blob: e096028e3832a25a5c5585ae183eab5c671973f0 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(void* buffer, int size)
: Assembler(buffer, size),
unresolved_(0),
generating_stub_(false),
allow_stub_calls_(true),
code_object_(Heap::undefined_value()) {
}
void MacroAssembler::Jump(Register target, Condition cond,
Register r1, const Operand& r2) {
Jump(Operand(target), cond, r1, r2);
}
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond, Register r1, const Operand& r2) {
Jump(Operand(target, rmode), cond, r1, r2);
}
void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
Condition cond, Register r1, const Operand& r2) {
ASSERT(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond, r1, r2);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register r1, const Operand& r2) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}
void MacroAssembler::Call(Register target,
Condition cond, Register r1, const Operand& r2) {
Call(Operand(target), cond, r1, r2);
}
void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode,
Condition cond, Register r1, const Operand& r2) {
Call(Operand(target, rmode), cond, r1, r2);
}
void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode,
Condition cond, Register r1, const Operand& r2) {
ASSERT(!RelocInfo::IsCodeTarget(rmode));
Call(reinterpret_cast<intptr_t>(target), rmode, cond, r1, r2);
}
void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond, Register r1, const Operand& r2) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond, r1, r2);
}
void MacroAssembler::Ret(Condition cond, Register r1, const Operand& r2) {
Jump(Operand(ra), cond, r1, r2);
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index) {
lw(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(NegateCondition(cond), 2, src1, src2);
lw(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::RecordWrite(Register object, Register offset,
Register scratch) {
UNIMPLEMENTED_MIPS();
}
// ---------------------------------------------------------------------------
// Instruction macros
void MacroAssembler::Add(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
add(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
addi(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
add(rd, rs, at);
}
}
}
void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
addu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
addiu(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
addu(rd, rs, at);
}
}
}
void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
mul(rd, rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
mul(rd, rs, at);
}
}
void MacroAssembler::Mult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
mult(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
mult(rs, at);
}
}
void MacroAssembler::Multu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
multu(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
multu(rs, at);
}
}
void MacroAssembler::Div(Register rs, const Operand& rt) {
if (rt.is_reg()) {
div(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
div(rs, at);
}
}
void MacroAssembler::Divu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
divu(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
divu(rs, at);
}
}
void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
and_(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
andi(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
and_(rd, rs, at);
}
}
}
void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
or_(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
ori(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
or_(rd, rs, at);
}
}
}
void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
xor_(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
xori(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
xor_(rd, rs, at);
}
}
}
void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
nor(rd, rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
nor(rd, rs, at);
}
}
void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
slti(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
slt(rd, rs, at);
}
}
}
void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) {
sltiu(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
sltu(rd, rs, at);
}
}
}
//------------Pseudo-instructions-------------
void MacroAssembler::movn(Register rd, Register rt) {
addiu(at, zero_reg, -1); // Fill at with ones.
xor_(rd, rt, at);
}
void MacroAssembler::li(Register rd, Operand j, bool gen2instr) {
ASSERT(!j.is_reg());
if (!MustUseAt(j.rmode_) && !gen2instr) {
// Normal load of an immediate value which does not need Relocation Info.
if (is_int16(j.imm32_)) {
addiu(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & HIMask)) {
ori(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & LOMask)) {
lui(rd, (HIMask & j.imm32_) >> 16);
} else {
lui(rd, (HIMask & j.imm32_) >> 16);
ori(rd, rd, (LOMask & j.imm32_));
}
} else if (MustUseAt(j.rmode_) || gen2instr) {
if (MustUseAt(j.rmode_)) {
RecordRelocInfo(j.rmode_, j.imm32_);
}
// We need always the same number of instructions as we may need to patch
// this code to load another value which may need 2 instructions to load.
if (is_int16(j.imm32_)) {
nop();
addiu(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & HIMask)) {
nop();
ori(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & LOMask)) {
nop();
lui(rd, (HIMask & j.imm32_) >> 16);
} else {
lui(rd, (HIMask & j.imm32_) >> 16);
ori(rd, rd, (LOMask & j.imm32_));
}
}
}
// Exception-generating instructions and debugging support
void MacroAssembler::stop(const char* msg) {
// TO_UPGRADE: Just a break for now. Maybe we could upgrade it.
// We use the 0x54321 value to be able to find it easily when reading memory.
break_(0x54321);
}
void MacroAssembler::MultiPush(RegList regs) {
int16_t NumSaved = 0;
int16_t NumToPush = NumberOfBitsSet(regs);
addiu(sp, sp, -4 * NumToPush);
for (int16_t i = kNumRegisters; i > 0; i--) {
if ((regs & (1 << i)) != 0) {
sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved)));
}
}
}
void MacroAssembler::MultiPushReversed(RegList regs) {
int16_t NumSaved = 0;
int16_t NumToPush = NumberOfBitsSet(regs);
addiu(sp, sp, -4 * NumToPush);
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved)));
}
}
}
void MacroAssembler::MultiPop(RegList regs) {
int16_t NumSaved = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++)));
}
}
addiu(sp, sp, 4 * NumSaved);
}
void MacroAssembler::MultiPopReversed(RegList regs) {
int16_t NumSaved = 0;
for (int16_t i = kNumRegisters; i > 0; i--) {
if ((regs & (1 << i)) != 0) {
lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++)));
}
}
addiu(sp, sp, 4 * NumSaved);
}
// Emulated condtional branches do not emit a nop in the branch delay slot.
// Trashes the at register if no scratch register is provided.
void MacroAssembler::Branch(Condition cond, int16_t offset, Register rs,
const Operand& rt, Register scratch) {
Register r2 = no_reg;
if (rt.is_reg()) {
// We don't want any other register but scratch clobbered.
ASSERT(!scratch.is(rs) && !scratch.is(rt.rm_));
r2 = rt.rm_;
} else if (cond != cc_always) {
// We don't want any other register but scratch clobbered.
ASSERT(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
}
switch (cond) {
case cc_always:
b(offset);
break;
case eq:
beq(rs, r2, offset);
break;
case ne:
bne(rs, r2, offset);
break;
// Signed comparison
case greater:
slt(scratch, r2, rs);
bne(scratch, zero_reg, offset);
break;
case greater_equal:
slt(scratch, rs, r2);
beq(scratch, zero_reg, offset);
break;
case less:
slt(scratch, rs, r2);
bne(scratch, zero_reg, offset);
break;
case less_equal:
slt(scratch, r2, rs);
beq(scratch, zero_reg, offset);
break;
// Unsigned comparison.
case Ugreater:
sltu(scratch, r2, rs);
bne(scratch, zero_reg, offset);
break;
case Ugreater_equal:
sltu(scratch, rs, r2);
beq(scratch, zero_reg, offset);
break;
case Uless:
sltu(scratch, rs, r2);
bne(scratch, zero_reg, offset);
break;
case Uless_equal:
sltu(scratch, r2, rs);
beq(scratch, zero_reg, offset);
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot.
nop();
}
void MacroAssembler::Branch(Condition cond, Label* L, Register rs,
const Operand& rt, Register scratch) {
Register r2 = no_reg;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
// We use branch_offset as an argument for the branch instructions to be sure
// it is called just before generating the branch instruction, as needed.
switch (cond) {
case cc_always:
b(shifted_branch_offset(L, false));
break;
case eq:
beq(rs, r2, shifted_branch_offset(L, false));
break;
case ne:
bne(rs, r2, shifted_branch_offset(L, false));
break;
// Signed comparison
case greater:
slt(scratch, r2, rs);
bne(scratch, zero_reg, shifted_branch_offset(L, false));
break;
case greater_equal:
slt(scratch, rs, r2);
beq(scratch, zero_reg, shifted_branch_offset(L, false));
break;
case less:
slt(scratch, rs, r2);
bne(scratch, zero_reg, shifted_branch_offset(L, false));
break;
case less_equal:
slt(scratch, r2, rs);
beq(scratch, zero_reg, shifted_branch_offset(L, false));
break;
// Unsigned comparison.
case Ugreater:
sltu(scratch, r2, rs);
bne(scratch, zero_reg, shifted_branch_offset(L, false));
break;
case Ugreater_equal:
sltu(scratch, rs, r2);
beq(scratch, zero_reg, shifted_branch_offset(L, false));
break;
case Uless:
sltu(scratch, rs, r2);
bne(scratch, zero_reg, shifted_branch_offset(L, false));
break;
case Uless_equal:
sltu(scratch, r2, rs);
beq(scratch, zero_reg, shifted_branch_offset(L, false));
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot.
nop();
}
// Trashes the at register if no scratch register is provided.
// We need to use a bgezal or bltzal, but they can't be used directly with the
// slt instructions. We could use sub or add instead but we would miss overflow
// cases, so we keep slt and add an intermediate third instruction.
void MacroAssembler::BranchAndLink(Condition cond, int16_t offset, Register rs,
const Operand& rt, Register scratch) {
Register r2 = no_reg;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
switch (cond) {
case cc_always:
bal(offset);
break;
case eq:
bne(rs, r2, 2);
nop();
bal(offset);
break;
case ne:
beq(rs, r2, 2);
nop();
bal(offset);
break;
// Signed comparison
case greater:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case greater_equal:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
case less:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case less_equal:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
// Unsigned comparison.
case Ugreater:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case Ugreater_equal:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
case Uless:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case Uless_equal:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot.
nop();
}
void MacroAssembler::BranchAndLink(Condition cond, Label* L, Register rs,
const Operand& rt, Register scratch) {
Register r2 = no_reg;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
switch (cond) {
case cc_always:
bal(shifted_branch_offset(L, false));
break;
case eq:
bne(rs, r2, 2);
nop();
bal(shifted_branch_offset(L, false));
break;
case ne:
beq(rs, r2, 2);
nop();
bal(shifted_branch_offset(L, false));
break;
// Signed comparison
case greater:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
bgezal(scratch, shifted_branch_offset(L, false));
break;
case greater_equal:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
bltzal(scratch, shifted_branch_offset(L, false));
break;
case less:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
bgezal(scratch, shifted_branch_offset(L, false));
break;
case less_equal:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
bltzal(scratch, shifted_branch_offset(L, false));
break;
// Unsigned comparison.
case Ugreater:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
bgezal(scratch, shifted_branch_offset(L, false));
break;
case Ugreater_equal:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
bltzal(scratch, shifted_branch_offset(L, false));
break;
case Uless:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
bgezal(scratch, shifted_branch_offset(L, false));
break;
case Uless_equal:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
bltzal(scratch, shifted_branch_offset(L, false));
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot.
nop();
}
void MacroAssembler::Jump(const Operand& target,
Condition cond, Register rs, const Operand& rt) {
if (target.is_reg()) {
if (cond == cc_always) {
jr(target.rm());
} else {
Branch(NegateCondition(cond), 2, rs, rt);
jr(target.rm());
}
} else { // !target.is_reg()
if (!MustUseAt(target.rmode_)) {
if (cond == cc_always) {
j(target.imm32_);
} else {
Branch(NegateCondition(cond), 2, rs, rt);
j(target.imm32_); // Will generate only one instruction.
}
} else { // MustUseAt(target)
li(at, target);
if (cond == cc_always) {
jr(at);
} else {
Branch(NegateCondition(cond), 2, rs, rt);
jr(at); // Will generate only one instruction.
}
}
}
// Emit a nop in the branch delay slot.
nop();
}
void MacroAssembler::Call(const Operand& target,
Condition cond, Register rs, const Operand& rt) {
if (target.is_reg()) {
if (cond == cc_always) {
jalr(target.rm());
} else {
Branch(NegateCondition(cond), 2, rs, rt);
jalr(target.rm());
}
} else { // !target.is_reg()
if (!MustUseAt(target.rmode_)) {
if (cond == cc_always) {
jal(target.imm32_);
} else {
Branch(NegateCondition(cond), 2, rs, rt);
jal(target.imm32_); // Will generate only one instruction.
}
} else { // MustUseAt(target)
li(at, target);
if (cond == cc_always) {
jalr(at);
} else {
Branch(NegateCondition(cond), 2, rs, rt);
jalr(at); // Will generate only one instruction.
}
}
}
// Emit a nop in the branch delay slot.
nop();
}
void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::Drop(int count, Condition cond) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::Call(Label* target) {
UNIMPLEMENTED_MIPS();
}
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void MacroAssembler::DebugBreak() {
UNIMPLEMENTED_MIPS();
}
#endif
// ---------------------------------------------------------------------------
// Exception handling
void MacroAssembler::PushTryHandler(CodeLocation try_location,
HandlerType type) {
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// The return address is passed in register ra.
if (try_location == IN_JAVASCRIPT) {
if (type == TRY_CATCH_HANDLER) {
li(t0, Operand(StackHandler::TRY_CATCH));
} else {
li(t0, Operand(StackHandler::TRY_FINALLY));
}
ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
&& StackHandlerConstants::kFPOffset == 2 * kPointerSize
&& StackHandlerConstants::kPCOffset == 3 * kPointerSize
&& StackHandlerConstants::kNextOffset == 0 * kPointerSize);
// Save the current handler as the next handler.
LoadExternalReference(t2, ExternalReference(Top::k_handler_address));
lw(t1, MemOperand(t2));
addiu(sp, sp, -StackHandlerConstants::kSize);
sw(ra, MemOperand(sp, 12));
sw(fp, MemOperand(sp, 8));
sw(t0, MemOperand(sp, 4));
sw(t1, MemOperand(sp, 0));
// Link this handler as the new current one.
sw(sp, MemOperand(t2));
} else {
// Must preserve a0-a3, and s0 (argv).
ASSERT(try_location == IN_JS_ENTRY);
ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
&& StackHandlerConstants::kFPOffset == 2 * kPointerSize
&& StackHandlerConstants::kPCOffset == 3 * kPointerSize
&& StackHandlerConstants::kNextOffset == 0 * kPointerSize);
// The frame pointer does not point to a JS frame so we save NULL
// for fp. We expect the code throwing an exception to check fp
// before dereferencing it to restore the context.
li(t0, Operand(StackHandler::ENTRY));
// Save the current handler as the next handler.
LoadExternalReference(t2, ExternalReference(Top::k_handler_address));
lw(t1, MemOperand(t2));
addiu(sp, sp, -StackHandlerConstants::kSize);
sw(ra, MemOperand(sp, 12));
sw(zero_reg, MemOperand(sp, 8));
sw(t0, MemOperand(sp, 4));
sw(t1, MemOperand(sp, 0));
// Link this handler as the new current one.
sw(sp, MemOperand(t2));
}
}
void MacroAssembler::PopTryHandler() {
UNIMPLEMENTED_MIPS();
}
// -----------------------------------------------------------------------------
// Activation frames
void MacroAssembler::SetupAlignedCall(Register scratch, int arg_count) {
Label extra_push, end;
andi(scratch, sp, 7);
// We check for args and receiver size on the stack, all of them word sized.
// We add one for sp, that we also want to store on the stack.
if (((arg_count + 1) % kPointerSizeLog2) == 0) {
Branch(ne, &extra_push, at, Operand(zero_reg));
} else { // ((arg_count + 1) % 2) == 1
Branch(eq, &extra_push, at, Operand(zero_reg));
}
// Save sp on the stack.
mov(scratch, sp);
Push(scratch);
b(&end);
// Align before saving sp on the stack.
bind(&extra_push);
mov(scratch, sp);
addiu(sp, sp, -8);
sw(scratch, MemOperand(sp));
// The stack is aligned and sp is stored on the top.
bind(&end);
}
void MacroAssembler::ReturnFromAlignedCall() {
lw(sp, MemOperand(sp));
}
// -----------------------------------------------------------------------------
// JavaScript invokes
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag) {
bool definitely_matches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// a0: actual arguments count
// a1: function (passed through to callee)
// a2: expected arguments count
// a3: callee code entry
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
ASSERT(actual.is_immediate() || actual.reg().is(a0));
ASSERT(expected.is_immediate() || expected.reg().is(a2));
ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
li(a0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
li(a2, Operand(expected.immediate()));
}
}
} else if (actual.is_immediate()) {
Branch(eq, &regular_invoke, expected.reg(), Operand(actual.immediate()));
li(a0, Operand(actual.immediate()));
} else {
Branch(eq, &regular_invoke, expected.reg(), Operand(actual.reg()));
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
li(a3, Operand(code_constant));
addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
}
ExternalReference adaptor(Builtins::ArgumentsAdaptorTrampoline);
if (flag == CALL_FUNCTION) {
CallBuiltin(adaptor);
b(done);
nop();
} else {
JumpToBuiltin(adaptor);
}
bind(&regular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag) {
Label done;
InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
if (flag == CALL_FUNCTION) {
Call(code);
} else {
ASSERT(flag == JUMP_FUNCTION);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag) {
Label done;
InvokePrologue(expected, actual, code, no_reg, &done, flag);
if (flag == CALL_FUNCTION) {
Call(code, rmode);
} else {
Jump(code, rmode);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag) {
// Contract with called JS functions requires that function is passed in a1.
ASSERT(function.is(a1));
Register expected_reg = a2;
Register code_reg = a3;
lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
lw(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
lw(code_reg,
MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
addiu(code_reg, code_reg, Code::kHeaderSize - kHeapObjectTag);
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag);
}
// ---------------------------------------------------------------------------
// Support functions.
void MacroAssembler::GetObjectType(Register function,
Register map,
Register type_reg) {
lw(map, FieldMemOperand(function, HeapObject::kMapOffset));
lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
}
void MacroAssembler::CallBuiltin(ExternalReference builtin_entry) {
// Load builtin address.
LoadExternalReference(t9, builtin_entry);
lw(t9, MemOperand(t9)); // Deref address.
addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
// Call and allocate arguments slots.
jalr(t9);
// Use the branch delay slot to allocated argument slots.
addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize);
addiu(sp, sp, StandardFrameConstants::kRArgsSlotsSize);
}
void MacroAssembler::CallBuiltin(Register target) {
// Target already holds target address.
// Call and allocate arguments slots.
jalr(target);
// Use the branch delay slot to allocated argument slots.
addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize);
addiu(sp, sp, StandardFrameConstants::kRArgsSlotsSize);
}
void MacroAssembler::JumpToBuiltin(ExternalReference builtin_entry) {
// Load builtin address.
LoadExternalReference(t9, builtin_entry);
lw(t9, MemOperand(t9)); // Deref address.
addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
// Call and allocate arguments slots.
jr(t9);
// Use the branch delay slot to allocated argument slots.
addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize);
}
void MacroAssembler::JumpToBuiltin(Register target) {
// t9 already holds target address.
// Call and allocate arguments slots.
jr(t9);
// Use the branch delay slot to allocated argument slots.
addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize);
}
// -----------------------------------------------------------------------------
// Runtime calls
void MacroAssembler::CallStub(CodeStub* stub, Condition cond,
Register r1, const Operand& r2) {
ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2);
}
void MacroAssembler::StubReturn(int argc) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
addiu(sp, sp, num_arguments * kPointerSize);
}
LoadRoot(v0, Heap::kUndefinedValueRootIndex);
}
void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
// All parameters are on the stack. v0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
li(a0, num_arguments);
LoadExternalReference(a1, ExternalReference(f));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid), num_arguments, result_size);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
UNIMPLEMENTED_MIPS();
}
Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id,
bool* resolved) {
UNIMPLEMENTED_MIPS();
return Handle<Code>(reinterpret_cast<Code*>(NULL)); // UNIMPLEMENTED RETURN
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeJSFlags flags) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
UNIMPLEMENTED_MIPS();
}
// -----------------------------------------------------------------------------
// Debugging
void MacroAssembler::Assert(Condition cc, const char* msg,
Register rs, Operand rt) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::Check(Condition cc, const char* msg,
Register rs, Operand rt) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::Abort(const char* msg) {
UNIMPLEMENTED_MIPS();
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
addiu(sp, sp, -5 * kPointerSize);
li(t0, Operand(Smi::FromInt(type)));
li(t1, Operand(CodeObject()));
sw(ra, MemOperand(sp, 4 * kPointerSize));
sw(fp, MemOperand(sp, 3 * kPointerSize));
sw(cp, MemOperand(sp, 2 * kPointerSize));
sw(t0, MemOperand(sp, 1 * kPointerSize));
sw(t1, MemOperand(sp, 0 * kPointerSize));
addiu(fp, sp, 3 * kPointerSize);
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
mov(sp, fp);
lw(fp, MemOperand(sp, 0 * kPointerSize));
lw(ra, MemOperand(sp, 1 * kPointerSize));
addiu(sp, sp, 2 * kPointerSize);
}
void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode,
Register hold_argc,
Register hold_argv,
Register hold_function) {
// Compute the argv pointer and keep it in a callee-saved register.
// a0 is argc.
sll(t0, a0, kPointerSizeLog2);
add(hold_argv, sp, t0);
addi(hold_argv, hold_argv, -kPointerSize);
// Compute callee's stack pointer before making changes and save it as
// t1 register so that it is restored as sp register on exit, thereby
// popping the args.
// t1 = sp + kPointerSize * #args
add(t1, sp, t0);
// Align the stack at this point.
AlignStack(0);
// Save registers.
addiu(sp, sp, -12);
sw(t1, MemOperand(sp, 8));
sw(ra, MemOperand(sp, 4));
sw(fp, MemOperand(sp, 0));
mov(fp, sp); // Setup new frame pointer.
// Push debug marker.
if (mode == ExitFrame::MODE_DEBUG) {
Push(zero_reg);
} else {
li(t0, Operand(CodeObject()));
Push(t0);
}
// Save the frame pointer and the context in top.
LoadExternalReference(t0, ExternalReference(Top::k_c_entry_fp_address));
sw(fp, MemOperand(t0));
LoadExternalReference(t0, ExternalReference(Top::k_context_address));
sw(cp, MemOperand(t0));
// Setup argc and the builtin function in callee-saved registers.
mov(hold_argc, a0);
mov(hold_function, a1);
}
void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) {
// Clear top frame.
LoadExternalReference(t0, ExternalReference(Top::k_c_entry_fp_address));
sw(zero_reg, MemOperand(t0));
// Restore current context from top and clear it in debug mode.
LoadExternalReference(t0, ExternalReference(Top::k_context_address));
lw(cp, MemOperand(t0));
#ifdef DEBUG
sw(a3, MemOperand(t0));
#endif
// Pop the arguments, restore registers, and return.
mov(sp, fp); // Respect ABI stack constraint.
lw(fp, MemOperand(sp, 0));
lw(ra, MemOperand(sp, 4));
lw(sp, MemOperand(sp, 8));
jr(ra);
nop(); // Branch delay slot nop.
}
void MacroAssembler::AlignStack(int offset) {
// On MIPS an offset of 0 aligns to 0 modulo 8 bytes,
// and an offset of 1 aligns to 4 modulo 8 bytes.
int activation_frame_alignment = OS::ActivationFrameAlignment();
if (activation_frame_alignment != kPointerSize) {
// This code needs to be made more general if this assert doesn't hold.
ASSERT(activation_frame_alignment == 2 * kPointerSize);
if (offset == 0) {
andi(t0, sp, activation_frame_alignment - 1);
Push(zero_reg, eq, t0, zero_reg);
} else {
andi(t0, sp, activation_frame_alignment - 1);
addiu(t0, t0, -4);
Push(zero_reg, eq, t0, zero_reg);
}
}
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS