blob: 82b80a2b802d685c5c8ba400bf9a1bb58da7b3ba [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "arm/lithium-codegen-arm.h"
#include "arm/lithium-gap-resolver-arm.h"
#include "code-stubs.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
class SafepointGenerator : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() { }
virtual void BeforeCall(int call_size) const { }
virtual void AfterCall() const {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
HPhase phase("Z_Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
CpuFeatures::Scope scope1(VFP3);
CpuFeatures::Scope scope2(ARMv7);
CodeStub::GenerateFPStubs();
// Open a frame scope to indicate that there is a frame on the stack. The
// NONE indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::NONE);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateDeoptJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
void LCodeGen::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartArrayPointer<char> name(
info()->shared_info()->DebugName()->ToCString());
PrintF("Aborting LCodeGen in @\"%s\": ", *name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
void LCodeGen::Comment(const char* format, ...) {
if (!FLAG_code_comments) return;
char buffer[4 * KB];
StringBuilder builder(buffer, ARRAY_SIZE(buffer));
va_list arguments;
va_start(arguments, format);
builder.AddFormattedList(format, arguments);
va_end(arguments);
// Copy the string before recording it in the assembler to avoid
// issues when the stack allocated buffer goes out of scope.
size_t length = builder.position();
Vector<char> copy = Vector<char>::New(length + 1);
memcpy(copy.start(), builder.Finalize(), copy.length());
masm()->RecordComment(copy.start());
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop_at");
}
#endif
// r1: Callee's JS function.
// cp: Callee's context.
// fp: Caller's frame pointer.
// lr: Caller's pc.
// Strict mode functions and builtins need to replace the receiver
// with undefined when called as functions (without an explicit
// receiver object). r5 is zero for method calls and non-zero for
// function calls.
if (!info_->is_classic_mode() || info_->is_native()) {
Label ok;
__ cmp(r5, Operand(0));
__ b(eq, &ok);
int receiver_offset = scope()->num_parameters() * kPointerSize;
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ str(r2, MemOperand(sp, receiver_offset));
__ bind(&ok);
}
__ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
__ add(fp, sp, Operand(2 * kPointerSize)); // Adjust FP to point to saved FP.
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ mov(r0, Operand(slots));
__ mov(r2, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ push(r2);
__ sub(r0, r0, Operand(1), SetCC);
__ b(ne, &loop);
} else {
__ sub(sp, sp, Operand(slots * kPointerSize));
}
}
// Possibly allocate a local context.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
// Argument to NewContext is the function, which is in r1.
__ push(r1);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in both r0 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ldr(r0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ str(r0, target);
// Update the write barrier. This clobbers r3 and r0.
__ RecordWriteContextSlot(
cp, target.offset(), r0, r3, kLRHasBeenSaved, kSaveFPRegs);
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
bool LCodeGen::GenerateBody() {
ASSERT(is_generating());
bool emit_instructions = true;
for (current_instruction_ = 0;
!is_aborted() && current_instruction_ < instructions_->length();
current_instruction_++) {
LInstruction* instr = instructions_->at(current_instruction_);
if (instr->IsLabel()) {
LLabel* label = LLabel::cast(instr);
emit_instructions = !label->HasReplacement();
}
if (emit_instructions) {
Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
instr->CompileToNative(this);
}
}
EnsureSpaceForLazyDeopt();
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
__ bind(code->entry());
Comment(";;; Deferred code @%d: %s.",
code->instruction_index(),
code->instr()->Mnemonic());
code->Generate();
__ jmp(code->exit());
}
}
// Force constant pool emission at the end of the deferred code to make
// sure that no constant pools are emitted after.
masm()->CheckConstPool(true, false);
return !is_aborted();
}
bool LCodeGen::GenerateDeoptJumpTable() {
// Check that the jump table is accessible from everywhere in the function
// code, i.e. that offsets to the table can be encoded in the 24bit signed
// immediate of a branch instruction.
// To simplify we consider the code size from the first instruction to the
// end of the jump table. We also don't consider the pc load delta.
// Each entry in the jump table generates one instruction and inlines one
// 32bit data after it.
if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
deopt_jump_table_.length() * 2)) {
Abort("Generated code is too large");
}
// Block the constant pool emission during the jump table emission.
__ BlockConstPoolFor(deopt_jump_table_.length());
__ RecordComment("[ Deoptimisation jump table");
Label table_start;
__ bind(&table_start);
for (int i = 0; i < deopt_jump_table_.length(); i++) {
__ bind(&deopt_jump_table_[i].label);
__ ldr(pc, MemOperand(pc, Assembler::kInstrSize - Assembler::kPcLoadDelta));
__ dd(reinterpret_cast<uint32_t>(deopt_jump_table_[i].address));
}
ASSERT(masm()->InstructionsGeneratedSince(&table_start) ==
deopt_jump_table_.length() * 2);
__ RecordComment("]");
// The deoptimization jump table is the last part of the instruction
// sequence. Mark the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
return DoubleRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
__ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
} else if (r.IsDouble()) {
Abort("EmitLoadRegister: Unsupported double immediate.");
} else {
ASSERT(r.IsTagged());
if (literal->IsSmi()) {
__ mov(scratch, Operand(literal));
} else {
__ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal));
}
}
return scratch;
} else if (op->IsStackSlot() || op->IsArgument()) {
__ ldr(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
SwVfpRegister flt_scratch,
DoubleRegister dbl_scratch) {
if (op->IsDoubleRegister()) {
return ToDoubleRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
__ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
__ vmov(flt_scratch, ip);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
return dbl_scratch;
} else if (r.IsDouble()) {
Abort("unsupported double immediate");
} else if (r.IsTagged()) {
Abort("unsupported tagged immediate");
}
} else if (op->IsStackSlot() || op->IsArgument()) {
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(op));
MemOperand mem_op = ToMemOperand(op);
__ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
return dbl_scratch;
}
UNREACHABLE();
return dbl_scratch;
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
Handle<Object> literal = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
return literal;
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsInteger32();
}
int LCodeGen::ToInteger32(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
value->Number());
return static_cast<int32_t>(value->Number());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
return value->Number();
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
return Operand(static_cast<int32_t>(literal->Number()));
} else if (r.IsDouble()) {
Abort("ToOperand Unsupported double immediate.");
}
ASSERT(r.IsTagged());
return Operand(literal);
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort("ToOperand IsDoubleRegister unimplemented");
return Operand(0);
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand(0);
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
ASSERT(!op->IsRegister());
ASSERT(!op->IsDoubleRegister());
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return MemOperand(fp, -(index + 3) * kPointerSize);
} else {
// Incoming parameter. Skip the return address.
return MemOperand(fp, -(index - 1) * kPointerSize);
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
ASSERT(op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, context,
// and the first word of the double in the fixed part of the frame.
return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
} else {
// Incoming parameter. Skip the return address and the first word of
// the double.
return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->values()->length();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
int closure_id = DefineDeoptimizationLiteral(environment->closure());
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
default:
UNREACHABLE();
}
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
// spilled_registers_ and spilled_double_registers_ are either
// both NULL or both set.
if (environment->spilled_registers() != NULL && value != NULL) {
if (value->IsRegister() &&
environment->spilled_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(translation,
environment->spilled_registers()[value->index()],
environment->HasTaggedValueAt(i));
} else if (
value->IsDoubleRegister() &&
environment->spilled_double_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(
translation,
environment->spilled_double_registers()[value->index()],
false);
}
}
AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
}
}
void LCodeGen::AddToTranslation(Translation* translation,
LOperand* op,
bool is_tagged) {
if (op == NULL) {
// TODO(twuerthinger): Introduce marker operands to indicate that this value
// is not present and must be reconstructed from the deoptimizer. Currently
// this is only used for the arguments object.
translation->StoreArgumentsObject();
} else if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsArgument()) {
ASSERT(is_tagged);
int src_index = GetStackSlotCount() + op->index();
translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(literal);
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
__ Call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr) {
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
ASSERT(pointers != NULL);
RecordPosition(pointers->position());
__ CallRuntime(function, num_arguments);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr) {
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count);
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment);
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
if (entry == NULL) {
Abort("bailout was not prepared");
return;
}
ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on ARM.
if (FLAG_deopt_every_n_times == 1 &&
info_->shared_info()->opt_count() == id) {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
return;
}
if (FLAG_trap_on_deopt) __ stop("trap_on_deopt", cc);
if (cc == al) {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
} else {
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (deopt_jump_table_.is_empty() ||
(deopt_jump_table_.last().address != entry)) {
deopt_jump_table_.Add(JumpTableEntry(entry));
}
__ b(cc, &deopt_jump_table_.last().label);
}
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
factory()->NewDeoptimizationInputData(length, TENURED);
Handle<ByteArray> translations = translations_.CreateByteArray();
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, Smi::FromInt(env->ast_id()));
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal);
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
ASSERT(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer));
}
}
if (kind & Safepoint::kWithRegisters) {
// Register cp always contains a pointer to the context.
safepoint.DefinePointerRegister(cp);
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(RelocInfo::kNoPosition);
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(
pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegistersAndDoubles(
LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(
pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
}
void LCodeGen::RecordPosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
}
void LCodeGen::DoLabel(LLabel* label) {
if (label->is_loop_header()) {
Comment(";;; B%d - LOOP entry", label->block_id());
} else {
Comment(";;; B%d", label->block_id());
}
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpConstructResult: {
RegExpConstructResultStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::RegExpExec: {
RegExpExecStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::NumberToString: {
NumberToStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringAdd: {
StringAddStub stub(NO_STRING_ADD_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::TranscendentalCache: {
__ ldr(r0, MemOperand(sp, 0));
TranscendentalCacheStub stub(instr->transcendental_type(),
TranscendentalCacheStub::TAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
// Nothing to do.
}
void LCodeGen::DoModI(LModI* instr) {
if (instr->hydrogen()->HasPowerOf2Divisor()) {
Register dividend = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
int32_t divisor =
HConstant::cast(instr->hydrogen()->right())->Integer32Value();
if (divisor < 0) divisor = -divisor;
Label positive_dividend, done;
__ cmp(dividend, Operand(0));
__ b(pl, &positive_dividend);
__ rsb(result, dividend, Operand(0));
__ and_(result, result, Operand(divisor - 1), SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr->environment());
}
__ rsb(result, result, Operand(0));
__ b(&done);
__ bind(&positive_dividend);
__ and_(result, dividend, Operand(divisor - 1));
__ bind(&done);
return;
}
// These registers hold untagged 32 bit values.
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
DwVfpRegister dividend = ToDoubleRegister(instr->TempAt(1));
DwVfpRegister divisor = ToDoubleRegister(instr->TempAt(2));
DwVfpRegister quotient = double_scratch0();
ASSERT(!dividend.is(divisor));
ASSERT(!dividend.is(quotient));
ASSERT(!divisor.is(quotient));
ASSERT(!scratch.is(left));
ASSERT(!scratch.is(right));
ASSERT(!scratch.is(result));
Label done, vfp_modulo, both_positive, right_negative;
// Check for x % 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right, Operand(0));
DeoptimizeIf(eq, instr->environment());
}
__ Move(result, left);
// (0 % x) must yield 0 (if x is finite, which is the case here).
__ cmp(left, Operand(0));
__ b(eq, &done);
// Preload right in a vfp register.
__ vmov(divisor.low(), right);
__ b(lt, &vfp_modulo);
__ cmp(left, Operand(right));
__ b(lt, &done);
// Check for (positive) power of two on the right hand side.
__ JumpIfNotPowerOfTwoOrZeroAndNeg(right,
scratch,
&right_negative,
&both_positive);
// Perform modulo operation (scratch contains right - 1).
__ and_(result, scratch, Operand(left));
__ b(&done);
__ bind(&right_negative);
// Negate right. The sign of the divisor does not matter.
__ rsb(right, right, Operand(0));
__ bind(&both_positive);
const int kUnfolds = 3;
// If the right hand side is smaller than the (nonnegative)
// left hand side, the left hand side is the result.
// Else try a few subtractions of the left hand side.
__ mov(scratch, left);
for (int i = 0; i < kUnfolds; i++) {
// Check if the left hand side is less or equal than the
// the right hand side.
__ cmp(scratch, Operand(right));
__ mov(result, scratch, LeaveCC, lt);
__ b(lt, &done);
// If not, reduce the left hand side by the right hand
// side and check again.
if (i < kUnfolds - 1) __ sub(scratch, scratch, right);
}
__ bind(&vfp_modulo);
// Load the arguments in VFP registers.
// The divisor value is preloaded before. Be careful that 'right' is only live
// on entry.
__ vmov(dividend.low(), left);
// From here on don't use right as it may have been reallocated (for example
// to scratch2).
right = no_reg;
__ vcvt_f64_s32(dividend, dividend.low());
__ vcvt_f64_s32(divisor, divisor.low());
// We do not care about the sign of the divisor.
__ vabs(divisor, divisor);
// Compute the quotient and round it to a 32bit integer.
__ vdiv(quotient, dividend, divisor);
__ vcvt_s32_f64(quotient.low(), quotient);
__ vcvt_f64_s32(quotient, quotient.low());
// Compute the remainder in result.
DwVfpRegister double_scratch = dividend;
__ vmul(double_scratch, divisor, quotient);
__ vcvt_s32_f64(double_scratch.low(), double_scratch);
__ vmov(scratch, double_scratch.low());
if (!instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ sub(result, left, scratch);
} else {
Label ok;
// Check for -0.
__ sub(scratch2, left, scratch, SetCC);
__ b(ne, &ok);
__ cmp(left, Operand(0));
DeoptimizeIf(mi, instr->environment());
__ bind(&ok);
// Load the result and we are done.
__ mov(result, scratch2);
}
__ bind(&done);
}
void LCodeGen::DoDivI(LDivI* instr) {
class DeferredDivI: public LDeferredCode {
public:
DeferredDivI(LCodeGen* codegen, LDivI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredBinaryOpStub(instr_, Token::DIV);
}
virtual LInstruction* instr() { return instr_; }
private:
LDivI* instr_;
};
const Register left = ToRegister(instr->InputAt(0));
const Register right = ToRegister(instr->InputAt(1));
const Register scratch = scratch0();
const Register result = ToRegister(instr->result());
// Check for x / 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right, Operand(0));
DeoptimizeIf(eq, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label left_not_zero;
__ cmp(left, Operand(0));
__ b(ne, &left_not_zero);
__ cmp(right, Operand(0));
DeoptimizeIf(mi, instr->environment());
__ bind(&left_not_zero);
}
// Check for (-kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
Label left_not_min_int;
__ cmp(left, Operand(kMinInt));
__ b(ne, &left_not_min_int);
__ cmp(right, Operand(-1));
DeoptimizeIf(eq, instr->environment());
__ bind(&left_not_min_int);
}
Label done, deoptimize;
// Test for a few common cases first.
__ cmp(right, Operand(1));
__ mov(result, left, LeaveCC, eq);
__ b(eq, &done);
__ cmp(right, Operand(2));
__ tst(left, Operand(1), eq);
__ mov(result, Operand(left, ASR, 1), LeaveCC, eq);
__ b(eq, &done);
__ cmp(right, Operand(4));
__ tst(left, Operand(3), eq);
__ mov(result, Operand(left, ASR, 2), LeaveCC, eq);
__ b(eq, &done);
// Call the stub. The numbers in r0 and r1 have
// to be tagged to Smis. If that is not possible, deoptimize.
DeferredDivI* deferred = new DeferredDivI(this, instr);
__ TrySmiTag(left, &deoptimize, scratch);
__ TrySmiTag(right, &deoptimize, scratch);
__ b(al, deferred->entry());
__ bind(deferred->exit());
// If the result in r0 is a Smi, untag it, else deoptimize.
__ JumpIfNotSmi(result, &deoptimize);
__ SmiUntag(result);
__ b(&done);
__ bind(&deoptimize);
DeoptimizeIf(al, instr->environment());
__ bind(&done);
}
template<int T>
void LCodeGen::DoDeferredBinaryOpStub(LTemplateInstruction<1, 2, T>* instr,
Token::Value op) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegistersAndDoubles);
// Move left to r1 and right to r0 for the stub call.
if (left.is(r1)) {
__ Move(r0, right);
} else if (left.is(r0) && right.is(r1)) {
__ Swap(r0, r1, r2);
} else if (left.is(r0)) {
ASSERT(!right.is(r1));
__ mov(r1, r0);
__ mov(r0, right);
} else {
ASSERT(!left.is(r0) && !right.is(r0));
__ mov(r0, right);
__ mov(r1, left);
}
BinaryOpStub stub(op, OVERWRITE_LEFT);
__ CallStub(&stub);
RecordSafepointWithRegistersAndDoubles(instr->pointer_map(),
0,
Safepoint::kNoLazyDeopt);
// Overwrite the stored value of r0 with the result of the stub.
__ StoreToSafepointRegistersAndDoublesSlot(r0, r0);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
// Note that result may alias left.
Register left = ToRegister(instr->InputAt(0));
LOperand* right_op = instr->InputAt(1);
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
bool bailout_on_minus_zero =
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
if (right_op->IsConstantOperand() && !can_overflow) {
// Use optimized code for specific constants.
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
if (bailout_on_minus_zero && (constant < 0)) {
// The case of a null constant will be handled separately.
// If constant is negative and left is null, the result should be -0.
__ cmp(left, Operand(0));
DeoptimizeIf(eq, instr->environment());
}
switch (constant) {
case -1:
__ rsb(result, left, Operand(0));
break;
case 0:
if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
__ cmp(left, Operand(0));
DeoptimizeIf(mi, instr->environment());
}
__ mov(result, Operand(0));
break;
case 1:
__ Move(result, left);
break;
default:
// Multiplying by powers of two and powers of two plus or minus
// one can be done faster with shifted operands.
// For other constants we emit standard code.
int32_t mask = constant >> 31;
uint32_t constant_abs = (constant + mask) ^ mask;
if (IsPowerOf2(constant_abs) ||
IsPowerOf2(constant_abs - 1) ||
IsPowerOf2(constant_abs + 1)) {
if (IsPowerOf2(constant_abs)) {
int32_t shift = WhichPowerOf2(constant_abs);
__ mov(result, Operand(left, LSL, shift));
} else if (IsPowerOf2(constant_abs - 1)) {
int32_t shift = WhichPowerOf2(constant_abs - 1);
__ add(result, left, Operand(left, LSL, shift));
} else if (IsPowerOf2(constant_abs + 1)) {
int32_t shift = WhichPowerOf2(constant_abs + 1);
__ rsb(result, left, Operand(left, LSL, shift));
}
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand(0));
} else {
// Generate standard code.
__ mov(ip, Operand(constant));
__ mul(result, left, ip);
}
}
} else {
Register right = EmitLoadRegister(right_op, scratch);
if (bailout_on_minus_zero) {
__ orr(ToRegister(instr->TempAt(0)), left, right);
}
if (can_overflow) {
// scratch:result = left * right.
__ smull(result, scratch, left, right);
__ cmp(scratch, Operand(result, ASR, 31));
DeoptimizeIf(ne, instr->environment());
} else {
__ mul(result, left, right);
}
if (bailout_on_minus_zero) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ cmp(result, Operand(0));
__ b(ne, &done);
__ cmp(ToRegister(instr->TempAt(0)), Operand(0));
DeoptimizeIf(mi, instr->environment());
__ bind(&done);
}
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left_op = instr->InputAt(0);
LOperand* right_op = instr->InputAt(1);
ASSERT(left_op->IsRegister());
Register left = ToRegister(left_op);
Register result = ToRegister(instr->result());
Operand right(no_reg);
if (right_op->IsStackSlot() || right_op->IsArgument()) {
right = Operand(EmitLoadRegister(right_op, ip));
} else {
ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
right = ToOperand(right_op);
}
switch (instr->op()) {
case Token::BIT_AND:
__ and_(result, left, right);
break;
case Token::BIT_OR:
__ orr(result, left, right);
break;
case Token::BIT_XOR:
__ eor(result, left, right);
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
// result may alias either of them.
LOperand* right_op = instr->InputAt(1);
Register left = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
if (right_op->IsRegister()) {
// Mask the right_op operand.
__ and_(scratch, ToRegister(right_op), Operand(0x1F));
switch (instr->op()) {
case Token::SAR:
__ mov(result, Operand(left, ASR, scratch));
break;
case Token::SHR:
if (instr->can_deopt()) {
__ mov(result, Operand(left, LSR, scratch), SetCC);
DeoptimizeIf(mi, instr->environment());
} else {
__ mov(result, Operand(left, LSR, scratch));
}
break;
case Token::SHL:
__ mov(result, Operand(left, LSL, scratch));
break;
default:
UNREACHABLE();
break;
}
} else {
// Mask the right_op operand.
int value = ToInteger32(LConstantOperand::cast(right_op));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::SAR:
if (shift_count != 0) {
__ mov(result, Operand(left, ASR, shift_count));
} else {
__ Move(result, left);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ mov(result, Operand(left, LSR, shift_count));
} else {
if (instr->can_deopt()) {
__ tst(left, Operand(0x80000000));
DeoptimizeIf(ne, instr->environment());
}
__ Move(result, left);
}
break;
case Token::SHL:
if (shift_count != 0) {
__ mov(result, Operand(left, LSL, shift_count));
} else {
__ Move(result, left);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
ASSERT(instr->result()->IsRegister());
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
ASSERT(instr->result()->IsDoubleRegister());
DwVfpRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
__ Vmov(result, v);
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> value = instr->value();
if (value->IsSmi()) {
__ mov(ToRegister(instr->result()), Operand(value));
} else {
__ LoadHeapObject(ToRegister(instr->result()),
Handle<HeapObject>::cast(value));
}
}
void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, JSArray::kLengthOffset));
}
void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset));
}
void LCodeGen::DoElementsKind(LElementsKind* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
// Load map into |result|.
__ ldr(result, FieldMemOperand(input, HeapObject::kMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following bit field extraction takes care of that anyway.
__ ldr(result, FieldMemOperand(result, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->TempAt(0));
Label done;
// If the object is a smi return the object.
__ tst(input, Operand(kSmiTagMask));
__ Move(result, input, eq);
__ b(eq, &done);
// If the object is not a value type, return the object.
__ CompareObjectType(input, map, map, JS_VALUE_TYPE);
__ Move(result, input, ne);
__ b(ne, &done);
__ ldr(result, FieldMemOperand(input, JSValue::kValueOffset));
__ bind(&done);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->TempAt(0));
Smi* index = instr->index();
Label runtime, done;
ASSERT(object.is(result));
ASSERT(object.is(r0));
ASSERT(!scratch.is(scratch0()));
ASSERT(!scratch.is(object));
#ifdef DEBUG
__ AbortIfSmi(object);
__ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
__ Assert(eq, "Trying to get date field from non-date.");
#endif
if (index->value() == 0) {
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand(stamp));
__ ldr(scratch, MemOperand(scratch));
__ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
__ cmp(scratch, scratch0());
__ b(ne, &runtime);
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ mov(r1, Operand(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
}
void LCodeGen::DoBitNotI(LBitNotI* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ mvn(result, Operand(input));
}
void LCodeGen::DoThrow(LThrow* instr) {
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ push(input_reg);
CallRuntime(Runtime::kThrow, 1, instr);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
DoubleRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
__ vadd(result, left, right);
break;
case Token::SUB:
__ vsub(result, left, right);
break;
case Token::MUL:
__ vmul(result, left, right);
break;
case Token::DIV:
__ vdiv(result, left, right);
break;
case Token::MOD: {
// Save r0-r3 on the stack.
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
__ PrepareCallCFunction(0, 2, scratch0());
__ SetCallCDoubleArguments(left, right);
__ CallCFunction(
ExternalReference::double_fp_operation(Token::MOD, isolate()),
0, 2);
// Move the result in the double result register.
__ GetCFunctionDoubleResult(result);
// Restore r0-r3.
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r1));
ASSERT(ToRegister(instr->InputAt(1)).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
BinaryOpStub stub(instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ nop(); // Signals no inlined code.
}
int LCodeGen::GetNextEmittedBlock(int block) {
for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
LLabel* label = chunk_->GetLabel(i);
if (!label->HasReplacement()) return i;
}
return -1;
}
void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
int next_block = GetNextEmittedBlock(current_block_);
right_block = chunk_->LookupDestination(right_block);
left_block = chunk_->LookupDestination(left_block);
if (right_block == left_block) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ b(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ b(cc, chunk_->GetAssemblyLabel(left_block));
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32()) {
Register reg = ToRegister(instr->InputAt(0));
__ cmp(reg, Operand(0));
EmitBranch(true_block, false_block, ne);
} else if (r.IsDouble()) {
DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
// Test the double value. Zero and NaN are false.
__ VFPCompareAndLoadFlags(reg, 0.0, scratch);
__ tst(scratch, Operand(kVFPZConditionFlagBit | kVFPVConditionFlagBit));
EmitBranch(true_block, false_block, eq);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->InputAt(0));
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(true_block, false_block, eq);
} else if (type.IsSmi()) {
__ cmp(reg, Operand(0));
EmitBranch(true_block, false_block, ne);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ b(eq, false_label);
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// Boolean -> its value.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ b(eq, true_label);
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ b(eq, false_label);
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ b(eq, false_label);
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ cmp(reg, Operand(0));
__ b(eq, false_label);
__ JumpIfSmi(reg, true_label);
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ tst(reg, Operand(kSmiTagMask));
DeoptimizeIf(eq, instr->environment());
}
const Register map = scratch0();
if (expected.NeedsMap()) {
__ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
__ b(ne, false_label);
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, true_label);
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
__ b(ge, &not_string);
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmp(ip, Operand(0));
__ b(ne, true_label);
__ b(false_label);
__ bind(&not_string);
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
DoubleRegister dbl_scratch = double_scratch0();
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ b(ne, &not_heap_number);
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
__ b(vs, false_label); // NaN -> false.
__ b(eq, false_label); // +0, -0 -> false.
__ b(true_label);
__ bind(&not_heap_number);
}
// We've seen something for the first time -> deopt.
DeoptimizeIf(al, instr->environment());
}
}
}
void LCodeGen::EmitGoto(int block) {
block = chunk_->LookupDestination(block);
int next_block = GetNextEmittedBlock(current_block_);
if (block != next_block) {
__ jmp(chunk_->GetAssemblyLabel(block));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::LT:
cond = is_unsigned ? lo : lt;
break;
case Token::GT:
cond = is_unsigned ? hi : gt;
break;
case Token::LTE:
cond = is_unsigned ? ls : le;
break;
case Token::GTE:
cond = is_unsigned ? hs : ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
Condition cond = TokenToCondition(instr->op(), false);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block =
EvalComparison(instr->op(), left_val, right_val) ? true_block
: false_block;
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Compare left and right operands as doubles and load the
// resulting flags into the normal status register.
__ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered (V set),
// jump to false block label.
__ b(vs, chunk_->GetAssemblyLabel(false_block));
} else {
if (right->IsConstantOperand()) {
__ cmp(ToRegister(left),
Operand(ToInteger32(LConstantOperand::cast(right))));
} else if (left->IsConstantOperand()) {
__ cmp(ToRegister(right),
Operand(ToInteger32(LConstantOperand::cast(left))));
// We transposed the operands. Reverse the condition.
cond = ReverseCondition(cond);
} else {
__ cmp(ToRegister(left), ToRegister(right));
}
}
EmitBranch(true_block, false_block, cond);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
__ cmp(left, Operand(right));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
Register left = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ cmp(left, Operand(instr->hydrogen()->right()));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
Register scratch = scratch0();
Register reg = ToRegister(instr->InputAt(0));
int false_block = chunk_->LookupDestination(instr->false_block_id());
// If the expression is known to be untagged or a smi, then it's definitely
// not null, and it can't be a an undetectable object.
if (instr->hydrogen()->representation().IsSpecialization() ||
instr->hydrogen()->type().IsSmi()) {
EmitGoto(false_block);
return;
}
int true_block = chunk_->LookupDestination(instr->true_block_id());
Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ LoadRoot(ip, nil_value);
__ cmp(reg, ip);
if (instr->kind() == kStrictEquality) {
EmitBranch(true_block, false_block, eq);
} else {
Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
Heap::kUndefinedValueRootIndex :
Heap::kNullValueRootIndex;
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ b(eq, true_label);
__ LoadRoot(ip, other_nil_value);
__ cmp(reg, ip);
__ b(eq, true_label);
__ JumpIfSmi(reg, false_label);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, ne);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Register temp1,
Label* is_not_object,
Label* is_object) {
Register temp2 = scratch0();
__ JumpIfSmi(input, is_not_object);
__ LoadRoot(temp2, Heap::kNullValueRootIndex);
__ cmp(input, temp2);
__ b(eq, is_object);
// Load map.
__ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
__ tst(temp2, Operand(1 << Map::kIsUndetectable));
__ b(ne, is_not_object);
// Load instance type and check that it is in object type range.
__ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
__ cmp(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ b(lt, is_not_object);
__ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
return le;
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp1 = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition true_cond =
EmitIsObject(reg, temp1, false_label, true_label);
EmitBranch(true_block, false_block, true_cond);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string) {
__ JumpIfSmi(input, is_not_string);
__ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
return lt;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp1 = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition true_cond =
EmitIsString(reg, temp1, false_label);
EmitBranch(true_block, false_block, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ tst(input_reg, Operand(kSmiTagMask));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
__ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
__ tst(temp, Operand(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, ne);
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
Token::Value op = instr->op();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
__ cmp(r0, Operand(0)); // This instruction also signals no smi code inlined.
Condition condition = ComputeCompareCondition(op);
EmitBranch(true_block, false_block, condition);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return eq;
if (to == LAST_TYPE) return hs;
if (from == FIRST_TYPE) return ls;
UNREACHABLE();
return eq;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
__ AbortIfNotString(input);
}
__ ldr(result, FieldMemOperand(input, String::kHashFieldOffset));
__ IndexFromHash(result, result);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ ldr(scratch,
FieldMemOperand(input, String::kHashFieldOffset));
__ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
EmitBranch(true_block, false_block, eq);
}
// Branches to a label or falls through with the answer in flags. Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
ASSERT(!input.is(temp));
ASSERT(!input.is(temp2));
ASSERT(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
if (class_name->IsEqualTo(CStrVector("Function"))) {
// Assuming the following assertions, we can use the same compares to test
// for both being a function type and being in the object type range.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE);
__ b(lt, is_false);
__ b(eq, is_true);
__ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE));
__ b(eq, is_true);
} else {
// Faster code path to avoid two compares: subtract lower bound from the
// actual type and do a signed compare with the width of the type range.
__ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset));
__ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ b(gt, is_false);
}
// Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
// Check if the constructor in the map is a function.
__ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset));
// Objects with a non-function constructor have class 'Object'.
__ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE);
if (class_name->IsEqualTo(CStrVector("Object"))) {
__ b(ne, is_true);
} else {
__ b(ne, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ ldr(temp, FieldMemOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is a symbol because it's a literal.
// The name in the constructor is a symbol because of the way the context is
// booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are symbols it is sufficient to use an identity
// comparison.
__ cmp(temp, Operand(class_name));
// End with the answer in flags.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = scratch0();
Register temp2 = ToRegister(instr->TempAt(0));
Handle<String> class_name = instr->hydrogen()->class_name();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = instr->true_block_id();
int false_block = instr->false_block_id();
__ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(temp, Operand(instr->map()));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r0)); // Object is in r0.
ASSERT(ToRegister(instr->InputAt(1)).is(r1)); // Function is in r1.
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ cmp(r0, Operand(0));
__ mov(r0, Operand(factory()->false_value()), LeaveCC, ne);
__ mov(r0, Operand(factory()->true_value()), LeaveCC, eq);
}
void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
class DeferredInstanceOfKnownGlobal: public LDeferredCode {
public:
DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
LInstanceOfKnownGlobal* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
}
virtual LInstruction* instr() { return instr_; }
Label* map_check() { return &map_check_; }
private:
LInstanceOfKnownGlobal* instr_;
Label map_check_;
};
DeferredInstanceOfKnownGlobal* deferred;
deferred = new DeferredInstanceOfKnownGlobal(this, instr);
Label done, false_result;
Register object = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
Register result = ToRegister(instr->result());
ASSERT(object.is(r0));
ASSERT(result.is(r0));
// A Smi is not instance of anything.
__ JumpIfSmi(object, &false_result);
// This is the inlined call site instanceof cache. The two occurences of the
// hole value will be patched to the last map/result pair generated by the
// instanceof stub.
Label cache_miss;
Register map = temp;
__ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
__ bind(deferred->map_check()); // Label for calculating code patching.
// We use Factory::the_hole_value() on purpose instead of loading from the
// root array to force relocation to be able to later patch with
// the cached map.
Handle<JSGlobalPropertyCell> cell =
factory()->NewJSGlobalPropertyCell(factory()->the_hole_value());
__ mov(ip, Operand(Handle<Object>(cell)));
__ ldr(ip, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
__ cmp(map, Operand(ip));
__ b(ne, &cache_miss);
// We use Factory::the_hole_value() on purpose instead of loading from the
// root array to force relocation to be able to later patch
// with true or false.
__ mov(result, Operand(factory()->the_hole_value()));
__ b(&done);
// The inlined call site cache did not match. Check null and string before
// calling the deferred code.
__ bind(&cache_miss);
// Null is not instance of anything.
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(object, Operand(ip));
__ b(eq, &false_result);
// String values is not instance of anything.
Condition is_string = masm_->IsObjectStringType(object, temp);
__ b(is_string, &false_result);
// Go to the deferred code.
__ b(deferred->entry());
__ bind(&false_result);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
// Here result has either true or false. Deferred code also produces true or
// false object.
__ bind(deferred->exit());
__ bind(&done);
}
void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
Label* map_check) {
Register result = ToRegister(instr->result());
ASSERT(result.is(r0));
InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kArgsInRegisters);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kCallSiteInlineCheck);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kReturnTrueFalseObject);
InstanceofStub stub(flags);
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
// Get the temp register reserved by the instruction. This needs to be r4 as
// its slot of the pushing of safepoint registers is used to communicate the
// offset to the location of the map check.
Register temp = ToRegister(instr->TempAt(0));
ASSERT(temp.is(r4));
__ LoadHeapObject(InstanceofStub::right(), instr->function());
static const int kAdditionalDelta = 4;
int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
Label before_push_delta;
__ bind(&before_push_delta);
__ BlockConstPoolFor(kAdditionalDelta);
__ mov(temp, Operand(delta * kPointerSize));
__ StoreToSafepointRegisterSlot(temp, temp);
CallCodeGeneric(stub.GetCode(),
RelocInfo::CODE_TARGET,
instr,
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
ASSERT(instr->HasDeoptimizationEnvironment());
LEnvironment* env = instr->deoptimization_environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
// Put the result value into the result register slot and
// restore all registers.
__ StoreToSafepointRegisterSlot(result, result);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
__ cmp(r0, Operand(0)); // This instruction also signals no smi code inlined.
Condition condition = ComputeCompareCondition(op);
__ LoadRoot(ToRegister(instr->result()),
Heap::kTrueValueRootIndex,
condition);
__ LoadRoot(ToRegister(instr->result()),
Heap::kFalseValueRootIndex,
NegateCondition(condition));
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r0.
__ push(r0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
__ mov(sp, fp);
__ ldm(ia_w, sp, fp.bit() | lr.bit());
__ add(sp, sp, Operand(sp_delta));
__ Jump(lr);
}
void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
Register result = ToRegister(instr->result());
__ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell())));
__ ldr(result, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
DeoptimizeIf(eq, instr->environment());
}
}
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
ASSERT(ToRegister(instr->global_object()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
__ mov(r2, Operand(instr->name()));
RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, mode, instr);
}
void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
Register value = ToRegister(instr->value());
Register cell = scratch0();
// Load the cell.
__ mov(cell, Operand(instr->hydrogen()->cell()));
// If the cell we are storing to contains the hole it could have
// been deleted from the property dictionary. In that case, we need
// to update the property details in the property dictionary to mark
// it as no longer deleted.
if (instr->hydrogen()->RequiresHoleCheck()) {
// We use a temp to check the payload (CompareRoot might clobber ip).
Register payload = ToRegister(instr->TempAt(0));
__ ldr(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
__ CompareRoot(payload, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(eq, instr->environment());
}
// Store the value.
__ str(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
// Cells are always rescanned, so no write barrier here.
}
void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
ASSERT(ToRegister(instr->global_object()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
__ mov(r2, Operand(instr->name()));
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
? isolate()->builtins()->StoreIC_Initialize_Strict()
: isolate()->builtins()->StoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ ldr(result, ContextOperand(context, instr->slot_index()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(eq, instr->environment());
} else {
__ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
}
}
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Register scratch = scratch0();
MemOperand target = ContextOperand(context, instr->slot_index());
Label skip_assignment;
if (instr->hydrogen()->RequiresHoleCheck()) {
__ ldr(scratch, target);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch, ip);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(eq, instr->environment());
} else {
__ b(ne, &skip_assignment);
}
}
__ str(value, target);
if (instr->hydrogen()->NeedsWriteBarrier()) {
HType type = instr->hydrogen()->value()->type();
SmiCheck check_needed =
type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
__ RecordWriteContextSlot(context,
target.offset(),
value,
scratch,
kLRHasBeenSaved,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
__ bind(&skip_assignment);
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (instr->hydrogen()->is_in_object()) {
__ ldr(result, FieldMemOperand(object, instr->hydrogen()->offset()));
} else {
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ ldr(result, FieldMemOperand(result, instr->hydrogen()->offset()));
}
}
void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
Register object,
Handle<Map> type,
Handle<String> name) {
LookupResult lookup(isolate());
type->LookupInDescriptors(NULL, *name, &lookup);
ASSERT(lookup.IsFound() &&
(lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
if (lookup.type() == FIELD) {
int index = lookup.GetLocalFieldIndexFromMap(*type);
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
__ ldr(result, FieldMemOperand(object, offset + type->instance_size()));
} else {
// Non-negative property indices are in the properties array.
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ ldr(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
}
} else {
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
__ LoadHeapObject(result, function);
}
}
void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
Register object = ToRegister(instr->object());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
int map_count = instr->hydrogen()->types()->length();
Handle<String> name = instr->hydrogen()->name();
if (map_count == 0) {
ASSERT(instr->hydrogen()->need_generic());
__ mov(r2, Operand(name));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
} else {
Label done;
__ ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
for (int i = 0; i < map_count - 1; ++i) {
Handle<Map> map = instr->hydrogen()->types()->at(i);
Label next;
__ cmp(scratch, Operand(map));
__ b(ne, &next);
EmitLoadFieldOrConstantFunction(result, object, map, name);
__ b(&done);
__ bind(&next);
}
Handle<Map> map = instr->hydrogen()->types()->last();
__ cmp(scratch, Operand(map));
if (instr->hydrogen()->need_generic()) {
Label generic;
__ b(ne, &generic);
EmitLoadFieldOrConstantFunction(result, object, map, name);
__ b(&done);
__ bind(&generic);
__ mov(r2, Operand(name));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
} else {
DeoptimizeIf(ne, instr->environment());
EmitLoadFieldOrConstantFunction(result, object, map, name);
}
__ bind(&done);
}
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
// Name is always in r2.
__ mov(r2, Operand(instr->name()));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register scratch = scratch0();
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Check that the function really is a function. Load map into the
// result register.
__ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
DeoptimizeIf(ne, instr->environment());
// Make sure that the function has an instance prototype.
Label non_instance;
__ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
__ b(ne, &non_instance);
// Get the prototype or initial map from the function.
__ ldr(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
DeoptimizeIf(eq, instr->environment());
// If the function does not have an initial map, we're done.
Label done;
__ CompareObjectType(result, scratch, scratch, MAP_TYPE);
__ b(ne, &done);
// Get the prototype from the initial map.
__ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
__ jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
__ bind(&non_instance);
__ ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadElements(LLoadElements* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
__ ldr(result, FieldMemOperand(input, JSObject::kElementsOffset));
if (FLAG_debug_code) {
Label done, fail;
__ ldr(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(scratch, ip);
__ b(eq, &done);
__ LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
__ cmp(scratch, ip);
__ b(eq, &done);
// |scratch| still contains |input|'s map.
__ ldr(scratch, FieldMemOperand(scratch, Map::kBitField2Offset));
__ ubfx(scratch, scratch, Map::kElementsKindShift,
Map::kElementsKindBitCount);
__ cmp(scratch, Operand(FAST_ELEMENTS));
__ b(eq, &done);
__ cmp(scratch, Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
__ b(lt, &fail);
__ cmp(scratch, Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
__ b(le, &done);
__ bind(&fail);
__ Abort("Check for fast or external elements failed.");
__ bind(&done);
}
}
void LCodeGen::DoLoadExternalArrayPointer(
LLoadExternalArrayPointer* instr) {
Register to_reg = ToRegister(instr->result());
Register from_reg = ToRegister(instr->InputAt(0));
__ ldr(to_reg, FieldMemOperand(from_reg,
ExternalArray::kExternalPointerOffset));
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register length = ToRegister(instr->length());
Register index = ToRegister(instr->index());
Register result = ToRegister(instr->result());
// Bailout index is not a valid argument index. Use unsigned check to get
// negative check for free.
__ sub(length, length, index, SetCC);
DeoptimizeIf(ls, instr->environment());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
__ add(length, length, Operand(1));
__ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
}
void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
Register elements = ToRegister(instr->elements());
Register key = EmitLoadRegister(instr->key(), scratch0());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// Load the result.
__ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
__ ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
// Check for the hole value.
if (instr->hydrogen()->RequiresHoleCheck()) {
__ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
__ cmp(result, scratch);
DeoptimizeIf(eq, instr->environment());
}
}
void LCodeGen::DoLoadKeyedFastDoubleElement(
LLoadKeyedFastDoubleElement* instr) {
Register elements = ToRegister(instr->elements());
bool key_is_constant = instr->key()->IsConstantOperand();
Register key = no_reg;
DwVfpRegister result = ToDoubleRegister(instr->result());
Register scratch = scratch0();
int shift_size =
ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort("array index constant value too big.");
}
} else {
key = ToRegister(instr->key());
}
Operand operand = key_is_constant
? Operand(constant_key * (1 << shift_size) +
FixedDoubleArray::kHeaderSize - kHeapObjectTag)
: Operand(key, LSL, shift_size);
__ add(elements, elements, operand);
if (!key_is_constant) {
__ add(elements, elements,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
}
__ ldr(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
__ cmp(scratch, Operand(kHoleNanUpper32));
DeoptimizeIf(eq, instr->environment());
__ vldr(result, elements, 0);
}
void LCodeGen::DoLoadKeyedSpecializedArrayElement(
LLoadKeyedSpecializedArrayElement* instr) {
Register external_pointer = ToRegister(instr->external_pointer());
Register key = no_reg;
ElementsKind elements_kind = instr->elements_kind();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort("array index constant value too big.");
}
} else {
key = ToRegister(instr->key());
}
int shift_size = ElementsKindToShiftSize(elements_kind);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
CpuFeatures::Scope scope(VFP3);
DwVfpRegister result = ToDoubleRegister(instr->result());
Operand operand = key_is_constant
? Operand(constant_key * (1 << shift_size))
: Operand(key, LSL, shift_size);
__ add(scratch0(), external_pointer, operand);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ vldr(result.low(), scratch0(), 0);
__ vcvt_f64_f32(result, result.low());
} else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
__ vldr(result, scratch0(), 0);
}
} else {
Register result = ToRegister(instr->result());
MemOperand mem_operand(key_is_constant
? MemOperand(external_pointer, constant_key * (1 << shift_size))
: MemOperand(external_pointer, key, LSL, shift_size));
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
__ ldrsb(result, mem_operand);
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ ldrb(result, mem_operand);
break;
case EXTERNAL_SHORT_ELEMENTS:
__ ldrsh(result, mem_operand);
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ ldrh(result, mem_operand);
break;
case EXTERNAL_INT_ELEMENTS:
__ ldr(result, mem_operand);
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ ldr(result, mem_operand);
__ cmp(result, Operand(0x80000000));
// TODO(danno): we could be more clever here, perhaps having a special
// version of the stub that detects if the overflow case actually
// happens, and generate code that returns a double rather than int.
DeoptimizeIf(cs, instr->environment());
break;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r1));
ASSERT(ToRegister(instr->key()).is(r0));
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
// Check if the calling frame is an arguments adaptor frame.
Label done, adapted;
__ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
__ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ mov(result, fp, LeaveCC, ne);
__ mov(result, scratch, LeaveCC, eq);
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Register elem = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
__ cmp(fp, elem);
__ mov(result, Operand(scope()->num_parameters()));
__ b(eq, &done);
// Arguments adaptor frame present. Get argument length from there.
__ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(result,
MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(result);
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register scratch = scratch0();
// If the receiver is null or undefined, we have to pass the global
// object as a receiver to normal functions. Values have to be
// passed unchanged to builtins and strict-mode functions.
Label global_object, receiver_ok;
// Do not transform the receiver to object for strict mode
// functions.
__ ldr(scratch,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ ldr(scratch,
FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
__ tst(scratch,
Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize)));
__ b(ne, &receiver_ok);
// Do not transform the receiver to object for builtins.
__ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
__ b(ne, &receiver_ok);
// Normal function. Replace undefined or null with global receiver.
__ LoadRoot(scratch, Heap::kNullValueRootIndex);
__ cmp(receiver, scratch);
__ b(eq, &global_object);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ cmp(receiver, scratch);
__ b(eq, &global_object);
// Deoptimize if the receiver is not a JS object.
__ tst(receiver, Operand(kSmiTagMask));
DeoptimizeIf(eq, instr->environment());
__ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE);
DeoptimizeIf(lt, instr->environment());
__ jmp(&receiver_ok);
__ bind(&global_object);
__ ldr(receiver, GlobalObjectOperand());
__ ldr(receiver,
FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
__ bind(&receiver_ok);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
Register scratch = scratch0();
ASSERT(receiver.is(r0)); // Used for parameter count.
ASSERT(function.is(r1)); // Required by InvokeFunction.
ASSERT(ToRegister(instr->result()).is(r0));
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmp(length, Operand(kArgumentsLimit));
DeoptimizeIf(hi, instr->environment());
// Push the receiver and use the register to keep the original
// number of arguments.
__ push(receiver);
__ mov(receiver, length);
// The arguments are at a one pointer size offset from elements.
__ add(elements, elements, Operand(1 * kPointerSize));
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ cmp(length, Operand(0));
__ b(eq, &invoke);
__ bind(&loop);
__ ldr(scratch, MemOperand(elements, length, LSL, 2));
__ push(scratch);
__ sub(length, length, Operand(1), SetCC);
__ b(ne, &loop);
__ bind(&invoke);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator safepoint_generator(
this, pointers, Safepoint::kLazyDeopt);
// The number of arguments is stored in receiver which is r0, as expected
// by InvokeFunction.
ParameterCount actual(receiver);
__ InvokeFunction(function, actual, CALL_FUNCTION,
safepoint_generator, CALL_AS_METHOD);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->InputAt(0);
if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
Abort("DoPushArgument not implemented for double type.");
} else {
Register argument_reg = EmitLoadRegister(argument, ip);
__ push(argument_reg);
}
}
void LCodeGen::DoThisFunction(LThisFunction* instr) {
Register result = ToRegister(instr->result());
__ LoadHeapObject(result, instr->hydrogen()->closure());
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
__ mov(result, cp);
}
void LCodeGen::DoOuterContext(LOuterContext* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ ldr(result,
MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
__ push(cp); // The context is the first argument.
__ LoadHeapObject(scratch0(), instr->hydrogen()->pairs());
__ push(scratch0());
__ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
__ push(scratch0());
CallRuntime(Runtime::kDeclareGlobals, 3, instr);
}
void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
Register result = ToRegister(instr->result());
__ ldr(result, ContextOperand(cp, Context::GLOBAL_INDEX));
}
void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
Register global = ToRegister(instr->global());
Register result = ToRegister(instr->result());
__ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int arity,
LInstruction* instr,
CallKind call_kind) {
bool can_invoke_directly = !function->NeedsArgumentsAdaption() ||
function->shared()->formal_parameter_count() == arity;
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
if (can_invoke_directly) {
__ LoadHeapObject(r1, function);
// Change context if needed.
bool change_context =
(info()->closure()->context() != function->context()) ||
scope()->contains_with() ||
(scope()->num_heap_slots() > 0);
if (change_context) {
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
}
// Set r0 to arguments count if adaption is not needed. Assumes that r0
// is available to write to at this point.
if (!function->NeedsArgumentsAdaption()) {
__ mov(r0, Operand(arity));
}
// Invoke function.
__ SetCallKind(r5, call_kind);
__ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Call(ip);
// Set up deoptimization.
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
} else {
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount count(arity);
__ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind);
}
// Restore context.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
CallKnownFunction(instr->function(),
instr->arity(),
instr,
CALL_AS_METHOD);
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// Deoptimize if not a heap number.
__ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
DeoptimizeIf(ne, instr->environment());
Label done;
Register exponent = scratch0();
scratch = no_reg;
__ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it.
__ tst(exponent, Operand(HeapNumber::kSignMask));
// Move the input to the result if necessary.
__ Move(result, input);
__ b(eq, &done);
// Input is negative. Reverse its sign.
// Preserve the value of all registers.
{
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
// Registers were saved at the safepoint, so we can use
// many scratch registers.
Register tmp1 = input.is(r1) ? r0 : r1;
Register tmp2 = input.is(r2) ? r0 : r2;
Register tmp3 = input.is(r3) ? r0 : r3;
Register tmp4 = input.is(r4) ? r0 : r4;
// exponent: floating point exponent value.
Label allocated, slow;
__ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
__ b(&allocated);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
// Set the pointer to the new heap number in tmp.
if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input, input);
__ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
__ bind(&allocated);
// exponent: floating point exponent value.
// tmp1: allocated heap number.
__ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
__ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
__ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
__ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
__ StoreToSafepointRegisterSlot(tmp1, result);
}
__ bind(&done);
}
void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ cmp(input, Operand(0));
__ Move(result, input, pl);
// We can make rsb conditional because the previous cmp instruction
// will clear the V (overflow) flag and rsb won't set this flag
// if input is positive.
__ rsb(result, input, Operand(0), SetCC, mi);
// Deoptimize on overflow.
DeoptimizeIf(vs, instr->environment());
}
void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
LUnaryMathOperation* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
virtual LInstruction* instr() { return instr_; }
private:
LUnaryMathOperation* instr_;
};
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
DwVfpRegister input = ToDoubleRegister(instr->InputAt(0));
DwVfpRegister result = ToDoubleRegister(instr->result());
__ vabs(result, input);
} else if (r.IsInteger32()) {
EmitIntegerMathAbs(instr);
} else {
// Representation is tagged.
DeferredMathAbsTaggedHeapNumber* deferred =
new DeferredMathAbsTaggedHeapNumber(this, instr);
Register input = ToRegister(instr->InputAt(0));
// Smi check.
__ JumpIfNotSmi(input, deferred->entry());
// If smi, handle it directly.
EmitIntegerMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
SwVfpRegister single_scratch = double_scratch0().low();
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
__ EmitVFPTruncate(kRoundToMinusInf,
single_scratch,
input,
scratch1,
scratch2);
DeoptimizeIf(ne, instr->environment());
// Move the result back to general purpose register r0.
__ vmov(result, single_scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Test for -0.
Label done;
__ cmp(result, Operand(0));
__ b(ne, &done);
__ vmov(scratch1, input.high());
__ tst(scratch1, Operand(HeapNumber::kSignMask));
DeoptimizeIf(ne, instr->environment());
__ bind(&done);
}
}
void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
Label done, check_sign_on_zero;
// Extract exponent bits.
__ vmov(result, input.high());
__ ubfx(scratch,
result,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// If the number is in ]-0.5, +0.5[, the result is +/- 0.
__ cmp(scratch, Operand(HeapNumber::kExponentBias - 2));
__ mov(result, Operand(0), LeaveCC, le);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ b(le, &check_sign_on_zero);
} else {
__ b(le, &done);
}
// The following conversion will not work with numbers
// outside of ]-2^32, 2^32[.
__ cmp(scratch, Operand(HeapNumber::kExponentBias + 32));
DeoptimizeIf(ge, instr->environment());
// Save the original sign for later comparison.
__ and_(scratch, result, Operand(HeapNumber::kSignMask));
__ Vmov(double_scratch0(), 0.5);
__ vadd(double_scratch0(), input, double_scratch0());
// Check sign of the result: if the sign changed, the input
// value was in ]0.5, 0[ and the result should be -0.
__ vmov(result, double_scratch0().high());
__ eor(result, result, Operand(scratch), SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(mi, instr->environment());
} else {
__ mov(result, Operand(0), LeaveCC, mi);
__ b(mi, &done);
}
__ EmitVFPTruncate(kRoundToMinusInf,
double_scratch0().low(),
double_scratch0(),
result,
scratch);
DeoptimizeIf(ne, instr->environment());
__ vmov(result, double_scratch0().low());
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Test for -0.
__ cmp(result, Operand(0));
__ b(ne, &done);
__ bind(&check_sign_on_zero);
__ vmov(scratch, input.high());
__ tst(scratch, Operand(HeapNumber::kSignMask));
DeoptimizeIf(ne, instr->environment());
}
__ bind(&done);
}
void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
DoubleRegister result = ToDoubleRegister(instr->result());
__ vsqrt(result, input);
}
void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
DoubleRegister result = ToDoubleRegister(instr->result());
DoubleRegister temp = ToDoubleRegister(instr->TempAt(0));
// Note that according to ECMA-262 15.8.2.13:
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label done;
__ vmov(temp, -V8_INFINITY);
__ VFPCompareAndSetFlags(input, temp);
__ vneg(result, temp, eq);
__ b(&done, eq);
// Add +0 to convert -0 to +0.
__ vadd(result, input, kDoubleRegZero);
__ vsqrt(result, result);
__ bind(&done);
}
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
// Having marked this as a call, we can use any registers.
// Just make sure that the input/output registers are the expected ones.
ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
ToDoubleRegister(instr->InputAt(1)).is(d2));
ASSERT(!instr->InputAt(1)->IsRegister() ||
ToRegister(instr->InputAt(1)).is(r2));
ASSERT(ToDoubleRegister(instr->InputAt(0)).is(d1));
ASSERT(ToDoubleRegister(instr->result()).is(d3));
if (exponent_type.IsTagged()) {
Label no_deopt;
__ JumpIfSmi(r2, &no_deopt);
__ ldr(r7, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r7, Operand(ip));
DeoptimizeIf(ne, instr->environment());
__ bind(&no_deopt);
MathPowStub stub(MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsInteger32()) {
MathPowStub stub(MathPowStub::INTEGER);
__ CallStub(&stub);
} else {
ASSERT(exponent_type.IsDouble());
MathPowStub stub(MathPowStub::DOUBLE);
__ CallStub(&stub);
}
}
void LCodeGen::DoRandom(LRandom* instr) {
class DeferredDoRandom: public LDeferredCode {
public:
DeferredDoRandom(LCodeGen* codegen, LRandom* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredRandom(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LRandom* instr_;
};
DeferredDoRandom* deferred = new DeferredDoRandom(this, instr);
// Having marked this instruction as a call we can use any
// registers.
ASSERT(ToDoubleRegister(instr->result()).is(d7));
ASSERT(ToRegister(instr->InputAt(0)).is(r0));
static const int kSeedSize = sizeof(uint32_t);
STATIC_ASSERT(kPointerSize == kSeedSize);
__ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
static const int kRandomSeedOffset =
FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize;
__ ldr(r2, FieldMemOperand(r0, kRandomSeedOffset));
// r2: FixedArray of the global context's random seeds
// Load state[0].
__ ldr(r1, FieldMemOperand(r2, ByteArray::kHeaderSize));
__ cmp(r1, Operand(0));
__ b(eq, deferred->entry());
// Load state[1].
__ ldr(r0, FieldMemOperand(r2, ByteArray::kHeaderSize + kSeedSize));
// r1: state[0].
// r0: state[1].
// state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16)
__ and_(r3, r1, Operand(0xFFFF));
__ mov(r4, Operand(18273));
__ mul(r3, r3, r4);
__ add(r1, r3, Operand(r1, LSR, 16));
// Save state[0].
__ str(r1, FieldMemOperand(r2, ByteArray::kHeaderSize));
// state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16)
__ and_(r3, r0, Operand(0xFFFF));
__ mov(r4, Operand(36969));
__ mul(r3, r3, r4);
__ add(r0, r3, Operand(r0, LSR, 16));
// Save state[1].
__ str(r0, FieldMemOperand(r2, ByteArray::kHeaderSize + kSeedSize));
// Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF)
__ and_(r0, r0, Operand(0x3FFFF));
__ add(r0, r0, Operand(r1, LSL, 14));
__ bind(deferred->exit());
// 0x41300000 is the top half of 1.0 x 2^20 as a double.
// Create this constant using mov/orr to avoid PC relative load.
__ mov(r1, Operand(0x41000000));
__ orr(r1, r1, Operand(0x300000));
// Move 0x41300000xxxxxxxx (x = random bits) to VFP.
__ vmov(d7, r0, r1);
// Move 0x4130000000000000 to VFP.
__ mov(r0, Operand(0, RelocInfo::NONE));
__ vmov(d8, r0, r1);
// Subtract and store the result in the heap number.
__ vsub(d7, d7, d8);
}
void LCodeGen::DoDeferredRandom(LRandom* instr) {
__ PrepareCallCFunction(1, scratch0());
__ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
// Return value is in r0.
}
void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathTan(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::TAN,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs:
DoMathAbs(instr);
break;
case kMathFloor:
DoMathFloor(instr);
break;
case kMathRound:
DoMathRound(instr);
break;
case kMathSqrt:
DoMathSqrt(instr);
break;
case kMathPowHalf:
DoMathPowHalf(instr);
break;
case kMathCos:
DoMathCos(instr);
break;
case kMathSin:
DoMathSin(instr);
break;
case kMathTan:
DoMathTan(instr);
break;
case kMathLog:
DoMathLog(instr);
break;
default:
Abort("Unimplemented type of LUnaryMathOperation.");
UNREACHABLE();
}
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
ASSERT(ToRegister(instr->function()).is(r1));
ASSERT(instr->HasPointerMap());
ASSERT(instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount count(instr->arity());
__ InvokeFunction(r1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
Handle<Code> ic =
isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallNamed(LCallNamed* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
__ mov(r2, Operand(instr->name()));
CallCode(ic, mode, instr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallFunction(LCallFunction* instr) {
ASSERT(ToRegister(instr->function()).is(r1));
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
__ mov(r2, Operand(instr->name()));
CallCode(ic, mode, instr);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
}
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r1));
ASSERT(ToRegister(instr->result()).is(r0));
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
__ mov(r0, Operand(instr->arity()));
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
CallRuntime(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Register object = ToRegister(instr->object());
Register value = ToRegister(instr->value());
Register scratch = scratch0();
int offset = instr->offset();
ASSERT(!object.is(value));
if (!instr->transition().is_null()) {
__ mov(scratch, Operand(instr->transition()));
__ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
}
// Do the store.
HType type = instr->hydrogen()->value()->type();
SmiCheck check_needed =
type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
if (instr->is_in_object()) {
__ str(value, FieldMemOperand(object, offset));
if (instr->hydrogen()->NeedsWriteBarrier()) {
// Update the write barrier for the object for in-object properties.
__ RecordWriteField(object,
offset,
value,
scratch,
kLRHasBeenSaved,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
} else {
__ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ str(value, FieldMemOperand(scratch, offset));
if (instr->hydrogen()->NeedsWriteBarrier()) {
// Update the write barrier for the properties array.
// object is used as a scratch register.
__ RecordWriteField(scratch,
offset,
value,
object,
kLRHasBeenSaved,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
}
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
// Name is always in r2.
__ mov(r2, Operand(instr->name()));
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
? isolate()->builtins()->StoreIC_Initialize_Strict()
: isolate()->builtins()->StoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
__ cmp(ToRegister(instr->index()), ToRegister(instr->length()));
DeoptimizeIf(hs, instr->environment());
}
void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
Register value = ToRegister(instr->value());
Register elements = ToRegister(instr->object());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
Register scratch = scratch0();
// Do the store.
if (instr->key()->IsConstantOperand()) {
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
int offset =
ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
__ str(value, FieldMemOperand(elements, offset));
} else {
__ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
__ str(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
HType type = instr->hydrogen()->value()->type();
SmiCheck check_needed =
type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
// Compute address of modified element and store it into key register.
__ add(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ RecordWrite(elements,
key,
value,
kLRHasBeenSaved,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
}
void LCodeGen::DoStoreKeyedFastDoubleElement(
LStoreKeyedFastDoubleElement* instr) {
DwVfpRegister value = ToDoubleRegister(instr->value());
Register elements = ToRegister(instr->elements());
Register key = no_reg;
Register scratch = scratch0();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
Label not_nan;
// Calculate the effective address of the slot in the array to store the
// double value.
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort("array index constant value too big.");
}
} else {
key = ToRegister(instr->key());
}
int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
Operand operand = key_is_constant
? Operand(constant_key * (1 << shift_size) +
FixedDoubleArray::kHeaderSize - kHeapObjectTag)
: Operand(key, LSL, shift_size);
__ add(scratch, elements, operand);
if (!key_is_constant) {
__ add(scratch, scratch,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
}
// Check for NaN. All NaNs must be canonicalized.
__ VFPCompareAndSetFlags(value, value);
// Only load canonical NaN if the comparison above set the overflow.
__ Vmov(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double(), vs);
__ bind(&not_nan);
__ vstr(value, scratch, 0);
}
void LCodeGen::DoStoreKeyedSpecializedArrayElement(
LStoreKeyedSpecializedArrayElement* instr) {
Register external_pointer = ToRegister(instr->external_pointer());
Register key = no_reg;
ElementsKind elements_kind = instr->elements_kind();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort("array index constant value too big.");
}
} else {
key = ToRegister(instr->key());
}
int shift_size = ElementsKindToShiftSize(elements_kind);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
CpuFeatures::Scope scope(VFP3);
DwVfpRegister value(ToDoubleRegister(instr->value()));
Operand operand(key_is_constant ? Operand(constant_key * (1 << shift_size))
: Operand(key, LSL, shift_size));
__ add(scratch0(), external_pointer, operand);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ vcvt_f32_f64(double_scratch0().low(), value);
__ vstr(double_scratch0().low(), scratch0(), 0);
} else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
__ vstr(value, scratch0(), 0);
}
} else {
Register value(ToRegister(instr->value()));
MemOperand mem_operand(key_is_constant
? MemOperand(external_pointer, constant_key * (1 << shift_size))
: MemOperand(external_pointer, key, LSL, shift_size));
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ strb(value, mem_operand);
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ strh(value, mem_operand);
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ str(value, mem_operand);
break;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r2));
ASSERT(ToRegister(instr->key()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
: isolate()->builtins()->KeyedStoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
Register object_reg = ToRegister(instr->object());
Register new_map_reg = ToRegister(instr->new_map_reg());
Register scratch = scratch0();
Handle<Map> from_map = instr->original_map();
Handle<Map> to_map = instr->transitioned_map();
ElementsKind from_kind = from_map->elements_kind();
ElementsKind to_kind = to_map->elements_kind();
Label not_applicable;
__ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(from_map));
__ b(ne, &not_applicable);
__ mov(new_map_reg, Operand(to_map));
if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
__ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
// Write barrier.
__ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
scratch, kLRHasBeenSaved, kDontSaveFPRegs);
} else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
to_kind == FAST_DOUBLE_ELEMENTS) {
Register fixed_object_reg = ToRegister(instr->temp_reg());
ASSERT(fixed_object_reg.is(r2));
ASSERT(new_map_reg.is(r3));
__ mov(fixed_object_reg, object_reg);
CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
RelocInfo::CODE_TARGET, instr);
} else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
Register fixed_object_reg = ToRegister(instr->temp_reg());
ASSERT(fixed_object_reg.is(r2));
ASSERT(new_map_reg.is(r3));
__ mov(fixed_object_reg, object_reg);
CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
RelocInfo::CODE_TARGET, instr);
} else {
UNREACHABLE();
}
__ bind(&not_applicable);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
__ push(ToRegister(instr->left()));
__ push(ToRegister(instr->right()));
StringAddStub stub(NO_STRING_CHECK_IN_STUB);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt: public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LStringCharCodeAt* instr_;
};
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(this, instr);
StringCharLoadGenerator::Generate(masm(),
ToRegister(instr->string()),
ToRegister(instr->index()),
ToRegister(instr->result()),
deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ mov(result, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
__ mov(scratch, Operand(Smi::FromInt(const_index)));
__ push(scratch);
} else {
Register index = ToRegister(instr->index());
__ SmiTag(index);
__ push(index);
}
CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
if (FLAG_debug_code) {
__ AbortIfNotSmi(r0);
}
__ SmiUntag(r0);
__ StoreToSafepointRegisterSlot(r0, result);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode: public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new DeferredStringCharFromCode(this, instr);
ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
ASSERT(!char_code.is(result));
__ cmp(char_code, Operand(String::kMaxAsciiCharCode));
__ b(hi, deferred->entry());
__ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
__ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
__ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(result, ip);
__ b(eq, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ mov(result, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
__ SmiTag(char_code);
__ push(char_code);
CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
__ StoreToSafepointRegisterSlot(r0, result);
}
void LCodeGen::DoStringLength(LStringLength* instr) {
Register string = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ ldr(result, FieldMemOperand(string, String::kLengthOffset));
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
ASSERT(output->IsDoubleRegister());
SwVfpRegister single_scratch = double_scratch0().low();
if (input->IsStackSlot()) {
Register scratch = scratch0();
__ ldr(scratch, ToMemOperand(input));
__ vmov(single_scratch, scratch);
} else {
__ vmov(single_scratch, ToRegister(input));
}
__ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI: public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LNumberTagI* instr_;
};
Register src = ToRegister(instr->InputAt(0));
Register dst = ToRegister(instr->result());
DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
__ SmiTag(dst, src, SetCC);
__ b(vs, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
Label slow;
Register src = ToRegister(instr->InputAt(0));
Register dst = ToRegister(instr->result());
DoubleRegister dbl_scratch = double_scratch0();
SwVfpRegister flt_scratch = dbl_scratch.low();
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
Label done;
if (dst.is(src)) {
__ SmiUntag(src, dst);
__ eor(src, src, Operand(0x80000000));
}
__ vmov(flt_scratch, src);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
if (FLAG_inline_new) {
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r5, r3, r4, r6, &slow);
__ Move(dst, r5);
__ b(&done);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
// TODO(3095996): Put a valid pointer value in the stack slot where the result
// register is stored, as this register is in the pointer map, but contains an
// integer value.
__ mov(ip, Operand(0));
__ StoreToSafepointRegisterSlot(ip, dst);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
__ Move(dst, r0);
// Done. Put the value in dbl_scratch into the value of the allocated heap
// number.
__ bind(&done);
__ sub(ip, dst, Operand(kHeapObjectTag));
__ vstr(dbl_scratch, ip, HeapNumber::kValueOffset);
__ StoreToSafepointRegisterSlot(dst, dst);
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD: public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LNumberTagD* instr_;
};
DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
Register reg = ToRegister(instr->result());
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vstr(input_reg, ip, HeapNumber::kValueOffset);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ mov(reg, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
__ StoreToSafepointRegisterSlot(r0, reg);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
__ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0)));
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (instr->needs_check()) {
STATIC_ASSERT(kHeapObjectTag == 1);
// If the input is a HeapObject, SmiUntag will set the carry flag.
__ SmiUntag(result, input, SetCC);
DeoptimizeIf(cs, instr->environment());
} else {
__ SmiUntag(result, input);
}
}
void LCodeGen::EmitNumberUntagD(Register input_reg,
DoubleRegister result_reg,
bool deoptimize_on_undefined,
bool deoptimize_on_minus_zero,
LEnvironment* env) {
Register scratch = scratch0();
SwVfpRegister flt_scratch = double_scratch0().low();
ASSERT(!result_reg.is(double_scratch0()));
Label load_smi, heap_number, done;
// Smi check.
__ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
// Heap number map check.
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
if (deoptimize_on_undefined) {
DeoptimizeIf(ne, env);
} else {
Label heap_number;
__ b(eq, &heap_number);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input_reg, Operand(ip));
DeoptimizeIf(ne, env);
// Convert undefined to NaN.
__ LoadRoot(ip, Heap::kNanValueRootIndex);
__ sub(ip, ip, Operand(kHeapObjectTag));
__ vldr(result_reg, ip, HeapNumber::kValueOffset);
__ jmp(&done);
__ bind(&heap_number);
}
// Heap number to double register conversion.
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(result_reg, ip, HeapNumber::kValueOffset);
if (deoptimize_on_minus_zero) {
__ vmov(ip, result_reg.low());
__ cmp(ip, Operand(0));
__ b(ne, &done);
__ vmov(ip, result_reg.high());
__ cmp(ip, Operand(HeapNumber::kSignMask));
DeoptimizeIf(eq, env);
}
__ jmp(&done);
// Smi to double register conversion
__ bind(&load_smi);
// scratch: untagged value of input_reg
__ vmov(flt_scratch, scratch);
__ vcvt_f64_s32(result_reg, flt_scratch);
__ bind(&done);
}
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
Register input_reg = ToRegister(instr->InputAt(0));
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
DwVfpRegister double_scratch = double_scratch0();
SwVfpRegister single_scratch = double_scratch.low();
ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
Label done;
// The input was optimistically untagged; revert it.
// The carry flag is set when we reach this deferred code as we just executed
// SmiUntag(heap_object, SetCC)
STATIC_ASSERT(kHeapObjectTag == 1);
__ adc(input_reg, input_reg, Operand(input_reg));
// Heap number map check.
__ ldr(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch1, Operand(ip));
if (instr->truncating()) {
Register scratch3 = ToRegister(instr->TempAt(1));
DwVfpRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
ASSERT(!scratch3.is(input_reg) &&
!scratch3.is(scratch1) &&
!scratch3.is(scratch2));
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations.
Label heap_number;
__ b(eq, &heap_number);
// Check for undefined. Undefined is converted to zero for truncating
// conversions.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input_reg, Operand(ip));
DeoptimizeIf(ne, instr->environment());
__ mov(input_reg, Operand(0));
__ b(&done);
__ bind(&heap_number);
__ sub(scratch1, input_reg, Operand(kHeapObjectTag));
__ vldr(double_scratch2, scratch1, HeapNumber::kValueOffset);
__ EmitECMATruncate(input_reg,
double_scratch2,
single_scratch,
scratch1,
scratch2,
scratch3);
} else {
CpuFeatures::Scope scope(VFP3);
// Deoptimize if we don't have a heap number.
DeoptimizeIf(ne, instr->environment());
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(double_scratch, ip, HeapNumber::kValueOffset);
__ EmitVFPTruncate(kRoundToZero,
single_scratch,
double_scratch,
scratch1,
scratch2,
kCheckForInexactConversion);
DeoptimizeIf(ne, instr->environment());
// Load the result.
__ vmov(input_reg, single_scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ cmp(input_reg, Operand(0));
__ b(ne, &done);
__ vmov(scratch1, double_scratch.high());
__ tst(scratch1, Operand(HeapNumber::kSignMask));
DeoptimizeIf(ne, instr->environment());
}
}
__ bind(&done);
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
class DeferredTaggedToI: public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LTaggedToI* instr_;
};
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
// Optimistically untag the input.
// If the input is a HeapObject, SmiUntag will set the carry flag.
__ SmiUntag(input_reg, SetCC);
// Branch to deferred code if the input was tagged.
// The deferred code will take care of restoring the tag.
__ b(cs, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
DoubleRegister result_reg = ToDoubleRegister(result);
EmitNumberUntagD(input_reg, result_reg,
instr->hydrogen()->deoptimize_on_undefined(),
instr->hydrogen()->deoptimize_on_minus_zero(),
instr->environment());
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
Register result_reg = ToRegister(instr->result());
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
DwVfpRegister double_input = ToDoubleRegister(instr->InputAt(0));
SwVfpRegister single_scratch = double_scratch0().low();
Label done;
if (instr->truncating()) {
Register scratch3 = ToRegister(instr->TempAt(1));
__ EmitECMATruncate(result_reg,
double_input,
single_scratch,
scratch1,
scratch2,
scratch3);
} else {
VFPRoundingMode rounding_mode = kRoundToMinusInf;
__ EmitVFPTruncate(rounding_mode,
single_scratch,
double_input,
scratch1,
scratch2,
kCheckForInexactConversion);
// Deoptimize if we had a vfp invalid exception,
// including inexact operation.
DeoptimizeIf(ne, instr->environment());
// Retrieve the result.
__ vmov(result_reg, single_scratch);
}
__ bind(&done);
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->InputAt(0);
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
LOperand* input = instr->InputAt(0);
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(eq, instr->environment());
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
__ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
if (instr->hydrogen()->is_interval_check()) {
InstanceType first;
InstanceType last;
instr->hydrogen()->GetCheckInterval(&first, &last);
__ cmp(scratch, Operand(first));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(ne, instr->environment());
} else {
DeoptimizeIf(lo, instr->environment());
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmp(scratch, Operand(last));
DeoptimizeIf(hi, instr->environment());
}
}
} else {
uint8_t mask;
uint8_t tag;
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
if (IsPowerOf2(mask)) {
ASSERT(tag == 0 || IsPowerOf2(tag));
__ tst(scratch, Operand(mask));
DeoptimizeIf(tag == 0 ? ne : eq, instr->environment());
} else {
__ and_(scratch, scratch, Operand(mask));
__ cmp(scratch, Operand(tag));
DeoptimizeIf(ne, instr->environment());
}
}
}
void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
Register reg = ToRegister(instr->value());
Handle<JSFunction> target = instr->hydrogen()->target();
if (isolate()->heap()->InNewSpace(*target)) {
Register reg = ToRegister(instr->value());
Handle<JSGlobalPropertyCell> cell =
isolate()->factory()->NewJSGlobalPropertyCell(target);
__ mov(ip, Operand(Handle<Object>(cell)));
__ ldr(ip, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
__ cmp(reg, ip);
} else {
__ cmp(reg, Operand(target));
}
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoCheckMapCommon(Register reg,
Register scratch,
Handle<Map> map,
CompareMapMode mode,
LEnvironment* env) {
Label success;
__ CompareMap(reg, scratch, map, &success, mode);
DeoptimizeIf(ne, env);
__ bind(&success);
}
void LCodeGen::DoCheckMap(LCheckMap* instr) {
Register scratch = scratch0();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
Handle<Map> map = instr->hydrogen()->map();
DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(),
instr->environment());
}
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
__ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
}
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
Register unclamped_reg = ToRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
__ ClampUint8(result_reg, unclamped_reg);
}
void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
Register scratch = scratch0();
Register input_reg = ToRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
Label is_smi, done, heap_number;
// Both smi and heap number cases are handled.
__ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
// Check for heap number
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(factory()->heap_number_map()));
__ b(eq, &heap_number);
// Check for undefined. Undefined is converted to zero for clamping
// conversions.
__ cmp(input_reg, Operand(factory()->undefined_value()));
DeoptimizeIf(ne, instr->environment());
__ mov(result_reg, Operand(0));
__ jmp(&done);
// Heap number
__ bind(&heap_number);
__ vldr(double_scratch0(), FieldMemOperand(input_reg,
HeapNumber::kValueOffset));
__ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
__ jmp(&done);
// smi
__ bind(&is_smi);
__ ClampUint8(result_reg, result_reg);
__ bind(&done);
}
void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
Handle<JSObject> holder = instr->holder();
Handle<JSObject> current_prototype = instr->prototype();
// Load prototype object.
__ LoadHeapObject(temp1, current_prototype);
// Check prototype maps up to the holder.
while (!current_prototype.is_identical_to(holder)) {
DoCheckMapCommon(temp1, temp2,
Handle<Map>(current_prototype->map()),
ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
current_prototype =
Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
// Load next prototype object.
__ LoadHeapObject(temp1, current_prototype);
}
// Check the holder map.
DoCheckMapCommon(temp1, temp2,
Handle<Map>(current_prototype->map()),
ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoAllocateObject(LAllocateObject* instr) {
class DeferredAllocateObject: public LDeferredCode {
public:
DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LAllocateObject* instr_;
};
DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr);
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->TempAt(0));
Register scratch2 = ToRegister(instr->TempAt(1));
Handle<JSFunction> constructor = instr->hydrogen()->constructor();
Handle<Map> initial_map(constructor->initial_map());
int instance_size = initial_map->instance_size();
ASSERT(initial_map->pre_allocated_property_fields() +
initial_map->unused_property_fields() -
initial_map->inobject_properties() == 0);
// Allocate memory for the object. The initial map might change when
// the constructor's prototype changes, but instance size and property
// counts remain unchanged (if slack tracking finished).
ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress());
__ AllocateInNewSpace(instance_size,
result,
scratch,
scratch2,
deferred->entry(),
TAG_OBJECT);
// Load the initial map.
Register map = scratch;
__ LoadHeapObject(map, constructor);
__ ldr(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset));
// Initialize map and fields of the newly allocated object.
ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
__ str(map, FieldMemOperand(result, JSObject::kMapOffset));
__ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
__ str(scratch, FieldMemOperand(result, JSObject::kElementsOffset));
__ str(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset));
if (initial_map->inobject_properties() != 0) {
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
for (int i = 0; i < initial_map->inobject_properties(); i++) {
int property_offset = JSObject::kHeaderSize + i * kPointerSize;
__ str(scratch, FieldMemOperand(result, property_offset));
}
}
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) {
Register result = ToRegister(instr->result());
Handle<JSFunction> constructor = instr->hydrogen()->constructor();
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ mov(result, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
__ LoadHeapObject(r0, constructor);
__ push(r0);
CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr);
__ StoreToSafepointRegisterSlot(r0, result);
}
void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
Heap* heap = isolate()->heap();
ElementsKind boilerplate_elements_kind =
instr->hydrogen()->boilerplate_elements_kind();
// Deopt if the array literal boilerplate ElementsKind is of a type different
// than the expected one. The check isn't necessary if the boilerplate has
// already been converted to FAST_ELEMENTS.
if (boilerplate_elements_kind != FAST_ELEMENTS) {
__ LoadHeapObject(r1, instr->hydrogen()->boilerplate_object());
// Load map into r2.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
// Load the map's "bit field 2".
__ ldrb(r2, FieldMemOperand(r2, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ ubfx(r2, r2, Map::kElementsKindShift, Map::kElementsKindBitCount);
__ cmp(r2, Operand(boilerplate_elements_kind));
DeoptimizeIf(ne, instr->environment());
}
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
// Boilerplate already exists, constant elements are never accessed.
// Pass an empty fixed array.
__ mov(r1, Operand(Handle<FixedArray>(heap->empty_fixed_array())));
__ Push(r3, r2, r1);
// Pick the right runtime function or stub to call.
int length = instr->hydrogen()->length();
if (instr->hydrogen()->IsCopyOnWrite()) {
ASSERT(instr->hydrogen()->depth() == 1);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
} else {
FastCloneShallowArrayStub::Mode mode =
boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS
? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
: FastCloneShallowArrayStub::CLONE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::EmitDeepCopy(Handle<JSObject> object,
Register result,
Register source,
int* offset) {
ASSERT(!source.is(r2));
ASSERT(!result.is(r2));
// Only elements backing stores for non-COW arrays need to be copied.
Handle<FixedArrayBase> elements(object->elements());
bool has_elements = elements->length() > 0 &&
elements->map() != isolate()->heap()->fixed_cow_array_map();
// Increase the offset so that subsequent objects end up right after
// this object and its backing store.
int object_offset = *offset;
int object_size = object->map()->instance_size();
int elements_offset = *offset + object_size;
int elements_size = has_elements ? elements->Size() : 0;
*offset += object_size + elements_size;
// Copy object header.
ASSERT(object->properties()->length() == 0);
int inobject_properties = object->map()->inobject_properties();
int header_size = object_size - inobject_properties * kPointerSize;
for (int i = 0; i < header_size; i += kPointerSize) {
if (has_elements && i == JSObject::kElementsOffset) {
__ add(r2, result, Operand(elements_offset));
} else {
__ ldr(r2, FieldMemOperand(source, i));
}
__ str(r2, FieldMemOperand(result, object_offset + i));
}
// Copy in-object properties.
for (int i = 0; i < inobject_properties; i++) {
int total_offset = object_offset + object->GetInObjectPropertyOffset(i);
Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i));
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
__ add(r2, result, Operand(*offset));
__ str(r2, FieldMemOperand(result, total_offset));
__ LoadHeapObject(source, value_object);
EmitDeepCopy(value_object, result, source, offset);
} else if (value->IsHeapObject()) {
__ LoadHeapObject(r2, Handle<HeapObject>::cast(value));
__ str(r2, FieldMemOperand(result, total_offset));
} else {
__ mov(r2, Operand(value));
__ str(r2, FieldMemOperand(result, total_offset));
}
}
if (has_elements) {
// Copy elements backing store header.
__ LoadHeapObject(source, elements);
for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) {
__ ldr(r2, FieldMemOperand(source, i));
__ str(r2, FieldMemOperand(result, elements_offset + i));
}
// Copy elements backing store content.
int elements_length = has_elements ? elements->length() : 0;
if (elements->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> double_array =
Handle<FixedDoubleArray>::cast(elements);
for (int i = 0; i < elements_length; i++) {
int64_t value = double_array->get_representation(i);
// We only support little endian mode...
int32_t value_low = value & 0xFFFFFFFF;
int32_t value_high = value >> 32;
int total_offset =
elements_offset + FixedDoubleArray::OffsetOfElementAt(i);
__ mov(r2, Operand(value_low));
__ str(r2, FieldMemOperand(result, total_offset));
__ mov(r2, Operand(value_high));
__ str(r2, FieldMemOperand(result, total_offset + 4));
}
} else if (elements->IsFixedArray()) {
for (int i = 0; i < elements_length; i++) {
int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i);
Handle<Object> value = JSObject::GetElement(object, i);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
__ add(r2, result, Operand(*offset));
__ str(r2, FieldMemOperand(result, total_offset));
__ LoadHeapObject(source, value_object);
EmitDeepCopy(value_object, result, source, offset);
} else if (value->IsHeapObject()) {
__ LoadHeapObject(r2, Handle<HeapObject>::cast(value));
__ str(r2, FieldMemOperand(result, total_offset));
} else {
__ mov(r2, Operand(value));
__ str(r2, FieldMemOperand(result, total_offset));
}
}
} else {
UNREACHABLE();
}
}
}
void LCodeGen::DoFastLiteral(LFastLiteral* instr) {
int size = instr->hydrogen()->total_size();
// Allocate all objects that are part of the literal in one big
// allocation. This avoids multiple limit checks.
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ mov(r0, Operand(Smi::FromInt(size)));
__ push(r0);
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
__ bind(&allocated);
int offset = 0;
__ LoadHeapObject(r1, instr->hydrogen()->boilerplate());
EmitDeepCopy(instr->hydrogen()->boilerplate(), r0, r1, &offset);
ASSERT_EQ(size, offset);
}
void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
Handle<FixedArray> literals(instr->environment()->closure()->literals());
Handle<FixedArray> constant_properties =
instr->hydrogen()->constant_properties();
// Set up the parameters to the stub/runtime call.
__ LoadHeapObject(r4, literals);
__ mov(r3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r2, Operand(constant_properties));
int flags = instr->hydrogen()->fast_elements()
? ObjectLiteral::kFastElements
: ObjectLiteral::kNoFlags;
__ mov(r1, Operand(Smi::FromInt(flags)));
__ Push(r4, r3, r2, r1);
// Pick the right runtime function or stub to call.
int properties_count = constant_properties->length() / 2;
if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
} else if (flags != ObjectLiteral::kFastElements ||
properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
} else {
FastCloneShallowObjectStub stub(properties_count);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r0));
__ push(r0);
CallRuntime(Runtime::kToFastProperties, 1, instr);
}
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
Label materialized;
// Registers will be used as follows:
// r3 = JS function.
// r7 = literals array.
// r1 = regexp literal.
// r0 = regexp literal clone.
// r2 and r4-r6 are used as temporaries.
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
int literal_offset = FixedArray::kHeaderSize +
instr->hydrogen()->literal_index() * kPointerSize;
__ ldr(r1, FieldMemOperand(r7, literal_offset));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &materialized);
// Create regexp literal using runtime function
// Result will be in r0.
__ mov(r6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r5, Operand(instr->hydrogen()->pattern()));
__ mov(r4, Operand(instr->hydrogen()->flags()));
__ Push(r7, r6, r5, r4);
CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
__ mov(r1, r0);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ mov(r0, Operand(Smi::FromInt(size)));
__ Push(r1, r0);
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
__ pop(r1);
__ bind(&allocated);
// Copy the content into the newly allocated memory.
// (Unroll copy loop once for better throughput).
for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
__ ldr(r3, FieldMemOperand(r1, i));
__ ldr(r2, FieldMemOperand(r1, i + kPointerSize));
__ str(r3, FieldMemOperand(r0, i));
__ str(r2, FieldMemOperand(r0, i + kPointerSize));
}
if ((size % (2 * kPointerSize)) != 0) {
__ ldr(r3, FieldMemOperand(r1, size - kPointerSize));
__ str(r3, FieldMemOperand(r0, size - kPointerSize));
}
}
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
Handle<SharedFunctionInfo> shared_info = instr->shared_info();
bool pretenure = instr->hydrogen()->pretenure();
if (!pretenure && shared_info->num_literals() == 0) {
FastNewClosureStub stub(shared_info->language_mode());
__ mov(r1, Operand(shared_info));
__ push(r1);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else {
__ mov(r2, Operand(shared_info));
__ mov(r1, Operand(pretenure
? factory()->true_value()
: factory()->false_value()));
__ Push(cp, r2, r1);
CallRuntime(Runtime::kNewClosure, 3, instr);
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
Register input = ToRegister(instr->InputAt(0));
__ push(input);
CallRuntime(Runtime::kTypeof, 1, instr);
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition final_branch_condition = EmitTypeofIs(true_label,
false_label,
input,
instr->type_literal());
if (final_branch_condition != kNoCondition) {
EmitBranch(true_block, false_block, final_branch_condition);
}
}
Condition LCodeGen::EmitTypeofIs(Label* true_label,
Label* false_label,
Register input,
Handle<String> type_name) {
Condition final_branch_condition = kNoCondition;
Register scratch = scratch0();
if (type_name->Equals(heap()->number_symbol())) {
__ JumpIfSmi(input, true_label);
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(input, Operand(ip));
final_branch_condition = eq;
} else if (type_name->Equals(heap()->string_symbol())) {
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE);
__ b(ge, false_label);
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = eq;
} else if (type_name->Equals(heap()->boolean_symbol())) {
__ CompareRoot(input, Heap::kTrueValueRootIndex);
__ b(eq, true_label);
__ CompareRoot(input, Heap::kFalseValueRootIndex);
final_branch_condition = eq;
} else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
__ CompareRoot(input, Heap::kNullValueRootIndex);
final_branch_condition = eq;
} else if (type_name->Equals(heap()->undefined_symbol())) {
__ CompareRoot(input, Heap::kUndefinedValueRootIndex);
__ b(eq, true_label);
__ JumpIfSmi(input, false_label);
// Check for undetectable objects => true.
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = ne;
} else if (type_name->Equals(heap()->function_symbol())) {
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, scratch, input, JS_FUNCTION_TYPE);
__ b(eq, true_label);
__ cmp(input, Operand(JS_FUNCTION_PROXY_TYPE));
final_branch_condition = eq;
} else if (type_name->Equals(heap()->object_symbol())) {
__ JumpIfSmi(input, false_label);
if (!FLAG_harmony_typeof) {
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ b(eq, true_label);
}
__ CompareObjectType(input, input, scratch,
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ b(lt, false_label);
__ CompareInstanceType(input, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ b(gt, false_label);
// Check for undetectable objects => false.
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = eq;
} else {
__ b(false_label);
}
return final_branch_condition;
}
void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
Register temp1 = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
EmitIsConstructCall(temp1, scratch0());
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
ASSERT(!temp1.is(temp2));
// Get the frame pointer for the calling frame.
__ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
__ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &check_frame_marker);
__ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
__ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
}
void LCodeGen::EnsureSpaceForLazyDeopt() {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
int patch_size = Deoptimizer::patch_size();
if (current_pc < last_lazy_deopt_pc_ + patch_size) {
int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc;
ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
while (padding_size > 0) {
__ nop();
padding_size -= Assembler::kInstrSize;
}
}
last_lazy_deopt_pc_ = masm()->pc_offset();
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
EnsureSpaceForLazyDeopt();
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
DeoptimizeIf(al, instr->environment());
}
void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
Register object = ToRegister(instr->object());
Register key = ToRegister(instr->key());
Register strict = scratch0();
__ mov(strict, Operand(Smi::FromInt(strict_mode_flag())));
__ Push(object, key, strict);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator safepoint_generator(
this, pointers, Safepoint::kLazyDeopt);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
}
void LCodeGen::DoIn(LIn* instr) {
Register obj = ToRegister(instr->object());
Register key = ToRegister(instr->key());
__ Push(key, obj);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
}
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
RecordSafepointWithLazyDeopt(
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
class DeferredStackCheck: public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LStackCheck* instr_;
};
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
// There is no LLazyBailout instruction for stack-checks. We have to
// prepare for lazy deoptimization explicitly here.
if (instr->hydrogen()->is_function_entry()) {
// Perform stack overflow check.
Label done;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &done);
StackCheckStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
EnsureSpaceForLazyDeopt();
__ bind(&done);
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
} else {
ASSERT(instr->hydrogen()->is_backwards_branch());
// Perform stack overflow check if this goto needs it before jumping.
DeferredStackCheck* deferred_stack_check =
new DeferredStackCheck(this, instr);
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(lo, deferred_stack_check->entry());
EnsureSpaceForLazyDeopt();
__ bind(instr->done_label());
deferred_stack_check->SetExit(instr->done_label());
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
// Don't record a deoptimization index for the safepoint here.
// This will be done explicitly when emitting call and the safepoint in
// the deferred code.
}
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
instr->SpilledDoubleRegisterArray());
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
ASSERT(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(osr_pc_offset_ == -1);
osr_pc_offset_ = masm()->pc_offset();
}
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
DeoptimizeIf(eq, instr->environment());
Register null_value = r5;
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
__ cmp(r0, null_value);
DeoptimizeIf(eq, instr->environment());
__ tst(r0, Operand(kSmiTagMask));
DeoptimizeIf(eq, instr->environment());
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE);
DeoptimizeIf(le, instr->environment());
Label use_cache, call_runtime;
__ CheckEnumCache(null_value, &call_runtime);
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ b(&use_cache);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(r0);
CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
__ cmp(r1, ip);
DeoptimizeIf(ne, instr->environment());
__ bind(&use_cache);
}
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
Register map = ToRegister(instr->map());
Register result = ToRegister(instr->result());
__ LoadInstanceDescriptors(map, result);
__ ldr(result,
FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset));
__ ldr(result,
FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
__ cmp(result, Operand(0));
DeoptimizeIf(eq, instr->environment());
}
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
Register object = ToRegister(instr->value());
Register map = ToRegister(instr->map());
__ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
__ cmp(map, scratch0());
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
Register object = ToRegister(instr->object());
Register index = ToRegister(instr->index());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
Label out_of_object, done;
__ cmp(index, Operand(0));
__ b(lt, &out_of_object);
STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
__ add(scratch, object, Operand(index, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
__ b(&done);
__ bind(&out_of_object);
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
// Index is equal to negated out of object property index plus 1.
__ sub(scratch, result, Operand(index, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(result, FieldMemOperand(scratch,
FixedArray::kHeaderSize - kPointerSize));
__ bind(&done);
}
#undef __
} } // namespace v8::internal