() { |
| if (capacity_executable_ < size_executable_) return 0; |
| return capacity_executable_ - size_executable_; |
| } |
| |
| // Returns allocated executable spaces in bytes. |
| intptr_t SizeExecutable() { return size_executable_; } |
| |
| // Returns maximum available bytes that the old space can have. |
| intptr_t MaxAvailable() { |
| return (Available() / Page::kPageSize) * Page::kObjectAreaSize; |
| } |
| |
| // Links two pages. |
| inline void SetNextPage(Page* prev, Page* next); |
| |
| // Returns the next page of a given page. |
| inline Page* GetNextPage(Page* p); |
| |
| // Checks whether a page belongs to a space. |
| inline bool IsPageInSpace(Page* p, PagedSpace* space); |
| |
| // Returns the space that owns the given page. |
| inline PagedSpace* PageOwner(Page* page); |
| |
| // Finds the first/last page in the same chunk as a given page. |
| Page* FindFirstPageInSameChunk(Page* p); |
| Page* FindLastPageInSameChunk(Page* p); |
| |
| // Relinks list of pages owned by space to make it chunk-ordered. |
| // Returns new first and last pages of space. |
| // Also returns last page in relinked list which has WasInUsedBeforeMC |
| // flag set. |
| void RelinkPageListInChunkOrder(PagedSpace* space, |
| Page** first_page, |
| Page** last_page, |
| Page** last_page_in_use); |
| |
| #ifdef DEBUG |
| // Reports statistic info of the space. |
| void ReportStatistics(); |
| #endif |
| |
| // Due to encoding limitation, we can only have 8K chunks. |
| static const int kMaxNofChunks = 1 << kPageSizeBits; |
| // If a chunk has at least 16 pages, the maximum heap size is about |
| // 8K * 8K * 16 = 1G bytes. |
| #ifdef V8_TARGET_ARCH_X64 |
| static const int kPagesPerChunk = 32; |
| // On 64 bit the chunk table consists of 4 levels of 4096-entry tables. |
| static const int kChunkTableLevels = 4; |
| static const int kChunkTableBitsPerLevel = 12; |
| #else |
| static const int kPagesPerChunk = 16; |
| // On 32 bit the chunk table consists of 2 levels of 256-entry tables. |
| static const int kChunkTableLevels = 2; |
| static const int kChunkTableBitsPerLevel = 8; |
| #endif |
| |
| private: |
| static const int kChunkSize = kPagesPerChunk * Page::kPageSize; |
| |
| Isolate* isolate_; |
| |
| // Maximum space size in bytes. |
| intptr_t capacity_; |
| // Maximum subset of capacity_ that can be executable |
| intptr_t capacity_executable_; |
| |
| // Allocated space size in bytes. |
| intptr_t size_; |
| |
| // Allocated executable space size in bytes. |
| intptr_t size_executable_; |
| |
| struct MemoryAllocationCallbackRegistration { |
| MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback, |
| ObjectSpace space, |
| AllocationAction action) |
| : callback(callback), space(space), action(action) { |
| } |
| MemoryAllocationCallback callback; |
| ObjectSpace space; |
| AllocationAction action; |
| }; |
| // A List of callback that are triggered when memory is allocated or free'd |
| List<MemoryAllocationCallbackRegistration> |
| memory_allocation_callbacks_; |
| |
| // The initial chunk of virtual memory. |
| VirtualMemory* initial_chunk_; |
| |
| // Allocated chunk info: chunk start address, chunk size, and owning space. |
| class ChunkInfo BASE_EMBEDDED { |
| public: |
| ChunkInfo() : address_(NULL), |
| size_(0), |
| owner_(NULL), |
| executable_(NOT_EXECUTABLE), |
| owner_identity_(FIRST_SPACE) {} |
| inline void init(Address a, size_t s, PagedSpace* o); |
| Address address() { return address_; } |
| size_t size() { return size_; } |
| PagedSpace* owner() { return owner_; } |
| // We save executability of the owner to allow using it |
| // when collecting stats after the owner has been destroyed. |
| Executability executable() const { return executable_; } |
| AllocationSpace owner_identity() const { return owner_identity_; } |
| |
| private: |
| Address address_; |
| size_t size_; |
| PagedSpace* owner_; |
| Executability executable_; |
| AllocationSpace owner_identity_; |
| }; |
| |
| // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids. |
| List<ChunkInfo> chunks_; |
| List<int> free_chunk_ids_; |
| int max_nof_chunks_; |
| int top_; |
| |
| // Push/pop a free chunk id onto/from the stack. |
| void Push(int free_chunk_id); |
| int Pop(); |
| bool OutOfChunkIds() { return top_ == 0; } |
| |
| // Frees a chunk. |
| void DeleteChunk(int chunk_id); |
| |
| // Basic check whether a chunk id is in the valid range. |
| inline bool IsValidChunkId(int chunk_id); |
| |
| // Checks whether a chunk id identifies an allocated chunk. |
| inline bool IsValidChunk(int chunk_id); |
| |
| // Returns the chunk id that a page belongs to. |
| inline int GetChunkId(Page* p); |
| |
| // True if the address lies in the initial chunk. |
| inline bool InInitialChunk(Address address); |
| |
| // Initializes pages in a chunk. Returns the first page address. |
| // This function and GetChunkId() are provided for the mark-compact |
| // collector to rebuild page headers in the from space, which is |
| // used as a marking stack and its page headers are destroyed. |
| Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, |
| PagedSpace* owner); |
| |
| Page* RelinkPagesInChunk(int chunk_id, |
| Address chunk_start, |
| size_t chunk_size, |
| Page* prev, |
| Page** last_page_in_use); |
| |
| DISALLOW_COPY_AND_ASSIGN(MemoryAllocator); |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Interface for heap object iterator to be implemented by all object space |
| // object iterators. |
| // |
| // NOTE: The space specific object iterators also implements the own next() |
| // method which is used to avoid using virtual functions |
| // iterating a specific space. |
| |
| class ObjectIterator : public Malloced { |
| public: |
| virtual ~ObjectIterator() { } |
| |
| virtual HeapObject* next_object() = 0; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Heap object iterator in new/old/map spaces. |
| // |
| // A HeapObjectIterator iterates objects from a given address to the |
| // top of a space. The given address must be below the current |
| // allocation pointer (space top). There are some caveats. |
| // |
| // (1) If the space top changes upward during iteration (because of |
| // allocating new objects), the iterator does not iterate objects |
| // above the original space top. The caller must create a new |
| // iterator starting from the old top in order to visit these new |
| // objects. |
| // |
| // (2) If new objects are allocated below the original allocation top |
| // (e.g., free-list allocation in paged spaces), the new objects |
| // may or may not be iterated depending on their position with |
| // respect to the current point of iteration. |
| // |
| // (3) The space top should not change downward during iteration, |
| // otherwise the iterator will return not-necessarily-valid |
| // objects. |
| |
| class HeapObjectIterator: public ObjectIterator { |
| public: |
| // Creates a new object iterator in a given space. If a start |
| // address is not given, the iterator starts from the space bottom. |
| // If the size function is not given, the iterator calls the default |
| // Object::Size(). |
| explicit HeapObjectIterator(PagedSpace* space); |
| HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func); |
| HeapObjectIterator(PagedSpace* space, Address start); |
| HeapObjectIterator(PagedSpace* space, |
| Address start, |
| HeapObjectCallback size_func); |
| HeapObjectIterator(Page* page, HeapObjectCallback size_func); |
| |
| inline HeapObject* next() { |
| return (cur_addr_ < cur_limit_) ? FromCurrentPage() : FromNextPage(); |
| } |
| |
| // implementation of ObjectIterator. |
| virtual HeapObject* next_object() { return next(); } |
| |
| private: |
| Address cur_addr_; // current iteration point |
| Address end_addr_; // end iteration point |
| Address cur_limit_; // current page limit |
| HeapObjectCallback size_func_; // size function |
| Page* end_page_; // caches the page of the end address |
| |
| HeapObject* FromCurrentPage() { |
| ASSERT(cur_addr_ < cur_limit_); |
| |
| HeapObject* obj = HeapObject::FromAddress(cur_addr_); |
| int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj); |
| ASSERT_OBJECT_SIZE(obj_size); |
| |
| cur_addr_ += obj_size; |
| ASSERT(cur_addr_ <= cur_limit_); |
| |
| return obj; |
| } |
| |
| // Slow path of next, goes into the next page. |
| HeapObject* FromNextPage(); |
| |
| // Initializes fields. |
| void Initialize(Address start, Address end, HeapObjectCallback size_func); |
| |
| #ifdef DEBUG |
| // Verifies whether fields have valid values. |
| void Verify(); |
| #endif |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // A PageIterator iterates the pages in a paged space. |
| // |
| // The PageIterator class provides three modes for iterating pages in a space: |
| // PAGES_IN_USE iterates pages containing allocated objects. |
| // PAGES_USED_BY_MC iterates pages that hold relocated objects during a |
| // mark-compact collection. |
| // ALL_PAGES iterates all pages in the space. |
| // |
| // There are some caveats. |
| // |
| // (1) If the space expands during iteration, new pages will not be |
| // returned by the iterator in any mode. |
| // |
| // (2) If new objects are allocated during iteration, they will appear |
| // in pages returned by the iterator. Allocation may cause the |
| // allocation pointer or MC allocation pointer in the last page to |
| // change between constructing the iterator and iterating the last |
| // page. |
| // |
| // (3) The space should not shrink during iteration, otherwise the |
| // iterator will return deallocated pages. |
| |
| class PageIterator BASE_EMBEDDED { |
| public: |
| enum Mode { |
| PAGES_IN_USE, |
| PAGES_USED_BY_MC, |
| ALL_PAGES |
| }; |
| |
| PageIterator(PagedSpace* space, Mode mode); |
| |
| inline bool has_next(); |
| inline Page* next(); |
| |
| private: |
| PagedSpace* space_; |
| Page* prev_page_; // Previous page returned. |
| Page* stop_page_; // Page to stop at (last page returned by the iterator). |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // A space has a list of pages. The next page can be accessed via |
| // Page::next_page() call. The next page of the last page is an |
| // invalid page pointer. A space can expand and shrink dynamically. |
| |
| // An abstraction of allocation and relocation pointers in a page-structured |
| // space. |
| class AllocationInfo { |
| public: |
| Address top; // current allocation top |
| Address limit; // current allocation limit |
| |
| #ifdef DEBUG |
| bool VerifyPagedAllocation() { |
| return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit)) |
| && (top <= limit); |
| } |
| #endif |
| }; |
| |
| |
| // An abstraction of the accounting statistics of a page-structured space. |
| // The 'capacity' of a space is the number of object-area bytes (ie, not |
| // including page bookkeeping structures) currently in the space. The 'size' |
| // of a space is the number of allocated bytes, the 'waste' in the space is |
| // the number of bytes that are not allocated and not available to |
| // allocation without reorganizing the space via a GC (eg, small blocks due |
| // to internal fragmentation, top of page areas in map space), and the bytes |
| // 'available' is the number of unallocated bytes that are not waste. The |
| // capacity is the sum of size, waste, and available. |
| // |
| // The stats are only set by functions that ensure they stay balanced. These |
| // functions increase or decrease one of the non-capacity stats in |
| // conjunction with capacity, or else they always balance increases and |
| // decreases to the non-capacity stats. |
| class AllocationStats BASE_EMBEDDED { |
| public: |
| AllocationStats() { Clear(); } |
| |
| // Zero out all the allocation statistics (ie, no capacity). |
| void Clear() { |
| capacity_ = 0; |
| available_ = 0; |
| size_ = 0; |
| waste_ = 0; |
| } |
| |
| // Reset the allocation statistics (ie, available = capacity with no |
| // wasted or allocated bytes). |
| void Reset() { |
| available_ = capacity_; |
| size_ = 0; |
| waste_ = 0; |
| } |
| |
| // Accessors for the allocation statistics. |
| intptr_t Capacity() { return capacity_; } |
| intptr_t Available() { return available_; } |
| intptr_t Size() { return size_; } |
| intptr_t Waste() { return waste_; } |
| |
| // Grow the space by adding available bytes. |
| void ExpandSpace(int size_in_bytes) { |
| capacity_ += size_in_bytes; |
| available_ += size_in_bytes; |
| } |
| |
| // Shrink the space by removing available bytes. |
| void ShrinkSpace(int size_in_bytes) { |
| capacity_ -= size_in_bytes; |
| available_ -= size_in_bytes; |
| } |
| |
| // Allocate from available bytes (available -> size). |
| void AllocateBytes(intptr_t size_in_bytes) { |
| available_ -= size_in_bytes; |
| size_ += size_in_bytes; |
| } |
| |
| // Free allocated bytes, making them available (size -> available). |
| void DeallocateBytes(intptr_t size_in_bytes) { |
| size_ -= size_in_bytes; |
| available_ += size_in_bytes; |
| } |
| |
| // Waste free bytes (available -> waste). |
| void WasteBytes(int size_in_bytes) { |
| available_ -= size_in_bytes; |
| waste_ += size_in_bytes; |
| } |
| |
| // Consider the wasted bytes to be allocated, as they contain filler |
| // objects (waste -> size). |
| void FillWastedBytes(intptr_t size_in_bytes) { |
| waste_ -= size_in_bytes; |
| size_ += size_in_bytes; |
| } |
| |
| private: |
| intptr_t capacity_; |
| intptr_t available_; |
| intptr_t size_; |
| intptr_t waste_; |
| }; |
| |
| |
| class PagedSpace : public Space { |
| public: |
| // Creates a space with a maximum capacity, and an id. |
| PagedSpace(Heap* heap, |
| intptr_t max_capacity, |
| AllocationSpace id, |
| Executability executable); |
| |
| virtual ~PagedSpace() {} |
| |
| // Set up the space using the given address range of virtual memory (from |
| // the memory allocator's initial chunk) if possible. If the block of |
| // addresses is not big enough to contain a single page-aligned page, a |
| // fresh chunk will be allocated. |
| bool Setup(Address start, size_t size); |
| |
| // Returns true if the space has been successfully set up and not |
| // subsequently torn down. |
| bool HasBeenSetup(); |
| |
| // Cleans up the space, frees all pages in this space except those belonging |
| // to the initial chunk, uncommits addresses in the initial chunk. |
| void TearDown(); |
| |
| // Checks whether an object/address is in this space. |
| inline bool Contains(Address a); |
| bool Contains(HeapObject* o) { return Contains(o->address()); } |
| // Never crashes even if a is not a valid pointer. |
| inline bool SafeContains(Address a); |
| |
| // Given an address occupied by a live object, return that object if it is |
| // in this space, or Failure::Exception() if it is not. The implementation |
| // iterates over objects in the page containing the address, the cost is |
| // linear in the number of objects in the page. It may be slow. |
| MUST_USE_RESULT MaybeObject* FindObject(Address addr); |
| |
| // Checks whether page is currently in use by this space. |
| bool IsUsed(Page* page); |
| |
| void MarkAllPagesClean(); |
| |
| // Prepares for a mark-compact GC. |
| virtual void PrepareForMarkCompact(bool will_compact); |
| |
| // The top of allocation in a page in this space. Undefined if page is unused. |
| Address PageAllocationTop(Page* page) { |
| return page == TopPageOf(allocation_info_) ? top() |
| : PageAllocationLimit(page); |
| } |
| |
| // The limit of allocation for a page in this space. |
| virtual Address PageAllocationLimit(Page* page) = 0; |
| |
| void FlushTopPageWatermark() { |
| AllocationTopPage()->SetCachedAllocationWatermark(top()); |
| AllocationTopPage()->InvalidateWatermark(true); |
| } |
| |
| // Current capacity without growing (Size() + Available() + Waste()). |
| intptr_t Capacity() { return accounting_stats_.Capacity(); } |
| |
| // Total amount of memory committed for this space. For paged |
| // spaces this equals the capacity. |
| intptr_t CommittedMemory() { return Capacity(); } |
| |
| // Available bytes without growing. |
| intptr_t Available() { return accounting_stats_.Available(); } |
| |
| // Allocated bytes in this space. |
| virtual intptr_t Size() { return accounting_stats_.Size(); } |
| |
| // Wasted bytes due to fragmentation and not recoverable until the |
| // next GC of this space. |
| intptr_t Waste() { return accounting_stats_.Waste(); } |
| |
| // Returns the address of the first object in this space. |
| Address bottom() { return first_page_->ObjectAreaStart(); } |
| |
| // Returns the allocation pointer in this space. |
| Address top() { return allocation_info_.top; } |
| |
| // Allocate the requested number of bytes in the space if possible, return a |
| // failure object if not. |
| MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes); |
| |
| // Allocate the requested number of bytes for relocation during mark-compact |
| // collection. |
| MUST_USE_RESULT inline MaybeObject* MCAllocateRaw(int size_in_bytes); |
| |
| virtual bool ReserveSpace(int bytes); |
| |
| // Used by ReserveSpace. |
| virtual void PutRestOfCurrentPageOnFreeList(Page* current_page) = 0; |
| |
| // Free all pages in range from prev (exclusive) to last (inclusive). |
| // Freed pages are moved to the end of page list. |
| void FreePages(Page* prev, Page* last); |
| |
| // Deallocates a block. |
| virtual void DeallocateBlock(Address start, |
| int size_in_bytes, |
| bool add_to_freelist) = 0; |
| |
| // Set space allocation info. |
| void SetTop(Address top) { |
| allocation_info_.top = top; |
| allocation_info_.limit = PageAllocationLimit(Page::FromAllocationTop(top)); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Mark-compact collection support functions |
| |
| // Set the relocation point to the beginning of the space. |
| void MCResetRelocationInfo(); |
| |
| // Writes relocation info to the top page. |
| void MCWriteRelocationInfoToPage() { |
| TopPageOf(mc_forwarding_info_)-> |
| SetAllocationWatermark(mc_forwarding_info_.top); |
| } |
| |
| // Computes the offset of a given address in this space to the beginning |
| // of the space. |
| int MCSpaceOffsetForAddress(Address addr); |
| |
| // Updates the allocation pointer to the relocation top after a mark-compact |
| // collection. |
| virtual void MCCommitRelocationInfo() = 0; |
| |
| // Releases half of unused pages. |
| void Shrink(); |
| |
| // Ensures that the capacity is at least 'capacity'. Returns false on failure. |
| bool EnsureCapacity(int capacity); |
| |
| #ifdef DEBUG |
| // Print meta info and objects in this space. |
| virtual void Print(); |
| |
| // Verify integrity of this space. |
| virtual void Verify(ObjectVisitor* visitor); |
| |
| // Overridden by subclasses to verify space-specific object |
| // properties (e.g., only maps or free-list nodes are in map space). |
| virtual void VerifyObject(HeapObject* obj) {} |
| |
| // Report code object related statistics |
| void CollectCodeStatistics(); |
| static void ReportCodeStatistics(); |
| static void ResetCodeStatistics(); |
| #endif |
| |
| // Returns the page of the allocation pointer. |
| Page* AllocationTopPage() { return TopPageOf(allocation_info_); } |
| |
| void RelinkPageListInChunkOrder(bool deallocate_blocks); |
| |
| protected: |
| // Maximum capacity of this space. |
| intptr_t max_capacity_; |
| |
| // Accounting information for this space. |
| AllocationStats accounting_stats_; |
| |
| // The first page in this space. |
| Page* first_page_; |
| |
| // The last page in this space. Initially set in Setup, updated in |
| // Expand and Shrink. |
| Page* last_page_; |
| |
| // True if pages owned by this space are linked in chunk-order. |
| // See comment for class MemoryAllocator for definition of chunk-order. |
| bool page_list_is_chunk_ordered_; |
| |
| // Normal allocation information. |
| AllocationInfo allocation_info_; |
| |
| // Relocation information during mark-compact collections. |
| AllocationInfo mc_forwarding_info_; |
| |
| // Bytes of each page that cannot be allocated. Possibly non-zero |
| // for pages in spaces with only fixed-size objects. Always zero |
| // for pages in spaces with variable sized objects (those pages are |
| // padded with free-list nodes). |
| int page_extra_; |
| |
| // Sets allocation pointer to a page bottom. |
| static void SetAllocationInfo(AllocationInfo* alloc_info, Page* p); |
| |
| // Returns the top page specified by an allocation info structure. |
| static Page* TopPageOf(AllocationInfo alloc_info) { |
| return Page::FromAllocationTop(alloc_info.limit); |
| } |
| |
| int CountPagesToTop() { |
| Page* p = Page::FromAllocationTop(allocation_info_.top); |
| PageIterator it(this, PageIterator::ALL_PAGES); |
| int counter = 1; |
| while (it.has_next()) { |
| if (it.next() == p) return counter; |
| counter++; |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| // Expands the space by allocating a fixed number of pages. Returns false if |
| // it cannot allocate requested number of pages from OS. Newly allocated |
| // pages are append to the last_page; |
| bool Expand(Page* last_page); |
| |
| // Generic fast case allocation function that tries linear allocation in |
| // the top page of 'alloc_info'. Returns NULL on failure. |
| inline HeapObject* AllocateLinearly(AllocationInfo* alloc_info, |
| int size_in_bytes); |
| |
| // During normal allocation or deserialization, roll to the next page in |
| // the space (there is assumed to be one) and allocate there. This |
| // function is space-dependent. |
| virtual HeapObject* AllocateInNextPage(Page* current_page, |
| int size_in_bytes) = 0; |
| |
| // Slow path of AllocateRaw. This function is space-dependent. |
| MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes) = 0; |
| |
| // Slow path of MCAllocateRaw. |
| MUST_USE_RESULT HeapObject* SlowMCAllocateRaw(int size_in_bytes); |
| |
| #ifdef DEBUG |
| // Returns the number of total pages in this space. |
| int CountTotalPages(); |
| #endif |
| |
| private: |
| // Returns a pointer to the page of the relocation pointer. |
| Page* MCRelocationTopPage() { return TopPageOf(mc_forwarding_info_); } |
| |
| friend class PageIterator; |
| }; |
| |
| |
| class NumberAndSizeInfo BASE_EMBEDDED { |
| public: |
| NumberAndSizeInfo() : number_(0), bytes_(0) {} |
| |
| int number() const { return number_; } |
| void increment_number(int num) { number_ += num; } |
| |
| int bytes() const { return bytes_; } |
| void increment_bytes(int size) { bytes_ += size; } |
| |
| void clear() { |
| number_ = 0; |
| bytes_ = 0; |
| } |
| |
| private: |
| int number_; |
| int bytes_; |
| }; |
| |
| |
| // HistogramInfo class for recording a single "bar" of a histogram. This |
| // class is used for collecting statistics to print to the log file. |
| class HistogramInfo: public NumberAndSizeInfo { |
| public: |
| HistogramInfo() : NumberAndSizeInfo() {} |
| |
| const char* name() { return name_; } |
| void set_name(const char* name) { name_ = name; } |
| |
| private: |
| const char* name_; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // SemiSpace in young generation |
| // |
| // A semispace is a contiguous chunk of memory. The mark-compact collector |
| // uses the memory in the from space as a marking stack when tracing live |
| // objects. |
| |
| class SemiSpace : public Space { |
| public: |
| // Constructor. |
| explicit SemiSpace(Heap* heap) : Space(heap, NEW_SPACE, NOT_EXECUTABLE) { |
| start_ = NULL; |
| age_mark_ = NULL; |
| } |
| |
| // Sets up the semispace using the given chunk. |
| bool Setup(Address start, int initial_capacity, int maximum_capacity); |
| |
| // Tear down the space. Heap memory was not allocated by the space, so it |
| // is not deallocated here. |
| void TearDown(); |
| |
| // True if the space has been set up but not torn down. |
| bool HasBeenSetup() { return start_ != NULL; } |
| |
| // Grow the size of the semispace by committing extra virtual memory. |
| // Assumes that the caller has checked that the semispace has not reached |
| // its maximum capacity (and thus there is space available in the reserved |
| // address range to grow). |
| bool Grow(); |
| |
| // Grow the semispace to the new capacity. The new capacity |
| // requested must be larger than the current capacity. |
| bool GrowTo(int new_capacity); |
| |
| // Shrinks the semispace to the new capacity. The new capacity |
| // requested must be more than the amount of used memory in the |
| // semispace and less than the current capacity. |
| bool ShrinkTo(int new_capacity); |
| |
| // Returns the start address of the space. |
| Address low() { return start_; } |
| // Returns one past the end address of the space. |
| Address high() { return low() + capacity_; } |
| |
| // Age mark accessors. |
| Address age_mark() { return age_mark_; } |
| void set_age_mark(Address mark) { age_mark_ = mark; } |
| |
| // True if the address is in the address range of this semispace (not |
| // necessarily below the allocation pointer). |
| bool Contains(Address a) { |
| return (reinterpret_cast<uintptr_t>(a) & address_mask_) |
| == reinterpret_cast<uintptr_t>(start_); |
| } |
| |
| // True if the object is a heap object in the address range of this |
| // semispace (not necessarily below the allocation pointer). |
| bool Contains(Object* o) { |
| return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_; |
| } |
| |
| // The offset of an address from the beginning of the space. |
| int SpaceOffsetForAddress(Address addr) { |
| return static_cast<int>(addr - low()); |
| } |
| |
| // If we don't have these here then SemiSpace will be abstract. However |
| // they should never be called. |
| virtual intptr_t Size() { |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| virtual bool ReserveSpace(int bytes) { |
| UNREACHABLE(); |
| return false; |
| } |
| |
| bool is_committed() { return committed_; } |
| bool Commit(); |
| bool Uncommit(); |
| |
| #ifdef DEBUG |
| virtual void Print(); |
| virtual void Verify(); |
| #endif |
| |
| // Returns the current capacity of the semi space. |
| int Capacity() { return capacity_; } |
| |
| // Returns the maximum capacity of the semi space. |
| int MaximumCapacity() { return maximum_capacity_; } |
| |
| // Returns the initial capacity of the semi space. |
| int InitialCapacity() { return initial_capacity_; } |
| |
| private: |
| // The current and maximum capacity of the space. |
| int capacity_; |
| int maximum_capacity_; |
| int initial_capacity_; |
| |
| // The start address of the space. |
| Address start_; |
| // Used to govern object promotion during mark-compact collection. |
| Address age_mark_; |
| |
| // Masks and comparison values to test for containment in this semispace. |
| uintptr_t address_mask_; |
| uintptr_t object_mask_; |
| uintptr_t object_expected_; |
| |
| bool committed_; |
| |
| public: |
| TRACK_MEMORY("SemiSpace") |
| }; |
| |
| |
| // A SemiSpaceIterator is an ObjectIterator that iterates over the active |
| // semispace of the heap's new space. It iterates over the objects in the |
| // semispace from a given start address (defaulting to the bottom of the |
| // semispace) to the top of the semispace. New objects allocated after the |
| // iterator is created are not iterated. |
| class SemiSpaceIterator : public ObjectIterator { |
| public: |
| // Create an iterator over the objects in the given space. If no start |
| // address is given, the iterator starts from the bottom of the space. If |
| // no size function is given, the iterator calls Object::Size(). |
| explicit SemiSpaceIterator(NewSpace* space); |
| SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func); |
| SemiSpaceIterator(NewSpace* space, Address start); |
| |
| HeapObject* next() { |
| if (current_ == limit_) return NULL; |
| |
| HeapObject* object = HeapObject::FromAddress(current_); |
| int size = (size_func_ == NULL) ? object->Size() : size_func_(object); |
| |
| current_ += size; |
| return object; |
| } |
| |
| // Implementation of the ObjectIterator functions. |
| virtual HeapObject* next_object() { return next(); } |
| |
| private: |
| void Initialize(NewSpace* space, Address start, Address end, |
| HeapObjectCallback size_func); |
| |
| // The semispace. |
| SemiSpace* space_; |
| // The current iteration point. |
| Address current_; |
| // The end of iteration. |
| Address limit_; |
| // The callback function. |
| HeapObjectCallback size_func_; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // The young generation space. |
| // |
| // The new space consists of a contiguous pair of semispaces. It simply |
| // forwards most functions to the appropriate semispace. |
| |
| class NewSpace : public Space { |
| public: |
| // Constructor. |
| explicit NewSpace(Heap* heap) |
| : Space(heap, NEW_SPACE, NOT_EXECUTABLE), |
| to_space_(heap), |
| from_space_(heap) {} |
| |
| // Sets up the new space using the given chunk. |
| bool Setup(Address start, int size); |
| |
| // Tears down the space. Heap memory was not allocated by the space, so it |
| // is not deallocated here. |
| void TearDown(); |
| |
| // True if the space has been set up but not torn down. |
| bool HasBeenSetup() { |
| return to_space_.HasBeenSetup() && from_space_.HasBeenSetup(); |
| } |
| |
| // Flip the pair of spaces. |
| void Flip(); |
| |
| // Grow the capacity of the semispaces. Assumes that they are not at |
| // their maximum capacity. |
| void Grow(); |
| |
| // Shrink the capacity of the semispaces. |
| void Shrink(); |
| |
| // True if the address or object lies in the address range of either |
| // semispace (not necessarily below the allocation pointer). |
| bool Contains(Address a) { |
| return (reinterpret_cast<uintptr_t>(a) & address_mask_) |
| == reinterpret_cast<uintptr_t>(start_); |
| } |
| bool Contains(Object* o) { |
| return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_; |
| } |
| |
| // Return the allocated bytes in the active semispace. |
| virtual intptr_t Size() { return static_cast<int>(top() - bottom()); } |
| // The same, but returning an int. We have to have the one that returns |
| // intptr_t because it is inherited, but if we know we are dealing with the |
| // new space, which can't get as big as the other spaces then this is useful: |
| int SizeAsInt() { return static_cast<int>(Size()); } |
| |
| // Return the current capacity of a semispace. |
| intptr_t Capacity() { |
| ASSERT(to_space_.Capacity() == from_space_.Capacity()); |
| return to_space_.Capacity(); |
| } |
| |
| // Return the total amount of memory committed for new space. |
| intptr_t CommittedMemory() { |
| if (from_space_.is_committed()) return 2 * Capacity(); |
| return Capacity(); |
| } |
| |
| // Return the available bytes without growing in the active semispace. |
| intptr_t Available() { return Capacity() - Size(); } |
| |
| // Return the maximum capacity of a semispace. |
| int MaximumCapacity() { |
| ASSERT(to_space_.MaximumCapacity() == from_space_.MaximumCapacity()); |
| return to_space_.MaximumCapacity(); |
| } |
| |
| // Returns the initial capacity of a semispace. |
| int InitialCapacity() { |
| ASSERT(to_space_.InitialCapacity() == from_space_.InitialCapacity()); |
| return to_space_.InitialCapacity(); |
| } |
| |
| // Return the address of the allocation pointer in the active semispace. |
| Address top() { return allocation_info_.top; } |
| // Return the address of the first object in the active semispace. |
| Address bottom() { return to_space_.low(); } |
| |
| // Get the age mark of the inactive semispace. |
| Address age_mark() { return from_space_.age_mark(); } |
| // Set the age mark in the active semispace. |
| void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } |
| |
| // The start address of the space and a bit mask. Anding an address in the |
| // new space with the mask will result in the start address. |
| Address start() { return start_; } |
| uintptr_t mask() { return address_mask_; } |
| |
| // The allocation top and limit addresses. |
| Address* allocation_top_address() { return &allocation_info_.top; } |
| Address* allocation_limit_address() { return &allocation_info_.limit; } |
| |
| MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes) { |
| return AllocateRawInternal(size_in_bytes, &allocation_info_); |
| } |
| |
| // Allocate the requested number of bytes for relocation during mark-compact |
| // collection. |
| MUST_USE_RESULT MaybeObject* MCAllocateRaw(int size_in_bytes) { |
| return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_); |
| } |
| |
| // Reset the allocation pointer to the beginning of the active semispace. |
| void ResetAllocationInfo(); |
| // Reset the reloction pointer to the bottom of the inactive semispace in |
| // preparation for mark-compact collection. |
| void MCResetRelocationInfo(); |
| // Update the allocation pointer in the active semispace after a |
| // mark-compact collection. |
| void MCCommitRelocationInfo(); |
| |
| // Get the extent of the inactive semispace (for use as a marking stack). |
| Address FromSpaceLow() { return from_space_.low(); } |
| Address FromSpaceHigh() { return from_space_.high(); } |
| |
| // Get the extent of the active semispace (to sweep newly copied objects |
| // during a scavenge collection). |
| Address ToSpaceLow() { return to_space_.low(); } |
| Address ToSpaceHigh() { return to_space_.high(); } |
| |
| // Offsets from the beginning of the semispaces. |
| int ToSpaceOffsetForAddress(Address a) { |
| return to_space_.SpaceOffsetForAddress(a); |
| } |
| int FromSpaceOffsetForAddress(Address a) { |
| return from_space_.SpaceOffsetForAddress(a); |
| } |
| |
| // True if the object is a heap object in the address range of the |
| // respective semispace (not necessarily below the allocation pointer of the |
| // semispace). |
| bool ToSpaceContains(Object* o) { return to_space_.Contains(o); } |
| bool FromSpaceContains(Object* o) { return from_space_.Contains(o); } |
| |
| bool ToSpaceContains(Address a) { return to_space_.Contains(a); } |
| bool FromSpaceContains(Address a) { return from_space_.Contains(a); } |
| |
| virtual bool ReserveSpace(int bytes); |
| |
| // Resizes a sequential string which must be the most recent thing that was |
| // allocated in new space. |
| template <typename StringType> |
| inline void ShrinkStringAtAllocationBoundary(String* string, int len); |
| |
| #ifdef DEBUG |
| // Verify the active semispace. |
| virtual void Verify(); |
| // Print the active semispace. |
| virtual void Print() { to_space_.Print(); } |
| #endif |
| |
| // Iterates the active semispace to collect statistics. |
| void CollectStatistics(); |
| // Reports previously collected statistics of the active semispace. |
| void ReportStatistics(); |
| // Clears previously collected statistics. |
| void ClearHistograms(); |
| |
| // Record the allocation or promotion of a heap object. Note that we don't |
| // record every single allocation, but only those that happen in the |
| // to space during a scavenge GC. |
| void RecordAllocation(HeapObject* obj); |
| void RecordPromotion(HeapObject* obj); |
| |
| // Return whether the operation succeded. |
| bool CommitFromSpaceIfNeeded() { |
| if (from_space_.is_committed()) return true; |
| return from_space_.Commit(); |
| } |
| |
| bool UncommitFromSpace() { |
| if (!from_space_.is_committed()) return true; |
| return from_space_.Uncommit(); |
| } |
| |
| private: |
| // The semispaces. |
| SemiSpace to_space_; |
| SemiSpace from_space_; |
| |
| // Start address and bit mask for containment testing. |
| Address start_; |
| uintptr_t address_mask_; |
| uintptr_t object_mask_; |
| uintptr_t object_expected_; |
| |
| // Allocation pointer and limit for normal allocation and allocation during |
| // mark-compact collection. |
| AllocationInfo allocation_info_; |
| AllocationInfo mc_forwarding_info_; |
| |
| HistogramInfo* allocated_histogram_; |
| HistogramInfo* promoted_histogram_; |
| |
| // Implementation of AllocateRaw and MCAllocateRaw. |
| MUST_USE_RESULT inline MaybeObject* AllocateRawInternal( |
| int size_in_bytes, |
| AllocationInfo* alloc_info); |
| |
| friend class SemiSpaceIterator; |
| |
| public: |
| TRACK_MEMORY("NewSpace") |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Free lists for old object spaces |
| // |
| // Free-list nodes are free blocks in the heap. They look like heap objects |
| // (free-list node pointers have the heap object tag, and they have a map like |
| // a heap object). They have a size and a next pointer. The next pointer is |
| // the raw address of the next free list node (or NULL). |
| class FreeListNode: public HeapObject { |
| public: |
| // Obtain a free-list node from a raw address. This is not a cast because |
| // it does not check nor require that the first word at the address is a map |
| // pointer. |
| static FreeListNode* FromAddress(Address address) { |
| return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address)); |
| } |
| |
| static inline bool IsFreeListNode(HeapObject* object); |
| |
| // Set the size in bytes, which can be read with HeapObject::Size(). This |
| // function also writes a map to the first word of the block so that it |
| // looks like a heap object to the garbage collector and heap iteration |
| // functions. |
| void set_size(Heap* heap, int size_in_bytes); |
| |
| // Accessors for the next field. |
| inline Address next(Heap* heap); |
| inline void set_next(Heap* heap, Address next); |
| |
| private: |
| static const int kNextOffset = POINTER_SIZE_ALIGN(ByteArray::kHeaderSize); |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode); |
| }; |
| |
| |
| // The free list for the old space. |
| class OldSpaceFreeList BASE_EMBEDDED { |
| public: |
| OldSpaceFreeList(Heap* heap, AllocationSpace owner); |
| |
| // Clear the free list. |
| void Reset(); |
| |
| // Return the number of bytes available on the free list. |
| intptr_t available() { return available_; } |
| |
| // Place a node on the free list. The block of size 'size_in_bytes' |
| // starting at 'start' is placed on the free list. The return value is the |
| // number of bytes that have been lost due to internal fragmentation by |
| // freeing the block. Bookkeeping information will be written to the block, |
| // ie, its contents will be destroyed. The start address should be word |
| // aligned, and the size should be a non-zero multiple of the word size. |
| int Free(Address start, int size_in_bytes); |
| |
| // Allocate a block of size 'size_in_bytes' from the free list. The block |
| // is unitialized. A failure is returned if no block is available. The |
| // number of bytes lost to fragmentation is returned in the output parameter |
| // 'wasted_bytes'. The size should be a non-zero multiple of the word size. |
| MUST_USE_RESULT MaybeObject* Allocate(int size_in_bytes, int* wasted_bytes); |
| |
| void MarkNodes(); |
| |
| private: |
| // The size range of blocks, in bytes. (Smaller allocations are allowed, but |
| // will always result in waste.) |
| static const int kMinBlockSize = 2 * kPointerSize; |
| static const int kMaxBlockSize = Page::kMaxHeapObjectSize; |
| |
| Heap* heap_; |
| |
| // The identity of the owning space, for building allocation Failure |
| // objects. |
| AllocationSpace owner_; |
| |
| // Total available bytes in all blocks on this free list. |
| int available_; |
| |
| // Blocks are put on exact free lists in an array, indexed by size in words. |
| // The available sizes are kept in an increasingly ordered list. Entries |
| // corresponding to sizes < kMinBlockSize always have an empty free list |
| // (but index kHead is used for the head of the size list). |
| struct SizeNode { |
| // Address of the head FreeListNode of the implied block size or NULL. |
| Address head_node_; |
| // Size (words) of the next larger available size if head_node_ != NULL. |
| int next_size_; |
| }; |
| static const int kFreeListsLength = kMaxBlockSize / kPointerSize + 1; |
| SizeNode free_[kFreeListsLength]; |
| |
| // Sentinel elements for the size list. Real elements are in ]kHead..kEnd[. |
| static const int kHead = kMinBlockSize / kPointerSize - 1; |
| static const int kEnd = kMaxInt; |
| |
| // We keep a "finger" in the size list to speed up a common pattern: |
| // repeated requests for the same or increasing sizes. |
| int finger_; |
| |
| // Starting from *prev, find and return the smallest size >= index (words), |
| // or kEnd. Update *prev to be the largest size < index, or kHead. |
| int FindSize(int index, int* prev) { |
| int cur = free_[*prev].next_size_; |
| while (cur < index) { |
| *prev = cur; |
| cur = free_[cur].next_size_; |
| } |
| return cur; |
| } |
| |
| // Remove an existing element from the size list. |
| void RemoveSize(int index) { |
| int prev = kHead; |
| int cur = FindSize(index, &prev); |
| ASSERT(cur == index); |
| free_[prev].next_size_ = free_[cur].next_size_; |
| finger_ = prev; |
| } |
| |
| // Insert a new element into the size list. |
| void InsertSize(int index) { |
| int prev = kHead; |
| int cur = FindSize(index, &prev); |
| ASSERT(cur != index); |
| free_[prev].next_size_ = index; |
| free_[index].next_size_ = cur; |
| } |
| |
| // The size list is not updated during a sequence of calls to Free, but is |
| // rebuilt before the next allocation. |
| void RebuildSizeList(); |
| bool needs_rebuild_; |
| |
| #ifdef DEBUG |
| // Does this free list contain a free block located at the address of 'node'? |
| bool Contains(FreeListNode* node); |
| #endif |
| |
| DISALLOW_COPY_AND_ASSIGN(OldSpaceFreeList); |
| }; |
| |
| |
| // The free list for the map space. |
| class FixedSizeFreeList BASE_EMBEDDED { |
| public: |
| FixedSizeFreeList(Heap* heap, AllocationSpace owner, int object_size); |
| |
| // Clear the free list. |
| void Reset(); |
| |
| // Return the number of bytes available on the free list. |
| intptr_t available() { return available_; } |
| |
| // Place a node on the free list. The block starting at 'start' (assumed to |
| // have size object_size_) is placed on the free list. Bookkeeping |
| // information will be written to the block, ie, its contents will be |
| // destroyed. The start address should be word aligned. |
| void Free(Address start); |
| |
| // Allocate a fixed sized block from the free list. The block is unitialized. |
| // A failure is returned if no block is available. |
| MUST_USE_RESULT MaybeObject* Allocate(); |
| |
| void MarkNodes(); |
| |
| private: |
| Heap* heap_; |
| |
| // Available bytes on the free list. |
| intptr_t available_; |
| |
| // The head of the free list. |
| Address head_; |
| |
| // The tail of the free list. |
| Address tail_; |
| |
| // The identity of the owning space, for building allocation Failure |
| // objects. |
| AllocationSpace owner_; |
| |
| // The size of the objects in this space. |
| int object_size_; |
| |
| DISALLOW_COPY_AND_ASSIGN(FixedSizeFreeList); |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Old object space (excluding map objects) |
| |
| class OldSpace : public PagedSpace { |
| public: |
| // Creates an old space object with a given maximum capacity. |
| // The constructor does not allocate pages from OS. |
| OldSpace(Heap* heap, |
| intptr_t max_capacity, |
| AllocationSpace id, |
| Executability executable) |
| : PagedSpace(heap, max_capacity, id, executable), |
| free_list_(heap, id) { |
| page_extra_ = 0; |
| } |
| |
| // The bytes available on the free list (ie, not above the linear allocation |
| // pointer). |
| intptr_t AvailableFree() { return free_list_.available(); } |
| |
| // The limit of allocation for a page in this space. |
| virtual Address PageAllocationLimit(Page* page) { |
| return page->ObjectAreaEnd(); |
| } |
| |
| // Give a block of memory to the space's free list. It might be added to |
| // the free list or accounted as waste. |
| // If add_to_freelist is false then just accounting stats are updated and |
| // no attempt to add area to free list is made. |
| void Free(Address start, int size_in_bytes, bool add_to_freelist) { |
| accounting_stats_.DeallocateBytes(size_in_bytes); |
| |
| if (add_to_freelist) { |
| int wasted_bytes = free_list_.Free(start, size_in_bytes); |
| accounting_stats_.WasteBytes(wasted_bytes); |
| } |
| } |
| |
| virtual void DeallocateBlock(Address start, |
| int size_in_bytes, |
| bool add_to_freelist); |
| |
| // Prepare for full garbage collection. Resets the relocation pointer and |
| // clears the free list. |
| virtual void PrepareForMarkCompact(bool will_compact); |
| |
| // Updates the allocation pointer to the relocation top after a mark-compact |
| // collection. |
| virtual void MCCommitRelocationInfo(); |
| |
| virtual void PutRestOfCurrentPageOnFreeList(Page* current_page); |
| |
| void MarkFreeListNodes() { free_list_.MarkNodes(); } |
| |
| #ifdef DEBUG |
| // Reports statistics for the space |
| void ReportStatistics(); |
| #endif |
| |
| protected: |
| // Virtual function in the superclass. Slow path of AllocateRaw. |
| MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); |
| |
| // Virtual function in the superclass. Allocate linearly at the start of |
| // the page after current_page (there is assumed to be one). |
| HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes); |
| |
| private: |
| // The space's free list. |
| OldSpaceFreeList free_list_; |
| |
| public: |
| TRACK_MEMORY("OldSpace") |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Old space for objects of a fixed size |
| |
| class FixedSpace : public PagedSpace { |
| public: |
| FixedSpace(Heap* heap, |
| intptr_t max_capacity, |
| AllocationSpace id, |
| int object_size_in_bytes, |
| const char* name) |
| : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE), |
| object_size_in_bytes_(object_size_in_bytes), |
| name_(name), |
| free_list_(heap, id, object_size_in_bytes) { |
| page_extra_ = Page::kObjectAreaSize % object_size_in_bytes; |
| } |
| |
| // The limit of allocation for a page in this space. |
| virtual Address PageAllocationLimit(Page* page) { |
| return page->ObjectAreaEnd() - page_extra_; |
| } |
| |
| int object_size_in_bytes() { return object_size_in_bytes_; } |
| |
| // Give a fixed sized block of memory to the space's free list. |
| // If add_to_freelist is false then just accounting stats are updated and |
| // no attempt to add area to free list is made. |
| void Free(Address start, bool add_to_freelist) { |
| if (add_to_freelist) { |
| free_list_.Free(start); |
| } |
| accounting_stats_.DeallocateBytes(object_size_in_bytes_); |
| } |
| |
| // Prepares for a mark-compact GC. |
| virtual void PrepareForMarkCompact(bool will_compact); |
| |
| // Updates the allocation pointer to the relocation top after a mark-compact |
| // collection. |
| virtual void MCCommitRelocationInfo(); |
| |
| virtual void PutRestOfCurrentPageOnFreeList(Page* current_page); |
| |
| virtual void DeallocateBlock(Address start, |
| int size_in_bytes, |
| bool add_to_freelist); |
| |
| void MarkFreeListNodes() { free_list_.MarkNodes(); } |
| |
| #ifdef DEBUG |
| // Reports statistic info of the space |
| void ReportStatistics(); |
| #endif |
| |
| protected: |
| // Virtual function in the superclass. Slow path of AllocateRaw. |
| MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); |
| |
| // Virtual function in the superclass. Allocate linearly at the start of |
| // the page after current_page (there is assumed to be one). |
| HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes); |
| |
| void ResetFreeList() { |
| free_list_.Reset(); |
| } |
| |
| private: |
| // The size of objects in this space. |
| int object_size_in_bytes_; |
| |
| // The name of this space. |
| const char* name_; |
| |
| // The space's free list. |
| FixedSizeFreeList free_list_; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Old space for all map objects |
| |
| class MapSpace : public FixedSpace { |
| public: |
| // Creates a map space object with a maximum capacity. |
| MapSpace(Heap* heap, |
| intptr_t max_capacity, |
| int max_map_space_pages, |
| AllocationSpace id) |
| : FixedSpace(heap, max_capacity, id, Map::kSize, "map"), |
| max_map_space_pages_(max_map_space_pages) { |
| ASSERT(max_map_space_pages < kMaxMapPageIndex); |
| } |
| |
| // Prepares for a mark-compact GC. |
| virtual void PrepareForMarkCompact(bool will_compact); |
| |
| // Given an index, returns the page address. |
| Address PageAddress(int page_index) { return page_addresses_[page_index]; } |
| |
| static const int kMaxMapPageIndex = 1 << MapWord::kMapPageIndexBits; |
| |
| // Are map pointers encodable into map word? |
| bool MapPointersEncodable() { |
| if (!FLAG_use_big_map_space) { |
| ASSERT(CountPagesToTop() <= kMaxMapPageIndex); |
| return true; |
| } |
| return CountPagesToTop() <= max_map_space_pages_; |
| } |
| |
| // Should be called after forced sweep to find out if map space needs |
| // compaction. |
| bool NeedsCompaction(int live_maps) { |
| return !MapPointersEncodable() && live_maps <= CompactionThreshold(); |
| } |
| |
| Address TopAfterCompaction(int live_maps) { |
| ASSERT(NeedsCompaction(live_maps)); |
| |
| int pages_left = live_maps / kMapsPerPage; |
| PageIterator it(this, PageIterator::ALL_PAGES); |
| while (pages_left-- > 0) { |
| ASSERT(it.has_next()); |
| it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); |
| } |
| ASSERT(it.has_next()); |
| Page* top_page = it.next(); |
| top_page->SetRegionMarks(Page::kAllRegionsCleanMarks); |
| ASSERT(top_page->is_valid()); |
| |
| int offset = live_maps % kMapsPerPage * Map::kSize; |
| Address top = top_page->ObjectAreaStart() + offset; |
| ASSERT(top < top_page->ObjectAreaEnd()); |
| ASSERT(Contains(top)); |
| |
| return top; |
| } |
| |
| void FinishCompaction(Address new_top, int live_maps) { |
| Page* top_page = Page::FromAddress(new_top); |
| ASSERT(top_page->is_valid()); |
| |
| SetAllocationInfo(&allocation_info_, top_page); |
| allocation_info_.top = new_top; |
| |
| int new_size = live_maps * Map::kSize; |
| accounting_stats_.DeallocateBytes(accounting_stats_.Size()); |
| accounting_stats_.AllocateBytes(new_size); |
| |
| // Flush allocation watermarks. |
| for (Page* p = first_page_; p != top_page; p = p->next_page()) { |
| p->SetAllocationWatermark(p->AllocationTop()); |
| } |
| top_page->SetAllocationWatermark(new_top); |
| |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| intptr_t actual_size = 0; |
| for (Page* p = first_page_; p != top_page; p = p->next_page()) |
| actual_size += kMapsPerPage * Map::kSize; |
| actual_size += (new_top - top_page->ObjectAreaStart()); |
| ASSERT(accounting_stats_.Size() == actual_size); |
| } |
| #endif |
| |
| Shrink(); |
| ResetFreeList(); |
| } |
| |
| protected: |
| #ifdef DEBUG |
| virtual void VerifyObject(HeapObject* obj); |
| #endif |
| |
| private: |
| static const int kMapsPerPage = Page::kObjectAreaSize / Map::kSize; |
| |
| // Do map space compaction if there is a page gap. |
| int CompactionThreshold() { |
| return kMapsPerPage * (max_map_space_pages_ - 1); |
| } |
| |
| const int max_map_space_pages_; |
| |
| // An array of page start address in a map space. |
| Address page_addresses_[kMaxMapPageIndex]; |
| |
| public: |
| TRACK_MEMORY("MapSpace") |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Old space for all global object property cell objects |
| |
| class CellSpace : public FixedSpace { |
| public: |
| // Creates a property cell space object with a maximum capacity. |
| CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) |
| : FixedSpace(heap, max_capacity, id, JSGlobalPropertyCell::kSize, "cell") |
| {} |
| |
| protected: |
| #ifdef DEBUG |
| virtual void VerifyObject(HeapObject* obj); |
| #endif |
| |
| public: |
| TRACK_MEMORY("CellSpace") |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by |
| // the large object space. A large object is allocated from OS heap with |
| // extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). |
| // A large object always starts at Page::kObjectStartOffset to a page. |
| // Large objects do not move during garbage collections. |
| |
| // A LargeObjectChunk holds exactly one large object page with exactly one |
| // large object. |
| class LargeObjectChunk { |
| public: |
| // Allocates a new LargeObjectChunk that contains a large object page |
| // (Page::kPageSize aligned) that has at least size_in_bytes (for a large |
| // object) bytes after the object area start of that page. |
| static LargeObjectChunk* New(int size_in_bytes, Executability executable); |
| |
| // Free the memory associated with the chunk. |
| void Free(Executability executable); |
| |
| // Interpret a raw address as a large object chunk. |
| static LargeObjectChunk* FromAddress(Address address) { |
| return reinterpret_cast<LargeObjectChunk*>(address); |
| } |
| |
| // Returns the address of this chunk. |
| Address address() { return reinterpret_cast<Address>(this); } |
| |
| Page* GetPage() { |
| return Page::FromAddress(RoundUp(address(), Page::kPageSize)); |
| } |
| |
| // Accessors for the fields of the chunk. |
| LargeObjectChunk* next() { return next_; } |
| void set_next(LargeObjectChunk* chunk) { next_ = chunk; } |
| size_t size() { return size_ & ~Page::kPageFlagMask; } |
| |
| // Compute the start address in the chunk. |
| Address GetStartAddress() { return GetPage()->ObjectAreaStart(); } |
| |
| // Returns the object in this chunk. |
| HeapObject* GetObject() { return HeapObject::FromAddress(GetStartAddress()); } |
| |
| // Given a requested size returns the physical size of a chunk to be |
| // allocated. |
| static int ChunkSizeFor(int size_in_bytes); |
| |
| // Given a chunk size, returns the object size it can accommodate. Used by |
| // LargeObjectSpace::Available. |
| static intptr_t ObjectSizeFor(intptr_t chunk_size) { |
| if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; |
| return chunk_size - Page::kPageSize - Page::kObjectStartOffset; |
| } |
| |
| private: |
| // A pointer to the next large object chunk in the space or NULL. |
| LargeObjectChunk* next_; |
| |
| // The total size of this chunk. |
| size_t size_; |
| |
| public: |
| TRACK_MEMORY("LargeObjectChunk") |
| }; |
| |
| |
| class LargeObjectSpace : public Space { |
| public: |
| LargeObjectSpace(Heap* heap, AllocationSpace id); |
| virtual ~LargeObjectSpace() {} |
| |
| // Initializes internal data structures. |
| bool Setup(); |
| |
| // Releases internal resources, frees objects in this space. |
| void TearDown(); |
| |
| // Allocates a (non-FixedArray, non-Code) large object. |
| MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes); |
| // Allocates a large Code object. |
| MUST_USE_RESULT MaybeObject* AllocateRawCode(int size_in_bytes); |
| // Allocates a large FixedArray. |
| MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int size_in_bytes); |
| |
| // Available bytes for objects in this space. |
| inline intptr_t Available(); |
| |
| virtual intptr_t Size() { |
| return size_; |
| } |
| |
| virtual intptr_t SizeOfObjects() { |
| return objects_size_; |
| } |
| |
| int PageCount() { |
| return page_count_; |
| } |
| |
| // Finds an object for a given address, returns Failure::Exception() |
| // if it is not found. The function iterates through all objects in this |
| // space, may be slow. |
| MaybeObject* FindObject(Address a); |
| |
| // Finds a large object page containing the given pc, returns NULL |
| // if such a page doesn't exist. |
| LargeObjectChunk* FindChunkContainingPc(Address pc); |
| |
| // Iterates objects covered by dirty regions. |
| void IterateDirtyRegions(ObjectSlotCallback func); |
| |
| // Frees unmarked objects. |
| void FreeUnmarkedObjects(); |
| |
| // Checks whether a heap object is in this space; O(1). |
| bool Contains(HeapObject* obj); |
| |
| // Checks whether the space is empty. |
| bool IsEmpty() { return first_chunk_ == NULL; } |
| |
| // See the comments for ReserveSpace in the Space class. This has to be |
| // called after ReserveSpace has been called on the paged spaces, since they |
| // may use some memory, leaving less for large objects. |
| virtual bool ReserveSpace(int bytes); |
| |
| #ifdef DEBUG |
| virtual void Verify(); |
| virtual void Print(); |
| void ReportStatistics(); |
| void CollectCodeStatistics(); |
| #endif |
| // Checks whether an address is in the object area in this space. It |
| // iterates all objects in the space. May be slow. |
| bool SlowContains(Address addr) { return !FindObject(addr)->IsFailure(); } |
| |
| private: |
| // The head of the linked list of large object chunks. |
| LargeObjectChunk* first_chunk_; |
| intptr_t size_; // allocated bytes |
| int page_count_; // number of chunks |
| intptr_t objects_size_; // size of objects |
| |
| // Shared implementation of AllocateRaw, AllocateRawCode and |
| // AllocateRawFixedArray. |
| MUST_USE_RESULT MaybeObject* AllocateRawInternal(int requested_size, |
| int object_size, |
| Executability executable); |
| |
| friend class LargeObjectIterator; |
| |
| public: |
| TRACK_MEMORY("LargeObjectSpace") |
| }; |
| |
| |
| class LargeObjectIterator: public ObjectIterator { |
| public: |
| explicit LargeObjectIterator(LargeObjectSpace* space); |
| LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func); |
| |
| HeapObject* next(); |
| |
| // implementation of ObjectIterator. |
| virtual HeapObject* next_object() { return next(); } |
| |
| private: |
| LargeObjectChunk* current_; |
| HeapObjectCallback size_func_; |
| }; |
| |
| |
| #ifdef DEBUG |
| struct CommentStatistic { |
| const char* comment; |
| int size; |
| int count; |
| void Clear() { |
| comment = NULL; |
| size = 0; |
| count = 0; |
| } |
| // Must be small, since an iteration is used for lookup. |
| static const int kMaxComments = 64; |
| }; |
| #endif |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_SPACES_H_ |