| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "bootstrapper.h" |
| #include "code-stubs.h" |
| #include "regexp-macro-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm) |
| |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan); |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict); |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| Register lhs, |
| Register rhs); |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Create a new closure from the given function info in new |
| // space. Set the context to the current context in cp. |
| Label gc; |
| |
| // Pop the function info from the stack. |
| __ pop(r3); |
| |
| // Attempt to allocate new JSFunction in new space. |
| __ AllocateInNewSpace(JSFunction::kSize, |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| |
| // Initialize the rest of the function. We don't have to update the |
| // write barrier because the allocated object is in new space. |
| __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); |
| __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); |
| __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); |
| __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); |
| |
| // Initialize the code pointer in the function to be the one |
| // found in the shared function info object. |
| __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset)); |
| __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); |
| |
| // Return result. The argument function info has been popped already. |
| __ Ret(); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ Push(cp, r3); |
| __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| |
| // Attempt to allocate the context in new space. |
| __ AllocateInNewSpace(FixedArray::SizeFor(length), |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Load the function from the stack. |
| __ ldr(r3, MemOperand(sp, 0)); |
| |
| // Setup the object header. |
| __ LoadRoot(r2, Heap::kContextMapRootIndex); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ mov(r2, Operand(Smi::FromInt(length))); |
| __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| |
| // Setup the fixed slots. |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
| |
| // Copy the global object from the surrounding context. |
| __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| |
| // Initialize the rest of the slots to undefined. |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ str(r1, MemOperand(r0, Context::SlotOffset(i))); |
| } |
| |
| // Remove the on-stack argument and return. |
| __ mov(cp, r0); |
| __ pop(); |
| __ Ret(); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [sp]: constant elements. |
| // [sp + kPointerSize]: literal index. |
| // [sp + (2 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into r3 and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r3, ip); |
| __ b(eq, &slow_case); |
| |
| if (FLAG_debug_code) { |
| const char* message; |
| Heap::RootListIndex expected_map_index; |
| if (mode_ == CLONE_ELEMENTS) { |
| message = "Expected (writable) fixed array"; |
| expected_map_index = Heap::kFixedArrayMapRootIndex; |
| } else { |
| ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| message = "Expected copy-on-write fixed array"; |
| expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
| } |
| __ push(r3); |
| __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, expected_map_index); |
| __ cmp(r3, ip); |
| __ Assert(eq, message); |
| __ pop(r3); |
| } |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size, |
| r0, |
| r1, |
| r2, |
| &slow_case, |
| TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ ldr(r1, FieldMemOperand(r3, i)); |
| __ str(r1, FieldMemOperand(r0, i)); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| __ add(r2, r0, Operand(JSArray::kSize)); |
| __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); |
| |
| // Copy the elements array. |
| __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize); |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| } |
| |
| |
| // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
| // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
| // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
| // scratch register. Destroys the source register. No GC occurs during this |
| // stub so you don't have to set up the frame. |
| class ConvertToDoubleStub : public CodeStub { |
| public: |
| ConvertToDoubleStub(Register result_reg_1, |
| Register result_reg_2, |
| Register source_reg, |
| Register scratch_reg) |
| : result1_(result_reg_1), |
| result2_(result_reg_2), |
| source_(source_reg), |
| zeros_(scratch_reg) { } |
| |
| private: |
| Register result1_; |
| Register result2_; |
| Register source_; |
| Register zeros_; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 14> {}; |
| |
| Major MajorKey() { return ConvertToDouble; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return result1_.code() + |
| (result2_.code() << 4) + |
| (source_.code() << 8) + |
| (zeros_.code() << 12); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "ConvertToDoubleStub"; } |
| |
| #ifdef DEBUG |
| void Print() { PrintF("ConvertToDoubleStub\n"); } |
| #endif |
| }; |
| |
| |
| void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
| #ifndef BIG_ENDIAN_FLOATING_POINT |
| Register exponent = result1_; |
| Register mantissa = result2_; |
| #else |
| Register exponent = result2_; |
| Register mantissa = result1_; |
| #endif |
| Label not_special; |
| // Convert from Smi to integer. |
| __ mov(source_, Operand(source_, ASR, kSmiTagSize)); |
| // Move sign bit from source to destination. This works because the sign bit |
| // in the exponent word of the double has the same position and polarity as |
| // the 2's complement sign bit in a Smi. |
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); |
| // Subtract from 0 if source was negative. |
| __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne); |
| |
| // We have -1, 0 or 1, which we treat specially. Register source_ contains |
| // absolute value: it is either equal to 1 (special case of -1 and 1), |
| // greater than 1 (not a special case) or less than 1 (special case of 0). |
| __ cmp(source_, Operand(1)); |
| __ b(gt, ¬_special); |
| |
| // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
| static const uint32_t exponent_word_for_1 = |
| HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
| __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); |
| // 1, 0 and -1 all have 0 for the second word. |
| __ mov(mantissa, Operand(0, RelocInfo::NONE)); |
| __ Ret(); |
| |
| __ bind(¬_special); |
| // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| __ CountLeadingZeros(zeros_, source_, mantissa); |
| // Compute exponent and or it into the exponent register. |
| // We use mantissa as a scratch register here. Use a fudge factor to |
| // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts |
| // that fit in the ARM's constant field. |
| int fudge = 0x400; |
| __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); |
| __ add(mantissa, mantissa, Operand(fudge)); |
| __ orr(exponent, |
| exponent, |
| Operand(mantissa, LSL, HeapNumber::kExponentShift)); |
| // Shift up the source chopping the top bit off. |
| __ add(zeros_, zeros_, Operand(1)); |
| // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
| __ mov(source_, Operand(source_, LSL, zeros_)); |
| // Compute lower part of fraction (last 12 bits). |
| __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| // And the top (top 20 bits). |
| __ orr(exponent, |
| exponent, |
| Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
| __ Ret(); |
| } |
| |
| |
| // See comment for class. |
| void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
| Label max_negative_int; |
| // the_int_ has the answer which is a signed int32 but not a Smi. |
| // We test for the special value that has a different exponent. This test |
| // has the neat side effect of setting the flags according to the sign. |
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ cmp(the_int_, Operand(0x80000000u)); |
| __ b(eq, &max_negative_int); |
| // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
| uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ mov(scratch_, Operand(non_smi_exponent)); |
| // Set the sign bit in scratch_ if the value was negative. |
| __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); |
| // Subtract from 0 if the value was negative. |
| __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs); |
| // We should be masking the implict first digit of the mantissa away here, |
| // but it just ends up combining harmlessly with the last digit of the |
| // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
| // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
| ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kExponentOffset)); |
| __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| |
| __ bind(&max_negative_int); |
| // The max negative int32 is stored as a positive number in the mantissa of |
| // a double because it uses a sign bit instead of using two's complement. |
| // The actual mantissa bits stored are all 0 because the implicit most |
| // significant 1 bit is not stored. |
| non_smi_exponent += 1 << HeapNumber::kExponentShift; |
| __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
| __ mov(ip, Operand(0, RelocInfo::NONE)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| } |
| |
| |
| // Handle the case where the lhs and rhs are the same object. |
| // Equality is almost reflexive (everything but NaN), so this is a test |
| // for "identity and not NaN". |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan) { |
| Label not_identical; |
| Label heap_number, return_equal; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_identical); |
| |
| // The two objects are identical. If we know that one of them isn't NaN then |
| // we now know they test equal. |
| if (cc != eq || !never_nan_nan) { |
| // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // They are both equal and they are not both Smis so both of them are not |
| // Smis. If it's not a heap number, then return equal. |
| if (cc == lt || cc == gt) { |
| __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, slow); |
| } else { |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(eq, &heap_number); |
| // Comparing JS objects with <=, >= is complicated. |
| if (cc != eq) { |
| __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(ge, slow); |
| // Normally here we fall through to return_equal, but undefined is |
| // special: (undefined == undefined) == true, but |
| // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| if (cc == le || cc == ge) { |
| __ cmp(r4, Operand(ODDBALL_TYPE)); |
| __ b(ne, &return_equal); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, r2); |
| __ b(ne, &return_equal); |
| if (cc == le) { |
| // undefined <= undefined should fail. |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| // undefined >= undefined should fail. |
| __ mov(r0, Operand(LESS)); |
| } |
| __ Ret(); |
| } |
| } |
| } |
| } |
| |
| __ bind(&return_equal); |
| if (cc == lt) { |
| __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. |
| } else if (cc == gt) { |
| __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. |
| } else { |
| __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
| } |
| __ Ret(); |
| |
| if (cc != eq || !never_nan_nan) { |
| // For less and greater we don't have to check for NaN since the result of |
| // x < x is false regardless. For the others here is some code to check |
| // for NaN. |
| if (cc != lt && cc != gt) { |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if it's |
| // not NaN. |
| |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // Read top bits of double representation (second word of value). |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| // Test that exponent bits are all set. |
| __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
| // NaNs have all-one exponents so they sign extend to -1. |
| __ cmp(r3, Operand(-1)); |
| __ b(ne, &return_equal); |
| |
| // Shift out flag and all exponent bits, retaining only mantissa. |
| __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
| // Or with all low-bits of mantissa. |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ orr(r0, r3, Operand(r2), SetCC); |
| // For equal we already have the right value in r0: Return zero (equal) |
| // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
| // not (it's a NaN). For <= and >= we need to load r0 with the failing |
| // value if it's a NaN. |
| if (cc != eq) { |
| // All-zero means Infinity means equal. |
| __ Ret(eq); |
| if (cc == le) { |
| __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. |
| } else { |
| __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. |
| } |
| } |
| __ Ret(); |
| } |
| // No fall through here. |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| Label rhs_is_smi; |
| __ tst(rhs, Operand(kSmiTagMask)); |
| __ b(eq, &rhs_is_smi); |
| |
| // Lhs is a Smi. Check whether the rhs is a heap number. |
| __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If rhs is not a number and lhs is a Smi then strict equality cannot |
| // succeed. Return non-equal |
| // If rhs is r0 then there is already a non zero value in it. |
| if (!rhs.is(r0)) { |
| __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); |
| } |
| __ Ret(ne); |
| } else { |
| // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Lhs is a smi, rhs is a number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert lhs to a double in d7. |
| CpuFeatures::Scope scope(VFP3); |
| __ SmiToDoubleVFPRegister(lhs, d7, r7, s15); |
| // Load the double from rhs, tagged HeapNumber r0, to d6. |
| __ sub(r7, rhs, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| __ push(lr); |
| // Convert lhs to a double in r2, r3. |
| __ mov(r7, Operand(lhs)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Load rhs to a double in r0, r1. |
| __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| __ pop(lr); |
| } |
| |
| // We now have both loaded as doubles but we can skip the lhs nan check |
| // since it's a smi. |
| __ jmp(lhs_not_nan); |
| |
| __ bind(&rhs_is_smi); |
| // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
| __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If lhs is not a number and rhs is a smi then strict equality cannot |
| // succeed. Return non-equal. |
| // If lhs is r0 then there is already a non zero value in it. |
| if (!lhs.is(r0)) { |
| __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); |
| } |
| __ Ret(ne); |
| } else { |
| // Smi compared non-strictly with a non-smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Rhs is a smi, lhs is a heap number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from lhs, tagged HeapNumber r1, to d7. |
| __ sub(r7, lhs, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| // Convert rhs to a double in d6 . |
| __ SmiToDoubleVFPRegister(rhs, d6, r7, s13); |
| } else { |
| __ push(lr); |
| // Load lhs to a double in r2, r3. |
| __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| // Convert rhs to a double in r0, r1. |
| __ mov(r7, Operand(rhs)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| // Fall through to both_loaded_as_doubles. |
| } |
| |
| |
| void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| Label one_is_nan, neither_is_nan; |
| |
| __ Sbfx(r4, |
| lhs_exponent, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // NaNs have all-one exponents so they sign extend to -1. |
| __ cmp(r4, Operand(-1)); |
| __ b(ne, lhs_not_nan); |
| __ mov(r4, |
| Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE)); |
| __ b(ne, &one_is_nan); |
| |
| __ bind(lhs_not_nan); |
| __ Sbfx(r4, |
| rhs_exponent, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // NaNs have all-one exponents so they sign extend to -1. |
| __ cmp(r4, Operand(-1)); |
| __ b(ne, &neither_is_nan); |
| __ mov(r4, |
| Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &neither_is_nan); |
| |
| __ bind(&one_is_nan); |
| // NaN comparisons always fail. |
| // Load whatever we need in r0 to make the comparison fail. |
| if (cc == lt || cc == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ Ret(); |
| |
| __ bind(&neither_is_nan); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| |
| // r0, r1, r2, r3 have the two doubles. Neither is a NaN. |
| if (cc == eq) { |
| // Doubles are not equal unless they have the same bit pattern. |
| // Exception: 0 and -0. |
| __ cmp(rhs_mantissa, Operand(lhs_mantissa)); |
| __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); |
| // Return non-zero if the numbers are unequal. |
| __ Ret(ne); |
| |
| __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); |
| // If exponents are equal then return 0. |
| __ Ret(eq); |
| |
| // Exponents are unequal. The only way we can return that the numbers |
| // are equal is if one is -0 and the other is 0. We already dealt |
| // with the case where both are -0 or both are 0. |
| // We start by seeing if the mantissas (that are equal) or the bottom |
| // 31 bits of the rhs exponent are non-zero. If so we return not |
| // equal. |
| __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); |
| __ mov(r0, Operand(r4), LeaveCC, ne); |
| __ Ret(ne); |
| // Now they are equal if and only if the lhs exponent is zero in its |
| // low 31 bits. |
| __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); |
| __ Ret(); |
| } else { |
| // Call a native function to do a comparison between two non-NaNs. |
| // Call C routine that may not cause GC or other trouble. |
| __ push(lr); |
| __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments. |
| __ CallCFunction(ExternalReference::compare_doubles(), 4); |
| __ pop(pc); // Return. |
| } |
| } |
| |
| |
| // See comment at call site. |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| Register lhs, |
| Register rhs) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| // If either operand is a JSObject or an oddball value, then they are |
| // not equal since their pointers are different. |
| // There is no test for undetectability in strict equality. |
| STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| Label first_non_object; |
| // Get the type of the first operand into r2 and compare it with |
| // FIRST_JS_OBJECT_TYPE. |
| __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &first_non_object); |
| |
| // Return non-zero (r0 is not zero) |
| Label return_not_equal; |
| __ bind(&return_not_equal); |
| __ Ret(); |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r2, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r3, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| // Now that we have the types we might as well check for symbol-symbol. |
| // Ensure that no non-strings have the symbol bit set. |
| STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ and_(r2, r2, Operand(r3)); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(ne, &return_not_equal); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* both_loaded_as_doubles, |
| Label* not_heap_numbers, |
| Label* slow) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); |
| __ b(ne, not_heap_numbers); |
| __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| __ cmp(r2, r3); |
| __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. |
| |
| // Both are heap numbers. Load them up then jump to the code we have |
| // for that. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ sub(r7, rhs, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| __ sub(r7, lhs, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| } |
| __ jmp(both_loaded_as_doubles); |
| } |
| |
| |
| // Fast negative check for symbol-to-symbol equality. |
| static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* possible_strings, |
| Label* not_both_strings) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| // r2 is object type of rhs. |
| // Ensure that no non-strings have the symbol bit set. |
| Label object_test; |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ tst(r2, Operand(kIsNotStringMask)); |
| __ b(ne, &object_test); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(eq, possible_strings); |
| __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); |
| __ b(ge, not_both_strings); |
| __ tst(r3, Operand(kIsSymbolMask)); |
| __ b(eq, possible_strings); |
| |
| // Both are symbols. We already checked they weren't the same pointer |
| // so they are not equal. |
| __ mov(r0, Operand(NOT_EQUAL)); |
| __ Ret(); |
| |
| __ bind(&object_test); |
| __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(lt, not_both_strings); |
| __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, not_both_strings); |
| // If both objects are undetectable, they are equal. Otherwise, they |
| // are not equal, since they are different objects and an object is not |
| // equal to undefined. |
| __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); |
| __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); |
| __ and_(r0, r2, Operand(r3)); |
| __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| __ Ret(); |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| bool object_is_smi, |
| Label* not_found) { |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch3; |
| |
| // Load the number string cache. |
| __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
| // Divide length by two (length is a smi). |
| __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); |
| __ sub(mask, mask, Operand(1)); // Make mask. |
| |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value, and the hash for |
| // doubles is the xor of the upper and lower words. See |
| // Heap::GetNumberStringCache. |
| Label is_smi; |
| Label load_result_from_cache; |
| if (!object_is_smi) { |
| __ BranchOnSmi(object, &is_smi); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ CheckMap(object, |
| scratch1, |
| Heap::kHeapNumberMapRootIndex, |
| not_found, |
| true); |
| |
| STATIC_ASSERT(8 == kDoubleSize); |
| __ add(scratch1, |
| object, |
| Operand(HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); |
| __ eor(scratch1, scratch1, Operand(scratch2)); |
| __ and_(scratch1, scratch1, Operand(mask)); |
| |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ add(scratch1, |
| number_string_cache, |
| Operand(scratch1, LSL, kPointerSizeLog2 + 1)); |
| |
| Register probe = mask; |
| __ ldr(probe, |
| FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
| __ BranchOnSmi(probe, not_found); |
| __ sub(scratch2, object, Operand(kHeapObjectTag)); |
| __ vldr(d0, scratch2, HeapNumber::kValueOffset); |
| __ sub(probe, probe, Operand(kHeapObjectTag)); |
| __ vldr(d1, probe, HeapNumber::kValueOffset); |
| __ vcmp(d0, d1); |
| __ vmrs(pc); |
| __ b(ne, not_found); // The cache did not contain this value. |
| __ b(&load_result_from_cache); |
| } else { |
| __ b(not_found); |
| } |
| } |
| |
| __ bind(&is_smi); |
| Register scratch = scratch1; |
| __ and_(scratch, mask, Operand(object, ASR, 1)); |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ add(scratch, |
| number_string_cache, |
| Operand(scratch, LSL, kPointerSizeLog2 + 1)); |
| |
| // Check if the entry is the smi we are looking for. |
| Register probe = mask; |
| __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ cmp(object, probe); |
| __ b(ne, not_found); |
| |
| // Get the result from the cache. |
| __ bind(&load_result_from_cache); |
| __ ldr(result, |
| FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
| __ IncrementCounter(&Counters::number_to_string_native, |
| 1, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ ldr(r1, MemOperand(sp, 0)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); |
| __ add(sp, sp, Operand(1 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| } |
| |
| |
| void RecordWriteStub::Generate(MacroAssembler* masm) { |
| __ add(offset_, object_, Operand(offset_)); |
| __ RecordWriteHelper(object_, offset_, scratch_); |
| __ Ret(); |
| } |
| |
| |
| // On entry lhs_ and rhs_ are the values to be compared. |
| // On exit r0 is 0, positive or negative to indicate the result of |
| // the comparison. |
| void CompareStub::Generate(MacroAssembler* masm) { |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| |
| Label slow; // Call builtin. |
| Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
| |
| if (include_smi_compare_) { |
| Label not_two_smis, smi_done; |
| __ orr(r2, r1, r0); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_two_smis); |
| __ sub(r0, r1, r0); |
| __ b(vc, &smi_done); |
| // Correct the sign in case of overflow. |
| __ rsb(r0, r0, Operand(0, RelocInfo::NONE)); |
| __ bind(&smi_done); |
| __ Ret(); |
| __ bind(¬_two_smis); |
| } else if (FLAG_debug_code) { |
| __ orr(r2, r1, r0); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ Assert(nz, "CompareStub: unexpected smi operands."); |
| } |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Handle the case where the objects are identical. Either returns the answer |
| // or goes to slow. Only falls through if the objects were not identical. |
| EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
| |
| // If either is a Smi (we know that not both are), then they can only |
| // be strictly equal if the other is a HeapNumber. |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ and_(r2, lhs_, Operand(rhs_)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smis); |
| // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
| // 1) Return the answer. |
| // 2) Go to slow. |
| // 3) Fall through to both_loaded_as_doubles. |
| // 4) Jump to lhs_not_nan. |
| // In cases 3 and 4 we have found out we were dealing with a number-number |
| // comparison. If VFP3 is supported the double values of the numbers have |
| // been loaded into d7 and d6. Otherwise, the double values have been loaded |
| // into r0, r1, r2, and r3. |
| EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_); |
| |
| __ bind(&both_loaded_as_doubles); |
| // The arguments have been converted to doubles and stored in d6 and d7, if |
| // VFP3 is supported, or in r0, r1, r2, and r3. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ bind(&lhs_not_nan); |
| CpuFeatures::Scope scope(VFP3); |
| Label no_nan; |
| // ARMv7 VFP3 instructions to implement double precision comparison. |
| __ vcmp(d7, d6); |
| __ vmrs(pc); // Move vector status bits to normal status bits. |
| Label nan; |
| __ b(vs, &nan); |
| __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| __ mov(r0, Operand(LESS), LeaveCC, lt); |
| __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| __ Ret(); |
| |
| __ bind(&nan); |
| // If one of the sides was a NaN then the v flag is set. Load r0 with |
| // whatever it takes to make the comparison fail, since comparisons with NaN |
| // always fail. |
| if (cc_ == lt || cc_ == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ Ret(); |
| } else { |
| // Checks for NaN in the doubles we have loaded. Can return the answer or |
| // fall through if neither is a NaN. Also binds lhs_not_nan. |
| EmitNanCheck(masm, &lhs_not_nan, cc_); |
| // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the |
| // answer. Never falls through. |
| EmitTwoNonNanDoubleComparison(masm, cc_); |
| } |
| |
| __ bind(¬_smis); |
| // At this point we know we are dealing with two different objects, |
| // and neither of them is a Smi. The objects are in rhs_ and lhs_. |
| if (strict_) { |
| // This returns non-equal for some object types, or falls through if it |
| // was not lucky. |
| EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); |
| } |
| |
| Label check_for_symbols; |
| Label flat_string_check; |
| // Check for heap-number-heap-number comparison. Can jump to slow case, |
| // or load both doubles into r0, r1, r2, r3 and jump to the code that handles |
| // that case. If the inputs are not doubles then jumps to check_for_symbols. |
| // In this case r2 will contain the type of rhs_. Never falls through. |
| EmitCheckForTwoHeapNumbers(masm, |
| lhs_, |
| rhs_, |
| &both_loaded_as_doubles, |
| &check_for_symbols, |
| &flat_string_check); |
| |
| __ bind(&check_for_symbols); |
| // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
| // symbols. |
| if (cc_ == eq && !strict_) { |
| // Returns an answer for two symbols or two detectable objects. |
| // Otherwise jumps to string case or not both strings case. |
| // Assumes that r2 is the type of rhs_ on entry. |
| EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); |
| } |
| |
| // Check for both being sequential ASCII strings, and inline if that is the |
| // case. |
| __ bind(&flat_string_check); |
| |
| __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow); |
| |
| __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| lhs_, |
| rhs_, |
| r2, |
| r3, |
| r4, |
| r5); |
| // Never falls through to here. |
| |
| __ bind(&slow); |
| |
| __ Push(lhs_, rhs_); |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript native; |
| if (cc_ == eq) { |
| native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| native = Builtins::COMPARE; |
| int ncr; // NaN compare result |
| if (cc_ == lt || cc_ == le) { |
| ncr = GREATER; |
| } else { |
| ASSERT(cc_ == gt || cc_ == ge); // remaining cases |
| ncr = LESS; |
| } |
| __ mov(r0, Operand(Smi::FromInt(ncr))); |
| __ push(r0); |
| } |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(native, JUMP_JS); |
| } |
| |
| |
| // This stub does not handle the inlined cases (Smis, Booleans, undefined). |
| // The stub returns zero for false, and a non-zero value for true. |
| void ToBooleanStub::Generate(MacroAssembler* masm) { |
| Label false_result; |
| Label not_heap_number; |
| Register scratch = r7; |
| |
| // HeapNumber => false iff +0, -0, or NaN. |
| __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| __ cmp(scratch, ip); |
| __ b(¬_heap_number, ne); |
| |
| __ sub(ip, tos_, Operand(kHeapObjectTag)); |
| __ vldr(d1, ip, HeapNumber::kValueOffset); |
| __ vcmp(d1, 0.0); |
| __ vmrs(pc); |
| // "tos_" is a register, and contains a non zero value by default. |
| // Hence we only need to overwrite "tos_" with zero to return false for |
| // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. |
| __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO |
| __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN |
| __ Ret(); |
| |
| __ bind(¬_heap_number); |
| |
| // Check if the value is 'null'. |
| // 'null' => false. |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos_, ip); |
| __ b(&false_result, eq); |
| |
| // It can be an undetectable object. |
| // Undetectable => false. |
| __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset)); |
| __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| __ b(&false_result, eq); |
| |
| // JavaScript object => true. |
| __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE)); |
| // "tos_" is a register and contains a non-zero value. |
| // Hence we implicitly return true if the greater than |
| // condition is satisfied. |
| __ Ret(gt); |
| |
| // Check for string |
| __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); |
| // "tos_" is a register and contains a non-zero value. |
| // Hence we implicitly return true if the greater than |
| // condition is satisfied. |
| __ Ret(gt); |
| |
| // String value => false iff empty, i.e., length is zero |
| __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset)); |
| // If length is zero, "tos_" contains zero ==> false. |
| // If length is not zero, "tos_" contains a non-zero value ==> true. |
| __ Ret(); |
| |
| // Return 0 in "tos_" for false . |
| __ bind(&false_result); |
| __ mov(tos_, Operand(0, RelocInfo::NONE)); |
| __ Ret(); |
| } |
| |
| |
| // We fall into this code if the operands were Smis, but the result was |
| // not (eg. overflow). We branch into this code (to the not_smi label) if |
| // the operands were not both Smi. The operands are in r0 and r1. In order |
| // to call the C-implemented binary fp operation routines we need to end up |
| // with the double precision floating point operands in r0 and r1 (for the |
| // value in r1) and r2 and r3 (for the value in r0). |
| void GenericBinaryOpStub::HandleBinaryOpSlowCases( |
| MacroAssembler* masm, |
| Label* not_smi, |
| Register lhs, |
| Register rhs, |
| const Builtins::JavaScript& builtin) { |
| Label slow, slow_reverse, do_the_call; |
| bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_; |
| |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); |
| Register heap_number_map = r6; |
| |
| if (ShouldGenerateSmiCode()) { |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| // Smi-smi case (overflow). |
| // Since both are Smis there is no heap number to overwrite, so allocate. |
| // The new heap number is in r5. r3 and r7 are scratch. |
| __ AllocateHeapNumber( |
| r5, r3, r7, heap_number_map, lhs.is(r0) ? &slow_reverse : &slow); |
| |
| // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, |
| // using registers d7 and d6 for the double values. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ mov(r7, Operand(rhs, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt_f64_s32(d7, s15); |
| __ mov(r7, Operand(lhs, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt_f64_s32(d6, s13); |
| if (!use_fp_registers) { |
| __ vmov(r2, r3, d7); |
| __ vmov(r0, r1, d6); |
| } |
| } else { |
| // Write Smi from rhs to r3 and r2 in double format. r9 is scratch. |
| __ mov(r7, Operand(rhs)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r9); |
| __ push(lr); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Write Smi from lhs to r1 and r0 in double format. r9 is scratch. |
| __ mov(r7, Operand(lhs)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r9); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| __ jmp(&do_the_call); // Tail call. No return. |
| } |
| |
| // We branch here if at least one of r0 and r1 is not a Smi. |
| __ bind(not_smi); |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| // After this point we have the left hand side in r1 and the right hand side |
| // in r0. |
| if (lhs.is(r0)) { |
| __ Swap(r0, r1, ip); |
| } |
| |
| // The type transition also calculates the answer. |
| bool generate_code_to_calculate_answer = true; |
| |
| if (ShouldGenerateFPCode()) { |
| if (runtime_operands_type_ == BinaryOpIC::DEFAULT) { |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| GenerateTypeTransition(masm); // Tail call. |
| generate_code_to_calculate_answer = false; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (generate_code_to_calculate_answer) { |
| Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; |
| if (mode_ == NO_OVERWRITE) { |
| // In the case where there is no chance of an overwritable float we may |
| // as well do the allocation immediately while r0 and r1 are untouched. |
| __ AllocateHeapNumber(r5, r3, r7, heap_number_map, &slow); |
| } |
| |
| // Move r0 to a double in r2-r3. |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r4, heap_number_map); |
| __ b(ne, &slow); |
| if (mode_ == OVERWRITE_RIGHT) { |
| __ mov(r5, Operand(r0)); // Overwrite this heap number. |
| } |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber r0 to d7. |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| // Calling convention says that second double is in r2 and r3. |
| __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| } |
| __ jmp(&finished_loading_r0); |
| __ bind(&r0_is_smi); |
| if (mode_ == OVERWRITE_RIGHT) { |
| // We can't overwrite a Smi so get address of new heap number into r5. |
| __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| } |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi in r0 to double in d7. |
| __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt_f64_s32(d7, s15); |
| if (!use_fp_registers) { |
| __ vmov(r2, r3, d7); |
| } |
| } else { |
| // Write Smi from r0 to r3 and r2 in double format. |
| __ mov(r7, Operand(r0)); |
| ConvertToDoubleStub stub3(r3, r2, r7, r4); |
| __ push(lr); |
| __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis. |
| // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC. |
| Label r1_is_not_smi; |
| if (runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) { |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(ne, &r1_is_not_smi); |
| GenerateTypeTransition(masm); // Tail call. |
| } |
| |
| __ bind(&finished_loading_r0); |
| |
| // Move r1 to a double in r0-r1. |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. |
| __ bind(&r1_is_not_smi); |
| __ ldr(r4, FieldMemOperand(r1, HeapNumber::kMapOffset)); |
| __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r4, heap_number_map); |
| __ b(ne, &slow); |
| if (mode_ == OVERWRITE_LEFT) { |
| __ mov(r5, Operand(r1)); // Overwrite this heap number. |
| } |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber r1 to d6. |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| // Calling convention says that first double is in r0 and r1. |
| __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| } |
| __ jmp(&finished_loading_r1); |
| __ bind(&r1_is_smi); |
| if (mode_ == OVERWRITE_LEFT) { |
| // We can't overwrite a Smi so get address of new heap number into r5. |
| __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| } |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi in r1 to double in d6. |
| __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt_f64_s32(d6, s13); |
| if (!use_fp_registers) { |
| __ vmov(r0, r1, d6); |
| } |
| } else { |
| // Write Smi from r1 to r1 and r0 in double format. |
| __ mov(r7, Operand(r1)); |
| ConvertToDoubleStub stub4(r1, r0, r7, r9); |
| __ push(lr); |
| __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| __ bind(&finished_loading_r1); |
| } |
| |
| if (generate_code_to_calculate_answer || do_the_call.is_linked()) { |
| __ bind(&do_the_call); |
| // If we are inlining the operation using VFP3 instructions for |
| // add, subtract, multiply, or divide, the arguments are in d6 and d7. |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // ARMv7 VFP3 instructions to implement |
| // double precision, add, subtract, multiply, divide. |
| |
| if (Token::MUL == op_) { |
| __ vmul(d5, d6, d7); |
| } else if (Token::DIV == op_) { |
| __ vdiv(d5, d6, d7); |
| } else if (Token::ADD == op_) { |
| __ vadd(d5, d6, d7); |
| } else if (Token::SUB == op_) { |
| __ vsub(d5, d6, d7); |
| } else { |
| UNREACHABLE(); |
| } |
| __ sub(r0, r5, Operand(kHeapObjectTag)); |
| __ vstr(d5, r0, HeapNumber::kValueOffset); |
| __ add(r0, r0, Operand(kHeapObjectTag)); |
| __ mov(pc, lr); |
| } else { |
| // If we did not inline the operation, then the arguments are in: |
| // r0: Left value (least significant part of mantissa). |
| // r1: Left value (sign, exponent, top of mantissa). |
| // r2: Right value (least significant part of mantissa). |
| // r3: Right value (sign, exponent, top of mantissa). |
| // r5: Address of heap number for result. |
| |
| __ push(lr); // For later. |
| __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments. |
| // Call C routine that may not cause GC or other trouble. r5 is callee |
| // save. |
| __ CallCFunction(ExternalReference::double_fp_operation(op_), 4); |
| // Store answer in the overwritable heap number. |
| #if !defined(USE_ARM_EABI) |
| // Double returned in fp coprocessor register 0 and 1, encoded as |
| // register cr8. Offsets must be divisible by 4 for coprocessor so we |
| // need to substract the tag from r5. |
| __ sub(r4, r5, Operand(kHeapObjectTag)); |
| __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset)); |
| #else |
| // Double returned in registers 0 and 1. |
| __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset)); |
| #endif |
| __ mov(r0, Operand(r5)); |
| // And we are done. |
| __ pop(pc); |
| } |
| } |
| } |
| |
| if (!generate_code_to_calculate_answer && |
| !slow_reverse.is_linked() && |
| !slow.is_linked()) { |
| return; |
| } |
| |
| if (lhs.is(r0)) { |
| __ b(&slow); |
| __ bind(&slow_reverse); |
| __ Swap(r0, r1, ip); |
| } |
| |
| heap_number_map = no_reg; // Don't use this any more from here on. |
| |
| // We jump to here if something goes wrong (one param is not a number of any |
| // sort or new-space allocation fails). |
| __ bind(&slow); |
| |
| // Push arguments to the stack |
| __ Push(r1, r0); |
| |
| if (Token::ADD == op_) { |
| // Test for string arguments before calling runtime. |
| // r1 : first argument |
| // r0 : second argument |
| // sp[0] : second argument |
| // sp[4] : first argument |
| |
| Label not_strings, not_string1, string1, string1_smi2; |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, ¬_string1); |
| __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, ¬_string1); |
| |
| // First argument is a a string, test second. |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &string1_smi2); |
| __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, &string1); |
| |
| // First and second argument are strings. |
| StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| __ TailCallStub(&string_add_stub); |
| |
| __ bind(&string1_smi2); |
| // First argument is a string, second is a smi. Try to lookup the number |
| // string for the smi in the number string cache. |
| NumberToStringStub::GenerateLookupNumberStringCache( |
| masm, r0, r2, r4, r5, r6, true, &string1); |
| |
| // Replace second argument on stack and tailcall string add stub to make |
| // the result. |
| __ str(r2, MemOperand(sp, 0)); |
| __ TailCallStub(&string_add_stub); |
| |
| // Only first argument is a string. |
| __ bind(&string1); |
| __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS); |
| |
| // First argument was not a string, test second. |
| __ bind(¬_string1); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, ¬_strings); |
| __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, ¬_strings); |
| |
| // Only second argument is a string. |
| __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); |
| |
| __ bind(¬_strings); |
| } |
| |
| __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. |
| } |
| |
| |
| // For bitwise ops where the inputs are not both Smis we here try to determine |
| // whether both inputs are either Smis or at least heap numbers that can be |
| // represented by a 32 bit signed value. We truncate towards zero as required |
| // by the ES spec. If this is the case we do the bitwise op and see if the |
| // result is a Smi. If so, great, otherwise we try to find a heap number to |
| // write the answer into (either by allocating or by overwriting). |
| // On entry the operands are in lhs and rhs. On exit the answer is in r0. |
| void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm, |
| Register lhs, |
| Register rhs) { |
| Label slow, result_not_a_smi; |
| Label rhs_is_smi, lhs_is_smi; |
| Label done_checking_rhs, done_checking_lhs; |
| |
| Register heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| __ tst(lhs, Operand(kSmiTagMask)); |
| __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number. |
| __ ldr(r4, FieldMemOperand(lhs, HeapNumber::kMapOffset)); |
| __ cmp(r4, heap_number_map); |
| __ b(ne, &slow); |
| __ ConvertToInt32(lhs, r3, r5, r4, &slow); |
| __ jmp(&done_checking_lhs); |
| __ bind(&lhs_is_smi); |
| __ mov(r3, Operand(lhs, ASR, 1)); |
| __ bind(&done_checking_lhs); |
| |
| __ tst(rhs, Operand(kSmiTagMask)); |
| __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number. |
| __ ldr(r4, FieldMemOperand(rhs, HeapNumber::kMapOffset)); |
| __ cmp(r4, heap_number_map); |
| __ b(ne, &slow); |
| __ ConvertToInt32(rhs, r2, r5, r4, &slow); |
| __ jmp(&done_checking_rhs); |
| __ bind(&rhs_is_smi); |
| __ mov(r2, Operand(rhs, ASR, 1)); |
| __ bind(&done_checking_rhs); |
| |
| ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)))); |
| |
| // r0 and r1: Original operands (Smi or heap numbers). |
| // r2 and r3: Signed int32 operands. |
| switch (op_) { |
| case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break; |
| case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break; |
| case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break; |
| case Token::SAR: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, ASR, r2)); |
| break; |
| case Token::SHR: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSR, r2), SetCC); |
| // SHR is special because it is required to produce a positive answer. |
| // The code below for writing into heap numbers isn't capable of writing |
| // the register as an unsigned int so we go to slow case if we hit this |
| // case. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ b(mi, &result_not_a_smi); |
| } else { |
| __ b(mi, &slow); |
| } |
| break; |
| case Token::SHL: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSL, r2)); |
| break; |
| default: UNREACHABLE(); |
| } |
| // check that the *signed* result fits in a smi |
| __ add(r3, r2, Operand(0x40000000), SetCC); |
| __ b(mi, &result_not_a_smi); |
| __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| __ Ret(); |
| |
| Label have_to_allocate, got_a_heap_number; |
| __ bind(&result_not_a_smi); |
| switch (mode_) { |
| case OVERWRITE_RIGHT: { |
| __ tst(rhs, Operand(kSmiTagMask)); |
| __ b(eq, &have_to_allocate); |
| __ mov(r5, Operand(rhs)); |
| break; |
| } |
| case OVERWRITE_LEFT: { |
| __ tst(lhs, Operand(kSmiTagMask)); |
| __ b(eq, &have_to_allocate); |
| __ mov(r5, Operand(lhs)); |
| break; |
| } |
| case NO_OVERWRITE: { |
| // Get a new heap number in r5. r4 and r7 are scratch. |
| __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| } |
| default: break; |
| } |
| __ bind(&got_a_heap_number); |
| // r2: Answer as signed int32. |
| // r5: Heap number to write answer into. |
| |
| // Nothing can go wrong now, so move the heap number to r0, which is the |
| // result. |
| __ mov(r0, Operand(r5)); |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, r2); |
| if (op_ == Token::SHR) { |
| __ vcvt_f64_u32(d0, s0); |
| } else { |
| __ vcvt_f64_s32(d0, s0); |
| } |
| __ sub(r3, r0, Operand(kHeapObjectTag)); |
| __ vstr(d0, r3, HeapNumber::kValueOffset); |
| __ Ret(); |
| } else { |
| // Tail call that writes the int32 in r2 to the heap number in r0, using |
| // r3 as scratch. r0 is preserved and returned. |
| WriteInt32ToHeapNumberStub stub(r2, r0, r3); |
| __ TailCallStub(&stub); |
| } |
| |
| if (mode_ != NO_OVERWRITE) { |
| __ bind(&have_to_allocate); |
| // Get a new heap number in r5. r4 and r7 are scratch. |
| __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| __ jmp(&got_a_heap_number); |
| } |
| |
| // If all else failed then we go to the runtime system. |
| __ bind(&slow); |
| __ Push(lhs, rhs); // Restore stack. |
| switch (op_) { |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_JS); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_JS); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| |
| |
| // This function takes the known int in a register for the cases |
| // where it doesn't know a good trick, and may deliver |
| // a result that needs shifting. |
| static void MultiplyByKnownIntInStub( |
| MacroAssembler* masm, |
| Register result, |
| Register source, |
| Register known_int_register, // Smi tagged. |
| int known_int, |
| int* required_shift) { // Including Smi tag shift |
| switch (known_int) { |
| case 3: |
| __ add(result, source, Operand(source, LSL, 1)); |
| *required_shift = 1; |
| break; |
| case 5: |
| __ add(result, source, Operand(source, LSL, 2)); |
| *required_shift = 1; |
| break; |
| case 6: |
| __ add(result, source, Operand(source, LSL, 1)); |
| *required_shift = 2; |
| break; |
| case 7: |
| __ rsb(result, source, Operand(source, LSL, 3)); |
| *required_shift = 1; |
| break; |
| case 9: |
| __ add(result, source, Operand(source, LSL, 3)); |
| *required_shift = 1; |
| break; |
| case 10: |
| __ add(result, source, Operand(source, LSL, 2)); |
| *required_shift = 2; |
| break; |
| default: |
| ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient. |
| __ mul(result, source, known_int_register); |
| *required_shift = 0; |
| } |
| } |
| |
| |
| // This uses versions of the sum-of-digits-to-see-if-a-number-is-divisible-by-3 |
| // trick. See http://en.wikipedia.org/wiki/Divisibility_rule |
| // Takes the sum of the digits base (mask + 1) repeatedly until we have a |
| // number from 0 to mask. On exit the 'eq' condition flags are set if the |
| // answer is exactly the mask. |
| void IntegerModStub::DigitSum(MacroAssembler* masm, |
| Register lhs, |
| int mask, |
| int shift, |
| Label* entry) { |
| ASSERT(mask > 0); |
| ASSERT(mask <= 0xff); // This ensures we don't need ip to use it. |
| Label loop; |
| __ bind(&loop); |
| __ and_(ip, lhs, Operand(mask)); |
| __ add(lhs, ip, Operand(lhs, LSR, shift)); |
| __ bind(entry); |
| __ cmp(lhs, Operand(mask)); |
| __ b(gt, &loop); |
| } |
| |
| |
| void IntegerModStub::DigitSum(MacroAssembler* masm, |
| Register lhs, |
| Register scratch, |
| int mask, |
| int shift1, |
| int shift2, |
| Label* entry) { |
| ASSERT(mask > 0); |
| ASSERT(mask <= 0xff); // This ensures we don't need ip to use it. |
| Label loop; |
| __ bind(&loop); |
| __ bic(scratch, lhs, Operand(mask)); |
| __ and_(ip, lhs, Operand(mask)); |
| __ add(lhs, ip, Operand(lhs, LSR, shift1)); |
| __ add(lhs, lhs, Operand(scratch, LSR, shift2)); |
| __ bind(entry); |
| __ cmp(lhs, Operand(mask)); |
| __ b(gt, &loop); |
| } |
| |
| |
| // Splits the number into two halves (bottom half has shift bits). The top |
| // half is subtracted from the bottom half. If the result is negative then |
| // rhs is added. |
| void IntegerModStub::ModGetInRangeBySubtraction(MacroAssembler* masm, |
| Register lhs, |
| int shift, |
| int rhs) { |
| int mask = (1 << shift) - 1; |
| __ and_(ip, lhs, Operand(mask)); |
| __ sub(lhs, ip, Operand(lhs, LSR, shift), SetCC); |
| __ add(lhs, lhs, Operand(rhs), LeaveCC, mi); |
| } |
| |
| |
| void IntegerModStub::ModReduce(MacroAssembler* masm, |
| Register lhs, |
| int max, |
| int denominator) { |
| int limit = denominator; |
| while (limit * 2 <= max) limit *= 2; |
| while (limit >= denominator) { |
| __ cmp(lhs, Operand(limit)); |
| __ sub(lhs, lhs, Operand(limit), LeaveCC, ge); |
| limit >>= 1; |
| } |
| } |
| |
| |
| void IntegerModStub::ModAnswer(MacroAssembler* masm, |
| Register result, |
| Register shift_distance, |
| Register mask_bits, |
| Register sum_of_digits) { |
| __ add(result, mask_bits, Operand(sum_of_digits, LSL, shift_distance)); |
| __ Ret(); |
| } |
| |
| |
| // See comment for class. |
| void IntegerModStub::Generate(MacroAssembler* masm) { |
| __ mov(lhs_, Operand(lhs_, LSR, shift_distance_)); |
| __ bic(odd_number_, odd_number_, Operand(1)); |
| __ mov(odd_number_, Operand(odd_number_, LSL, 1)); |
| // We now have (odd_number_ - 1) * 2 in the register. |
| // Build a switch out of branches instead of data because it avoids |
| // having to teach the assembler about intra-code-object pointers |
| // that are not in relative branch instructions. |
| Label mod3, mod5, mod7, mod9, mod11, mod13, mod15, mod17, mod19; |
| Label mod21, mod23, mod25; |
| { Assembler::BlockConstPoolScope block_const_pool(masm); |
| __ add(pc, pc, Operand(odd_number_)); |
| // When you read pc it is always 8 ahead, but when you write it you always |
| // write the actual value. So we put in two nops to take up the slack. |
| __ nop(); |
| __ nop(); |
| __ b(&mod3); |
| __ b(&mod5); |
| __ b(&mod7); |
| __ b(&mod9); |
| __ b(&mod11); |
| __ b(&mod13); |
| __ b(&mod15); |
| __ b(&mod17); |
| __ b(&mod19); |
| __ b(&mod21); |
| __ b(&mod23); |
| __ b(&mod25); |
| } |
| |
| // For each denominator we find a multiple that is almost only ones |
| // when expressed in binary. Then we do the sum-of-digits trick for |
| // that number. If the multiple is not 1 then we have to do a little |
| // more work afterwards to get the answer into the 0-denominator-1 |
| // range. |
| DigitSum(masm, lhs_, 3, 2, &mod3); // 3 = b11. |
| __ sub(lhs_, lhs_, Operand(3), LeaveCC, eq); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, 0xf, 4, &mod5); // 5 * 3 = b1111. |
| ModGetInRangeBySubtraction(masm, lhs_, 2, 5); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, 7, 3, &mod7); // 7 = b111. |
| __ sub(lhs_, lhs_, Operand(7), LeaveCC, eq); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, 0x3f, 6, &mod9); // 7 * 9 = b111111. |
| ModGetInRangeBySubtraction(masm, lhs_, 3, 9); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, r5, 0x3f, 6, 3, &mod11); // 5 * 11 = b110111. |
| ModReduce(masm, lhs_, 0x3f, 11); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod13); // 19 * 13 = b11110111. |
| ModReduce(masm, lhs_, 0xff, 13); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, 0xf, 4, &mod15); // 15 = b1111. |
| __ sub(lhs_, lhs_, Operand(15), LeaveCC, eq); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, 0xff, 8, &mod17); // 15 * 17 = b11111111. |
| ModGetInRangeBySubtraction(masm, lhs_, 4, 17); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod19); // 13 * 19 = b11110111. |
| ModReduce(masm, lhs_, 0xff, 19); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, 0x3f, 6, &mod21); // 3 * 21 = b111111. |
| ModReduce(masm, lhs_, 0x3f, 21); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, r5, 0xff, 8, 7, &mod23); // 11 * 23 = b11111101. |
| ModReduce(masm, lhs_, 0xff, 23); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| |
| DigitSum(masm, lhs_, r5, 0x7f, 7, 6, &mod25); // 5 * 25 = b1111101. |
| ModReduce(masm, lhs_, 0x7f, 25); |
| ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| } |
| |
| |
| void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| // lhs_ : x |
| // rhs_ : y |
| // r0 : result |
| |
| Register result = r0; |
| Register lhs = lhs_; |
| Register rhs = rhs_; |
| |
| // This code can't cope with other register allocations yet. |
| ASSERT(result.is(r0) && |
| ((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0)))); |
| |
| Register smi_test_reg = r7; |
| Register scratch = r9; |
| |
| // All ops need to know whether we are dealing with two Smis. Set up |
| // smi_test_reg to tell us that. |
| if (ShouldGenerateSmiCode()) { |
| __ orr(smi_test_reg, lhs, Operand(rhs)); |
| } |
| |
| switch (op_) { |
| case Token::ADD: { |
| Label not_smi; |
| // Fast path. |
| if (ShouldGenerateSmiCode()) { |
| STATIC_ASSERT(kSmiTag == 0); // Adjust code below. |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
| } |
| HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::ADD); |
| break; |
| } |
| |
| case Token::SUB: { |
| Label not_smi; |
| // Fast path. |
| if (ShouldGenerateSmiCode()) { |
| STATIC_ASSERT(kSmiTag == 0); // Adjust code below. |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| if (lhs.is(r1)) { |
| __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
| } else { |
| __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ add(r0, r0, Operand(r1)); // Revert optimistic subtract. |
| } |
| } |
| HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::SUB); |
| break; |
| } |
| |
| case Token::MUL: { |
| Label not_smi, slow; |
| if (ShouldGenerateSmiCode()) { |
| STATIC_ASSERT(kSmiTag == 0); // adjust code below |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| Register scratch2 = smi_test_reg; |
| smi_test_reg = no_reg; |
| __ b(ne, ¬_smi); |
| // Remove tag from one operand (but keep sign), so that result is Smi. |
| __ mov(ip, Operand(rhs, ASR, kSmiTagSize)); |
| // Do multiplication |
| // scratch = lower 32 bits of ip * lhs. |
| __ smull(scratch, scratch2, lhs, ip); |
| // Go slow on overflows (overflow bit is not set). |
| __ mov(ip, Operand(scratch, ASR, 31)); |
| // No overflow if higher 33 bits are identical. |
| __ cmp(ip, Operand(scratch2)); |
| __ b(ne, &slow); |
| // Go slow on zero result to handle -0. |
| __ tst(scratch, Operand(scratch)); |
| __ mov(result, Operand(scratch), LeaveCC, ne); |
| __ Ret(ne); |
| // We need -0 if we were multiplying a negative number with 0 to get 0. |
| // We know one of them was zero. |
| __ add(scratch2, rhs, Operand(lhs), SetCC); |
| __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl); |
| __ Ret(pl); // Return Smi 0 if the non-zero one was positive. |
| // Slow case. We fall through here if we multiplied a negative number |
| // with 0, because that would mean we should produce -0. |
| __ bind(&slow); |
| } |
| HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::MUL); |
| break; |
| } |
| |
| case Token::DIV: |
| case Token::MOD: { |
| Label not_smi; |
| if (ShouldGenerateSmiCode() && specialized_on_rhs_) { |
| Label lhs_is_unsuitable; |
| __ BranchOnNotSmi(lhs, ¬_smi); |
| if (IsPowerOf2(constant_rhs_)) { |
| if (op_ == Token::MOD) { |
| __ and_(rhs, |
| lhs, |
| Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), |
| SetCC); |
| // We now have the answer, but if the input was negative we also |
| // have the sign bit. Our work is done if the result is |
| // positive or zero: |
| if (!rhs.is(r0)) { |
| __ mov(r0, rhs, LeaveCC, pl); |
| } |
| __ Ret(pl); |
| // A mod of a negative left hand side must return a negative number. |
| // Unfortunately if the answer is 0 then we must return -0. And we |
| // already optimistically trashed rhs so we may need to restore it. |
| __ eor(rhs, rhs, Operand(0x80000000u), SetCC); |
| // Next two instructions are conditional on the answer being -0. |
| __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq); |
| __ b(eq, &lhs_is_unsuitable); |
| // We need to subtract the dividend. Eg. -3 % 4 == -3. |
| __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_))); |
| } else { |
| ASSERT(op_ == Token::DIV); |
| __ tst(lhs, |
| Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1))); |
| __ b(ne, &lhs_is_unsuitable); // Go slow on negative or remainder. |
| int shift = 0; |
| int d = constant_rhs_; |
| while ((d & 1) == 0) { |
| d >>= 1; |
| shift++; |
| } |
| __ mov(r0, Operand(lhs, LSR, shift)); |
| __ bic(r0, r0, Operand(kSmiTagMask)); |
| } |
| } else { |
| // Not a power of 2. |
| __ tst(lhs, Operand(0x80000000u)); |
| __ b(ne, &lhs_is_unsuitable); |
| // Find a fixed point reciprocal of the divisor so we can divide by |
| // multiplying. |
| double divisor = 1.0 / constant_rhs_; |
| int shift = 32; |
| double scale = 4294967296.0; // 1 << 32. |
| uint32_t mul; |
| // Maximise the precision of the fixed point reciprocal. |
| while (true) { |
| mul = static_cast<uint32_t>(scale * divisor); |
| if (mul >= 0x7fffffff) break; |
| scale *= 2.0; |
| shift++; |
| } |
| mul++; |
| Register scratch2 = smi_test_reg; |
| smi_test_reg = no_reg; |
| __ mov(scratch2, Operand(mul)); |
| __ umull(scratch, scratch2, scratch2, lhs); |
| __ mov(scratch2, Operand(scratch2, LSR, shift - 31)); |
| // scratch2 is lhs / rhs. scratch2 is not Smi tagged. |
| // rhs is still the known rhs. rhs is Smi tagged. |
| // lhs is still the unkown lhs. lhs is Smi tagged. |
| int required_scratch_shift = 0; // Including the Smi tag shift of 1. |
| // scratch = scratch2 * rhs. |
| MultiplyByKnownIntInStub(masm, |
| scratch, |
| scratch2, |
| rhs, |
| constant_rhs_, |
| &required_scratch_shift); |
| // scratch << required_scratch_shift is now the Smi tagged rhs * |
| // (lhs / rhs) where / indicates integer division. |
| if (op_ == Token::DIV) { |
| __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift)); |
| __ b(ne, &lhs_is_unsuitable); // There was a remainder. |
| __ mov(result, Operand(scratch2, LSL, kSmiTagSize)); |
| } else { |
| ASSERT(op_ == Token::MOD); |
| __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift)); |
| } |
| } |
| __ Ret(); |
| __ bind(&lhs_is_unsuitable); |
| } else if (op_ == Token::MOD && |
| runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS && |
| runtime_operands_type_ != BinaryOpIC::STRINGS) { |
| // Do generate a bit of smi code for modulus even though the default for |
| // modulus is not to do it, but as the ARM processor has no coprocessor |
| // support for modulus checking for smis makes sense. We can handle |
| // 1 to 25 times any power of 2. This covers over half the numbers from |
| // 1 to 100 including all of the first 25. (Actually the constants < 10 |
| // are handled above by reciprocal multiplication. We only get here for |
| // those cases if the right hand side is not a constant or for cases |
| // like 192 which is 3*2^6 and ends up in the 3 case in the integer mod |
| // stub.) |
| Label slow; |
| Label not_power_of_2; |
| ASSERT(!ShouldGenerateSmiCode()); |
| STATIC_ASSERT(kSmiTag == 0); // Adjust code below. |
| // Check for two positive smis. |
| __ orr(smi_test_reg, lhs, Operand(rhs)); |
| __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask)); |
| __ b(ne, &slow); |
| // Check that rhs is a power of two and not zero. |
| Register mask_bits = r3; |
| __ sub(scratch, rhs, Operand(1), SetCC); |
| __ b(mi, &slow); |
| __ and_(mask_bits, rhs, Operand(scratch), SetCC); |
| __ b(ne, ¬_power_of_2); |
| // Calculate power of two modulus. |
| __ and_(result, lhs, Operand(scratch)); |
| __ Ret(); |
| |
| __ bind(¬_power_of_2); |
| __ eor(scratch, scratch, Operand(mask_bits)); |
| // At least two bits are set in the modulus. The high one(s) are in |
| // mask_bits and the low one is scratch + 1. |
| __ and_(mask_bits, scratch, Operand(lhs)); |
| Register shift_distance = scratch; |
| scratch = no_reg; |
| |
| // The rhs consists of a power of 2 multiplied by some odd number. |
| // The power-of-2 part we handle by putting the corresponding bits |
| // from the lhs in the mask_bits register, and the power in the |
| // shift_distance register. Shift distance is never 0 due to Smi |
| // tagging. |
| __ CountLeadingZeros(r4, shift_distance, shift_distance); |
| __ rsb(shift_distance, r4, Operand(32)); |
| |
| // Now we need to find out what the odd number is. The last bit is |
| // always 1. |
| Register odd_number = r4; |
| __ mov(odd_number, Operand(rhs, LSR, shift_distance)); |
| __ cmp(odd_number, Operand(25)); |
| __ b(gt, &slow); |
| |
| IntegerModStub stub( |
| result, shift_distance, odd_number, mask_bits, lhs, r5); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); // Tail call. |
| |
| __ bind(&slow); |
| } |
| HandleBinaryOpSlowCases( |
| masm, |
| ¬_smi, |
| lhs, |
| rhs, |
| op_ == Token::MOD ? Builtins::MOD : Builtins::DIV); |
| break; |
| } |
| |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| Label slow; |
| STATIC_ASSERT(kSmiTag == 0); // adjust code below |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| __ b(ne, &slow); |
| Register scratch2 = smi_test_reg; |
| smi_test_reg = no_reg; |
| switch (op_) { |
| case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break; |
| case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break; |
| case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break; |
| case Token::SAR: |
| // Remove tags from right operand. |
| __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| __ mov(result, Operand(lhs, ASR, scratch2)); |
| // Smi tag result. |
| __ bic(result, result, Operand(kSmiTagMask)); |
| break; |
| case Token::SHR: |
| // Remove tags from operands. We can't do this on a 31 bit number |
| // because then the 0s get shifted into bit 30 instead of bit 31. |
| __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x |
| __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| __ mov(scratch, Operand(scratch, LSR, scratch2)); |
| // Unsigned shift is not allowed to produce a negative number, so |
| // check the sign bit and the sign bit after Smi tagging. |
| __ tst(scratch, Operand(0xc0000000)); |
| __ b(ne, &slow); |
| // Smi tag result. |
| __ mov(result, Operand(scratch, LSL, kSmiTagSize)); |
| break; |
| case Token::SHL: |
| // Remove tags from operands. |
| __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x |
| __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| __ mov(scratch, Operand(scratch, LSL, scratch2)); |
| // Check that the signed result fits in a Smi. |
| __ add(scratch2, scratch, Operand(0x40000000), SetCC); |
| __ b(mi, &slow); |
| __ mov(result, Operand(scratch, LSL, kSmiTagSize)); |
| break; |
| default: UNREACHABLE(); |
| } |
| __ Ret(); |
| __ bind(&slow); |
| HandleNonSmiBitwiseOp(masm, lhs, rhs); |
| break; |
| } |
| |
| default: UNREACHABLE(); |
| } |
| // This code should be unreachable. |
| __ stop("Unreachable"); |
| |
| // Generate an unreachable reference to the DEFAULT stub so that it can be |
| // found at the end of this stub when clearing ICs at GC. |
| // TODO(kaznacheev): Check performance impact and get rid of this. |
| if (runtime_operands_type_ != BinaryOpIC::DEFAULT) { |
| GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT); |
| __ CallStub(&uninit); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| Label get_result; |
| |
| __ Push(r1, r0); |
| |
| __ mov(r2, Operand(Smi::FromInt(MinorKey()))); |
| __ mov(r1, Operand(Smi::FromInt(op_))); |
| __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_))); |
| __ Push(r2, r1, r0); |
| |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
| 5, |
| 1); |
| } |
| |
| |
| Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| GenericBinaryOpStub stub(key, type_info); |
| return stub.GetCode(); |
| } |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // Argument is a number and is on stack and in r0. |
| Label runtime_call; |
| Label input_not_smi; |
| Label loaded; |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Load argument and check if it is a smi. |
| __ BranchOnNotSmi(r0, &input_not_smi); |
| |
| CpuFeatures::Scope scope(VFP3); |
| // Input is a smi. Convert to double and load the low and high words |
| // of the double into r2, r3. |
| __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); |
| __ b(&loaded); |
| |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ CheckMap(r0, |
| r1, |
| Heap::kHeapNumberMapRootIndex, |
| &runtime_call, |
| true); |
| // Input is a HeapNumber. Load it to a double register and store the |
| // low and high words into r2, r3. |
| __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| |
| __ bind(&loaded); |
| // r2 = low 32 bits of double value |
| // r3 = high 32 bits of double value |
| // Compute hash (the shifts are arithmetic): |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ eor(r1, r2, Operand(r3)); |
| __ eor(r1, r1, Operand(r1, ASR, 16)); |
| __ eor(r1, r1, Operand(r1, ASR, 8)); |
| ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| __ And(r1, r1, Operand(TranscendentalCache::kCacheSize - 1)); |
| |
| // r2 = low 32 bits of double value. |
| // r3 = high 32 bits of double value. |
| // r1 = TranscendentalCache::hash(double value). |
| __ mov(r0, |
| Operand(ExternalReference::transcendental_cache_array_address())); |
| // r0 points to cache array. |
| __ ldr(r0, MemOperand(r0, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| // r0 points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &runtime_call); |
| |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { TranscendentalCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| |
| // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. |
| __ add(r1, r1, Operand(r1, LSL, 1)); |
| __ add(r0, r0, Operand(r1, LSL, 2)); |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| __ ldm(ia, r0, r4.bit()| r5.bit() | r6.bit()); |
| __ cmp(r2, r4); |
| __ b(ne, &runtime_call); |
| __ cmp(r3, r5); |
| __ b(ne, &runtime_call); |
| // Cache hit. Load result, pop argument and return. |
| __ mov(r0, Operand(r6)); |
| __ pop(); |
| __ Ret(); |
| } |
| |
| __ bind(&runtime_call); |
| __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| // Add more cases when necessary. |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| // Do tail-call to runtime routine. Runtime routines expect at least one |
| // argument, so give it a Smi. |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ push(r0); |
| __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
| |
| __ Ret(); |
| } |
| |
| |
| void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| Label slow, done; |
| |
| Register heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| if (op_ == Token::SUB) { |
| if (include_smi_code_) { |
| // Check whether the value is a smi. |
| Label try_float; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &try_float); |
| |
| // Go slow case if the value of the expression is zero |
| // to make sure that we switch between 0 and -0. |
| if (negative_zero_ == kStrictNegativeZero) { |
| // If we have to check for zero, then we can check for the max negative |
| // smi while we are at it. |
| __ bic(ip, r0, Operand(0x80000000), SetCC); |
| __ b(eq, &slow); |
| __ rsb(r0, r0, Operand(0, RelocInfo::NONE)); |
| __ Ret(); |
| } else { |
| // The value of the expression is a smi and 0 is OK for -0. Try |
| // optimistic subtraction '0 - value'. |
| __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC); |
| __ Ret(vc); |
| // We don't have to reverse the optimistic neg since the only case |
| // where we fall through is the minimum negative Smi, which is the case |
| // where the neg leaves the register unchanged. |
| __ jmp(&slow); // Go slow on max negative Smi. |
| } |
| __ bind(&try_float); |
| } else if (FLAG_debug_code) { |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected smi operand."); |
| } |
| |
| __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r1, heap_number_map); |
| __ b(ne, &slow); |
| // r0 is a heap number. Get a new heap number in r1. |
| if (overwrite_ == UNARY_OVERWRITE) { |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| } else { |
| __ AllocateHeapNumber(r1, r2, r3, r6, &slow); |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); |
| __ mov(r0, Operand(r1)); |
| } |
| } else if (op_ == Token::BIT_NOT) { |
| if (include_smi_code_) { |
| Label non_smi; |
| __ BranchOnNotSmi(r0, &non_smi); |
| __ mvn(r0, Operand(r0)); |
| // Bit-clear inverted smi-tag. |
| __ bic(r0, r0, Operand(kSmiTagMask)); |
| __ Ret(); |
| __ bind(&non_smi); |
| } else if (FLAG_debug_code) { |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected smi operand."); |
| } |
| |
| // Check if the operand is a heap number. |
| __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r1, heap_number_map); |
| __ b(ne, &slow); |
| |
| // Convert the heap number is r0 to an untagged integer in r1. |
| __ ConvertToInt32(r0, r1, r2, r3, &slow); |
| |
| // Do the bitwise operation (move negated) and check if the result |
| // fits in a smi. |
| Label try_float; |
| __ mvn(r1, Operand(r1)); |
| __ add(r2, r1, Operand(0x40000000), SetCC); |
| __ b(mi, &try_float); |
| __ mov(r0, Operand(r1, LSL, kSmiTagSize)); |
| __ b(&done); |
| |
| __ bind(&try_float); |
| if (!overwrite_ == UNARY_OVERWRITE) { |
| // Allocate a fresh heap number, but don't overwrite r0 until |
| // we're sure we can do it without going through the slow case |
| // that needs the value in r0. |
| __ AllocateHeapNumber(r2, r3, r4, r6, &slow); |
| __ mov(r0, Operand(r2)); |
| } |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert the int32 in r1 to the heap number in r0. r2 is corrupted. |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, r1); |
| __ vcvt_f64_s32(d0, s0); |
| __ sub(r2, r0, Operand(kHeapObjectTag)); |
| __ vstr(d0, r2, HeapNumber::kValueOffset); |
| } else { |
| // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
| // have to set up a frame. |
| WriteInt32ToHeapNumberStub stub(r1, r0, r2); |
| __ push(lr); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| |
| __ bind(&done); |
| __ Ret(); |
| |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ bind(&slow); |
| __ push(r0); |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| // r0 holds the exception. |
| |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop the sp to the top of the handler. |
| __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| __ ldr(sp, MemOperand(r3)); |
| |
| // Restore the next handler and frame pointer, discard handler state. |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(r2); |
| __ str(r2, MemOperand(r3)); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state. |
| |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of a |
| // JS entry frame. |
| __ cmp(fp, Operand(0, RelocInfo::NONE)); |
| // Set cp to NULL if fp is NULL. |
| __ mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq); |
| // Restore cp otherwise. |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ pop(pc); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop sp to the top stack handler. |
| __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| __ ldr(sp, MemOperand(r3)); |
| |
| // Unwind the handlers until the ENTRY handler is found. |
| Label loop, done; |
| __ bind(&loop); |
| // Load the type of the current stack handler. |
| const int kStateOffset = StackHandlerConstants::kStateOffset; |
| __ ldr(r2, MemOperand(sp, kStateOffset)); |
| __ cmp(r2, Operand(StackHandler::ENTRY)); |
| __ b(eq, &done); |
| // Fetch the next handler in the list. |
| const int kNextOffset = StackHandlerConstants::kNextOffset; |
| __ ldr(sp, MemOperand(sp, kNextOffset)); |
| __ jmp(&loop); |
| __ bind(&done); |
| |
| // Set the top handler address to next handler past the current ENTRY handler. |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(r2); |
| __ str(r2, MemOperand(r3)); |
| |
| if (type == OUT_OF_MEMORY) { |
| // Set external caught exception to false. |
| ExternalReference external_caught(Top::k_external_caught_exception_address); |
| __ mov(r0, Operand(false)); |
| __ mov(r2, Operand(external_caught)); |
| __ str(r0, MemOperand(r2)); |
| |
| // Set pending exception and r0 to out of memory exception. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r0, MemOperand(r2)); |
| } |
| |
| // Stack layout at this point. See also StackHandlerConstants. |
| // sp -> state (ENTRY) |
| // fp |
| // lr |
| |
| // Discard handler state (r2 is not used) and restore frame pointer. |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state. |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of a |
| // JS entry frame. |
| __ cmp(fp, Operand(0, RelocInfo::NONE)); |
| // Set cp to NULL if fp is NULL. |
| __ mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq); |
| // Restore cp otherwise. |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ pop(pc); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate, |
| int frame_alignment_skew) { |
| // r0: result parameter for PerformGC, if any |
| // r4: number of arguments including receiver (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to the first argument (C callee-saved) |
| |
| if (do_gc) { |
| // Passing r0. |
| __ PrepareCallCFunction(1, r1); |
| __ CallCFunction(ExternalReference::perform_gc_function(), 1); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(); |
| if (always_allocate) { |
| __ mov(r0, Operand(scope_depth)); |
| __ ldr(r1, MemOperand(r0)); |
| __ add(r1, r1, Operand(1)); |
| __ str(r1, MemOperand(r0)); |
| } |
| |
| // Call C built-in. |
| // r0 = argc, r1 = argv |
| __ mov(r0, Operand(r4)); |
| __ mov(r1, Operand(r6)); |
| |
| int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| #if defined(V8_HOST_ARCH_ARM) |
| if (FLAG_debug_code) { |
| if (frame_alignment > kPointerSize) { |
| Label alignment_as_expected; |
| ASSERT(IsPowerOf2(frame_alignment)); |
| __ sub(r2, sp, Operand(frame_alignment_skew)); |
| __ tst(r2, Operand(frame_alignment_mask)); |
| __ b(eq, &alignment_as_expected); |
| // Don't use Check here, as it will call Runtime_Abort re-entering here. |
| __ stop("Unexpected alignment"); |
| __ bind(&alignment_as_expected); |
| } |
| } |
| #endif |
| |
| // Just before the call (jump) below lr is pushed, so the actual alignment is |
| // adding one to the current skew. |
| int alignment_before_call = |
| (frame_alignment_skew + kPointerSize) & frame_alignment_mask; |
| if (alignment_before_call > 0) { |
| // Push until the alignment before the call is met. |
| __ mov(r2, Operand(0, RelocInfo::NONE)); |
| for (int i = alignment_before_call; |
| (i & frame_alignment_mask) != 0; |
| i += kPointerSize) { |
| __ push(r2); |
| } |
| } |
| |
| // TODO(1242173): To let the GC traverse the return address of the exit |
| // frames, we need to know where the return address is. Right now, |
| // we push it on the stack to be able to find it again, but we never |
| // restore from it in case of changes, which makes it impossible to |
| // support moving the C entry code stub. This should be fixed, but currently |
| // this is OK because the CEntryStub gets generated so early in the V8 boot |
| // sequence that it is not moving ever. |
| masm->add(lr, pc, Operand(4)); // Compute return address: (pc + 8) + 4 |
| masm->push(lr); |
| masm->Jump(r5); |
| |
| // Restore sp back to before aligning the stack. |
| if (alignment_before_call > 0) { |
| __ add(sp, sp, Operand(alignment_before_call)); |
| } |
| |
| if (always_allocate) { |
| // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 |
| // though (contain the result). |
| __ mov(r2, Operand(scope_depth)); |
| __ ldr(r3, MemOperand(r2)); |
| __ sub(r3, r3, Operand(1)); |
| __ str(r3, MemOperand(r2)); |
| } |
| |
| // check for failure result |
| Label failure_returned; |
| STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| // Lower 2 bits of r2 are 0 iff r0 has failure tag. |
| __ add(r2, r0, Operand(1)); |
| __ tst(r2, Operand(kFailureTagMask)); |
| __ b(eq, &failure_returned); |
| |
| // Exit C frame and return. |
| // r0:r1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| __ LeaveExitFrame(); |
| |
| // check if we should retry or throw exception |
| Label retry; |
| __ bind(&failure_returned); |
| STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ b(eq, &retry); |
| |
| // Special handling of out of memory exceptions. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ b(eq, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r3, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ ldr(r0, MemOperand(ip)); |
| __ str(r3, MemOperand(ip)); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(r0, Operand(Factory::termination_exception())); |
| __ b(eq, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // r0: number of arguments including receiver |
| // r1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| |
| // Result returned in r0 or r0+r1 by default. |
| |
| // NOTE: Invocations of builtins may return failure objects |
| // instead of a proper result. The builtin entry handles |
| // this by performing a garbage collection and retrying the |
| // builtin once. |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(); |
| |
| // r4: number of arguments (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to first argument (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false, |
| -kPointerSize); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false, |
| 0); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true, |
| kPointerSize); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // [sp+0]: argv |
| |
| Label invoke, exit; |
| |
| // Called from C, so do not pop argc and args on exit (preserve sp) |
| // No need to save register-passed args |
| // Save callee-saved registers (incl. cp and fp), sp, and lr |
| __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
| |
| // Get address of argv, see stm above. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv |
| |
| // Push a frame with special values setup to mark it as an entry frame. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ mov(r7, Operand(Smi::FromInt(marker))); |
| __ mov(r6, Operand(Smi::FromInt(marker))); |
| __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| __ ldr(r5, MemOperand(r5)); |
| __ Push(r8, r7, r6, r5); |
| |
| // Setup frame pointer for the frame to be pushed. |
| __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Call a faked try-block that does the invoke. |
| __ bl(&invoke); |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| // Coming in here the fp will be invalid because the PushTryHandler below |
| // sets it to 0 to signal the existence of the JSEntry frame. |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r0, MemOperand(ip)); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
| __ b(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| // Must preserve r0-r4, r5-r7 are available. |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bl(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Clear any pending exceptions. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r5, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r5, MemOperand(ip)); |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Expected registers by Builtins::JSEntryTrampoline |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| __ mov(ip, Operand(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::JSEntryTrampoline); |
| __ mov(ip, Operand(entry)); |
| } |
| __ ldr(ip, MemOperand(ip)); // deref address |
| |
| // Branch and link to JSEntryTrampoline. We don't use the double underscore |
| // macro for the add instruction because we don't want the coverage tool |
| // inserting instructions here after we read the pc. |
| __ mov(lr, Operand(pc)); |
| masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Unlink this frame from the handler chain. When reading the |
| // address of the next handler, there is no need to use the address |
| // displacement since the current stack pointer (sp) points directly |
| // to the stack handler. |
| __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
| __ mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
| __ str(r3, MemOperand(ip)); |
| // No need to restore registers |
| __ add(sp, sp, Operand(StackHandlerConstants::kSize)); |
| |
| |
| __ bind(&exit); // r0 holds result |
| // Restore the top frame descriptors from the stack. |
| __ pop(r3); |
| __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| __ str(r3, MemOperand(ip)); |
| |
| // Reset the stack to the callee saved registers. |
| __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Restore callee-saved registers and return. |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
| } |
| |
| |
| // This stub performs an instanceof, calling the builtin function if |
| // necessary. Uses r1 for the object, r0 for the function that it may |
| // be an instance of (these are fetched from the stack). |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Get the object - slow case for smis (we may need to throw an exception |
| // depending on the rhs). |
| Label slow, loop, is_instance, is_not_instance; |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ BranchOnSmi(r0, &slow); |
| |
| // Check that the left hand is a JS object and put map in r3. |
| __ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(gt, &slow); |
| |
| // Get the prototype of the function (r4 is result, r2 is scratch). |
| __ ldr(r1, MemOperand(sp, 0)); |
| // r1 is function, r3 is map. |
| |
| // Look up the function and the map in the instanceof cache. |
| Label miss; |
| __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex); |
| __ cmp(r1, ip); |
| __ b(ne, &miss); |
| __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex); |
| __ cmp(r3, ip); |
| __ b(ne, &miss); |
| __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); |
| |
| __ bind(&miss); |
| __ TryGetFunctionPrototype(r1, r4, r2, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ BranchOnSmi(r4, &slow); |
| __ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| __ cmp(r5, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(gt, &slow); |
| |
| __ StoreRoot(r1, Heap::kInstanceofCacheFunctionRootIndex); |
| __ StoreRoot(r3, Heap::kInstanceofCacheMapRootIndex); |
| |
| // Register mapping: r3 is object map and r4 is function prototype. |
| // Get prototype of object into r2. |
| __ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| |
| // Loop through the prototype chain looking for the function prototype. |
| __ bind(&loop); |
| __ cmp(r2, Operand(r4)); |
| __ b(eq, &is_instance); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r2, ip); |
| __ b(eq, &is_not_instance); |
| __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&is_not_instance); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| // Slow-case. Tail call builtin. |
| __ bind(&slow); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The displacement is the offset of the last parameter (if any) |
| // relative to the frame pointer. |
| static const int kDisplacement = |
| StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ BranchOnNotSmi(r1, &slow); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor); |
| |
| // Check index against formal parameters count limit passed in |
| // through register r0. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the stack and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the adaptor frame and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ push(r1); |
| __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| // sp[0] : number of parameters |
| // sp[4] : receiver displacement |
| // sp[8] : function |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor_frame); |
| |
| // Get the length from the frame. |
| __ ldr(r1, MemOperand(sp, 0)); |
| __ b(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ str(r1, MemOperand(sp, 0)); |
| __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| __ str(r3, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Try the new space allocation. Start out with computing the size |
| // of the arguments object and the elements array in words. |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ cmp(r1, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &add_arguments_object); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); |
| __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ bind(&add_arguments_object); |
| __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace( |
| r1, |
| r0, |
| r2, |
| r3, |
| &runtime, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r4, MemOperand(r4, offset)); |
| |
| // Copy the JS object part. |
| __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize); |
| |
| // Setup the callee in-object property. |
| STATIC_ASSERT(Heap::arguments_callee_index == 0); |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize)); |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::arguments_length_index == 1); |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize)); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ cmp(r1, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &done); |
| |
| // Get the parameters pointer from the stack. |
| __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ add(r4, r0, Operand(Heap::kArgumentsObjectSize)); |
| __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); |
| __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); |
| __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop. |
| |
| // Copy the fixed array slots. |
| Label loop; |
| // Setup r4 to point to the first array slot. |
| __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| // Pre-decrement r2 with kPointerSize on each iteration. |
| // Pre-decrement in order to skip receiver. |
| __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); |
| // Post-increment r4 with kPointerSize on each iteration. |
| __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); |
| __ sub(r1, r1, Operand(1)); |
| __ cmp(r1, Operand(0, RelocInfo::NONE)); |
| __ b(ne, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifdef V8_INTERPRETED_REGEXP |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #else // V8_INTERPRETED_REGEXP |
| if (!FLAG_regexp_entry_native) { |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| return; |
| } |
| |
| // Stack frame on entry. |
| // sp[0]: last_match_info (expected JSArray) |
| // sp[4]: previous index |
| // sp[8]: subject string |
| // sp[12]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 0 * kPointerSize; |
| static const int kPreviousIndexOffset = 1 * kPointerSize; |
| static const int kSubjectOffset = 2 * kPointerSize; |
| static const int kJSRegExpOffset = 3 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Allocation of registers for this function. These are in callee save |
| // registers and will be preserved by the call to the native RegExp code, as |
| // this code is called using the normal C calling convention. When calling |
| // directly from generated code the native RegExp code will not do a GC and |
| // therefore the content of these registers are safe to use after the call. |
| Register subject = r4; |
| Register regexp_data = r5; |
| Register last_match_info_elements = r6; |
| |
| // Ensure that a RegExp stack is allocated. |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address(); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(); |
| __ mov(r0, Operand(address_of_regexp_stack_memory_size)); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ tst(r0, Operand(r0)); |
| __ b(eq, &runtime); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); |
| __ b(ne, &runtime); |
| |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ tst(regexp_data, Operand(kSmiTagMask)); |
| __ Check(nz, "Unexpected type for RegExp data, FixedArray expected"); |
| __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); |
| __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); |
| } |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
| __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
| __ b(ne, &runtime); |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ ldr(r2, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(r2, r2, Operand(2)); // r2 was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); |
| __ b(hi, &runtime); |
| |
| // r2: Number of capture registers |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the second argument is a string. |
| __ ldr(subject, MemOperand(sp, kSubjectOffset)); |
| __ tst(subject, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(subject, r0); |
| __ b(NegateCondition(is_string), &runtime); |
| // Get the length of the string to r3. |
| __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); |
| |
| // r2: Number of capture registers |
| // r3: Length of subject string as a smi |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (unsigned comparison). |
| __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &runtime); |
| __ cmp(r3, Operand(r0)); |
| __ b(ls, &runtime); |
| |
| // r2: Number of capture registers |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the fourth object is a JSArray object. |
| __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); |
| __ b(ne, &runtime); |
| // Check that the JSArray is in fast case. |
| __ ldr(last_match_info_elements, |
| FieldMemOperand(r0, JSArray::kElementsOffset)); |
| __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(r0, ip); |
| __ b(ne, &runtime); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ ldr(r0, |
| FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
| __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); |
| __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); |
| __ b(gt, &runtime); |
| |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_string; |
| __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| // First check for flat string. |
| __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask)); |
| STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
| __ b(eq, &seq_string); |
| |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check for flat cons string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| STATIC_ASSERT(kExternalStringTag !=0); |
| STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
| __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag)); |
| __ b(ne, &runtime); |
| __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); |
| __ LoadRoot(r1, Heap::kEmptyStringRootIndex); |
| __ cmp(r0, r1); |
| __ b(ne, &runtime); |
| __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
| __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| // Is first part a flat string? |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(r0, Operand(kStringRepresentationMask)); |
| __ b(nz, &runtime); |
| |
| __ bind(&seq_string); |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // r0: Instance type of subject string |
| STATIC_ASSERT(4 == kAsciiStringTag); |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| // Find the code object based on the assumptions above. |
| __ and_(r0, r0, Operand(kStringEncodingMask)); |
| __ mov(r3, Operand(r0, ASR, 2), SetCC); |
| __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); |
| __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); |
| |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // the hole. |
| __ CompareObjectType(r7, r0, r0, CODE_TYPE); |
| __ b(ne, &runtime); |
| |
| // r3: encoding of subject string (1 if ascii, 0 if two_byte); |
| // r7: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); |
| __ mov(r1, Operand(r1, ASR, kSmiTagSize)); |
| |
| // r1: previous index |
| // r3: encoding of subject string (1 if ascii, 0 if two_byte); |
| // r7: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // All checks done. Now push arguments for native regexp code. |
| __ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2); |
| |
| static const int kRegExpExecuteArguments = 7; |
| __ push(lr); |
| __ PrepareCallCFunction(kRegExpExecuteArguments, r0); |
| |
| // Argument 7 (sp[8]): Indicate that this is a direct call from JavaScript. |
| __ mov(r0, Operand(1)); |
| __ str(r0, MemOperand(sp, 2 * kPointerSize)); |
| |
| // Argument 6 (sp[4]): Start (high end) of backtracking stack memory area. |
| __ mov(r0, Operand(address_of_regexp_stack_memory_address)); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ mov(r2, Operand(address_of_regexp_stack_memory_size)); |
| __ ldr(r2, MemOperand(r2, 0)); |
| __ add(r0, r0, Operand(r2)); |
| __ str(r0, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Argument 5 (sp[0]): static offsets vector buffer. |
| __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector())); |
| __ str(r0, MemOperand(sp, 0 * kPointerSize)); |
| |
| // For arguments 4 and 3 get string length, calculate start of string data and |
| // calculate the shift of the index (0 for ASCII and 1 for two byte). |
| __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); |
| __ mov(r0, Operand(r0, ASR, kSmiTagSize)); |
| STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
| __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ eor(r3, r3, Operand(1)); |
| // Argument 4 (r3): End of string data |
| // Argument 3 (r2): Start of string data |
| __ add(r2, r9, Operand(r1, LSL, r3)); |
| __ add(r3, r9, Operand(r0, LSL, r3)); |
| |
| // Argument 2 (r1): Previous index. |
| // Already there |
| |
| // Argument 1 (r0): Subject string. |
| __ mov(r0, subject); |
| |
| // Locate the code entry and call it. |
| __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ CallCFunction(r7, kRegExpExecuteArguments); |
| __ pop(lr); |
| |
| // r0: result |
| // subject: subject string (callee saved) |
| // regexp_data: RegExp data (callee saved) |
| // last_match_info_elements: Last match info elements (callee saved) |
| |
| // Check the result. |
| Label success; |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS)); |
| __ b(eq, &success); |
| Label failure; |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); |
| __ b(eq, &failure); |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ b(ne, &runtime); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| __ mov(r0, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ mov(r1, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ ldr(r1, MemOperand(r1, 0)); |
| __ cmp(r0, r1); |
| __ b(eq, &runtime); |
| __ bind(&failure); |
| // For failure and exception return null. |
| __ mov(r0, Operand(Factory::null_value())); |
| __ add(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Process the result from the native regexp code. |
| __ bind(&success); |
| __ ldr(r1, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(r1, r1, Operand(2)); // r1 was a smi. |
| |
| // r1: number of capture registers |
| // r4: subject string |
| // Store the capture count. |
| __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. |
| __ str(r2, FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastCaptureCountOffset)); |
| // Store last subject and last input. |
| __ mov(r3, last_match_info_elements); // Moved up to reduce latency. |
| __ str(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastSubjectOffset)); |
| __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7); |
| __ str(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastInputOffset)); |
| __ mov(r3, last_match_info_elements); |
| __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(); |
| __ mov(r2, Operand(address_of_static_offsets_vector)); |
| |
| // r1: number of capture registers |
| // r2: offsets vector |
| Label next_capture, done; |
| // Capture register counter starts from number of capture registers and |
| // counts down until wraping after zero. |
| __ add(r0, |
| last_match_info_elements, |
| Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); |
| __ bind(&next_capture); |
| __ sub(r1, r1, Operand(1), SetCC); |
| __ b(mi, &done); |
| // Read the value from the static offsets vector buffer. |
| __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); |
| // Store the smi value in the last match info. |
| __ mov(r3, Operand(r3, LSL, kSmiTagSize)); |
| __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); |
| __ jmp(&next_capture); |
| __ bind(&done); |
| |
| // Return last match info. |
| __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ add(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #endif // V8_INTERPRETED_REGEXP |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // If the receiver might be a value (string, number or boolean) check for this |
| // and box it if it is. |
| if (ReceiverMightBeValue()) { |
| // Get the receiver from the stack. |
| // function, receiver [, arguments] |
| Label receiver_is_value, receiver_is_js_object; |
| __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); |
| |
| // Check if receiver is a smi (which is a number value). |
| __ BranchOnSmi(r1, &receiver_is_value); |
| |
| // Check if the receiver is a valid JS object. |
| __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &receiver_is_js_object); |
| |
| // Call the runtime to box the value. |
| __ bind(&receiver_is_value); |
| __ EnterInternalFrame(); |
| __ push(r1); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| __ LeaveInternalFrame(); |
| __ str(r0, MemOperand(sp, argc_ * kPointerSize)); |
| |
| __ bind(&receiver_is_js_object); |
| } |
| |
| // Get the function to call from the stack. |
| // function, receiver [, arguments] |
| __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
| |
| // Check that the function is really a JavaScript function. |
| // r1: pushed function (to be verified) |
| __ BranchOnSmi(r1, &slow); |
| // Get the map of the function object. |
| __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &slow); |
| |
| // Fast-case: Invoke the function now. |
| // r1: pushed function |
| ParameterCount actual(argc_); |
| __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ str(r1, MemOperand(sp, argc_ * kPointerSize)); |
| __ mov(r0, Operand(argc_)); // Setup the number of arguments. |
| __ mov(r2, Operand(0, RelocInfo::NONE)); |
| __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
| __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| const char* CompareStub::GetName() { |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| |
| const char* cc_name; |
| switch (cc_) { |
| case lt: cc_name = "LT"; break; |
| case gt: cc_name = "GT"; break; |
| case le: cc_name = "LE"; break; |
| case ge: cc_name = "GE"; break; |
| case eq: cc_name = "EQ"; break; |
| case ne: cc_name = "NE"; break; |
| default: cc_name = "UnknownCondition"; break; |
| } |
| |
| const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1"; |
| const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1"; |
| |
| const char* strict_name = ""; |
| if (strict_ && (cc_ == eq || cc_ == ne)) { |
| strict_name = "_STRICT"; |
| } |
| |
| const char* never_nan_nan_name = ""; |
| if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { |
| never_nan_nan_name = "_NO_NAN"; |
| } |
| |
| const char* include_number_compare_name = ""; |
| if (!include_number_compare_) { |
| include_number_compare_name = "_NO_NUMBER"; |
| } |
| |
| const char* include_smi_compare_name = ""; |
| if (!include_smi_compare_) { |
| include_smi_compare_name = "_NO_SMI"; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "CompareStub_%s%s%s%s%s%s", |
| cc_name, |
| lhs_name, |
| rhs_name, |
| strict_name, |
| never_nan_nan_name, |
| include_number_compare_name, |
| include_smi_compare_name); |
| return name_; |
| } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| // stubs the never NaN NaN condition is only taken into account if the |
| // condition is equals. |
| ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12)); |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| return ConditionField::encode(static_cast<unsigned>(cc_) >> 28) |
| | RegisterField::encode(lhs_.is(r0)) |
| | StrictField::encode(strict_) |
| | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
| | IncludeNumberCompareField::encode(include_number_compare_) |
| | IncludeSmiCompareField::encode(include_smi_compare_); |
| } |
| |
| |
| // StringCharCodeAtGenerator |
| |
| void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| Label flat_string; |
| Label ascii_string; |
| Label got_char_code; |
| |
| // If the receiver is a smi trigger the non-string case. |
| __ BranchOnSmi(object_, receiver_not_string_); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the non-string case. |
| __ tst(result_, Operand(kIsNotStringMask)); |
| __ b(ne, receiver_not_string_); |
| |
| // If the index is non-smi trigger the non-smi case. |
| __ BranchOnNotSmi(index_, &index_not_smi_); |
| |
| // Put smi-tagged index into scratch register. |
| __ mov(scratch_, index_); |
| __ bind(&got_smi_index_); |
| |
| // Check for index out of range. |
| __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); |
| __ cmp(ip, Operand(scratch_)); |
| __ b(ls, index_out_of_range_); |
| |
| // We need special handling for non-flat strings. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(result_, Operand(kStringRepresentationMask)); |
| __ b(eq, &flat_string); |
| |
| // Handle non-flat strings. |
| __ tst(result_, Operand(kIsConsStringMask)); |
| __ b(eq, &call_runtime_); |
| |
| // ConsString. |
| // Check whether the right hand side is the empty string (i.e. if |
| // this is really a flat string in a cons string). If that is not |
| // the case we would rather go to the runtime system now to flatten |
| // the string. |
| __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); |
| __ LoadRoot(ip, Heap::kEmptyStringRootIndex); |
| __ cmp(result_, Operand(ip)); |
| __ b(ne, &call_runtime_); |
| // Get the first of the two strings and load its instance type. |
| __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the first cons component is also non-flat, then go to runtime. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(result_, Operand(kStringRepresentationMask)); |
| __ b(nz, &call_runtime_); |
| |
| // Check for 1-byte or 2-byte string. |
| __ bind(&flat_string); |
| STATIC_ASSERT(kAsciiStringTag != 0); |
| __ tst(result_, Operand(kStringEncodingMask)); |
| __ b(nz, &ascii_string); |
| |
| // 2-byte string. |
| // Load the 2-byte character code into the result register. We can |
| // add without shifting since the smi tag size is the log2 of the |
| // number of bytes in a two-byte character. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); |
| __ add(scratch_, object_, Operand(scratch_)); |
| __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); |
| __ jmp(&got_char_code); |
| |
| // ASCII string. |
| // Load the byte into the result register. |
| __ bind(&ascii_string); |
| __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize)); |
| __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); |
| |
| __ bind(&got_char_code); |
| __ mov(result_, Operand(result_, LSL, kSmiTagSize)); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharCodeAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| |
| // Index is not a smi. |
| __ bind(&index_not_smi_); |
| // If index is a heap number, try converting it to an integer. |
| __ CheckMap(index_, |
| scratch_, |
| Heap::kHeapNumberMapRootIndex, |
| index_not_number_, |
| true); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ push(index_); // Consumed by runtime conversion function. |
| if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| } else { |
| ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| // NumberToSmi discards numbers that are not exact integers. |
| __ CallRuntime(Runtime::kNumberToSmi, 1); |
| } |
| // Save the conversion result before the pop instructions below |
| // have a chance to overwrite it. |
| __ Move(scratch_, r0); |
| __ pop(index_); |
| __ pop(object_); |
| // Reload the instance type. |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| call_helper.AfterCall(masm); |
| // If index is still not a smi, it must be out of range. |
| __ BranchOnNotSmi(scratch_, index_out_of_range_); |
| // Otherwise, return to the fast path. |
| __ jmp(&got_smi_index_); |
| |
| // Call runtime. We get here when the receiver is a string and the |
| // index is a number, but the code of getting the actual character |
| // is too complex (e.g., when the string needs to be flattened). |
| __ bind(&call_runtime_); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| __ Move(result_, r0); |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharFromCodeGenerator |
| |
| void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| __ tst(code_, |
| Operand(kSmiTagMask | |
| ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| __ b(nz, &slow_case_); |
| |
| __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| // At this point code register contains smi tagged ascii char code. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(result_, Operand(ip)); |
| __ b(eq, &slow_case_); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharFromCodeGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| |
| __ bind(&slow_case_); |
| call_helper.BeforeCall(masm); |
| __ push(code_); |
| __ CallRuntime(Runtime::kCharFromCode, 1); |
| __ Move(result_, r0); |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharAtGenerator |
| |
| void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| char_code_at_generator_.GenerateFast(masm); |
| char_from_code_generator_.GenerateFast(masm); |
| } |
| |
| |
| void StringCharAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| char_code_at_generator_.GenerateSlow(masm, call_helper); |
| char_from_code_generator_.GenerateSlow(masm, call_helper); |
| } |
| |
| |
| class StringHelper : public AllStatic { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersLong adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii); |
| |
| // Generate code for copying a large number of characters. This function |
| // is allowed to spend extra time setting up conditions to make copying |
| // faster. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags); |
| |
| |
| // Probe the symbol table for a two character string. If the string is |
| // not found by probing a jump to the label not_found is performed. This jump |
| // does not guarantee that the string is not in the symbol table. If the |
| // string is found the code falls through with the string in register r0. |
| // Contents of both c1 and c2 registers are modified. At the exit c1 is |
| // guaranteed to contain halfword with low and high bytes equal to |
| // initial contents of c1 and c2 respectively. |
| static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found); |
| |
| // Generate string hash. |
| static void GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashGetHash(MacroAssembler* masm, |
| Register hash); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| Label done; |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0, RelocInfo::NONE)); |
| } |
| __ b(eq, &done); |
| |
| __ bind(&loop); |
| __ ldrb(scratch, MemOperand(src, 1, PostIndex)); |
| // Perform sub between load and dependent store to get the load time to |
| // complete. |
| __ sub(count, count, Operand(1), SetCC); |
| __ strb(scratch, MemOperand(dest, 1, PostIndex)); |
| // last iteration. |
| __ b(gt, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| enum CopyCharactersFlags { |
| COPY_ASCII = 1, |
| DEST_ALWAYS_ALIGNED = 2 |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags) { |
| bool ascii = (flags & COPY_ASCII) != 0; |
| bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
| |
| if (dest_always_aligned && FLAG_debug_code) { |
| // Check that destination is actually word aligned if the flag says |
| // that it is. |
| __ tst(dest, Operand(kPointerAlignmentMask)); |
| __ Check(eq, "Destination of copy not aligned."); |
| } |
| |
| const int kReadAlignment = 4; |
| const int kReadAlignmentMask = kReadAlignment - 1; |
| // Ensure that reading an entire aligned word containing the last character |
| // of a string will not read outside the allocated area (because we pad up |
| // to kObjectAlignment). |
| STATIC_ASSERT(kObjectAlignment >= kReadAlignment); |
| // Assumes word reads and writes are little endian. |
| // Nothing to do for zero characters. |
| Label done; |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0, RelocInfo::NONE)); |
| } |
| __ b(eq, &done); |
| |
| // Assume that you cannot read (or write) unaligned. |
| Label byte_loop; |
| // Must copy at least eight bytes, otherwise just do it one byte at a time. |
| __ cmp(count, Operand(8)); |
| __ add(count, dest, Operand(count)); |
| Register limit = count; // Read until src equals this. |
| __ b(lt, &byte_loop); |
| |
| if (!dest_always_aligned) { |
| // Align dest by byte copying. Copies between zero and three bytes. |
| __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); |
| Label dest_aligned; |
| __ b(eq, &dest_aligned); |
| __ cmp(scratch4, Operand(2)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); |
| __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); |
| __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); |
| __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); |
| __ bind(&dest_aligned); |
| } |
| |
| Label simple_loop; |
| |
| __ sub(scratch4, dest, Operand(src)); |
| __ and_(scratch4, scratch4, Operand(0x03), SetCC); |
| __ b(eq, &simple_loop); |
| // Shift register is number of bits in a source word that |
| // must be combined with bits in the next source word in order |
| // to create a destination word. |
| |
| // Complex loop for src/dst that are not aligned the same way. |
| { |
| Label loop; |
| __ mov(scratch4, Operand(scratch4, LSL, 3)); |
| Register left_shift = scratch4; |
| __ and_(src, src, Operand(~3)); // Round down to load previous word. |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| // Store the "shift" most significant bits of scratch in the least |
| // signficant bits (i.e., shift down by (32-shift)). |
| __ rsb(scratch2, left_shift, Operand(32)); |
| Register right_shift = scratch2; |
| __ mov(scratch1, Operand(scratch1, LSR, right_shift)); |
| |
| __ bind(&loop); |
| __ ldr(scratch3, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch5, limit, Operand(dest)); |
| __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| __ mov(scratch1, Operand(scratch3, LSR, right_shift)); |
| // Loop if four or more bytes left to copy. |
| // Compare to eight, because we did the subtract before increasing dst. |
| __ sub(scratch5, scratch5, Operand(8), SetCC); |
| __ b(ge, &loop); |
| } |
| // There is now between zero and three bytes left to copy (negative that |
| // number is in scratch5), and between one and three bytes already read into |
| // scratch1 (eight times that number in scratch4). We may have read past |
| // the end of the string, but because objects are aligned, we have not read |
| // past the end of the object. |
| // Find the minimum of remaining characters to move and preloaded characters |
| // and write those as bytes. |
| __ add(scratch5, scratch5, Operand(4), SetCC); |
| __ b(eq, &done); |
| __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); |
| // Move minimum of bytes read and bytes left to copy to scratch4. |
| __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); |
| // Between one and three (value in scratch5) characters already read into |
| // scratch ready to write. |
| __ cmp(scratch5, Operand(2)); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); |
| // Copy any remaining bytes. |
| __ b(&byte_loop); |
| |
| // Simple loop. |
| // Copy words from src to dst, until less than four bytes left. |
| // Both src and dest are word aligned. |
| __ bind(&simple_loop); |
| { |
| Label loop; |
| __ bind(&loop); |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch3, limit, Operand(dest)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| // Compare to 8, not 4, because we do the substraction before increasing |
| // dest. |
| __ cmp(scratch3, Operand(8)); |
| __ b(ge, &loop); |
| } |
| |
| // Copy bytes from src to dst until dst hits limit. |
| __ bind(&byte_loop); |
| __ cmp(dest, Operand(limit)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); |
| __ b(ge, &done); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ b(&byte_loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| Label not_array_index; |
| __ sub(scratch, c1, Operand(static_cast<int>('0'))); |
| __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| __ b(hi, ¬_array_index); |
| __ sub(scratch, c2, Operand(static_cast<int>('0'))); |
| __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| |
| // If check failed combine both characters into single halfword. |
| // This is required by the contract of the method: code at the |
| // not_found branch expects this combination in c1 register |
| __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); |
| __ b(ls, not_found); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| StringHelper::GenerateHashInit(masm, hash, c1); |
| StringHelper::GenerateHashAddCharacter(masm, hash, c2); |
| StringHelper::GenerateHashGetHash(masm, hash); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load symbol table |
| // Load address of first element of the symbol table. |
| Register symbol_table = c2; |
| __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
| |
| // Load undefined value |
| Register undefined = scratch4; |
| __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| __ mov(mask, Operand(mask, ASR, 1)); |
| __ sub(mask, mask, Operand(1)); |
| |
| // Calculate untagged address of the first element of the symbol table. |
| Register first_symbol_table_element = symbol_table; |
| __ add(first_symbol_table_element, symbol_table, |
| Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); |
| |
| // Registers |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // mask: capacity mask |
| // first_symbol_table_element: address of the first element of |
| // the symbol table |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes]; |
| for (int i = 0; i < kProbes; i++) { |
| Register candidate = scratch5; // Scratch register contains candidate. |
| |
| // Calculate entry in symbol table. |
| if (i > 0) { |
| __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); |
| } else { |
| __ mov(candidate, hash); |
| } |
| |
| __ and_(candidate, candidate, Operand(mask)); |
| |
| // Load the entry from the symble table. |
| STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| __ ldr(candidate, |
| MemOperand(first_symbol_table_element, |
| candidate, |
| LSL, |
| kPointerSizeLog2)); |
| |
| // If entry is undefined no string with this hash can be found. |
| __ cmp(candidate, undefined); |
| __ b(eq, not_found); |
| |
| // If length is not 2 the string is not a candidate. |
| __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); |
| __ cmp(scratch, Operand(Smi::FromInt(2))); |
| __ b(ne, &next_probe[i]); |
| |
| // Check that the candidate is a non-external ascii string. |
| __ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, |
| &next_probe[i]); |
| |
| // Check if the two characters match. |
| // Assumes that word load is little endian. |
| __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ cmp(chars, scratch); |
| __ b(eq, &found_in_symbol_table); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = scratch; |
| __ bind(&found_in_symbol_table); |
| __ Move(r0, result); |
| } |
| |
| |
| void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash = character + (character << 10); |
| __ add(hash, character, Operand(character, LSL, 10)); |
| // hash ^= hash >> 6; |
| __ eor(hash, hash, Operand(hash, ASR, 6)); |
| } |
| |
| |
| void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash += character; |
| __ add(hash, hash, Operand(character)); |
| // hash += hash << 10; |
| __ add(hash, hash, Operand(hash, LSL, 10)); |
| // hash ^= hash >> 6; |
| __ eor(hash, hash, Operand(hash, ASR, 6)); |
| } |
| |
| |
| void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash) { |
| // hash += hash << 3; |
| __ add(hash, hash, Operand(hash, LSL, 3)); |
| // hash ^= hash >> 11; |
| __ eor(hash, hash, Operand(hash, ASR, 11)); |
| // hash += hash << 15; |
| __ add(hash, hash, Operand(hash, LSL, 15), SetCC); |
| |
| // if (hash == 0) hash = 27; |
| __ mov(hash, Operand(27), LeaveCC, nz); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // lr: return address |
| // sp[0]: to |
| // sp[4]: from |
| // sp[8]: string |
| |
| // This stub is called from the native-call %_SubString(...), so |
| // nothing can be assumed about the arguments. It is tested that: |
| // "string" is a sequential string, |
| // both "from" and "to" are smis, and |
| // 0 <= from <= to <= string.length. |
| // If any of these assumptions fail, we call the runtime system. |
| |
| static const int kToOffset = 0 * kPointerSize; |
| static const int kFromOffset = 1 * kPointerSize; |
| static const int kStringOffset = 2 * kPointerSize; |
| |
| |
| // Check bounds and smi-ness. |
| Register to = r6; |
| Register from = r7; |
| __ Ldrd(to, from, MemOperand(sp, kToOffset)); |
| STATIC_ASSERT(kFromOffset == kToOffset + 4); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| // I.e., arithmetic shift right by one un-smi-tags. |
| __ mov(r2, Operand(to, ASR, 1), SetCC); |
| __ mov(r3, Operand(from, ASR, 1), SetCC, cc); |
| // If either to or from had the smi tag bit set, then carry is set now. |
| __ b(cs, &runtime); // Either "from" or "to" is not a smi. |
| __ b(mi, &runtime); // From is negative. |
| |
| // Both to and from are smis. |
| |
| __ sub(r2, r2, Operand(r3), SetCC); |
| __ b(mi, &runtime); // Fail if from > to. |
| // Special handling of sub-strings of length 1 and 2. One character strings |
| // are handled in the runtime system (looked up in the single character |
| // cache). Two character strings are looked for in the symbol cache. |
| __ cmp(r2, Operand(2)); |
| __ b(lt, &runtime); |
| |
| // r2: length |
| // r3: from index (untaged smi) |
| // r6 (a.k.a. to): to (smi) |
| // r7 (a.k.a. from): from offset (smi) |
| |
| // Make sure first argument is a sequential (or flat) string. |
| __ ldr(r5, MemOperand(sp, kStringOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(r5, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(r5, r1); |
| __ b(NegateCondition(is_string), &runtime); |
| |
| // r1: instance type |
| // r2: length |
| // r3: from index (untagged smi) |
| // r5: string |
| // r6 (a.k.a. to): to (smi) |
| // r7 (a.k.a. from): from offset (smi) |
| Label seq_string; |
| __ and_(r4, r1, Operand(kStringRepresentationMask)); |
| STATIC_ASSERT(kSeqStringTag < kConsStringTag); |
| STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| __ cmp(r4, Operand(kConsStringTag)); |
| __ b(gt, &runtime); // External strings go to runtime. |
| __ b(lt, &seq_string); // Sequential strings are handled directly. |
| |
| // Cons string. Try to recurse (once) on the first substring. |
| // (This adds a little more generality than necessary to handle flattened |
| // cons strings, but not much). |
| __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); |
| __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ tst(r1, Operand(kStringRepresentationMask)); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ b(ne, &runtime); // Cons and External strings go to runtime. |
| |
| // Definitly a sequential string. |
| __ bind(&seq_string); |
| |
| // r1: instance type. |
| // r2: length |
| // r3: from index (untaged smi) |
| // r5: string |
| // r6 (a.k.a. to): to (smi) |
| // r7 (a.k.a. from): from offset (smi) |
| __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); |
| __ cmp(r4, Operand(to)); |
| __ b(lt, &runtime); // Fail if to > length. |
| to = no_reg; |
| |
| // r1: instance type. |
| // r2: result string length. |
| // r3: from index (untaged smi) |
| // r5: string. |
| // r7 (a.k.a. from): from offset (smi) |
| // Check for flat ascii string. |
| Label non_ascii_flat; |
| __ tst(r1, Operand(kStringEncodingMask)); |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| __ b(eq, &non_ascii_flat); |
| |
| Label result_longer_than_two; |
| __ cmp(r2, Operand(2)); |
| __ b(gt, &result_longer_than_two); |
| |
| // Sub string of length 2 requested. |
| // Get the two characters forming the sub string. |
| __ add(r5, r5, Operand(r3)); |
| __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize)); |
| __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1)); |
| |
| // Try to lookup two character string in symbol table. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // r2: result string length. |
| // r3: two characters combined into halfword in little endian byte order. |
| __ bind(&make_two_character_string); |
| __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime); |
| __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&result_longer_than_two); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // r7 (a.k.a. from): from offset (smi) |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(r5, r5, Operand(from, ASR, 1)); |
| |
| // r0: result string. |
| // r1: first character of result string. |
| // r2: result string length. |
| // r5: first character of sub string to copy. |
| STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| COPY_ASCII | DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_flat); |
| // r2: result string length. |
| // r5: string. |
| // r7 (a.k.a. from): from offset (smi) |
| // Check for flat two byte string. |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // As "from" is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| __ add(r5, r5, Operand(from)); |
| from = no_reg; |
| |
| // r0: result string. |
| // r1: first character of result. |
| // r2: result length. |
| // r5: first character of string to copy. |
| STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| StringHelper::GenerateCopyCharactersLong( |
| masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4) { |
| Label compare_lengths; |
| // Find minimum length and length difference. |
| __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| __ sub(scratch3, scratch1, Operand(scratch2), SetCC); |
| Register length_delta = scratch3; |
| __ mov(scratch1, scratch2, LeaveCC, gt); |
| Register min_length = scratch1; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(min_length, Operand(min_length)); |
| __ b(eq, &compare_lengths); |
| |
| // Untag smi. |
| __ mov(min_length, Operand(min_length, ASR, kSmiTagSize)); |
| |
| // Setup registers so that we only need to increment one register |
| // in the loop. |
| __ add(scratch2, min_length, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(left, left, Operand(scratch2)); |
| __ add(right, right, Operand(scratch2)); |
| // Registers left and right points to the min_length character of strings. |
| __ rsb(min_length, min_length, Operand(-1)); |
| Register index = min_length; |
| // Index starts at -min_length. |
| |
| { |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| // Compare characters. |
| __ add(index, index, Operand(1), SetCC); |
| __ ldrb(scratch2, MemOperand(left, index), ne); |
| __ ldrb(scratch4, MemOperand(right, index), ne); |
| // Skip to compare lengths with eq condition true. |
| __ b(eq, &compare_lengths); |
| __ cmp(scratch2, scratch4); |
| __ b(eq, &loop); |
| // Fallthrough with eq condition false. |
| } |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| // Use zero length_delta as result. |
| __ mov(r0, Operand(length_delta), SetCC, eq); |
| // Fall through to here if characters compare not-equal. |
| __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); |
| __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); |
| __ Ret(); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // sp[0]: right string |
| // sp[4]: left string |
| __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. |
| |
| Label not_same; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_same); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(r0, Operand(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); |
| |
| // Compare flat ascii strings natively. Remove arguments from stack first. |
| __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime; |
| // Stack on entry: |
| // sp[0]: second argument. |
| // sp[4]: first argument. |
| |
| // Load the two arguments. |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (string_check_) { |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfEitherSmi(r0, r1, &string_add_runtime); |
| // Load instance types. |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kStringTag == 0); |
| // If either is not a string, go to runtime. |
| __ tst(r4, Operand(kIsNotStringMask)); |
| __ tst(r5, Operand(kIsNotStringMask), eq); |
| __ b(ne, &string_add_runtime); |
| } |
| |
| // Both arguments are strings. |
| // r0: first string |
| // r1: second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| { |
| Label strings_not_empty; |
| // Check if either of the strings are empty. In that case return the other. |
| __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); |
| __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. |
| __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. |
| STATIC_ASSERT(kSmiTag == 0); |
| // Else test if second string is empty. |
| __ cmp(r3, Operand(Smi::FromInt(0)), ne); |
| __ b(ne, &strings_not_empty); // If either string was empty, return r0. |
| |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&strings_not_empty); |
| } |
| |
| __ mov(r2, Operand(r2, ASR, kSmiTagSize)); |
| __ mov(r3, Operand(r3, ASR, kSmiTagSize)); |
| // Both strings are non-empty. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| // Adding two lengths can't overflow. |
| STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); |
| __ add(r6, r2, Operand(r3)); |
| // Use the runtime system when adding two one character strings, as it |
| // contains optimizations for this specific case using the symbol table. |
| __ cmp(r6, Operand(2)); |
| __ b(ne, &longer_than_two); |
| |
| // Check that both strings are non-external ascii strings. |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, |
| &string_add_runtime); |
| |
| // Get the two characters forming the sub string. |
| __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&make_two_character_string); |
| // Resulting string has length 2 and first chars of two strings |
| // are combined into single halfword in r2 register. |
| // So we can fill resulting string without two loops by a single |
| // halfword store instruction (which assumes that processor is |
| // in a little endian mode) |
| __ mov(r6, Operand(2)); |
| __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime); |
| __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ cmp(r6, Operand(String::kMinNonFlatLength)); |
| __ b(lt, &string_add_flat_result); |
| // Handle exceptionally long strings in the runtime system. |
| STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
| ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
| // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
| __ cmp(r6, Operand(String::kMaxLength + 1)); |
| __ b(hs, &string_add_runtime); |
| |
| // If result is not supposed to be flat, allocate a cons string object. |
| // If both strings are ascii the result is an ascii cons string. |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| Label non_ascii, allocated, ascii_data; |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ tst(r5, Operand(kStringEncodingMask), ne); |
| __ b(eq, &non_ascii); |
| |
| // Allocate an ASCII cons string. |
| __ bind(&ascii_data); |
| __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); |
| __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii); |
| // At least one of the strings is two-byte. Check whether it happens |
| // to contain only ascii characters. |
| // r4: first instance type. |
| // r5: second instance type. |
| __ tst(r4, Operand(kAsciiDataHintMask)); |
| __ tst(r5, Operand(kAsciiDataHintMask), ne); |
| __ b(ne, &ascii_data); |
| __ eor(r4, r4, Operand(r5)); |
| STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| __ b(eq, &ascii_data); |
| |
| // Allocate a two byte cons string. |
| __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ jmp(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are |
| // sequential and that they have the same encoding. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| // r6: sum of lengths. |
| __ bind(&string_add_flat_result); |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| // Check that both strings are sequential. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(r4, Operand(kStringRepresentationMask)); |
| __ tst(r5, Operand(kStringRepresentationMask), eq); |
| __ b(ne, &string_add_runtime); |
| // Now check if both strings have the same encoding (ASCII/Two-byte). |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of lengths.. |
| Label non_ascii_string_add_flat_result; |
| ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
| __ eor(r7, r4, Operand(r5)); |
| __ tst(r7, Operand(kStringEncodingMask)); |
| __ b(ne, &string_add_runtime); |
| // And see if it's ASCII or two-byte. |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ b(eq, &non_ascii_string_add_flat_result); |
| |
| // Both strings are sequential ASCII strings. We also know that they are |
| // short (since the sum of the lengths is less than kMinNonFlatLength). |
| // r6: length of resulting flat string |
| __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true); |
| |
| // Load second argument and locate first character. |
| __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_string_add_flat_result); |
| // Both strings are sequential two byte strings. |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of length of strings. |
| __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r7: result string. |
| |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false); |
| |
| // Locate first character of second argument. |
| __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result (after copy of first string). |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); |
| |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |