| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Declares a Simulator for ARM instructions if we are not generating a native |
| // ARM binary. This Simulator allows us to run and debug ARM code generation on |
| // regular desktop machines. |
| // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, |
| // which will start execution in the Simulator or forwards to the real entry |
| // on a ARM HW platform. |
| |
| #ifndef V8_ARM_SIMULATOR_ARM_H_ |
| #define V8_ARM_SIMULATOR_ARM_H_ |
| |
| #include "allocation.h" |
| |
| #if !defined(USE_SIMULATOR) |
| // Running without a simulator on a native arm platform. |
| |
| namespace v8 { |
| namespace internal { |
| |
| // When running without a simulator we call the entry directly. |
| #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
| (entry(p0, p1, p2, p3, p4)) |
| |
| typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*, |
| void*, int*, Address, int, Isolate*); |
| |
| |
| // Call the generated regexp code directly. The code at the entry address |
| // should act as a function matching the type arm_regexp_matcher. |
| // The fifth argument is a dummy that reserves the space used for |
| // the return address added by the ExitFrame in native calls. |
| #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \ |
| (FUNCTION_CAST<arm_regexp_matcher>(entry)( \ |
| p0, p1, p2, p3, NULL, p4, p5, p6, p7)) |
| |
| #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
| reinterpret_cast<TryCatch*>(try_catch_address) |
| |
| // The stack limit beyond which we will throw stack overflow errors in |
| // generated code. Because generated code on arm uses the C stack, we |
| // just use the C stack limit. |
| class SimulatorStack : public v8::internal::AllStatic { |
| public: |
| static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, |
| uintptr_t c_limit) { |
| USE(isolate); |
| return c_limit; |
| } |
| |
| static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
| return try_catch_address; |
| } |
| |
| static inline void UnregisterCTryCatch() { } |
| }; |
| |
| } } // namespace v8::internal |
| |
| #else // !defined(USE_SIMULATOR) |
| // Running with a simulator. |
| |
| #include "constants-arm.h" |
| #include "hashmap.h" |
| #include "assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class CachePage { |
| public: |
| static const int LINE_VALID = 0; |
| static const int LINE_INVALID = 1; |
| |
| static const int kPageShift = 12; |
| static const int kPageSize = 1 << kPageShift; |
| static const int kPageMask = kPageSize - 1; |
| static const int kLineShift = 2; // The cache line is only 4 bytes right now. |
| static const int kLineLength = 1 << kLineShift; |
| static const int kLineMask = kLineLength - 1; |
| |
| CachePage() { |
| memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); |
| } |
| |
| char* ValidityByte(int offset) { |
| return &validity_map_[offset >> kLineShift]; |
| } |
| |
| char* CachedData(int offset) { |
| return &data_[offset]; |
| } |
| |
| private: |
| char data_[kPageSize]; // The cached data. |
| static const int kValidityMapSize = kPageSize >> kLineShift; |
| char validity_map_[kValidityMapSize]; // One byte per line. |
| }; |
| |
| |
| class Simulator { |
| public: |
| friend class ArmDebugger; |
| enum Register { |
| no_reg = -1, |
| r0 = 0, r1, r2, r3, r4, r5, r6, r7, |
| r8, r9, r10, r11, r12, r13, r14, r15, |
| num_registers, |
| sp = 13, |
| lr = 14, |
| pc = 15, |
| s0 = 0, s1, s2, s3, s4, s5, s6, s7, |
| s8, s9, s10, s11, s12, s13, s14, s15, |
| s16, s17, s18, s19, s20, s21, s22, s23, |
| s24, s25, s26, s27, s28, s29, s30, s31, |
| num_s_registers = 32, |
| d0 = 0, d1, d2, d3, d4, d5, d6, d7, |
| d8, d9, d10, d11, d12, d13, d14, d15, |
| num_d_registers = 16 |
| }; |
| |
| explicit Simulator(Isolate* isolate); |
| ~Simulator(); |
| |
| // The currently executing Simulator instance. Potentially there can be one |
| // for each native thread. |
| static Simulator* current(v8::internal::Isolate* isolate); |
| |
| // Accessors for register state. Reading the pc value adheres to the ARM |
| // architecture specification and is off by a 8 from the currently executing |
| // instruction. |
| void set_register(int reg, int32_t value); |
| int32_t get_register(int reg) const; |
| double get_double_from_register_pair(int reg); |
| void set_dw_register(int dreg, const int* dbl); |
| |
| // Support for VFP. |
| void set_s_register(int reg, unsigned int value); |
| unsigned int get_s_register(int reg) const; |
| void set_d_register_from_double(int dreg, const double& dbl); |
| double get_double_from_d_register(int dreg); |
| void set_s_register_from_float(int sreg, const float dbl); |
| float get_float_from_s_register(int sreg); |
| void set_s_register_from_sinteger(int reg, const int value); |
| int get_sinteger_from_s_register(int reg); |
| |
| // Special case of set_register and get_register to access the raw PC value. |
| void set_pc(int32_t value); |
| int32_t get_pc() const; |
| |
| // Accessor to the internal simulator stack area. |
| uintptr_t StackLimit() const; |
| |
| // Executes ARM instructions until the PC reaches end_sim_pc. |
| void Execute(); |
| |
| // Call on program start. |
| static void Initialize(Isolate* isolate); |
| |
| // V8 generally calls into generated JS code with 5 parameters and into |
| // generated RegExp code with 7 parameters. This is a convenience function, |
| // which sets up the simulator state and grabs the result on return. |
| int32_t Call(byte* entry, int argument_count, ...); |
| |
| // Push an address onto the JS stack. |
| uintptr_t PushAddress(uintptr_t address); |
| |
| // Pop an address from the JS stack. |
| uintptr_t PopAddress(); |
| |
| // Debugger input. |
| void set_last_debugger_input(char* input); |
| char* last_debugger_input() { return last_debugger_input_; } |
| |
| // ICache checking. |
| static void FlushICache(v8::internal::HashMap* i_cache, void* start, |
| size_t size); |
| |
| // Returns true if pc register contains one of the 'special_values' defined |
| // below (bad_lr, end_sim_pc). |
| bool has_bad_pc() const; |
| |
| // EABI variant for double arguments in use. |
| bool use_eabi_hardfloat() { |
| #if USE_EABI_HARDFLOAT |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| private: |
| enum special_values { |
| // Known bad pc value to ensure that the simulator does not execute |
| // without being properly setup. |
| bad_lr = -1, |
| // A pc value used to signal the simulator to stop execution. Generally |
| // the lr is set to this value on transition from native C code to |
| // simulated execution, so that the simulator can "return" to the native |
| // C code. |
| end_sim_pc = -2 |
| }; |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Format(Instruction* instr, const char* format); |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| bool ConditionallyExecute(Instruction* instr); |
| |
| // Helper functions to set the conditional flags in the architecture state. |
| void SetNZFlags(int32_t val); |
| void SetCFlag(bool val); |
| void SetVFlag(bool val); |
| bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); |
| bool BorrowFrom(int32_t left, int32_t right); |
| bool OverflowFrom(int32_t alu_out, |
| int32_t left, |
| int32_t right, |
| bool addition); |
| |
| inline int GetCarry() { |
| return c_flag_ ? 1 : 0; |
| }; |
| |
| // Support for VFP. |
| void Compute_FPSCR_Flags(double val1, double val2); |
| void Copy_FPSCR_to_APSR(); |
| |
| // Helper functions to decode common "addressing" modes |
| int32_t GetShiftRm(Instruction* instr, bool* carry_out); |
| int32_t GetImm(Instruction* instr, bool* carry_out); |
| void ProcessPUW(Instruction* instr, |
| int num_regs, |
| int operand_size, |
| intptr_t* start_address, |
| intptr_t* end_address); |
| void HandleRList(Instruction* instr, bool load); |
| void HandleVList(Instruction* inst); |
| void SoftwareInterrupt(Instruction* instr); |
| |
| // Stop helper functions. |
| inline bool isStopInstruction(Instruction* instr); |
| inline bool isWatchedStop(uint32_t bkpt_code); |
| inline bool isEnabledStop(uint32_t bkpt_code); |
| inline void EnableStop(uint32_t bkpt_code); |
| inline void DisableStop(uint32_t bkpt_code); |
| inline void IncreaseStopCounter(uint32_t bkpt_code); |
| void PrintStopInfo(uint32_t code); |
| |
| // Read and write memory. |
| inline uint8_t ReadBU(int32_t addr); |
| inline int8_t ReadB(int32_t addr); |
| inline void WriteB(int32_t addr, uint8_t value); |
| inline void WriteB(int32_t addr, int8_t value); |
| |
| inline uint16_t ReadHU(int32_t addr, Instruction* instr); |
| inline int16_t ReadH(int32_t addr, Instruction* instr); |
| // Note: Overloaded on the sign of the value. |
| inline void WriteH(int32_t addr, uint16_t value, Instruction* instr); |
| inline void WriteH(int32_t addr, int16_t value, Instruction* instr); |
| |
| inline int ReadW(int32_t addr, Instruction* instr); |
| inline void WriteW(int32_t addr, int value, Instruction* instr); |
| |
| int32_t* ReadDW(int32_t addr); |
| void WriteDW(int32_t addr, int32_t value1, int32_t value2); |
| |
| // Executing is handled based on the instruction type. |
| // Both type 0 and type 1 rolled into one. |
| void DecodeType01(Instruction* instr); |
| void DecodeType2(Instruction* instr); |
| void DecodeType3(Instruction* instr); |
| void DecodeType4(Instruction* instr); |
| void DecodeType5(Instruction* instr); |
| void DecodeType6(Instruction* instr); |
| void DecodeType7(Instruction* instr); |
| |
| // Support for VFP. |
| void DecodeTypeVFP(Instruction* instr); |
| void DecodeType6CoprocessorIns(Instruction* instr); |
| |
| void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); |
| void DecodeVCMP(Instruction* instr); |
| void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); |
| void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); |
| |
| // Executes one instruction. |
| void InstructionDecode(Instruction* instr); |
| |
| // ICache. |
| static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr); |
| static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, |
| int size); |
| static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page); |
| |
| // Runtime call support. |
| static void* RedirectExternalReference( |
| void* external_function, |
| v8::internal::ExternalReference::Type type); |
| |
| // For use in calls that take double value arguments. |
| void GetFpArgs(double* x, double* y); |
| void GetFpArgs(double* x); |
| void GetFpArgs(double* x, int32_t* y); |
| void SetFpResult(const double& result); |
| void TrashCallerSaveRegisters(); |
| |
| // Architecture state. |
| // Saturating instructions require a Q flag to indicate saturation. |
| // There is currently no way to read the CPSR directly, and thus read the Q |
| // flag, so this is left unimplemented. |
| int32_t registers_[16]; |
| bool n_flag_; |
| bool z_flag_; |
| bool c_flag_; |
| bool v_flag_; |
| |
| // VFP architecture state. |
| unsigned int vfp_register[num_s_registers]; |
| bool n_flag_FPSCR_; |
| bool z_flag_FPSCR_; |
| bool c_flag_FPSCR_; |
| bool v_flag_FPSCR_; |
| |
| // VFP rounding mode. See ARM DDI 0406B Page A2-29. |
| VFPRoundingMode FPSCR_rounding_mode_; |
| |
| // VFP FP exception flags architecture state. |
| bool inv_op_vfp_flag_; |
| bool div_zero_vfp_flag_; |
| bool overflow_vfp_flag_; |
| bool underflow_vfp_flag_; |
| bool inexact_vfp_flag_; |
| |
| // Simulator support. |
| char* stack_; |
| bool pc_modified_; |
| int icount_; |
| |
| // Debugger input. |
| char* last_debugger_input_; |
| |
| // Icache simulation |
| v8::internal::HashMap* i_cache_; |
| |
| // Registered breakpoints. |
| Instruction* break_pc_; |
| Instr break_instr_; |
| |
| v8::internal::Isolate* isolate_; |
| |
| // A stop is watched if its code is less than kNumOfWatchedStops. |
| // Only watched stops support enabling/disabling and the counter feature. |
| static const uint32_t kNumOfWatchedStops = 256; |
| |
| // Breakpoint is disabled if bit 31 is set. |
| static const uint32_t kStopDisabledBit = 1 << 31; |
| |
| // A stop is enabled, meaning the simulator will stop when meeting the |
| // instruction, if bit 31 of watched_stops[code].count is unset. |
| // The value watched_stops[code].count & ~(1 << 31) indicates how many times |
| // the breakpoint was hit or gone through. |
| struct StopCountAndDesc { |
| uint32_t count; |
| char* desc; |
| }; |
| StopCountAndDesc watched_stops[kNumOfWatchedStops]; |
| }; |
| |
| |
| // When running with the simulator transition into simulated execution at this |
| // point. |
| #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
| reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \ |
| FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4)) |
| |
| #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \ |
| Simulator::current(Isolate::Current())->Call( \ |
| entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7) |
| |
| #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
| try_catch_address == NULL ? \ |
| NULL : *(reinterpret_cast<TryCatch**>(try_catch_address)) |
| |
| |
| // The simulator has its own stack. Thus it has a different stack limit from |
| // the C-based native code. Setting the c_limit to indicate a very small |
| // stack cause stack overflow errors, since the simulator ignores the input. |
| // This is unlikely to be an issue in practice, though it might cause testing |
| // trouble down the line. |
| class SimulatorStack : public v8::internal::AllStatic { |
| public: |
| static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, |
| uintptr_t c_limit) { |
| return Simulator::current(isolate)->StackLimit(); |
| } |
| |
| static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
| Simulator* sim = Simulator::current(Isolate::Current()); |
| return sim->PushAddress(try_catch_address); |
| } |
| |
| static inline void UnregisterCTryCatch() { |
| Simulator::current(Isolate::Current())->PopAddress(); |
| } |
| }; |
| |
| } } // namespace v8::internal |
| |
| #endif // !defined(USE_SIMULATOR) |
| #endif // V8_ARM_SIMULATOR_ARM_H_ |