| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| #include <math.h> |
| #include <cstdarg> |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "disasm.h" |
| #include "assembler.h" |
| #include "arm/constants-arm.h" |
| #include "arm/simulator-arm.h" |
| |
| #if !defined(__arm__) |
| |
| // Only build the simulator if not compiling for real ARM hardware. |
| namespace assembler { |
| namespace arm { |
| |
| using ::v8::internal::Object; |
| using ::v8::internal::PrintF; |
| using ::v8::internal::OS; |
| using ::v8::internal::ReadLine; |
| using ::v8::internal::DeleteArray; |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // ::v8::internal::OS in the same way as SNPrintF is that the |
| // Windows C Run-Time Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The Debugger class is used by the simulator while debugging simulated ARM |
| // code. |
| class Debugger { |
| public: |
| explicit Debugger(Simulator* sim); |
| ~Debugger(); |
| |
| void Stop(Instr* instr); |
| void Debug(); |
| |
| private: |
| static const instr_t kBreakpointInstr = |
| ((AL << 28) | (7 << 25) | (1 << 24) | break_point); |
| static const instr_t kNopInstr = |
| ((AL << 28) | (13 << 21)); |
| |
| Simulator* sim_; |
| |
| int32_t GetRegisterValue(int regnum); |
| bool GetValue(const char* desc, int32_t* value); |
| bool GetVFPSingleValue(const char* desc, float* value); |
| bool GetVFPDoubleValue(const char* desc, double* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instr* breakpc); |
| bool DeleteBreakpoint(Instr* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| |
| Debugger::Debugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| |
| Debugger::~Debugger() { |
| } |
| |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| static FILE* coverage_log = NULL; |
| |
| |
| static void InitializeCoverage() { |
| char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
| if (file_name != NULL) { |
| coverage_log = fopen(file_name, "aw+"); |
| } |
| } |
| |
| |
| void Debugger::Stop(Instr* instr) { |
| char* str = reinterpret_cast<char*>(instr->InstructionBits() & 0x0fffffff); |
| if (strlen(str) > 0) { |
| if (coverage_log != NULL) { |
| fprintf(coverage_log, "%s\n", str); |
| fflush(coverage_log); |
| } |
| instr->SetInstructionBits(0xe1a00000); // Overwrite with nop. |
| } |
| sim_->set_pc(sim_->get_pc() + Instr::kInstrSize); |
| } |
| |
| #else // ndef GENERATED_CODE_COVERAGE |
| |
| static void InitializeCoverage() { |
| } |
| |
| |
| void Debugger::Stop(Instr* instr) { |
| const char* str = (const char*)(instr->InstructionBits() & 0x0fffffff); |
| PrintF("Simulator hit %s\n", str); |
| sim_->set_pc(sim_->get_pc() + Instr::kInstrSize); |
| Debug(); |
| } |
| #endif |
| |
| |
| int32_t Debugger::GetRegisterValue(int regnum) { |
| if (regnum == kPCRegister) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_register(regnum); |
| } |
| } |
| |
| |
| bool Debugger::GetValue(const char* desc, int32_t* value) { |
| int regnum = Registers::Number(desc); |
| if (regnum != kNoRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else { |
| if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
| } else { |
| return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool Debugger::GetVFPSingleValue(const char* desc, float* value) { |
| bool is_double; |
| int regnum = VFPRegisters::Number(desc, &is_double); |
| if (regnum != kNoRegister && !is_double) { |
| *value = sim_->get_float_from_s_register(regnum); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool Debugger::GetVFPDoubleValue(const char* desc, double* value) { |
| bool is_double; |
| int regnum = VFPRegisters::Number(desc, &is_double); |
| if (regnum != kNoRegister && is_double) { |
| *value = sim_->get_double_from_d_register(regnum); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool Debugger::SetBreakpoint(Instr* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != NULL) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool Debugger::DeleteBreakpoint(Instr* breakpc) { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = NULL; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void Debugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void Debugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| } |
| } |
| |
| |
| void Debugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = { cmd, arg1, arg2 }; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte*>(sim_->get_pc())); |
| PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == NULL) { |
| break; |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| float svalue; |
| double dvalue; |
| if (strcmp(arg1, "all") == 0) { |
| for (int i = 0; i < kNumRegisters; i++) { |
| value = GetRegisterValue(i); |
| PrintF("%3s: 0x%08x %10d\n", Registers::Name(i), value, value); |
| } |
| } else { |
| if (GetValue(arg1, &value)) { |
| PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| } else if (GetVFPSingleValue(arg1, &svalue)) { |
| PrintF("%s: %f \n", arg1, svalue); |
| } else if (GetVFPDoubleValue(arg1, &dvalue)) { |
| PrintF("%s: %lf \n", arg1, dvalue); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| PrintF("print <register>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) |
| || (strcmp(cmd, "printobject") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| Object* obj = reinterpret_cast<Object*>(value); |
| PrintF("%s: \n", arg1); |
| #ifdef DEBUG |
| obj->PrintLn(); |
| #else |
| obj->ShortPrint(); |
| PrintF("\n"); |
| #endif |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
| int32_t* cur = NULL; |
| int32_t* end = NULL; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
| } else { // "mem" |
| int32_t value; |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<int32_t*>(value); |
| next_arg++; |
| } |
| |
| int32_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else if (argc == next_arg + 1) { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| |
| while (cur < end) { |
| PrintF(" 0x%08x: 0x%08x %10d\n", cur, *cur, *cur); |
| cur++; |
| } |
| } else if (strcmp(cmd, "disasm") == 0) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte* cur = NULL; |
| byte* end = NULL; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| end = cur + (10 * Instr::kInstrSize); |
| } else if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(value); |
| // no length parameter passed, assume 10 instructions |
| end = cur + (10 * Instr::kInstrSize); |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte*>(value1); |
| end = cur + (value2 * Instr::kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08x %s\n", cur, buffer.start()); |
| cur += Instr::kInstrSize; |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::internal::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instr*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(NULL)) { |
| PrintF("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| PrintF("N flag: %d; ", sim_->n_flag_); |
| PrintF("Z flag: %d; ", sim_->z_flag_); |
| PrintF("C flag: %d; ", sim_->c_flag_); |
| PrintF("V flag: %d\n", sim_->v_flag_); |
| PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); |
| PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); |
| PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); |
| PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); |
| PrintF("INEXACT flag: %d; ", sim_->inexact_vfp_flag_); |
| } else if (strcmp(cmd, "unstop") == 0) { |
| intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
| Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
| if (stop_instr->ConditionField() == special_condition) { |
| stop_instr->SetInstructionBits(kNopInstr); |
| } else { |
| PrintF("Not at debugger stop."); |
| } |
| } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { |
| ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; |
| PrintF("Trace of executed instructions is %s\n", |
| ::v8::internal::FLAG_trace_sim ? "on" : "off"); |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi\n"); |
| PrintF(" step one instruction (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to print all registers\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("flags\n"); |
| PrintF(" print flags\n"); |
| PrintF("stack [<words>]\n"); |
| PrintF(" dump stack content, default dump 10 words)\n"); |
| PrintF("mem <address> [<words>]\n"); |
| PrintF(" dump memory content, default dump 10 words)\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [[<address>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions from pc\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("unstop\n"); |
| PrintF(" ignore the stop instruction at the current location"); |
| PrintF(" from now on\n"); |
| PrintF("trace (alias 't')\n"); |
| PrintF(" toogle the tracing of all executed statements\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| DeleteArray(line); |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| static bool ICacheMatch(void* one, void* two) { |
| ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); |
| ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); |
| return one == two; |
| } |
| |
| |
| static uint32_t ICacheHash(void* key) { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| } |
| |
| |
| static bool AllOnOnePage(uintptr_t start, int size) { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| |
| void Simulator::FlushICache(void* start_addr, size_t size) { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePage(start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| ASSERT_EQ(0, start & CachePage::kPageMask); |
| offset = 0; |
| } |
| if (size != 0) { |
| FlushOnePage(start, size); |
| } |
| } |
| |
| |
| CachePage* Simulator::GetCachePage(void* page) { |
| v8::internal::HashMap::Entry* entry = i_cache_->Lookup(page, |
| ICacheHash(page), |
| true); |
| if (entry->value == NULL) { |
| CachePage* new_page = new CachePage(); |
| entry->value = new_page; |
| } |
| return reinterpret_cast<CachePage*>(entry->value); |
| } |
| |
| |
| // Flush from start up to and not including start + size. |
| void Simulator::FlushOnePage(intptr_t start, int size) { |
| ASSERT(size <= CachePage::kPageSize); |
| ASSERT(AllOnOnePage(start, size - 1)); |
| ASSERT((start & CachePage::kLineMask) == 0); |
| ASSERT((size & CachePage::kLineMask) == 0); |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(page); |
| char* valid_bytemap = cache_page->ValidityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| |
| void Simulator::CheckICache(Instr* instr) { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(page); |
| char* cache_valid_byte = cache_page->ValidityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| CHECK(memcmp(reinterpret_cast<void*>(instr), |
| cache_page->CachedData(offset), |
| Instr::kInstrSize) == 0); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| |
| // Create one simulator per thread and keep it in thread local storage. |
| static v8::internal::Thread::LocalStorageKey simulator_key; |
| |
| |
| bool Simulator::initialized_ = false; |
| |
| |
| void Simulator::Initialize() { |
| if (initialized_) return; |
| simulator_key = v8::internal::Thread::CreateThreadLocalKey(); |
| initialized_ = true; |
| ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); |
| } |
| |
| |
| v8::internal::HashMap* Simulator::i_cache_ = NULL; |
| |
| |
| Simulator::Simulator() { |
| if (i_cache_ == NULL) { |
| i_cache_ = new v8::internal::HashMap(&ICacheMatch); |
| } |
| Initialize(); |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack |
| stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = NULL; |
| break_instr_ = 0; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < num_registers; i++) { |
| registers_[i] = 0; |
| } |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| // Initializing VFP registers. |
| // All registers are initialized to zero to start with |
| // even though s_registers_ & d_registers_ share the same |
| // physical registers in the target. |
| for (int i = 0; i < num_s_registers; i++) { |
| vfp_register[i] = 0; |
| } |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| |
| inv_op_vfp_flag_ = false; |
| div_zero_vfp_flag_ = false; |
| overflow_vfp_flag_ = false; |
| underflow_vfp_flag_ = false; |
| inexact_vfp_flag_ = false; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_lr; |
| registers_[lr] = bad_lr; |
| InitializeCoverage(); |
| } |
| |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a swi (software-interrupt) instruction that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the swi instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| Redirection(void* external_function, bool fp_return) |
| : external_function_(external_function), |
| swi_instruction_((AL << 28) | (0xf << 24) | call_rt_redirected), |
| fp_return_(fp_return), |
| next_(list_) { |
| Simulator::current()-> |
| FlushICache(reinterpret_cast<void*>(&swi_instruction_), |
| Instr::kInstrSize); |
| list_ = this; |
| } |
| |
| void* address_of_swi_instruction() { |
| return reinterpret_cast<void*>(&swi_instruction_); |
| } |
| |
| void* external_function() { return external_function_; } |
| bool fp_return() { return fp_return_; } |
| |
| static Redirection* Get(void* external_function, bool fp_return) { |
| Redirection* current; |
| for (current = list_; current != NULL; current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| return new Redirection(external_function, fp_return); |
| } |
| |
| static Redirection* FromSwiInstruction(Instr* swi_instruction) { |
| char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
| char* addr_of_redirection = |
| addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| private: |
| void* external_function_; |
| uint32_t swi_instruction_; |
| bool fp_return_; |
| Redirection* next_; |
| static Redirection* list_; |
| }; |
| |
| |
| Redirection* Redirection::list_ = NULL; |
| |
| |
| void* Simulator::RedirectExternalReference(void* external_function, |
| bool fp_return) { |
| Redirection* redirection = Redirection::Get(external_function, fp_return); |
| return redirection->address_of_swi_instruction(); |
| } |
| |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current() { |
| Initialize(); |
| Simulator* sim = reinterpret_cast<Simulator*>( |
| v8::internal::Thread::GetThreadLocal(simulator_key)); |
| if (sim == NULL) { |
| // TODO(146): delete the simulator object when a thread goes away. |
| sim = new Simulator(); |
| v8::internal::Thread::SetThreadLocal(simulator_key, sim); |
| } |
| return sim; |
| } |
| |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(int reg, int32_t value) { |
| ASSERT((reg >= 0) && (reg < num_registers)); |
| if (reg == pc) { |
| pc_modified_ = true; |
| } |
| registers_[reg] = value; |
| } |
| |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(int reg) const { |
| ASSERT((reg >= 0) && (reg < num_registers)); |
| // Stupid code added to avoid bug in GCC. |
| // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| if (reg >= num_registers) return 0; |
| // End stupid code. |
| return registers_[reg] + ((reg == pc) ? Instr::kPCReadOffset : 0); |
| } |
| |
| |
| void Simulator::set_dw_register(int dreg, const int* dbl) { |
| ASSERT((dreg >= 0) && (dreg < num_d_registers)); |
| registers_[dreg] = dbl[0]; |
| registers_[dreg + 1] = dbl[1]; |
| } |
| |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { |
| return registers_[pc]; |
| } |
| |
| |
| // Getting from and setting into VFP registers. |
| void Simulator::set_s_register(int sreg, unsigned int value) { |
| ASSERT((sreg >= 0) && (sreg < num_s_registers)); |
| vfp_register[sreg] = value; |
| } |
| |
| |
| unsigned int Simulator::get_s_register(int sreg) const { |
| ASSERT((sreg >= 0) && (sreg < num_s_registers)); |
| return vfp_register[sreg]; |
| } |
| |
| |
| void Simulator::set_s_register_from_float(int sreg, const float flt) { |
| ASSERT((sreg >= 0) && (sreg < num_s_registers)); |
| // Read the bits from the single precision floating point value |
| // into the unsigned integer element of vfp_register[] given by index=sreg. |
| char buffer[sizeof(vfp_register[0])]; |
| memcpy(buffer, &flt, sizeof(vfp_register[0])); |
| memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0])); |
| } |
| |
| |
| void Simulator::set_s_register_from_sinteger(int sreg, const int sint) { |
| ASSERT((sreg >= 0) && (sreg < num_s_registers)); |
| // Read the bits from the integer value into the unsigned integer element of |
| // vfp_register[] given by index=sreg. |
| char buffer[sizeof(vfp_register[0])]; |
| memcpy(buffer, &sint, sizeof(vfp_register[0])); |
| memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0])); |
| } |
| |
| |
| void Simulator::set_d_register_from_double(int dreg, const double& dbl) { |
| ASSERT((dreg >= 0) && (dreg < num_d_registers)); |
| // Read the bits from the double precision floating point value into the two |
| // consecutive unsigned integer elements of vfp_register[] given by index |
| // 2*sreg and 2*sreg+1. |
| char buffer[2 * sizeof(vfp_register[0])]; |
| memcpy(buffer, &dbl, 2 * sizeof(vfp_register[0])); |
| #ifndef BIG_ENDIAN_FLOATING_POINT |
| memcpy(&vfp_register[dreg * 2], buffer, 2 * sizeof(vfp_register[0])); |
| #else |
| memcpy(&vfp_register[dreg * 2], &buffer[4], sizeof(vfp_register[0])); |
| memcpy(&vfp_register[dreg * 2 + 1], &buffer[0], sizeof(vfp_register[0])); |
| #endif |
| } |
| |
| |
| float Simulator::get_float_from_s_register(int sreg) { |
| ASSERT((sreg >= 0) && (sreg < num_s_registers)); |
| |
| float sm_val = 0.0; |
| // Read the bits from the unsigned integer vfp_register[] array |
| // into the single precision floating point value and return it. |
| char buffer[sizeof(vfp_register[0])]; |
| memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0])); |
| memcpy(&sm_val, buffer, sizeof(vfp_register[0])); |
| return(sm_val); |
| } |
| |
| |
| int Simulator::get_sinteger_from_s_register(int sreg) { |
| ASSERT((sreg >= 0) && (sreg < num_s_registers)); |
| |
| int sm_val = 0; |
| // Read the bits from the unsigned integer vfp_register[] array |
| // into the single precision floating point value and return it. |
| char buffer[sizeof(vfp_register[0])]; |
| memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0])); |
| memcpy(&sm_val, buffer, sizeof(vfp_register[0])); |
| return(sm_val); |
| } |
| |
| |
| double Simulator::get_double_from_d_register(int dreg) { |
| ASSERT((dreg >= 0) && (dreg < num_d_registers)); |
| |
| double dm_val = 0.0; |
| // Read the bits from the unsigned integer vfp_register[] array |
| // into the double precision floating point value and return it. |
| char buffer[2 * sizeof(vfp_register[0])]; |
| #ifdef BIG_ENDIAN_FLOATING_POINT |
| memcpy(&buffer[0], &vfp_register[2 * dreg + 1], sizeof(vfp_register[0])); |
| memcpy(&buffer[4], &vfp_register[2 * dreg], sizeof(vfp_register[0])); |
| #else |
| memcpy(buffer, &vfp_register[2 * dreg], 2 * sizeof(vfp_register[0])); |
| #endif |
| memcpy(&dm_val, buffer, 2 * sizeof(vfp_register[0])); |
| return(dm_val); |
| } |
| |
| |
| // For use in calls that take two double values, constructed from r0, r1, r2 |
| // and r3. |
| void Simulator::GetFpArgs(double* x, double* y) { |
| // We use a char buffer to get around the strict-aliasing rules which |
| // otherwise allow the compiler to optimize away the copy. |
| char buffer[2 * sizeof(registers_[0])]; |
| // Registers 0 and 1 -> x. |
| memcpy(buffer, registers_, sizeof(buffer)); |
| memcpy(x, buffer, sizeof(buffer)); |
| // Registers 2 and 3 -> y. |
| memcpy(buffer, registers_ + 2, sizeof(buffer)); |
| memcpy(y, buffer, sizeof(buffer)); |
| } |
| |
| |
| void Simulator::SetFpResult(const double& result) { |
| char buffer[2 * sizeof(registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // result -> registers 0 and 1. |
| memcpy(registers_, buffer, sizeof(buffer)); |
| } |
| |
| |
| void Simulator::TrashCallerSaveRegisters() { |
| // We don't trash the registers with the return value. |
| registers_[2] = 0x50Bad4U; |
| registers_[3] = 0x50Bad4U; |
| registers_[12] = 0x50Bad4U; |
| } |
| |
| // Some Operating Systems allow unaligned access on ARMv7 targets. We |
| // assume that unaligned accesses are not allowed unless the v8 build system |
| // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero. |
| // The following statements below describes the behavior of the ARM CPUs |
| // that don't support unaligned access. |
| // Some ARM platforms raise an interrupt on detecting unaligned access. |
| // On others it does a funky rotation thing. For now we |
| // simply disallow unaligned reads. Note that simulator runs have the runtime |
| // system running directly on the host system and only generated code is |
| // executed in the simulator. Since the host is typically IA32 we will not |
| // get the correct ARM-like behaviour on unaligned accesses for those ARM |
| // targets that don't support unaligned loads and stores. |
| |
| |
| int Simulator::ReadW(int32_t addr, Instr* instr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| #else |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
| UNIMPLEMENTED(); |
| return 0; |
| #endif |
| } |
| |
| |
| void Simulator::WriteW(int32_t addr, int value, Instr* instr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return; |
| #else |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| UNIMPLEMENTED(); |
| #endif |
| } |
| |
| |
| uint16_t Simulator::ReadHU(int32_t addr, Instr* instr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| #else |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
| UNIMPLEMENTED(); |
| return 0; |
| #endif |
| } |
| |
| |
| int16_t Simulator::ReadH(int32_t addr, Instr* instr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| #else |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned signed halfword read at 0x%08x\n", addr); |
| UNIMPLEMENTED(); |
| return 0; |
| #endif |
| } |
| |
| |
| void Simulator::WriteH(int32_t addr, uint16_t value, Instr* instr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| #else |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| UNIMPLEMENTED(); |
| #endif |
| } |
| |
| |
| void Simulator::WriteH(int32_t addr, int16_t value, Instr* instr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| return; |
| #else |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| UNIMPLEMENTED(); |
| #endif |
| } |
| |
| |
| uint8_t Simulator::ReadBU(int32_t addr) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| int8_t Simulator::ReadB(int32_t addr) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| void Simulator::WriteB(int32_t addr, uint8_t value) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| void Simulator::WriteB(int32_t addr, int8_t value) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| int32_t* Simulator::ReadDW(int32_t addr) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| return ptr; |
| #else |
| if ((addr & 3) == 0) { |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| return ptr; |
| } |
| PrintF("Unaligned read at 0x%08x\n", addr); |
| UNIMPLEMENTED(); |
| return 0; |
| #endif |
| } |
| |
| |
| void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { |
| #if V8_TARGET_CAN_READ_UNALIGNED |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| *ptr++ = value1; |
| *ptr = value2; |
| return; |
| #else |
| if ((addr & 3) == 0) { |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| *ptr++ = value1; |
| *ptr = value2; |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x\n", addr); |
| UNIMPLEMENTED(); |
| #endif |
| } |
| |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit() const { |
| // Leave a safety margin of 256 bytes to prevent overrunning the stack when |
| // pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + 256; |
| } |
| |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instr* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", |
| instr, format); |
| UNIMPLEMENTED(); |
| } |
| |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| bool Simulator::ConditionallyExecute(Instr* instr) { |
| switch (instr->ConditionField()) { |
| case EQ: return z_flag_; |
| case NE: return !z_flag_; |
| case CS: return c_flag_; |
| case CC: return !c_flag_; |
| case MI: return n_flag_; |
| case PL: return !n_flag_; |
| case VS: return v_flag_; |
| case VC: return !v_flag_; |
| case HI: return c_flag_ && !z_flag_; |
| case LS: return !c_flag_ || z_flag_; |
| case GE: return n_flag_ == v_flag_; |
| case LT: return n_flag_ != v_flag_; |
| case GT: return !z_flag_ && (n_flag_ == v_flag_); |
| case LE: return z_flag_ || (n_flag_ != v_flag_); |
| case AL: return true; |
| default: UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| |
| // Calculate and set the Negative and Zero flags. |
| void Simulator::SetNZFlags(int32_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| |
| // Set the Carry flag. |
| void Simulator::SetCFlag(bool val) { |
| c_flag_ = val; |
| } |
| |
| |
| // Set the oVerflow flag. |
| void Simulator::SetVFlag(bool val) { |
| v_flag_ = val; |
| } |
| |
| |
| // Calculate C flag value for additions. |
| bool Simulator::CarryFrom(int32_t left, int32_t right) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| uint32_t urest = 0xffffffffU - uleft; |
| |
| return (uright > urest); |
| } |
| |
| |
| // Calculate C flag value for subtractions. |
| bool Simulator::BorrowFrom(int32_t left, int32_t right) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| |
| return (uright > uleft); |
| } |
| |
| |
| // Calculate V flag value for additions and subtractions. |
| bool Simulator::OverflowFrom(int32_t alu_out, |
| int32_t left, int32_t right, bool addition) { |
| bool overflow; |
| if (addition) { |
| // operands have the same sign |
| overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| // and operands and result have different sign |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } else { |
| // operands have different signs |
| overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| // and first operand and result have different signs |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } |
| return overflow; |
| } |
| |
| |
| // Support for VFP comparisons. |
| void Simulator::Compute_FPSCR_Flags(double val1, double val2) { |
| if (isnan(val1) || isnan(val2)) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = true; |
| // All non-NaN cases. |
| } else if (val1 == val2) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = true; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } else if (val1 < val2) { |
| n_flag_FPSCR_ = true; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| } else { |
| // Case when (val1 > val2). |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } |
| } |
| |
| |
| void Simulator::Copy_FPSCR_to_APSR() { |
| n_flag_ = n_flag_FPSCR_; |
| z_flag_ = z_flag_FPSCR_; |
| c_flag_ = c_flag_FPSCR_; |
| v_flag_ = v_flag_FPSCR_; |
| } |
| |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with register. |
| int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) { |
| Shift shift = instr->ShiftField(); |
| int shift_amount = instr->ShiftAmountField(); |
| int32_t result = get_register(instr->RmField()); |
| if (instr->Bit(4) == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| UNIMPLEMENTED(); |
| return result; |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| if (result < 0) { |
| result = 0xffffffff; |
| *carry_out = true; |
| } else { |
| result = 0; |
| *carry_out = false; |
| } |
| } else { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| result = 0; |
| *carry_out = c_flag_; |
| } else { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } |
| break; |
| } |
| |
| case ROR: { |
| UNIMPLEMENTED(); |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // by register |
| int rs = instr->RsField(); |
| shift_amount = get_register(rs) &0xff; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } else { |
| ASSERT(shift_amount >= 32); |
| if (result < 0) { |
| *carry_out = true; |
| result = 0xffffffff; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } else if (shift_amount == 32) { |
| *carry_out = (result & 1) == 1; |
| result = 0; |
| } else { |
| ASSERT(shift_amount > 32); |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } else if (shift_amount == 32) { |
| *carry_out = (result < 0); |
| result = 0; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case ROR: { |
| UNIMPLEMENTED(); |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with immediate. |
| int32_t Simulator::GetImm(Instr* instr, bool* carry_out) { |
| int rotate = instr->RotateField() * 2; |
| int immed8 = instr->Immed8Field(); |
| int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); |
| *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| return imm; |
| } |
| |
| |
| static int count_bits(int bit_vector) { |
| int count = 0; |
| while (bit_vector != 0) { |
| if ((bit_vector & 1) != 0) { |
| count++; |
| } |
| bit_vector >>= 1; |
| } |
| return count; |
| } |
| |
| |
| // Addressing Mode 4 - Load and Store Multiple |
| void Simulator::HandleRList(Instr* instr, bool load) { |
| int rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int rlist = instr->RlistField(); |
| int num_regs = count_bits(rlist); |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| switch (instr->PUField()) { |
| case 0: { |
| // Print("da"); |
| UNIMPLEMENTED(); |
| break; |
| } |
| case 1: { |
| // Print("ia"); |
| start_address = rn_val; |
| end_address = rn_val + (num_regs * 4) - 4; |
| rn_val = rn_val + (num_regs * 4); |
| break; |
| } |
| case 2: { |
| // Print("db"); |
| start_address = rn_val - (num_regs * 4); |
| end_address = rn_val - 4; |
| rn_val = start_address; |
| break; |
| } |
| case 3: { |
| // Print("ib"); |
| start_address = rn_val + 4; |
| end_address = rn_val + (num_regs * 4); |
| rn_val = end_address; |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| int reg = 0; |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| if (load) { |
| set_register(reg, *address); |
| } else { |
| *address = get_register(reg); |
| } |
| address += 1; |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| ASSERT(end_address == ((intptr_t)address) - 4); |
| } |
| |
| |
| // Calls into the V8 runtime are based on this very simple interface. |
| // Note: To be able to return two values from some calls the code in runtime.cc |
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| // 64-bit value. With the code below we assume that all runtime calls return |
| // 64 bits of result. If they don't, the r1 result register contains a bogus |
| // value, which is fine because it is caller-saved. |
| typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, |
| int32_t arg1, |
| int32_t arg2, |
| int32_t arg3); |
| typedef double (*SimulatorRuntimeFPCall)(int32_t arg0, |
| int32_t arg1, |
| int32_t arg2, |
| int32_t arg3); |
| |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. |
| void Simulator::SoftwareInterrupt(Instr* instr) { |
| int swi = instr->SwiField(); |
| switch (swi) { |
| case call_rt_redirected: { |
| // Check if stack is aligned. Error if not aligned is reported below to |
| // include information on the function called. |
| bool stack_aligned = |
| (get_register(sp) |
| & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; |
| Redirection* redirection = Redirection::FromSwiInstruction(instr); |
| int32_t arg0 = get_register(r0); |
| int32_t arg1 = get_register(r1); |
| int32_t arg2 = get_register(r2); |
| int32_t arg3 = get_register(r3); |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| int32_t saved_lr = get_register(lr); |
| if (redirection->fp_return()) { |
| intptr_t external = |
| reinterpret_cast<intptr_t>(redirection->external_function()); |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| double x, y; |
| GetFpArgs(&x, &y); |
| PrintF("Call to host function at %p with args %f, %f", |
| FUNCTION_ADDR(target), x, y); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| double result = target(arg0, arg1, arg2, arg3); |
| SetFpResult(result); |
| } else { |
| intptr_t external = |
| reinterpret_cast<int32_t>(redirection->external_function()); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF( |
| "Call to host function at %p with args %08x, %08x, %08x, %08x", |
| FUNCTION_ADDR(target), |
| arg0, |
| arg1, |
| arg2, |
| arg3); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| int64_t result = target(arg0, arg1, arg2, arg3); |
| int32_t lo_res = static_cast<int32_t>(result); |
| int32_t hi_res = static_cast<int32_t>(result >> 32); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08x\n", lo_res); |
| } |
| set_register(r0, lo_res); |
| set_register(r1, hi_res); |
| } |
| set_register(lr, saved_lr); |
| set_pc(get_register(lr)); |
| break; |
| } |
| case break_point: { |
| Debugger dbg(this); |
| dbg.Debug(); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| // Handle execution based on instruction types. |
| |
| // Instruction types 0 and 1 are both rolled into one function because they |
| // only differ in the handling of the shifter_operand. |
| void Simulator::DecodeType01(Instr* instr) { |
| int type = instr->TypeField(); |
| if ((type == 0) && instr->IsSpecialType0()) { |
| // multiply instruction or extra loads and stores |
| if (instr->Bits(7, 4) == 9) { |
| if (instr->Bit(24) == 0) { |
| // Raw field decoding here. Multiply instructions have their Rd in |
| // funny places. |
| int rn = instr->RnField(); |
| int rm = instr->RmField(); |
| int rs = instr->RsField(); |
| int32_t rs_val = get_register(rs); |
| int32_t rm_val = get_register(rm); |
| if (instr->Bit(23) == 0) { |
| if (instr->Bit(21) == 0) { |
| // The MUL instruction description (A 4.1.33) refers to Rd as being |
| // the destination for the operation, but it confusingly uses the |
| // Rn field to encode it. |
| // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| int rd = rn; // Remap the rn field to the Rd register. |
| int32_t alu_out = rm_val * rs_val; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| } |
| } else { |
| // The MLA instruction description (A 4.1.28) refers to the order |
| // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the |
| // Rn field to encode the Rd register and the Rd field to encode |
| // the Rn register. |
| Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| } |
| } else { |
| // The signed/long multiply instructions use the terms RdHi and RdLo |
| // when referring to the target registers. They are mapped to the Rn |
| // and Rd fields as follows: |
| // RdLo == Rd |
| // RdHi == Rn (This is confusingly stored in variable rd here |
| // because the mul instruction from above uses the |
| // Rn field to encode the Rd register. Good luck figuring |
| // this out without reading the ARM instruction manual |
| // at a very detailed level.) |
| // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); |
| int rd_hi = rn; // Remap the rn field to the RdHi register. |
| int rd_lo = instr->RdField(); |
| int32_t hi_res = 0; |
| int32_t lo_res = 0; |
| if (instr->Bit(22) == 1) { |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xffffffff); |
| } else { |
| // unsigned multiply |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xffffffff); |
| } |
| set_register(rd_lo, lo_res); |
| set_register(rd_hi, hi_res); |
| if (instr->HasS()) { |
| UNIMPLEMENTED(); |
| } |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } else { |
| // extra load/store instructions |
| int rd = instr->RdField(); |
| int rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t addr = 0; |
| if (instr->Bit(22) == 0) { |
| int rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= rm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += rm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); |
| rn_val -= rm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); |
| rn_val += rm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField(); |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= imm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += imm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); |
| rn_val -= imm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); |
| rn_val += imm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) { |
| ASSERT((rd % 2) == 0); |
| if (instr->HasH()) { |
| // The strd instruction. |
| int32_t value1 = get_register(rd); |
| int32_t value2 = get_register(rd+1); |
| WriteDW(addr, value1, value2); |
| } else { |
| // The ldrd instruction. |
| int* rn_data = ReadDW(addr); |
| set_dw_register(rd, rn_data); |
| } |
| } else if (instr->HasH()) { |
| if (instr->HasSign()) { |
| if (instr->HasL()) { |
| int16_t val = ReadH(addr, instr); |
| set_register(rd, val); |
| } else { |
| int16_t val = get_register(rd); |
| WriteH(addr, val, instr); |
| } |
| } else { |
| if (instr->HasL()) { |
| uint16_t val = ReadHU(addr, instr); |
| set_register(rd, val); |
| } else { |
| uint16_t val = get_register(rd); |
| WriteH(addr, val, instr); |
| } |
| } |
| } else { |
| // signed byte loads |
| ASSERT(instr->HasSign()); |
| ASSERT(instr->HasL()); |
| int8_t val = ReadB(addr); |
| set_register(rd, val); |
| } |
| return; |
| } |
| } else if ((type == 0) && instr->IsMiscType0()) { |
| if (instr->Bits(22, 21) == 1) { |
| int rm = instr->RmField(); |
| switch (instr->Bits(7, 4)) { |
| case BX: |
| set_pc(get_register(rm)); |
| break; |
| case BLX: { |
| uint32_t old_pc = get_pc(); |
| set_pc(get_register(rm)); |
| set_register(lr, old_pc + Instr::kInstrSize); |
| break; |
| } |
| case BKPT: |
| v8::internal::OS::DebugBreak(); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else if (instr->Bits(22, 21) == 3) { |
| int rm = instr->RmField(); |
| int rd = instr->RdField(); |
| switch (instr->Bits(7, 4)) { |
| case CLZ: { |
| uint32_t bits = get_register(rm); |
| int leading_zeros = 0; |
| if (bits == 0) { |
| leading_zeros = 32; |
| } else { |
| while ((bits & 0x80000000u) == 0) { |
| bits <<= 1; |
| leading_zeros++; |
| } |
| } |
| set_register(rd, leading_zeros); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else { |
| PrintF("%08x\n", instr->InstructionBits()); |
| UNIMPLEMENTED(); |
| } |
| } else { |
| int rd = instr->RdField(); |
| int rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t shifter_operand = 0; |
| bool shifter_carry_out = 0; |
| if (type == 0) { |
| shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| } else { |
| ASSERT(instr->TypeField() == 1); |
| shifter_operand = GetImm(instr, &shifter_carry_out); |
| } |
| int32_t alu_out; |
| |
| switch (instr->OpcodeField()) { |
| case AND: { |
| // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case EOR: { |
| // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case SUB: { |
| // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } |
| break; |
| } |
| |
| case RSB: { |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
| alu_out = shifter_operand - rn_val; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(shifter_operand, rn_val)); |
| SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); |
| } |
| break; |
| } |
| |
| case ADD: { |
| // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } |
| break; |
| } |
| |
| case ADC: { |
| Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
| Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
| break; |
| } |
| |
| case SBC: { |
| Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
| Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
| break; |
| } |
| |
| case RSC: { |
| Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
| Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
| break; |
| } |
| |
| case TST: { |
| if (instr->HasS()) { |
| // Format(instr, "tst'cond 'rn, 'shift_rm"); |
| // Format(instr, "tst'cond 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| // Format(instr, "movw'cond 'rd, 'imm"). |
| alu_out = instr->ImmedMovwMovtField(); |
| set_register(rd, alu_out); |
| } |
| break; |
| } |
| |
| case TEQ: { |
| if (instr->HasS()) { |
| // Format(instr, "teq'cond 'rn, 'shift_rm"); |
| // Format(instr, "teq'cond 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| |
| case CMP: { |
| if (instr->HasS()) { |
| // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmp'cond 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } else { |
| // Format(instr, "movt'cond 'rd, 'imm"). |
| alu_out = (get_register(rd) & 0xffff) | |
| (instr->ImmedMovwMovtField() << 16); |
| set_register(rd, alu_out); |
| } |
| break; |
| } |
| |
| case CMN: { |
| if (instr->HasS()) { |
| // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmn'cond 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(!CarryFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| |
| case ORR: { |
| // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val | shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MOV: { |
| // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mov'cond's 'rd, 'imm"); |
| alu_out = shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case BIC: { |
| // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MVN: { |
| // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mvn'cond's 'rd, 'imm"); |
| alu_out = ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType2(Instr* instr) { |
| int rd = instr->RdField(); |
| int rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t im_val = instr->Offset12Field(); |
| int32_t addr = 0; |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= im_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += im_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| rn_val -= im_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| rn_val += im_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| byte val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| byte val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType3(Instr* instr) { |
| int rd = instr->RdField(); |
| int rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| bool shifter_carry_out = 0; |
| int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| int32_t addr = 0; |
| switch (instr->PUField()) { |
| case 0: { |
| ASSERT(!instr->HasW()); |
| Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| UNIMPLEMENTED(); |
| break; |
| } |
| case 1: { |
| if (instr->HasW()) { |
| ASSERT(instr->Bits(5, 4) == 0x1); |
| |
| if (instr->Bit(22) == 0x1) { // USAT. |
| int32_t sat_pos = instr->Bits(20, 16); |
| int32_t sat_val = (1 << sat_pos) - 1; |
| int32_t shift = instr->Bits(11, 7); |
| int32_t shift_type = instr->Bit(6); |
| int32_t rm_val = get_register(instr->RmField()); |
| if (shift_type == 0) { // LSL |
| rm_val <<= shift; |
| } else { // ASR |
| rm_val >>= shift; |
| } |
| // If saturation occurs, the Q flag should be set in the CPSR. |
| // There is no Q flag yet, and no instruction (MRS) to read the |
| // CPSR directly. |
| if (rm_val > sat_val) { |
| rm_val = sat_val; |
| } else if (rm_val < 0) { |
| rm_val = 0; |
| } |
| set_register(rd, rm_val); |
| } else { // SSAT. |
| UNIMPLEMENTED(); |
| } |
| return; |
| } else { |
| Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
| UNIMPLEMENTED(); |
| } |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| addr = rn_val - shifter_operand; |
| if (instr->HasW()) { |
| set_register(rn, addr); |
| } |
| break; |
| } |
| case 3: { |
| if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { |
| uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = widthminus1 + lsbit; |
| if (msbit <= 31) { |
| if (instr->Bit(22)) { |
| // ubfx - unsigned bitfield extract. |
| uint32_t rm_val = |
| static_cast<uint32_t>(get_register(instr->RmField())); |
| uint32_t extr_val = rm_val << (31 - msbit); |
| extr_val = extr_val >> (31 - widthminus1); |
| set_register(instr->RdField(), extr_val); |
| } else { |
| // sbfx - signed bitfield extract. |
| int32_t rm_val = get_register(instr->RmField()); |
| int32_t extr_val = rm_val << (31 - msbit); |
| extr_val = extr_val >> (31 - widthminus1); |
| set_register(instr->RdField(), extr_val); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| return; |
| } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); |
| if (msbit >= lsbit) { |
| // bfc or bfi - bitfield clear/insert. |
| uint32_t rd_val = |
| static_cast<uint32_t>(get_register(instr->RdField())); |
| uint32_t bitcount = msbit - lsbit + 1; |
| uint32_t mask = (1 << bitcount) - 1; |
| rd_val &= ~(mask << lsbit); |
| if (instr->RmField() != 15) { |
| // bfi - bitfield insert. |
| uint32_t rm_val = |
| static_cast<uint32_t>(get_register(instr->RmField())); |
| rm_val &= mask; |
| rd_val |= rm_val << lsbit; |
| } |
| set_register(instr->RdField(), rd_val); |
| } else { |
| UNREACHABLE(); |
| } |
| return; |
| } else { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| addr = rn_val + shifter_operand; |
| if (instr->HasW()) { |
| set_register(rn, addr); |
| } |
| } |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| uint8_t byte = ReadB(addr); |
| set_register(rd, byte); |
| } else { |
| uint8_t byte = get_register(rd); |
| WriteB(addr, byte); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType4(Instr* instr) { |
| ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode |
| if (instr->HasL()) { |
| // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, true); |
| } else { |
| // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, false); |
| } |
| } |
| |
| |
| void Simulator::DecodeType5(Instr* instr) { |
| // Format(instr, "b'l'cond 'target"); |
| int off = (instr->SImmed24Field() << 2); |
| intptr_t pc_address = get_pc(); |
| if (instr->HasLink()) { |
| set_register(lr, pc_address + Instr::kInstrSize); |
| } |
| int pc_reg = get_register(pc); |
| set_pc(pc_reg + off); |
| } |
| |
| |
| void Simulator::DecodeType6(Instr* instr) { |
| DecodeType6CoprocessorIns(instr); |
| } |
| |
| |
| void Simulator::DecodeType7(Instr* instr) { |
| if (instr->Bit(24) == 1) { |
| SoftwareInterrupt(instr); |
| } else { |
| DecodeTypeVFP(instr); |
| } |
| } |
| |
| |
| void Simulator::DecodeUnconditional(Instr* instr) { |
| if (instr->Bits(7, 4) == 0x0B && instr->Bits(27, 25) == 0 && instr->HasL()) { |
| // Load halfword instruction, either register or immediate offset. |
| int rd = instr->RdField(); |
| int rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t addr = 0; |
| int32_t offset; |
| if (instr->Bit(22) == 0) { |
| // Register offset. |
| int rm = instr->RmField(); |
| offset = get_register(rm); |
| } else { |
| // Immediate offset |
| offset = instr->Bits(3, 0) + (instr->Bits(11, 8) << 4); |
| } |
| switch (instr->PUField()) { |
| case 0: { |
| // Post index, negative. |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= offset; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 1: { |
| // Post index, positive. |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += offset; |
| set_register(rn, rn_val); |
| break; |
| } |
| case 2: { |
| // Pre index or offset, negative. |
| rn_val -= offset; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case 3: { |
| // Pre index or offset, positive. |
| rn_val += offset; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| // Not sign extending, so load as unsigned. |
| uint16_t halfword = ReadH(addr, instr); |
| set_register(rd, halfword); |
| } else { |
| Debugger dbg(this); |
| dbg.Stop(instr); |
| } |
| } |
| |
| |
| // void Simulator::DecodeTypeVFP(Instr* instr) |
| // The Following ARMv7 VFPv instructions are currently supported. |
| // vmov :Sn = Rt |
| // vmov :Rt = Sn |
| // vcvt: Dd = Sm |
| // vcvt: Sd = Dm |
| // Dd = vadd(Dn, Dm) |
| // Dd = vsub(Dn, Dm) |
| // Dd = vmul(Dn, Dm) |
| // Dd = vdiv(Dn, Dm) |
| // vcmp(Dd, Dm) |
| // vmrs |
| // Dd = vsqrt(Dm) |
| void Simulator::DecodeTypeVFP(Instr* instr) { |
| ASSERT((instr->TypeField() == 7) && (instr->Bit(24) == 0x0) ); |
| ASSERT(instr->Bits(11, 9) == 0x5); |
| |
| // Obtain double precision register codes. |
| int vm = instr->VFPMRegCode(kDoublePrecision); |
| int vd = instr->VFPDRegCode(kDoublePrecision); |
| int vn = instr->VFPNRegCode(kDoublePrecision); |
| |
| if (instr->Bit(4) == 0) { |
| if (instr->Opc1Field() == 0x7) { |
| // Other data processing instructions |
| if ((instr->Opc2Field() == 0x0) && (instr->Opc3Field() == 0x1)) { |
| // vmov register to register. |
| if (instr->SzField() == 0x1) { |
| int m = instr->VFPMRegCode(kDoublePrecision); |
| int d = instr->VFPDRegCode(kDoublePrecision); |
| set_d_register_from_double(d, get_double_from_d_register(m)); |
| } else { |
| int m = instr->VFPMRegCode(kSinglePrecision); |
| int d = instr->VFPDRegCode(kSinglePrecision); |
| set_s_register_from_float(d, get_float_from_s_register(m)); |
| } |
| } else if ((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)) { |
| DecodeVCVTBetweenDoubleAndSingle(instr); |
| } else if ((instr->Opc2Field() == 0x8) && (instr->Opc3Field() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if (((instr->Opc2Field() >> 1) == 0x6) && |
| (instr->Opc3Field() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if (((instr->Opc2Field() == 0x4) || (instr->Opc2Field() == 0x5)) && |
| (instr->Opc3Field() & 0x1)) { |
| DecodeVCMP(instr); |
| } else if (((instr->Opc2Field() == 0x1)) && (instr->Opc3Field() == 0x3)) { |
| // vsqrt |
| double dm_value = get_double_from_d_register(vm); |
| double dd_value = sqrt(dm_value); |
| set_d_register_from_double(vd, dd_value); |
| } else if (instr->Opc3Field() == 0x0) { |
| // vmov immediate. |
| if (instr->SzField() == 0x1) { |
| set_d_register_from_double(vd, instr->DoubleImmedVmov()); |
| } else { |
| UNREACHABLE(); // Not used by v8. |
| } |
| } else { |
| UNREACHABLE(); // Not used by V8. |
| } |
| } else if (instr->Opc1Field() == 0x3) { |
| if (instr->SzField() != 0x1) { |
| UNREACHABLE(); // Not used by V8. |
| } |
| |
| if (instr->Opc3Field() & 0x1) { |
| // vsub |
| double dn_value = get_double_from_d_register(vn); |
| double dm_value = get_double_from_d_register(vm); |
| double dd_value = dn_value - dm_value; |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| // vadd |
| double dn_value = get_double_from_d_register(vn); |
| double dm_value = get_double_from_d_register(vm); |
| double dd_value = dn_value + dm_value; |
| set_d_register_from_double(vd, dd_value); |
| } |
| } else if ((instr->Opc1Field() == 0x2) && !(instr->Opc3Field() & 0x1)) { |
| // vmul |
| if (instr->SzField() != 0x1) { |
| UNREACHABLE(); // Not used by V8. |
| } |
| |
| double dn_value = get_double_from_d_register(vn); |
| double dm_value = get_double_from_d_register(vm); |
| double dd_value = dn_value * dm_value; |
| set_d_register_from_double(vd, dd_value); |
| } else if ((instr->Opc1Field() == 0x4) && !(instr->Opc3Field() & 0x1)) { |
| // vdiv |
| if (instr->SzField() != 0x1) { |
| UNREACHABLE(); // Not used by V8. |
| } |
| |
| double dn_value = get_double_from_d_register(vn); |
| double dm_value = get_double_from_d_register(vm); |
| double dd_value = dn_value / dm_value; |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } else { |
| if ((instr->VCField() == 0x0) && |
| (instr->VAField() == 0x0)) { |
| DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); |
| } else if ((instr->VLField() == 0x1) && |
| (instr->VCField() == 0x0) && |
| (instr->VAField() == 0x7) && |
| (instr->Bits(19, 16) == 0x1)) { |
| // vmrs |
| if (instr->RtField() == 0xF) |
| Copy_FPSCR_to_APSR(); |
| else |
| UNIMPLEMENTED(); // Not used by V8. |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instr* instr) { |
| ASSERT((instr->Bit(4) == 1) && (instr->VCField() == 0x0) && |
| (instr->VAField() == 0x0)); |
| |
| int t = instr->RtField(); |
| int n = instr->VFPNRegCode(kSinglePrecision); |
| bool to_arm_register = (instr->VLField() == 0x1); |
| |
| if (to_arm_register) { |
| int32_t int_value = get_sinteger_from_s_register(n); |
| set_register(t, int_value); |
| } else { |
| int32_t rs_val = get_register(t); |
| set_s_register_from_sinteger(n, rs_val); |
| } |
| } |
| |
| |
| void Simulator::DecodeVCMP(Instr* instr) { |
| ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7)); |
| ASSERT(((instr->Opc2Field() == 0x4) || (instr->Opc2Field() == 0x5)) && |
| (instr->Opc3Field() & 0x1)); |
| // Comparison. |
| |
| VFPRegPrecision precision = kSinglePrecision; |
| if (instr->SzField() == 1) { |
| precision = kDoublePrecision; |
| } |
| |
| if (instr->Bit(7) != 0) { |
| // Raising exceptions for quiet NaNs are not supported. |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| |
| int d = instr->VFPDRegCode(precision); |
| int m = 0; |
| if (instr->Opc2Field() == 0x4) { |
| m = instr->VFPMRegCode(precision); |
| } |
| |
| if (precision == kDoublePrecision) { |
| double dd_value = get_double_from_d_register(d); |
| double dm_value = 0.0; |
| if (instr->Opc2Field() == 0x4) { |
| dm_value = get_double_from_d_register(m); |
| } |
| |
| Compute_FPSCR_Flags(dd_value, dm_value); |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| |
| |
| void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instr* instr) { |
| ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7)); |
| ASSERT((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)); |
| |
| VFPRegPrecision dst_precision = kDoublePrecision; |
| VFPRegPrecision src_precision = kSinglePrecision; |
| if (instr->SzField() == 1) { |
| dst_precision = kSinglePrecision; |
| src_precision = kDoublePrecision; |
| } |
| |
| int dst = instr->VFPDRegCode(dst_precision); |
| int src = instr->VFPMRegCode(src_precision); |
| |
| if (dst_precision == kSinglePrecision) { |
| double val = get_double_from_d_register(src); |
| set_s_register_from_float(dst, static_cast<float>(val)); |
| } else { |
| float val = get_float_from_s_register(src); |
| set_d_register_from_double(dst, static_cast<double>(val)); |
| } |
| } |
| |
| |
| void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr) { |
| ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7)); |
| ASSERT(((instr->Opc2Field() == 0x8) && (instr->Opc3Field() & 0x1)) || |
| (((instr->Opc2Field() >> 1) == 0x6) && (instr->Opc3Field() & 0x1))); |
| |
| // Conversion between floating-point and integer. |
| bool to_integer = (instr->Bit(18) == 1); |
| |
| VFPRegPrecision src_precision = kSinglePrecision; |
| if (instr->SzField() == 1) { |
| src_precision = kDoublePrecision; |
| } |
| |
| if (to_integer) { |
| bool unsigned_integer = (instr->Bit(16) == 0); |
| if (instr->Bit(7) != 1) { |
| // Only rounding towards zero supported. |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| |
| int dst = instr->VFPDRegCode(kSinglePrecision); |
| int src = instr->VFPMRegCode(src_precision); |
| |
| if (src_precision == kDoublePrecision) { |
| double val = get_double_from_d_register(src); |
| |
| int sint = unsigned_integer ? static_cast<uint32_t>(val) : |
| static_cast<int32_t>(val); |
| |
| set_s_register_from_sinteger(dst, sint); |
| } else { |
| float val = get_float_from_s_register(src); |
| |
| int sint = unsigned_integer ? static_cast<uint32_t>(val) : |
| static_cast<int32_t>(val); |
| |
| set_s_register_from_sinteger(dst, sint); |
| } |
| } else { |
| bool unsigned_integer = (instr->Bit(7) == 0); |
| |
| int dst = instr->VFPDRegCode(src_precision); |
| int src = instr->VFPMRegCode(kSinglePrecision); |
| |
| int val = get_sinteger_from_s_register(src); |
| |
| if (src_precision == kDoublePrecision) { |
| if (unsigned_integer) { |
| set_d_register_from_double(dst, |
| static_cast<double>((uint32_t)val)); |
| } else { |
| set_d_register_from_double(dst, static_cast<double>(val)); |
| } |
| } else { |
| if (unsigned_integer) { |
| set_s_register_from_float(dst, |
| static_cast<float>((uint32_t)val)); |
| } else { |
| set_s_register_from_float(dst, static_cast<float>(val)); |
| } |
| } |
| } |
| } |
| |
| |
| // void Simulator::DecodeType6CoprocessorIns(Instr* instr) |
| // Decode Type 6 coprocessor instructions. |
| // Dm = vmov(Rt, Rt2) |
| // <Rt, Rt2> = vmov(Dm) |
| // Ddst = MEM(Rbase + 4*offset). |
| // MEM(Rbase + 4*offset) = Dsrc. |
| void Simulator::DecodeType6CoprocessorIns(Instr* instr) { |
| ASSERT((instr->TypeField() == 6)); |
| |
| if (instr->CoprocessorField() == 0xA) { |
| switch (instr->OpcodeField()) { |
| case 0x8: |
| case 0xA: |
| case 0xC: |
| case 0xE: { // Load and store single precision float to memory. |
| int rn = instr->RnField(); |
| int vd = instr->VFPDRegCode(kSinglePrecision); |
| int offset = instr->Immed8Field(); |
| if (!instr->HasU()) { |
| offset = -offset; |
| } |
| |
| int32_t address = get_register(rn) + 4 * offset; |
| if (instr->HasL()) { |
| // Load double from memory: vldr. |
| set_s_register_from_sinteger(vd, ReadW(address, instr)); |
| } else { |
| // Store double to memory: vstr. |
| WriteW(address, get_sinteger_from_s_register(vd), instr); |
| } |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); // Not used by V8. |
| break; |
| } |
| } else if (instr->CoprocessorField() == 0xB) { |
| switch (instr->OpcodeField()) { |
| case 0x2: |
| // Load and store double to two GP registers |
| if (instr->Bits(7, 4) != 0x1) { |
| UNIMPLEMENTED(); // Not used by V8. |
| } else { |
| int rt = instr->RtField(); |
| int rn = instr->RnField(); |
| int vm = instr->VmField(); |
| if (instr->HasL()) { |
| int32_t rt_int_value = get_sinteger_from_s_register(2*vm); |
| int32_t rn_int_value = get_sinteger_from_s_register(2*vm+1); |
| |
| set_register(rt, rt_int_value); |
| set_register(rn, rn_int_value); |
| } else { |
| int32_t rs_val = get_register(rt); |
| int32_t rn_val = get_register(rn); |
| |
| set_s_register_from_sinteger(2*vm, rs_val); |
| set_s_register_from_sinteger((2*vm+1), rn_val); |
| } |
| } |
| break; |
| case 0x8: |
| case 0xC: { // Load and store double to memory. |
| int rn = instr->RnField(); |
| int vd = instr->VdField(); |
| int offset = instr->Immed8Field(); |
| if (!instr->HasU()) { |
| offset = -offset; |
| } |
| int32_t address = get_register(rn) + 4 * offset; |
| if (instr->HasL()) { |
| // Load double from memory: vldr. |
| set_s_register_from_sinteger(2*vd, ReadW(address, instr)); |
| set_s_register_from_sinteger(2*vd + 1, ReadW(address + 4, instr)); |
| } else { |
| // Store double to memory: vstr. |
| WriteW(address, get_sinteger_from_s_register(2*vd), instr); |
| WriteW(address + 4, get_sinteger_from_s_register(2*vd + 1), instr); |
| } |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); // Not used by V8. |
| break; |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| |
| |
| // Executes the current instruction. |
| void Simulator::InstructionDecode(Instr* instr) { |
| if (v8::internal::FLAG_check_icache) { |
| CheckICache(instr); |
| } |
| pc_modified_ = false; |
| if (::v8::internal::FLAG_trace_sim) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte*>(instr)); |
| PrintF(" 0x%08x %s\n", instr, buffer.start()); |
| } |
| if (instr->ConditionField() == special_condition) { |
| DecodeUnconditional(instr); |
| } else if (ConditionallyExecute(instr)) { |
| switch (instr->TypeField()) { |
| case 0: |
| case 1: { |
| DecodeType01(instr); |
| break; |
| } |
| case 2: { |
| DecodeType2(instr); |
| break; |
| } |
| case 3: { |
| DecodeType3(instr); |
| break; |
| } |
| case 4: { |
| DecodeType4(instr); |
| break; |
| } |
| case 5: { |
| DecodeType5(instr); |
| break; |
| } |
| case 6: { |
| DecodeType6(instr); |
| break; |
| } |
| case 7: { |
| DecodeType7(instr); |
| break; |
| } |
| default: { |
| UNIMPLEMENTED(); |
| break; |
| } |
| } |
| } |
| if (!pc_modified_) { |
| set_register(pc, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize); |
| } |
| } |
| |
| |
| void Simulator::Execute() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| int program_counter = get_pc(); |
| |
| if (::v8::internal::FLAG_stop_sim_at == 0) { |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (program_counter != end_sim_pc) { |
| Instr* instr = reinterpret_cast<Instr*>(program_counter); |
| icount_++; |
| InstructionDecode(instr); |
| program_counter = get_pc(); |
| } |
| } else { |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instuction count. |
| while (program_counter != end_sim_pc) { |
| Instr* instr = reinterpret_cast<Instr*>(program_counter); |
| icount_++; |
| if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
| Debugger dbg(this); |
| dbg.Debug(); |
| } else { |
| InstructionDecode(instr); |
| } |
| program_counter = get_pc(); |
| } |
| } |
| } |
| |
| |
| int32_t Simulator::Call(byte* entry, int argument_count, ...) { |
| va_list parameters; |
| va_start(parameters, argument_count); |
| // Setup arguments |
| |
| // First four arguments passed in registers. |
| ASSERT(argument_count >= 4); |
| set_register(r0, va_arg(parameters, int32_t)); |
| set_register(r1, va_arg(parameters, int32_t)); |
| set_register(r2, va_arg(parameters, int32_t)); |
| set_register(r3, va_arg(parameters, int32_t)); |
| |
| // Remaining arguments passed on stack. |
| int original_stack = get_register(sp); |
| // Compute position of stack on entry to generated code. |
| int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); |
| if (OS::ActivationFrameAlignment() != 0) { |
| entry_stack &= -OS::ActivationFrameAlignment(); |
| } |
| // Store remaining arguments on stack, from low to high memory. |
| intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); |
| for (int i = 4; i < argument_count; i++) { |
| stack_argument[i - 4] = va_arg(parameters, int32_t); |
| } |
| va_end(parameters); |
| set_register(sp, entry_stack); |
| |
| // Prepare to execute the code at entry |
| set_register(pc, reinterpret_cast<int32_t>(entry)); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // the LR the simulation stops when returning to this call point. |
| set_register(lr, end_sim_pc); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t r4_val = get_register(r4); |
| int32_t r5_val = get_register(r5); |
| int32_t r6_val = get_register(r6); |
| int32_t r7_val = get_register(r7); |
| int32_t r8_val = get_register(r8); |
| int32_t r9_val = get_register(r9); |
| int32_t r10_val = get_register(r10); |
| int32_t r11_val = get_register(r11); |
| |
| // Setup the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across JS execution. |
| int32_t callee_saved_value = icount_; |
| set_register(r4, callee_saved_value); |
| set_register(r5, callee_saved_value); |
| set_register(r6, callee_saved_value); |
| set_register(r7, callee_saved_value); |
| set_register(r8, callee_saved_value); |
| set_register(r9, callee_saved_value); |
| set_register(r10, callee_saved_value); |
| set_register(r11, callee_saved_value); |
| |
| // Start the simulation |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| CHECK_EQ(callee_saved_value, get_register(r4)); |
| CHECK_EQ(callee_saved_value, get_register(r5)); |
| CHECK_EQ(callee_saved_value, get_register(r6)); |
| CHECK_EQ(callee_saved_value, get_register(r7)); |
| CHECK_EQ(callee_saved_value, get_register(r8)); |
| CHECK_EQ(callee_saved_value, get_register(r9)); |
| CHECK_EQ(callee_saved_value, get_register(r10)); |
| CHECK_EQ(callee_saved_value, get_register(r11)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(r4, r4_val); |
| set_register(r5, r5_val); |
| set_register(r6, r6_val); |
| set_register(r7, r7_val); |
| set_register(r8, r8_val); |
| set_register(r9, r9_val); |
| set_register(r10, r10_val); |
| set_register(r11, r11_val); |
| |
| // Pop stack passed arguments. |
| CHECK_EQ(entry_stack, get_register(sp)); |
| set_register(sp, original_stack); |
| |
| int32_t result = get_register(r0); |
| return result; |
| } |
| |
| |
| uintptr_t Simulator::PushAddress(uintptr_t address) { |
| int new_sp = get_register(sp) - sizeof(uintptr_t); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| *stack_slot = address; |
| set_register(sp, new_sp); |
| return new_sp; |
| } |
| |
| |
| uintptr_t Simulator::PopAddress() { |
| int current_sp = get_register(sp); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| uintptr_t address = *stack_slot; |
| set_register(sp, current_sp + sizeof(uintptr_t)); |
| return address; |
| } |
| |
| } } // namespace assembler::arm |
| |
| #endif // __arm__ |
| |
| #endif // V8_TARGET_ARCH_ARM |