blob: 4faa6a4b249188ba6c8a8f5be08b8e5ba76eb711 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "bootstrapper.h"
#include "code-stubs.h"
#include "isolate.h"
#include "jsregexp.h"
#include "regexp-macro-assembler.h"
#include "stub-cache.h"
#include "codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ToNumberStub::Generate(MacroAssembler* masm) {
// The ToNumber stub takes one argument in eax.
Label check_heap_number, call_builtin;
__ JumpIfNotSmi(eax, &check_heap_number, Label::kNear);
__ ret(0);
__ bind(&check_heap_number);
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Factory* factory = masm->isolate()->factory();
__ cmp(ebx, Immediate(factory->heap_number_map()));
__ j(not_equal, &call_builtin, Label::kNear);
__ ret(0);
__ bind(&call_builtin);
__ pop(ecx); // Pop return address.
__ push(eax);
__ push(ecx); // Push return address.
__ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Create a new closure from the given function info in new
// space. Set the context to the current context in esi.
Label gc;
__ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT);
// Get the function info from the stack.
__ mov(edx, Operand(esp, 1 * kPointerSize));
int map_index = (language_mode_ == CLASSIC_MODE)
? Context::FUNCTION_MAP_INDEX
: Context::STRICT_MODE_FUNCTION_MAP_INDEX;
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset));
__ mov(ecx, Operand(ecx, Context::SlotOffset(map_index)));
__ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
// Initialize the rest of the function. We don't have to update the
// write barrier because the allocated object is in new space.
Factory* factory = masm->isolate()->factory();
__ mov(ebx, Immediate(factory->empty_fixed_array()));
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx);
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
__ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset),
Immediate(factory->the_hole_value()));
__ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx);
__ mov(FieldOperand(eax, JSFunction::kContextOffset), esi);
__ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx);
__ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset),
Immediate(factory->undefined_value()));
// Initialize the code pointer in the function to be the one
// found in the shared function info object.
__ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
__ lea(edx, FieldOperand(edx, Code::kHeaderSize));
__ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx);
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ pop(ecx); // Temporarily remove return address.
__ pop(edx);
__ push(esi);
__ push(edx);
__ push(Immediate(factory->false_value()));
__ push(ecx); // Restore return address.
__ TailCallRuntime(Runtime::kNewClosure, 3, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
eax, ebx, ecx, &gc, TAG_OBJECT);
// Get the function from the stack.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
// Set up the object header.
Factory* factory = masm->isolate()->factory();
__ mov(FieldOperand(eax, HeapObject::kMapOffset),
factory->function_context_map());
__ mov(FieldOperand(eax, Context::kLengthOffset),
Immediate(Smi::FromInt(length)));
// Set up the fixed slots.
__ Set(ebx, Immediate(0)); // Set to NULL.
__ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx);
__ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), esi);
__ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx);
// Copy the global object from the previous context.
__ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx);
// Initialize the rest of the slots to undefined.
__ mov(ebx, factory->undefined_value());
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ mov(Operand(eax, Context::SlotOffset(i)), ebx);
}
// Return and remove the on-stack parameter.
__ mov(esi, eax);
__ ret(1 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
}
void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [esp + (1 * kPointerSize)]: function
// [esp + (2 * kPointerSize)]: serialized scope info
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace(FixedArray::SizeFor(length),
eax, ebx, ecx, &gc, TAG_OBJECT);
// Get the function or sentinel from the stack.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
// Get the serialized scope info from the stack.
__ mov(ebx, Operand(esp, 2 * kPointerSize));
// Set up the object header.
Factory* factory = masm->isolate()->factory();
__ mov(FieldOperand(eax, HeapObject::kMapOffset),
factory->block_context_map());
__ mov(FieldOperand(eax, Context::kLengthOffset),
Immediate(Smi::FromInt(length)));
// If this block context is nested in the global context we get a smi
// sentinel instead of a function. The block context should get the
// canonical empty function of the global context as its closure which
// we still have to look up.
Label after_sentinel;
__ JumpIfNotSmi(ecx, &after_sentinel, Label::kNear);
if (FLAG_debug_code) {
const char* message = "Expected 0 as a Smi sentinel";
__ cmp(ecx, 0);
__ Assert(equal, message);
}
__ mov(ecx, GlobalObjectOperand());
__ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset));
__ mov(ecx, ContextOperand(ecx, Context::CLOSURE_INDEX));
__ bind(&after_sentinel);
// Set up the fixed slots.
__ mov(ContextOperand(eax, Context::CLOSURE_INDEX), ecx);
__ mov(ContextOperand(eax, Context::PREVIOUS_INDEX), esi);
__ mov(ContextOperand(eax, Context::EXTENSION_INDEX), ebx);
// Copy the global object from the previous context.
__ mov(ebx, ContextOperand(esi, Context::GLOBAL_INDEX));
__ mov(ContextOperand(eax, Context::GLOBAL_INDEX), ebx);
// Initialize the rest of the slots to the hole value.
if (slots_ == 1) {
__ mov(ContextOperand(eax, Context::MIN_CONTEXT_SLOTS),
factory->the_hole_value());
} else {
__ mov(ebx, factory->the_hole_value());
for (int i = 0; i < slots_; i++) {
__ mov(ContextOperand(eax, i + Context::MIN_CONTEXT_SLOTS), ebx);
}
}
// Return and remove the on-stack parameters.
__ mov(esi, eax);
__ ret(2 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
}
static void GenerateFastCloneShallowArrayCommon(
MacroAssembler* masm,
int length,
FastCloneShallowArrayStub::Mode mode,
Label* fail) {
// Registers on entry:
//
// ecx: boilerplate literal array.
ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
// All sizes here are multiples of kPointerSize.
int elements_size = 0;
if (length > 0) {
elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
? FixedDoubleArray::SizeFor(length)
: FixedArray::SizeFor(length);
}
int size = JSArray::kSize + elements_size;
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
__ AllocateInNewSpace(size, eax, ebx, edx, fail, TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length == 0)) {
__ mov(ebx, FieldOperand(ecx, i));
__ mov(FieldOperand(eax, i), ebx);
}
}
if (length > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
__ lea(edx, Operand(eax, JSArray::kSize));
__ mov(FieldOperand(eax, JSArray::kElementsOffset), edx);
// Copy the elements array.
if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) {
for (int i = 0; i < elements_size; i += kPointerSize) {
__ mov(ebx, FieldOperand(ecx, i));
__ mov(FieldOperand(edx, i), ebx);
}
} else {
ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS);
int i;
for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) {
__ mov(ebx, FieldOperand(ecx, i));
__ mov(FieldOperand(edx, i), ebx);
}
while (i < elements_size) {
__ fld_d(FieldOperand(ecx, i));
__ fstp_d(FieldOperand(edx, i));
i += kDoubleSize;
}
ASSERT(i == elements_size);
}
}
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [esp + kPointerSize]: constant elements.
// [esp + (2 * kPointerSize)]: literal index.
// [esp + (3 * kPointerSize)]: literals array.
// Load boilerplate object into ecx and check if we need to create a
// boilerplate.
__ mov(ecx, Operand(esp, 3 * kPointerSize));
__ mov(eax, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kPointerSize == 4);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size,
FixedArray::kHeaderSize));
Factory* factory = masm->isolate()->factory();
__ cmp(ecx, factory->undefined_value());
Label slow_case;
__ j(equal, &slow_case);
FastCloneShallowArrayStub::Mode mode = mode_;
// ecx is boilerplate object.
if (mode == CLONE_ANY_ELEMENTS) {
Label double_elements, check_fast_elements;
__ mov(ebx, FieldOperand(ecx, JSArray::kElementsOffset));
__ CheckMap(ebx, factory->fixed_cow_array_map(),
&check_fast_elements, DONT_DO_SMI_CHECK);
GenerateFastCloneShallowArrayCommon(masm, 0,
COPY_ON_WRITE_ELEMENTS, &slow_case);
__ ret(3 * kPointerSize);
__ bind(&check_fast_elements);
__ CheckMap(ebx, factory->fixed_array_map(),
&double_elements, DONT_DO_SMI_CHECK);
GenerateFastCloneShallowArrayCommon(masm, length_,
CLONE_ELEMENTS, &slow_case);
__ ret(3 * kPointerSize);
__ bind(&double_elements);
mode = CLONE_DOUBLE_ELEMENTS;
// Fall through to generate the code to handle double elements.
}
if (FLAG_debug_code) {
const char* message;
Handle<Map> expected_map;
if (mode == CLONE_ELEMENTS) {
message = "Expected (writable) fixed array";
expected_map = factory->fixed_array_map();
} else if (mode == CLONE_DOUBLE_ELEMENTS) {
message = "Expected (writable) fixed double array";
expected_map = factory->fixed_double_array_map();
} else {
ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
message = "Expected copy-on-write fixed array";
expected_map = factory->fixed_cow_array_map();
}
__ push(ecx);
__ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map);
__ Assert(equal, message);
__ pop(ecx);
}
GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
// Return and remove the on-stack parameters.
__ ret(3 * kPointerSize);
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [esp + kPointerSize]: object literal flags.
// [esp + (2 * kPointerSize)]: constant properties.
// [esp + (3 * kPointerSize)]: literal index.
// [esp + (4 * kPointerSize)]: literals array.
// Load boilerplate object into ecx and check if we need to create a
// boilerplate.
Label slow_case;
__ mov(ecx, Operand(esp, 4 * kPointerSize));
__ mov(eax, Operand(esp, 3 * kPointerSize));
STATIC_ASSERT(kPointerSize == 4);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size,
FixedArray::kHeaderSize));
Factory* factory = masm->isolate()->factory();
__ cmp(ecx, factory->undefined_value());
__ j(equal, &slow_case);
// Check that the boilerplate contains only fast properties and we can
// statically determine the instance size.
int size = JSObject::kHeaderSize + length_ * kPointerSize;
__ mov(eax, FieldOperand(ecx, HeapObject::kMapOffset));
__ movzx_b(eax, FieldOperand(eax, Map::kInstanceSizeOffset));
__ cmp(eax, Immediate(size >> kPointerSizeLog2));
__ j(not_equal, &slow_case);
// Allocate the JS object and copy header together with all in-object
// properties from the boilerplate.
__ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT);
for (int i = 0; i < size; i += kPointerSize) {
__ mov(ebx, FieldOperand(ecx, i));
__ mov(FieldOperand(eax, i), ebx);
}
// Return and remove the on-stack parameters.
__ ret(4 * kPointerSize);
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
}
// The stub expects its argument on the stack and returns its result in tos_:
// zero for false, and a non-zero value for true.
void ToBooleanStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
Label patch;
Factory* factory = masm->isolate()->factory();
const Register argument = eax;
const Register map = edx;
if (!types_.IsEmpty()) {
__ mov(argument, Operand(esp, 1 * kPointerSize));
}
// undefined -> false
CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
// Boolean -> its value
CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
// 'null' -> false.
CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
if (types_.Contains(SMI)) {
// Smis: 0 -> false, all other -> true
Label not_smi;
__ JumpIfNotSmi(argument, &not_smi, Label::kNear);
// argument contains the correct return value already.
if (!tos_.is(argument)) {
__ mov(tos_, argument);
}
__ ret(1 * kPointerSize);
__ bind(&not_smi);
} else if (types_.NeedsMap()) {
// If we need a map later and have a Smi -> patch.
__ JumpIfSmi(argument, &patch, Label::kNear);
}
if (types_.NeedsMap()) {
__ mov(map, FieldOperand(argument, HeapObject::kMapOffset));
if (types_.CanBeUndetectable()) {
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
// Undetectable -> false.
Label not_undetectable;
__ j(zero, &not_undetectable, Label::kNear);
__ Set(tos_, Immediate(0));
__ ret(1 * kPointerSize);
__ bind(&not_undetectable);
}
}
if (types_.Contains(SPEC_OBJECT)) {
// spec object -> true.
Label not_js_object;
__ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
__ j(below, &not_js_object, Label::kNear);
// argument contains the correct return value already.
if (!tos_.is(argument)) {
__ Set(tos_, Immediate(1));
}
__ ret(1 * kPointerSize);
__ bind(&not_js_object);
}
if (types_.Contains(STRING)) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, &not_string, Label::kNear);
__ mov(tos_, FieldOperand(argument, String::kLengthOffset));
__ ret(1 * kPointerSize); // the string length is OK as the return value
__ bind(&not_string);
}
if (types_.Contains(HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number, false_result;
__ cmp(map, factory->heap_number_map());
__ j(not_equal, &not_heap_number, Label::kNear);
__ fldz();
__ fld_d(FieldOperand(argument, HeapNumber::kValueOffset));
__ FCmp();
__ j(zero, &false_result, Label::kNear);
// argument contains the correct return value already.
if (!tos_.is(argument)) {
__ Set(tos_, Immediate(1));
}
__ ret(1 * kPointerSize);
__ bind(&false_result);
__ Set(tos_, Immediate(0));
__ ret(1 * kPointerSize);
__ bind(&not_heap_number);
}
__ bind(&patch);
GenerateTypeTransition(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
__ pushad();
if (save_doubles_ == kSaveFPRegs) {
CpuFeatures::Scope scope(SSE2);
__ sub(esp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
__ movdbl(Operand(esp, i * kDoubleSize), reg);
}
}
const int argument_count = 1;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, ecx);
__ mov(Operand(esp, 0 * kPointerSize),
Immediate(ExternalReference::isolate_address()));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(masm->isolate()),
argument_count);
if (save_doubles_ == kSaveFPRegs) {
CpuFeatures::Scope scope(SSE2);
for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
__ movdbl(reg, Operand(esp, i * kDoubleSize));
}
__ add(esp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
}
__ popad();
__ ret(0);
}
void ToBooleanStub::CheckOddball(MacroAssembler* masm,
Type type,
Heap::RootListIndex value,
bool result) {
const Register argument = eax;
if (types_.Contains(type)) {
// If we see an expected oddball, return its ToBoolean value tos_.
Label different_value;
__ CompareRoot(argument, value);
__ j(not_equal, &different_value, Label::kNear);
if (!result) {
// If we have to return zero, there is no way around clearing tos_.
__ Set(tos_, Immediate(0));
} else if (!tos_.is(argument)) {
// If we have to return non-zero, we can re-use the argument if it is the
// same register as the result, because we never see Smi-zero here.
__ Set(tos_, Immediate(1));
}
__ ret(1 * kPointerSize);
__ bind(&different_value);
}
}
void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(ecx); // Get return address, operand is now on top of stack.
__ push(Immediate(Smi::FromInt(tos_.code())));
__ push(Immediate(Smi::FromInt(types_.ToByte())));
__ push(ecx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
3,
1);
}
class FloatingPointHelper : public AllStatic {
public:
enum ArgLocation {
ARGS_ON_STACK,
ARGS_IN_REGISTERS
};
// Code pattern for loading a floating point value. Input value must
// be either a smi or a heap number object (fp value). Requirements:
// operand in register number. Returns operand as floating point number
// on FPU stack.
static void LoadFloatOperand(MacroAssembler* masm, Register number);
// Code pattern for loading floating point values. Input values must
// be either smi or heap number objects (fp values). Requirements:
// operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax.
// Returns operands as floating point numbers on FPU stack.
static void LoadFloatOperands(MacroAssembler* masm,
Register scratch,
ArgLocation arg_location = ARGS_ON_STACK);
// Similar to LoadFloatOperand but assumes that both operands are smis.
// Expects operands in edx, eax.
static void LoadFloatSmis(MacroAssembler* masm, Register scratch);
// Test if operands are smi or number objects (fp). Requirements:
// operand_1 in eax, operand_2 in edx; falls through on float
// operands, jumps to the non_float label otherwise.
static void CheckFloatOperands(MacroAssembler* masm,
Label* non_float,
Register scratch);
// Checks that the two floating point numbers on top of the FPU stack
// have int32 values.
static void CheckFloatOperandsAreInt32(MacroAssembler* masm,
Label* non_int32);
// Takes the operands in edx and eax and loads them as integers in eax
// and ecx.
static void LoadUnknownsAsIntegers(MacroAssembler* masm,
bool use_sse3,
Label* operand_conversion_failure);
// Must only be called after LoadUnknownsAsIntegers. Assumes that the
// operands are pushed on the stack, and that their conversions to int32
// are in eax and ecx. Checks that the original numbers were in the int32
// range.
static void CheckLoadedIntegersWereInt32(MacroAssembler* masm,
bool use_sse3,
Label* not_int32);
// Assumes that operands are smis or heap numbers and loads them
// into xmm0 and xmm1. Operands are in edx and eax.
// Leaves operands unchanged.
static void LoadSSE2Operands(MacroAssembler* masm);
// Test if operands are numbers (smi or HeapNumber objects), and load
// them into xmm0 and xmm1 if they are. Jump to label not_numbers if
// either operand is not a number. Operands are in edx and eax.
// Leaves operands unchanged.
static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
// Similar to LoadSSE2Operands but assumes that both operands are smis.
// Expects operands in edx, eax.
static void LoadSSE2Smis(MacroAssembler* masm, Register scratch);
// Checks that the two floating point numbers loaded into xmm0 and xmm1
// have int32 values.
static void CheckSSE2OperandsAreInt32(MacroAssembler* masm,
Label* non_int32,
Register scratch);
};
// Get the integer part of a heap number. Surprisingly, all this bit twiddling
// is faster than using the built-in instructions on floating point registers.
// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the
// trashed registers.
static void IntegerConvert(MacroAssembler* masm,
Register source,
bool use_sse3,
Label* conversion_failure) {
ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx));
Label done, right_exponent, normal_exponent;
Register scratch = ebx;
Register scratch2 = edi;
// Get exponent word.
__ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset));
// Get exponent alone in scratch2.
__ mov(scratch2, scratch);
__ and_(scratch2, HeapNumber::kExponentMask);
if (use_sse3) {
CpuFeatures::Scope scope(SSE3);
// Check whether the exponent is too big for a 64 bit signed integer.
static const uint32_t kTooBigExponent =
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
__ cmp(scratch2, Immediate(kTooBigExponent));
__ j(greater_equal, conversion_failure);
// Load x87 register with heap number.
__ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
// Reserve space for 64 bit answer.
__ sub(esp, Immediate(sizeof(uint64_t))); // Nolint.
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx.
__ add(esp, Immediate(sizeof(uint64_t))); // Nolint.
} else {
// Load ecx with zero. We use this either for the final shift or
// for the answer.
__ xor_(ecx, ecx);
// Check whether the exponent matches a 32 bit signed int that cannot be
// represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
// exponent is 30 (biased). This is the exponent that we are fastest at and
// also the highest exponent we can handle here.
const uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ cmp(scratch2, Immediate(non_smi_exponent));
// If we have a match of the int32-but-not-Smi exponent then skip some
// logic.
__ j(equal, &right_exponent, Label::kNear);
// If the exponent is higher than that then go to slow case. This catches
// numbers that don't fit in a signed int32, infinities and NaNs.
__ j(less, &normal_exponent, Label::kNear);
{
// Handle a big exponent. The only reason we have this code is that the
// >>> operator has a tendency to generate numbers with an exponent of 31.
const uint32_t big_non_smi_exponent =
(HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
__ cmp(scratch2, Immediate(big_non_smi_exponent));
__ j(not_equal, conversion_failure);
// We have the big exponent, typically from >>>. This means the number is
// in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
__ mov(scratch2, scratch);
__ and_(scratch2, HeapNumber::kMantissaMask);
// Put back the implicit 1.
__ or_(scratch2, 1 << HeapNumber::kExponentShift);
// Shift up the mantissa bits to take up the space the exponent used to
// take. We just orred in the implicit bit so that took care of one and
// we want to use the full unsigned range so we subtract 1 bit from the
// shift distance.
const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
__ shl(scratch2, big_shift_distance);
// Get the second half of the double.
__ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
// Shift down 21 bits to get the most significant 11 bits or the low
// mantissa word.
__ shr(ecx, 32 - big_shift_distance);
__ or_(ecx, scratch2);
// We have the answer in ecx, but we may need to negate it.
__ test(scratch, scratch);
__ j(positive, &done, Label::kNear);
__ neg(ecx);
__ jmp(&done, Label::kNear);
}
__ bind(&normal_exponent);
// Exponent word in scratch, exponent part of exponent word in scratch2.
// Zero in ecx.
// We know the exponent is smaller than 30 (biased). If it is less than
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e.
// it rounds to zero.
const uint32_t zero_exponent =
(HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
__ sub(scratch2, Immediate(zero_exponent));
// ecx already has a Smi zero.
__ j(less, &done, Label::kNear);
// We have a shifted exponent between 0 and 30 in scratch2.
__ shr(scratch2, HeapNumber::kExponentShift);
__ mov(ecx, Immediate(30));
__ sub(ecx, scratch2);
__ bind(&right_exponent);
// Here ecx is the shift, scratch is the exponent word.
// Get the top bits of the mantissa.
__ and_(scratch, HeapNumber::kMantissaMask);
// Put back the implicit 1.
__ or_(scratch, 1 << HeapNumber::kExponentShift);
// Shift up the mantissa bits to take up the space the exponent used to
// take. We have kExponentShift + 1 significant bits int he low end of the
// word. Shift them to the top bits.
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ shl(scratch, shift_distance);
// Get the second half of the double. For some exponents we don't
// actually need this because the bits get shifted out again, but
// it's probably slower to test than just to do it.
__ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
// Shift down 22 bits to get the most significant 10 bits or the low
// mantissa word.
__ shr(scratch2, 32 - shift_distance);
__ or_(scratch2, scratch);
// Move down according to the exponent.
__ shr_cl(scratch2);
// Now the unsigned answer is in scratch2. We need to move it to ecx and
// we may need to fix the sign.
Label negative;
__ xor_(ecx, ecx);
__ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
__ j(greater, &negative, Label::kNear);
__ mov(ecx, scratch2);
__ jmp(&done, Label::kNear);
__ bind(&negative);
__ sub(ecx, scratch2);
__ bind(&done);
}
}
void UnaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name = NULL; // Make g++ happy.
switch (mode_) {
case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
}
stream->Add("UnaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
UnaryOpIC::GetName(operand_type_));
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::Generate(MacroAssembler* masm) {
switch (operand_type_) {
case UnaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case UnaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case UnaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case UnaryOpIC::GENERIC:
GenerateGenericStub(masm);
break;
}
}
void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(ecx); // Save return address.
__ push(eax); // the operand
__ push(Immediate(Smi::FromInt(op_)));
__ push(Immediate(Smi::FromInt(mode_)));
__ push(Immediate(Smi::FromInt(operand_type_)));
__ push(ecx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateSmiStubSub(masm);
break;
case Token::BIT_NOT:
GenerateSmiStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
Label non_smi, undo, slow;
GenerateSmiCodeSub(masm, &non_smi, &undo, &slow,
Label::kNear, Label::kNear, Label::kNear);
__ bind(&undo);
GenerateSmiCodeUndo(masm);
__ bind(&non_smi);
__ bind(&slow);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
Label non_smi;
GenerateSmiCodeBitNot(masm, &non_smi);
__ bind(&non_smi);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
Label* non_smi,
Label* undo,
Label* slow,
Label::Distance non_smi_near,
Label::Distance undo_near,
Label::Distance slow_near) {
// Check whether the value is a smi.
__ JumpIfNotSmi(eax, non_smi, non_smi_near);
// We can't handle -0 with smis, so use a type transition for that case.
__ test(eax, eax);
__ j(zero, slow, slow_near);
// Try optimistic subtraction '0 - value', saving operand in eax for undo.
__ mov(edx, eax);
__ Set(eax, Immediate(0));
__ sub(eax, edx);
__ j(overflow, undo, undo_near);
__ ret(0);
}
void UnaryOpStub::GenerateSmiCodeBitNot(
MacroAssembler* masm,
Label* non_smi,
Label::Distance non_smi_near) {
// Check whether the value is a smi.
__ JumpIfNotSmi(eax, non_smi, non_smi_near);
// Flip bits and revert inverted smi-tag.
__ not_(eax);
__ and_(eax, ~kSmiTagMask);
__ ret(0);
}
void UnaryOpStub::GenerateSmiCodeUndo(MacroAssembler* masm) {
__ mov(eax, edx);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateHeapNumberStubSub(masm);
break;
case Token::BIT_NOT:
GenerateHeapNumberStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
Label non_smi, undo, slow, call_builtin;
GenerateSmiCodeSub(masm, &non_smi, &undo, &call_builtin, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeSub(masm, &slow);
__ bind(&undo);
GenerateSmiCodeUndo(masm);
__ bind(&slow);
GenerateTypeTransition(masm);
__ bind(&call_builtin);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateHeapNumberStubBitNot(
MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeBitNot(masm, &slow);
__ bind(&slow);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
Label* slow) {
__ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
__ cmp(edx, masm->isolate()->factory()->heap_number_map());
__ j(not_equal, slow);
if (mode_ == UNARY_OVERWRITE) {
__ xor_(FieldOperand(eax, HeapNumber::kExponentOffset),
Immediate(HeapNumber::kSignMask)); // Flip sign.
} else {
__ mov(edx, eax);
// edx: operand
Label slow_allocate_heapnumber, heapnumber_allocated;
__ AllocateHeapNumber(eax, ebx, ecx, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated, Label::kNear);
__ bind(&slow_allocate_heapnumber);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edx);
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ pop(edx);
}
__ bind(&heapnumber_allocated);
// eax: allocated 'empty' number
__ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
__ xor_(ecx, HeapNumber::kSignMask); // Flip sign.
__ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx);
__ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset));
__ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
}
__ ret(0);
}
void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm,
Label* slow) {
__ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
__ cmp(edx, masm->isolate()->factory()->heap_number_map());
__ j(not_equal, slow);
// Convert the heap number in eax to an untagged integer in ecx.
IntegerConvert(masm, eax, CpuFeatures::IsSupported(SSE3), slow);
// Do the bitwise operation and check if the result fits in a smi.
Label try_float;
__ not_(ecx);
__ cmp(ecx, 0xc0000000);
__ j(sign, &try_float, Label::kNear);
// Tag the result as a smi and we're done.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(eax, Operand(ecx, times_2, kSmiTag));
__ ret(0);
// Try to store the result in a heap number.
__ bind(&try_float);
if (mode_ == UNARY_NO_OVERWRITE) {
Label slow_allocate_heapnumber, heapnumber_allocated;
__ mov(ebx, eax);
__ AllocateHeapNumber(eax, edx, edi, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the original HeapNumber on the stack. The integer value can't
// be stored since it's untagged and not in the smi range (so we can't
// smi-tag it). We'll recalculate the value after the GC instead.
__ push(ebx);
__ CallRuntime(Runtime::kNumberAlloc, 0);
// New HeapNumber is in eax.
__ pop(edx);
}
// IntegerConvert uses ebx and edi as scratch registers.
// This conversion won't go slow-case.
IntegerConvert(masm, edx, CpuFeatures::IsSupported(SSE3), slow);
__ not_(ecx);
__ bind(&heapnumber_allocated);
}
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ cvtsi2sd(xmm0, ecx);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
} else {
__ push(ecx);
__ fild_s(Operand(esp, 0));
__ pop(ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
}
__ ret(0);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateGenericStubSub(masm);
break;
case Token::BIT_NOT:
GenerateGenericStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
Label non_smi, undo, slow;
GenerateSmiCodeSub(masm, &non_smi, &undo, &slow, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeSub(masm, &slow);
__ bind(&undo);
GenerateSmiCodeUndo(masm);
__ bind(&slow);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeBitNot(masm, &slow);
__ bind(&slow);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
// Handle the slow case by jumping to the corresponding JavaScript builtin.
__ pop(ecx); // pop return address.
__ push(eax);
__ push(ecx); // push return address
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(ecx); // Save return address.
__ push(edx);
__ push(eax);
// Left and right arguments are now on top.
// Push this stub's key. Although the operation and the type info are
// encoded into the key, the encoding is opaque, so push them too.
__ push(Immediate(Smi::FromInt(MinorKey())));
__ push(Immediate(Smi::FromInt(op_)));
__ push(Immediate(Smi::FromInt(operands_type_)));
__ push(ecx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
masm->isolate()),
5,
1);
}
// Prepare for a type transition runtime call when the args are already on
// the stack, under the return address.
void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm) {
__ pop(ecx); // Save return address.
// Left and right arguments are already on top of the stack.
// Push this stub's key. Although the operation and the type info are
// encoded into the key, the encoding is opaque, so push them too.
__ push(Immediate(Smi::FromInt(MinorKey())));
__ push(Immediate(Smi::FromInt(op_)));
__ push(Immediate(Smi::FromInt(operands_type_)));
__ push(ecx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
masm->isolate()),
5,
1);
}
void BinaryOpStub::Generate(MacroAssembler* masm) {
// Explicitly allow generation of nested stubs. It is safe here because
// generation code does not use any raw pointers.
AllowStubCallsScope allow_stub_calls(masm, true);
switch (operands_type_) {
case BinaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case BinaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case BinaryOpIC::INT32:
GenerateInt32Stub(masm);
break;
case BinaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case BinaryOpIC::ODDBALL:
GenerateOddballStub(masm);
break;
case BinaryOpIC::BOTH_STRING:
GenerateBothStringStub(masm);
break;
case BinaryOpIC::STRING:
GenerateStringStub(masm);
break;
case BinaryOpIC::GENERIC:
GenerateGeneric(masm);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
stream->Add("BinaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
BinaryOpIC::GetName(operands_type_));
}
void BinaryOpStub::GenerateSmiCode(
MacroAssembler* masm,
Label* slow,
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
// 1. Move arguments into edx, eax except for DIV and MOD, which need the
// dividend in eax and edx free for the division. Use eax, ebx for those.
Comment load_comment(masm, "-- Load arguments");
Register left = edx;
Register right = eax;
if (op_ == Token::DIV || op_ == Token::MOD) {
left = eax;
right = ebx;
__ mov(ebx, eax);
__ mov(eax, edx);
}
// 2. Prepare the smi check of both operands by oring them together.
Comment smi_check_comment(masm, "-- Smi check arguments");
Label not_smis;
Register combined = ecx;
ASSERT(!left.is(combined) && !right.is(combined));
switch (op_) {
case Token::BIT_OR:
// Perform the operation into eax and smi check the result. Preserve
// eax in case the result is not a smi.
ASSERT(!left.is(ecx) && !right.is(ecx));
__ mov(ecx, right);
__ or_(right, left); // Bitwise or is commutative.
combined = right;
break;
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
__ mov(combined, right);
__ or_(combined, left);
break;
case Token::SHL:
case Token::SAR:
case Token::SHR:
// Move the right operand into ecx for the shift operation, use eax
// for the smi check register.
ASSERT(!left.is(ecx) && !right.is(ecx));
__ mov(ecx, right);
__ or_(right, left);
combined = right;
break;
default:
break;
}
// 3. Perform the smi check of the operands.
STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
__ JumpIfNotSmi(combined, &not_smis);
// 4. Operands are both smis, perform the operation leaving the result in
// eax and check the result if necessary.
Comment perform_smi(masm, "-- Perform smi operation");
Label use_fp_on_smis;
switch (op_) {
case Token::BIT_OR:
// Nothing to do.
break;
case Token::BIT_XOR:
ASSERT(right.is(eax));
__ xor_(right, left); // Bitwise xor is commutative.
break;
case Token::BIT_AND:
ASSERT(right.is(eax));
__ and_(right, left); // Bitwise and is commutative.
break;
case Token::SHL:
// Remove tags from operands (but keep sign).
__ SmiUntag(left);
__ SmiUntag(ecx);
// Perform the operation.
__ shl_cl(left);
// Check that the *signed* result fits in a smi.
__ cmp(left, 0xc0000000);
__ j(sign, &use_fp_on_smis);
// Tag the result and store it in register eax.
__ SmiTag(left);
__ mov(eax, left);
break;
case Token::SAR:
// Remove tags from operands (but keep sign).
__ SmiUntag(left);
__ SmiUntag(ecx);
// Perform the operation.
__ sar_cl(left);
// Tag the result and store it in register eax.
__ SmiTag(left);
__ mov(eax, left);
break;
case Token::SHR:
// Remove tags from operands (but keep sign).
__ SmiUntag(left);
__ SmiUntag(ecx);
// Perform the operation.
__ shr_cl(left);
// Check that the *unsigned* result fits in a smi.
// Neither of the two high-order bits can be set:
// - 0x80000000: high bit would be lost when smi tagging.
// - 0x40000000: this number would convert to negative when
// Smi tagging these two cases can only happen with shifts
// by 0 or 1 when handed a valid smi.
__ test(left, Immediate(0xc0000000));
__ j(not_zero, &use_fp_on_smis);
// Tag the result and store it in register eax.
__ SmiTag(left);
__ mov(eax, left);
break;
case Token::ADD:
ASSERT(right.is(eax));
__ add(right, left); // Addition is commutative.
__ j(overflow, &use_fp_on_smis);
break;
case Token::SUB:
__ sub(left, right);
__ j(overflow, &use_fp_on_smis);
__ mov(eax, left);
break;
case Token::MUL:
// If the smi tag is 0 we can just leave the tag on one operand.
STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
// We can't revert the multiplication if the result is not a smi
// so save the right operand.
__ mov(ebx, right);
// Remove tag from one of the operands (but keep sign).
__ SmiUntag(right);
// Do multiplication.
__ imul(right, left); // Multiplication is commutative.
__ j(overflow, &use_fp_on_smis);
// Check for negative zero result. Use combined = left | right.
__ NegativeZeroTest(right, combined, &use_fp_on_smis);
break;
case Token::DIV:
// We can't revert the division if the result is not a smi so
// save the left operand.
__ mov(edi, left);
// Check for 0 divisor.
__ test(right, right);
__ j(zero, &use_fp_on_smis);
// Sign extend left into edx:eax.
ASSERT(left.is(eax));
__ cdq();
// Divide edx:eax by right.
__ idiv(right);
// Check for the corner case of dividing the most negative smi by
// -1. We cannot use the overflow flag, since it is not set by idiv
// instruction.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ cmp(eax, 0x40000000);
__ j(equal, &use_fp_on_smis);
// Check for negative zero result. Use combined = left | right.
__ NegativeZeroTest(eax, combined, &use_fp_on_smis);
// Check that the remainder is zero.
__ test(edx, edx);
__ j(not_zero, &use_fp_on_smis);
// Tag the result and store it in register eax.
__ SmiTag(eax);
break;
case Token::MOD:
// Check for 0 divisor.
__ test(right, right);
__ j(zero, &not_smis);
// Sign extend left into edx:eax.
ASSERT(left.is(eax));
__ cdq();
// Divide edx:eax by right.
__ idiv(right);
// Check for negative zero result. Use combined = left | right.
__ NegativeZeroTest(edx, combined, slow);
// Move remainder to register eax.
__ mov(eax, edx);
break;
default:
UNREACHABLE();
}
// 5. Emit return of result in eax. Some operations have registers pushed.
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
__ ret(0);
break;
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR:
__ ret(2 * kPointerSize);
break;
default:
UNREACHABLE();
}
// 6. For some operations emit inline code to perform floating point
// operations on known smis (e.g., if the result of the operation
// overflowed the smi range).
if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) {
__ bind(&use_fp_on_smis);
switch (op_) {
// Undo the effects of some operations, and some register moves.
case Token::SHL:
// The arguments are saved on the stack, and only used from there.
break;
case Token::ADD:
// Revert right = right + left.
__ sub(right, left);
break;
case Token::SUB:
// Revert left = left - right.
__ add(left, right);
break;
case Token::MUL:
// Right was clobbered but a copy is in ebx.
__ mov(right, ebx);
break;
case Token::DIV:
// Left was clobbered but a copy is in edi. Right is in ebx for
// division. They should be in eax, ebx for jump to not_smi.
__ mov(eax, edi);
break;
default:
// No other operators jump to use_fp_on_smis.
break;
}
__ jmp(&not_smis);
} else {
ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS);
switch (op_) {
case Token::SHL:
case Token::SHR: {
Comment perform_float(masm, "-- Perform float operation on smis");
__ bind(&use_fp_on_smis);
// Result we want is in left == edx, so we can put the allocated heap
// number in eax.
__ AllocateHeapNumber(eax, ecx, ebx, slow);
// Store the result in the HeapNumber and return.
// It's OK to overwrite the arguments on the stack because we
// are about to return.
if (op_ == Token::SHR) {
__ mov(Operand(esp, 1 * kPointerSize), left);
__ mov(Operand(esp, 2 * kPointerSize), Immediate(0));
__ fild_d(Operand(esp, 1 * kPointerSize));
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
} else {
ASSERT_EQ(Token::SHL, op_);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ cvtsi2sd(xmm0, left);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
} else {
__ mov(Operand(esp, 1 * kPointerSize), left);
__ fild_s(Operand(esp, 1 * kPointerSize));
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
}
}
__ ret(2 * kPointerSize);
break;
}
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
Comment perform_float(masm, "-- Perform float operation on smis");
__ bind(&use_fp_on_smis);
// Restore arguments to edx, eax.
switch (op_) {
case Token::ADD:
// Revert right = right + left.
__ sub(right, left);
break;
case Token::SUB:
// Revert left = left - right.
__ add(left, right);
break;
case Token::MUL:
// Right was clobbered but a copy is in ebx.
__ mov(right, ebx);
break;
case Token::DIV:
// Left was clobbered but a copy is in edi. Right is in ebx for
// division.
__ mov(edx, edi);
__ mov(eax, right);
break;
default: UNREACHABLE();
break;
}
__ AllocateHeapNumber(ecx, ebx, no_reg, slow);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
FloatingPointHelper::LoadSSE2Smis(masm, ebx);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
__ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
} else { // SSE2 not available, use FPU.
FloatingPointHelper::LoadFloatSmis(masm, ebx);
switch (op_) {
case Token::ADD: __ faddp(1); break;
case Token::SUB: __ fsubp(1); break;
case Token::MUL: __ fmulp(1); break;
case Token::DIV: __ fdivp(1); break;
default: UNREACHABLE();
}
__ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
}
__ mov(eax, ecx);
__ ret(0);
break;
}
default:
break;
}
}
// 7. Non-smi operands, fall out to the non-smi code with the operands in
// edx and eax.
Comment done_comment(masm, "-- Enter non-smi code");
__ bind(&not_smis);
switch (op_) {
case Token::BIT_OR:
case Token::SHL:
case Token::SAR:
case Token::SHR:
// Right operand is saved in ecx and eax was destroyed by the smi
// check.
__ mov(eax, ecx);
break;
case Token::DIV:
case Token::MOD:
// Operands are in eax, ebx at this point.
__ mov(edx, eax);
__ mov(eax, ebx);
break;
default:
break;
}
}
void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Label call_runtime;
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
break;
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR:
GenerateRegisterArgsPush(masm);
break;
default:
UNREACHABLE();
}
if (result_type_ == BinaryOpIC::UNINITIALIZED ||
result_type_ == BinaryOpIC::SMI) {
GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS);
} else {
GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
}
__ bind(&call_runtime);
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
GenerateTypeTransition(masm);
break;
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR:
GenerateTypeTransitionWithSavedArgs(masm);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
ASSERT(operands_type_ == BinaryOpIC::STRING);
ASSERT(op_ == Token::ADD);
// Try to add arguments as strings, otherwise, transition to the generic
// BinaryOpIC type.
GenerateAddStrings(masm);
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
Label call_runtime;
ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
ASSERT(op_ == Token::ADD);
// If both arguments are strings, call the string add stub.
// Otherwise, do a transition.
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
// Test if left operand is a string.
__ JumpIfSmi(left, &call_runtime, Label::kNear);
__ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
__ j(above_equal, &call_runtime, Label::kNear);
// Test if right operand is a string.
__ JumpIfSmi(right, &call_runtime, Label::kNear);
__ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
__ j(above_equal, &call_runtime, Label::kNear);
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_stub);
__ bind(&call_runtime);
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
Label call_runtime;
ASSERT(operands_type_ == BinaryOpIC::INT32);
// Floating point case.
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
Label not_floats;
Label not_int32;
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
// Check result type if it is currently Int32.
if (result_type_ <= BinaryOpIC::INT32) {
__ cvttsd2si(ecx, Operand(xmm0));
__ cvtsi2sd(xmm2, ecx);
__ ucomisd(xmm0, xmm2);
__ j(not_zero, &not_int32);
__ j(carry, &not_int32);
}
GenerateHeapResultAllocation(masm, &call_runtime);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
__ ret(0);
} else { // SSE2 not available, use FPU.
FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
FloatingPointHelper::LoadFloatOperands(
masm,
ecx,
FloatingPointHelper::ARGS_IN_REGISTERS);
FloatingPointHelper::CheckFloatOperandsAreInt32(masm, &not_int32);
switch (op_) {
case Token::ADD: __ faddp(1); break;
case Token::SUB: __ fsubp(1); break;
case Token::MUL: __ fmulp(1); break;
case Token::DIV: __ fdivp(1); break;
default: UNREACHABLE();
}
Label after_alloc_failure;
GenerateHeapResultAllocation(masm, &after_alloc_failure);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
__ bind(&after_alloc_failure);
__ ffree();
__ jmp(&call_runtime);
}
__ bind(&not_floats);
__ bind(&not_int32);
GenerateTypeTransition(masm);
break;
}
case Token::MOD: {
// For MOD we go directly to runtime in the non-smi case.
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
GenerateRegisterArgsPush(masm);
Label not_floats;
Label not_int32;
Label non_smi_result;
/* {
CpuFeatures::Scope use_sse2(SSE2);
FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
}*/
FloatingPointHelper::LoadUnknownsAsIntegers(masm,
use_sse3_,
&not_floats);
FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_,
&not_int32);
switch (op_) {
case Token::BIT_OR: __ or_(eax, ecx); break;
case Token::BIT_AND: __ and_(eax, ecx); break;
case Token::BIT_XOR: __ xor_(eax, ecx); break;
case Token::SAR: __ sar_cl(eax); break;
case Token::SHL: __ shl_cl(eax); break;
case Token::SHR: __ shr_cl(eax); break;
default: UNREACHABLE();
}
if (op_ == Token::SHR) {
// Check if result is non-negative and fits in a smi.
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &call_runtime);
} else {
// Check if result fits in a smi.
__ cmp(eax, 0xc0000000);
__ j(negative, &non_smi_result, Label::kNear);
}
// Tag smi result and return.
__ SmiTag(eax);
__ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
// All ops except SHR return a signed int32 that we load in
// a HeapNumber.
if (op_ != Token::SHR) {
__ bind(&non_smi_result);
// Allocate a heap number if needed.
__ mov(ebx, eax); // ebx: result
Label skip_allocation;
switch (mode_) {
case OVERWRITE_LEFT:
case OVERWRITE_RIGHT:
// If the operand was an object, we skip the
// allocation of a heap number.
__ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1 * kPointerSize : 2 * kPointerSize));
__ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
// Fall through!
case NO_OVERWRITE:
__ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
// Store the result in the HeapNumber and return.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ cvtsi2sd(xmm0, ebx);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
} else {
__ mov(Operand(esp, 1 * kPointerSize), ebx);
__ fild_s(Operand(esp, 1 * kPointerSize));
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
}
__ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
}
__ bind(&not_floats);
__ bind(&not_int32);
GenerateTypeTransitionWithSavedArgs(masm);
break;
}
default: UNREACHABLE(); break;
}
// If an allocation fails, or SHR or MOD hit a hard case,
// use the runtime system to get the correct result.
__ bind(&call_runtime);
switch (op_) {
case Token::ADD:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
case Token::SUB:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
if (op_ == Token::ADD) {
// Handle string addition here, because it is the only operation
// that does not do a ToNumber conversion on the operands.
GenerateAddStrings(masm);
}
Factory* factory = masm->isolate()->factory();
// Convert odd ball arguments to numbers.
Label check, done;
__ cmp(edx, factory->undefined_value());
__ j(not_equal, &check, Label::kNear);
if (Token::IsBitOp(op_)) {
__ xor_(edx, edx);
} else {
__ mov(edx, Immediate(factory->nan_value()));
}
__ jmp(&done, Label::kNear);
__ bind(&check);
__ cmp(eax, factory->undefined_value());
__ j(not_equal, &done, Label::kNear);
if (Token::IsBitOp(op_)) {
__ xor_(eax, eax);
} else {
__ mov(eax, Immediate(factory->nan_value()));
}
__ bind(&done);
GenerateHeapNumberStub(masm);
}
void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Label call_runtime;
// Floating point case.
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
Label not_floats;
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
GenerateHeapResultAllocation(masm, &call_runtime);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
__ ret(0);
} else { // SSE2 not available, use FPU.
FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
FloatingPointHelper::LoadFloatOperands(
masm,
ecx,
FloatingPointHelper::ARGS_IN_REGISTERS);
switch (op_) {
case Token::ADD: __ faddp(1); break;
case Token::SUB: __ fsubp(1); break;
case Token::MUL: __ fmulp(1); break;
case Token::DIV: __ fdivp(1); break;
default: UNREACHABLE();
}
Label after_alloc_failure;
GenerateHeapResultAllocation(masm, &after_alloc_failure);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
__ bind(&after_alloc_failure);
__ ffree();
__ jmp(&call_runtime);
}
__ bind(&not_floats);
GenerateTypeTransition(masm);
break;
}
case Token::MOD: {
// For MOD we go directly to runtime in the non-smi case.
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
GenerateRegisterArgsPush(masm);
Label not_floats;
Label non_smi_result;
FloatingPointHelper::LoadUnknownsAsIntegers(masm,
use_sse3_,
&not_floats);
switch (op_) {
case Token::BIT_OR: __ or_(eax, ecx); break;
case Token::BIT_AND: __ and_(eax, ecx); break;
case Token::BIT_XOR: __ xor_(eax, ecx); break;
case Token::SAR: __ sar_cl(eax); break;
case Token::SHL: __ shl_cl(eax); break;
case Token::SHR: __ shr_cl(eax); break;
default: UNREACHABLE();
}
if (op_ == Token::SHR) {
// Check if result is non-negative and fits in a smi.
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &call_runtime);
} else {
// Check if result fits in a smi.
__ cmp(eax, 0xc0000000);
__ j(negative, &non_smi_result, Label::kNear);
}
// Tag smi result and return.
__ SmiTag(eax);
__ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
// All ops except SHR return a signed int32 that we load in
// a HeapNumber.
if (op_ != Token::SHR) {
__ bind(&non_smi_result);
// Allocate a heap number if needed.
__ mov(ebx, eax); // ebx: result
Label skip_allocation;
switch (mode_) {
case OVERWRITE_LEFT:
case OVERWRITE_RIGHT:
// If the operand was an object, we skip the
// allocation of a heap number.
__ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1 * kPointerSize : 2 * kPointerSize));
__ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
// Fall through!
case NO_OVERWRITE:
__ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
// Store the result in the HeapNumber and return.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ cvtsi2sd(xmm0, ebx);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
} else {
__ mov(Operand(esp, 1 * kPointerSize), ebx);
__ fild_s(Operand(esp, 1 * kPointerSize));
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
}
__ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
}
__ bind(&not_floats);
GenerateTypeTransitionWithSavedArgs(masm);
break;
}
default: UNREACHABLE(); break;
}
// If an allocation fails, or SHR or MOD hit a hard case,
// use the runtime system to get the correct result.
__ bind(&call_runtime);
switch (op_) {
case Token::ADD:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
case Token::SUB:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Label call_runtime;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->generic_binary_stub_calls(), 1);
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
break;
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR:
GenerateRegisterArgsPush(masm);
break;
default:
UNREACHABLE();
}
GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
// Floating point case.
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
Label not_floats;
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
GenerateHeapResultAllocation(masm, &call_runtime);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
__ ret(0);
} else { // SSE2 not available, use FPU.
FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
FloatingPointHelper::LoadFloatOperands(
masm,
ecx,
FloatingPointHelper::ARGS_IN_REGISTERS);
switch (op_) {
case Token::ADD: __ faddp(1); break;
case Token::SUB: __ fsubp(1); break;
case Token::MUL: __ fmulp(1); break;
case Token::DIV: __ fdivp(1); break;
default: UNREACHABLE();
}
Label after_alloc_failure;
GenerateHeapResultAllocation(masm, &after_alloc_failure);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
__ bind(&after_alloc_failure);
__ ffree();
__ jmp(&call_runtime);
}
__ bind(&not_floats);
break;
}
case Token::MOD: {
// For MOD we go directly to runtime in the non-smi case.
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
Label non_smi_result;
FloatingPointHelper::LoadUnknownsAsIntegers(masm,
use_sse3_,
&call_runtime);
switch (op_) {
case Token::BIT_OR: __ or_(eax, ecx); break;
case Token::BIT_AND: __ and_(eax, ecx); break;
case Token::BIT_XOR: __ xor_(eax, ecx); break;
case Token::SAR: __ sar_cl(eax); break;
case Token::SHL: __ shl_cl(eax); break;
case Token::SHR: __ shr_cl(eax); break;
default: UNREACHABLE();
}
if (op_ == Token::SHR) {
// Check if result is non-negative and fits in a smi.
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &call_runtime);
} else {
// Check if result fits in a smi.
__ cmp(eax, 0xc0000000);
__ j(negative, &non_smi_result, Label::kNear);
}
// Tag smi result and return.
__ SmiTag(eax);
__ ret(2 * kPointerSize); // Drop the arguments from the stack.
// All ops except SHR return a signed int32 that we load in
// a HeapNumber.
if (op_ != Token::SHR) {
__ bind(&non_smi_result);
// Allocate a heap number if needed.
__ mov(ebx, eax); // ebx: result
Label skip_allocation;
switch (mode_) {
case OVERWRITE_LEFT:
case OVERWRITE_RIGHT:
// If the operand was an object, we skip the
// allocation of a heap number.
__ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1 * kPointerSize : 2 * kPointerSize));
__ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
// Fall through!
case NO_OVERWRITE:
__ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
// Store the result in the HeapNumber and return.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ cvtsi2sd(xmm0, ebx);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
} else {
__ mov(Operand(esp, 1 * kPointerSize), ebx);
__ fild_s(Operand(esp, 1 * kPointerSize));
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
}
__ ret(2 * kPointerSize);
}
break;
}
default: UNREACHABLE(); break;
}
// If all else fails, use the runtime system to get the correct
// result.
__ bind(&call_runtime);
switch (op_) {
case Token::ADD: {
GenerateAddStrings(masm);
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
}
case Token::SUB:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
GenerateRegisterArgsPush(masm);
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
ASSERT(op_ == Token::ADD);
Label left_not_string, call_runtime;
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
// Test if left operand is a string.
__ JumpIfSmi(left, &left_not_string, Label::kNear);
__ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
__ j(above_equal, &left_not_string, Label::kNear);
StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_left_stub);
// Left operand is not a string, test right.
__ bind(&left_not_string);
__ JumpIfSmi(right, &call_runtime, Label::kNear);
__ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
__ j(above_equal, &call_runtime, Label::kNear);
StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_right_stub);
// Neither argument is a string.
__ bind(&call_runtime);
}
void BinaryOpStub::GenerateHeapResultAllocation(
MacroAssembler* masm,
Label* alloc_failure) {
Label skip_allocation;
OverwriteMode mode = mode_;
switch (mode) {
case OVERWRITE_LEFT: {
// If the argument in edx is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(edx, &skip_allocation, Label::kNear);
// Allocate a heap number for the result. Keep eax and edx intact
// for the possible runtime call.
__ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
// Now edx can be overwritten losing one of the arguments as we are
// now done and will not need it any more.
__ mov(edx, ebx);
__ bind(&skip_allocation);
// Use object in edx as a result holder
__ mov(eax, edx);
break;
}
case OVERWRITE_RIGHT:
// If the argument in eax is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
// Fall through!
case NO_OVERWRITE:
// Allocate a heap number for the result. Keep eax and edx intact
// for the possible runtime call.
__ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
// Now eax can be overwritten losing one of the arguments as we are
// now done and will not need it any more.
__ mov(eax, ebx);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
}
void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
__ pop(ecx);
__ push(edx);
__ push(eax);
__ push(ecx);
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// TAGGED case:
// Input:
// esp[4]: tagged number input argument (should be number).
// esp[0]: return address.
// Output:
// eax: tagged double result.
// UNTAGGED case:
// Input::
// esp[0]: return address.
// xmm1: untagged double input argument
// Output:
// xmm1: untagged double result.
Label runtime_call;
Label runtime_call_clear_stack;
Label skip_cache;
const bool tagged = (argument_type_ == TAGGED);
if (tagged) {
// Test that eax is a number.
Label input_not_smi;
Label loaded;
__ mov(eax, Operand(esp, kPointerSize));
__ JumpIfNotSmi(eax, &input_not_smi, Label::kNear);
// Input is a smi. Untag and load it onto the FPU stack.
// Then load the low and high words of the double into ebx, edx.
STATIC_ASSERT(kSmiTagSize == 1);
__ sar(eax, 1);
__ sub(esp, Immediate(2 * kPointerSize));
__ mov(Operand(esp, 0), eax);
__ fild_s(Operand(esp, 0));
__ fst_d(Operand(esp, 0));
__ pop(edx);
__ pop(ebx);
__ jmp(&loaded, Label::kNear);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Factory* factory = masm->isolate()->factory();
__ cmp(ebx, Immediate(factory->heap_number_map()));
__ j(not_equal, &runtime_call);
// Input is a HeapNumber. Push it on the FPU stack and load its
// low and high words into ebx, edx.
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
__ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset));
__ bind(&loaded);
} else { // UNTAGGED.
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatures::Scope sse4_scope(SSE4_1);
__ pextrd(edx, xmm1, 0x1); // copy xmm1[63..32] to edx.
} else {
__ pshufd(xmm0, xmm1, 0x1);
__ movd(edx, xmm0);
}
__ movd(ebx, xmm1);
}
// ST[0] or xmm1 == double value
// ebx = low 32 bits of double value
// edx = high 32 bits of double value
// Compute hash (the shifts are arithmetic):
// h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
__ mov(ecx, ebx);
__ xor_(ecx, edx);
__ mov(eax, ecx);
__ sar(eax, 16);
__ xor_(ecx, eax);
__ mov(eax, ecx);
__ sar(eax, 8);
__ xor_(ecx, eax);
ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
__ and_(ecx,
Immediate(TranscendentalCache::SubCache::kCacheSize - 1));
// ST[0] or xmm1 == double value.
// ebx = low 32 bits of double value.
// edx = high 32 bits of double value.
// ecx = TranscendentalCache::hash(double value).
ExternalReference cache_array =
ExternalReference::transcendental_cache_array_address(masm->isolate());
__ mov(eax, Immediate(cache_array));
int cache_array_index =
type_ * sizeof(masm->isolate()->transcendental_cache()->caches_[0]);
__ mov(eax, Operand(eax, cache_array_index));
// Eax points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ test(eax, eax);
__ j(zero, &runtime_call_clear_stack);
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ TranscendentalCache::SubCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
CHECK_EQ(0, elem_in0 - elem_start);
CHECK_EQ(kIntSize, elem_in1 - elem_start);
CHECK_EQ(2 * kIntSize, elem_out - elem_start);
}
#endif
// Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12].
__ lea(ecx, Operand(ecx, ecx, times_2, 0));
__ lea(ecx, Operand(eax, ecx, times_4, 0));
// Check if cache matches: Double value is stored in uint32_t[2] array.
Label cache_miss;
__ cmp(ebx, Operand(ecx, 0));
__ j(not_equal, &cache_miss, Label::kNear);
__ cmp(edx, Operand(ecx, kIntSize));
__ j(not_equal, &cache_miss, Label::kNear);
// Cache hit!
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->transcendental_cache_hit(), 1);
__ mov(eax, Operand(ecx, 2 * kIntSize));
if (tagged) {
__ fstp(0);
__ ret(kPointerSize);
} else { // UNTAGGED.
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ Ret();
}
__ bind(&cache_miss);
__ IncrementCounter(counters->transcendental_cache_miss(), 1);
// Update cache with new value.
// We are short on registers, so use no_reg as scratch.
// This gives slightly larger code.
if (tagged) {
__ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack);
} else { // UNTAGGED.
__ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
__ sub(esp, Immediate(kDoubleSize));
__ movdbl(Operand(esp, 0), xmm1);
__ fld_d(Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
}
GenerateOperation(masm, type_);
__ mov(Operand(ecx, 0), ebx);
__ mov(Operand(ecx, kIntSize), edx);
__ mov(Operand(ecx, 2 * kIntSize), eax);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
if (tagged) {
__ ret(kPointerSize);
} else { // UNTAGGED.
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ Ret();
// Skip cache and return answer directly, only in untagged case.
__ bind(&skip_cache);
__ sub(esp, Immediate(kDoubleSize));
__ movdbl(Operand(esp, 0), xmm1);
__ fld_d(Operand(esp, 0));
GenerateOperation(masm, type_);
__ fstp_d(Operand(esp, 0));
__ movdbl(xmm1, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
// We return the value in xmm1 without adding it to the cache, but
// we cause a scavenging GC so that future allocations will succeed.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Allocate an unused object bigger than a HeapNumber.
__ push(Immediate(Smi::FromInt(2 * kDoubleSize)));
__ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
}
__ Ret();
}
// Call runtime, doing whatever allocation and cleanup is necessary.
if (tagged) {
__ bind(&runtime_call_clear_stack);
__ fstp(0);
__ bind(&runtime_call);
ExternalReference runtime =
ExternalReference(RuntimeFunction(), masm->isolate());
__ TailCallExternalReference(runtime, 1, 1);
} else { // UNTAGGED.
__ bind(&runtime_call_clear_stack);
__ bind(&runtime_call);
__ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(eax);
__ CallRuntime(RuntimeFunction(), 1);
}
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ Ret();
}
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
switch (type_) {
case TranscendentalCache::SIN: return Runtime::kMath_sin;
case TranscendentalCache::COS: return Runtime::kMath_cos;
case TranscendentalCache::TAN: return Runtime::kMath_tan;
case TranscendentalCache::LOG: return Runtime::kMath_log;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void TranscendentalCacheStub::GenerateOperation(
MacroAssembler* masm, TranscendentalCache::Type type) {
// Only free register is edi.
// Input value is on FP stack, and also in ebx/edx.
// Input value is possibly in xmm1.
// Address of result (a newly allocated HeapNumber) may be in eax.
if (type == TranscendentalCache::SIN ||
type == TranscendentalCache::COS ||
type == TranscendentalCache::TAN) {
// Both fsin and fcos require arguments in the range +/-2^63 and
// return NaN for infinities and NaN. They can share all code except
// the actual fsin/fcos operation.
Label in_range, done;
// If argument is outside the range -2^63..2^63, fsin/cos doesn't
// work. We must reduce it to the appropriate range.
__ mov(edi, edx);
__ and_(edi, Immediate(0x7ff00000)); // Exponent only.
int supported_exponent_limit =
(63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift;
__ cmp(edi, Immediate(supported_exponent_limit));
__ j(below, &in_range, Label::kNear);
// Check for infinity and NaN. Both return NaN for sin.
__ cmp(edi, Immediate(0x7ff00000));
Label non_nan_result;
__ j(not_equal, &non_nan_result, Label::kNear);
// Input is +/-Infinity or NaN. Result is NaN.
__ fstp(0);
// NaN is represented by 0x7ff8000000000000.
__ push(Immediate(0x7ff80000));
__ push(Immediate(0));
__ fld_d(Operand(esp, 0));
__ add(esp, Immediate(2 * kPointerSize));
__ jmp(&done, Label::kNear);
__ bind(&non_nan_result);
// Use fpmod to restrict argument to the range +/-2*PI.
__ mov(edi, eax); // Save eax before using fnstsw_ax.
__ fldpi();
__ fadd(0);
__ fld(1);
// FPU Stack: input, 2*pi, input.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ test(eax, Immediate(5));
__ j(zero, &no_exceptions, Label::kNear);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem1();
__ fwait();
__ fnstsw_ax();
__ test(eax, Immediate(0x400 /* C2 */));
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
// FPU Stack: input, 2*pi, input % 2*pi
__ fstp(2);
__ fstp(0);
__ mov(eax, edi); // Restore eax (allocated HeapNumber pointer).
// FPU Stack: input % 2*pi
__ bind(&in_range);
switch (type) {
case TranscendentalCache::SIN:
__ fsin();
break;
case TranscendentalCache::COS:
__ fcos();
break;
case TranscendentalCache::TAN:
// FPTAN calculates tangent onto st(0) and pushes 1.0 onto the
// FP register stack.
__ fptan();
__ fstp(0); // Pop FP register stack.
break;
default:
UNREACHABLE();
}
__ bind(&done);
} else {
ASSERT(type == TranscendentalCache::LOG);
__ fldln2();
__ fxch();
__ fyl2x();
}
}
// Input: edx, eax are the left and right objects of a bit op.
// Output: eax, ecx are left and right integers for a bit op.
void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm,
bool use_sse3,
Label* conversion_failure) {
// Check float operands.
Label arg1_is_object, check_undefined_arg1;
Label arg2_is_object, check_undefined_arg2;
Label load_arg2, done;
// Test if arg1 is a Smi.
__ JumpIfNotSmi(edx, &arg1_is_object, Label::kNear);
__ SmiUntag(edx);
__ jmp(&load_arg2);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg1);
Factory* factory = masm->isolate()->factory();
__ cmp(edx, factory->undefined_value());
__ j(not_equal, conversion_failure);
__ mov(edx, Immediate(0));
__ jmp(&load_arg2);
__ bind(&arg1_is_object);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ cmp(ebx, factory->heap_number_map());
__ j(not_equal, &check_undefined_arg1);
// Get the untagged integer version of the edx heap number in ecx.
IntegerConvert(masm, edx, use_sse3, conversion_failure);
__ mov(edx, ecx);
// Here edx has the untagged integer, eax has a Smi or a heap number.
__ bind(&load_arg2);
// Test if arg2 is a Smi.
__ JumpIfNotSmi(eax, &arg2_is_object, Label::kNear);
__ SmiUntag(eax);
__ mov(ecx, eax);
__ jmp(&done);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg2);
__ cmp(eax, factory->undefined_value());
__ j(not_equal, conversion_failure);
__ mov(ecx, Immediate(0));
__ jmp(&done);
__ bind(&arg2_is_object);
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ cmp(ebx, factory->heap_number_map());
__ j(not_equal, &check_undefined_arg2);
// Get the untagged integer version of the eax heap number in ecx.
IntegerConvert(masm, eax, use_sse3, conversion_failure);
__ bind(&done);
__ mov(eax, edx);
}
void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm,
bool use_sse3,
Label* not_int32) {
return;
}
void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
Register number) {
Label load_smi, done;
__ JumpIfSmi(number, &load_smi, Label::kNear);
__ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
__ jmp(&done, Label::kNear);
__ bind(&load_smi);
__ SmiUntag(number);
__ push(number);
__ fild_s(Operand(esp, 0));
__ pop(number);
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) {
Label load_smi_edx, load_eax, load_smi_eax, done;
// Load operand in edx into xmm0.
__ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
__ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
__ bind(&load_eax);
// Load operand in eax into xmm1.
__ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ jmp(&done, Label::kNear);
__ bind(&load_smi_edx);
__ SmiUntag(edx); // Untag smi before converting to float.
__ cvtsi2sd(xmm0, edx);
__ SmiTag(edx); // Retag smi for heap number overwriting test.
__ jmp(&load_eax);
__ bind(&load_smi_eax);
__ SmiUntag(eax); // Untag smi before converting to float.
__ cvtsi2sd(xmm1, eax);
__ SmiTag(eax); // Retag smi for heap number overwriting test.
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
Label* not_numbers) {
Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
// Load operand in edx into xmm0, or branch to not_numbers.
__ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
Factory* factory = masm->isolate()->factory();
__ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
__ j(not_equal, not_numbers); // Argument in edx is not a number.
__ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
__ bind(&load_eax);
// Load operand in eax into xmm1, or branch to not_numbers.
__ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
__ j(equal, &load_float_eax, Label::kNear);
__ jmp(not_numbers); // Argument in eax is not a number.
__ bind(&load_smi_edx);
__ SmiUntag(edx); // Untag smi before converting to float.
__ cvtsi2sd(xmm0, edx);
__ SmiTag(edx); // Retag smi for heap number overwriting test.
__ jmp(&load_eax);
__ bind(&load_smi_eax);
__ SmiUntag(eax); // Untag smi before converting to float.
__ cvtsi2sd(xmm1, eax);
__ SmiTag(eax); // Retag smi for heap number overwriting test.
__ jmp(&done, Label::kNear);
__ bind(&load_float_eax);
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm,
Register scratch) {
const Register left = edx;
const Register right = eax;
__ mov(scratch, left);
ASSERT(!scratch.is(right)); // We're about to clobber scratch.
__ SmiUntag(scratch);
__ cvtsi2sd(xmm0, scratch);
__ mov(scratch, right);
__ SmiUntag(scratch);
__ cvtsi2sd(xmm1, scratch);
}
void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm,
Label* non_int32,
Register scratch) {
__ cvttsd2si(scratch, Operand(xmm0));
__ cvtsi2sd(xmm2, scratch);
__ ucomisd(xmm0, xmm2);
__ j(not_zero, non_int32);
__ j(carry, non_int32);
__ cvttsd2si(scratch, Operand(xmm1));
__ cvtsi2sd(xmm2, scratch);
__ ucomisd(xmm1, xmm2);
__ j(not_zero, non_int32);
__ j(carry, non_int32);
}
void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
Register scratch,
ArgLocation arg_location) {
Label load_smi_1, load_smi_2, done_load_1, done;
if (arg_location == ARGS_IN_REGISTERS) {
__ mov(scratch, edx);
} else {
__ mov(scratch, Operand(esp, 2 * kPointerSize));
}
__ JumpIfSmi(scratch, &load_smi_1, Label::kNear);
__ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
__ bind(&done_load_1);
if (arg_location == ARGS_IN_REGISTERS) {
__ mov(scratch, eax);
} else {
__ mov(scratch, Operand(esp, 1 * kPointerSize));
}
__ JumpIfSmi(scratch, &load_smi_2, Label::kNear);
__ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
__ jmp(&done, Label::kNear);
__ bind(&load_smi_1);
__ SmiUntag(scratch);
__ push(scratch);
__ fild_s(Operand(esp, 0));
__ pop(scratch);
__ jmp(&done_load_1);
__ bind(&load_smi_2);
__ SmiUntag(scratch);
__ push(scratch);
__ fild_s(Operand(esp, 0));
__ pop(scratch);
__ bind(&done);
}
void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm,
Register scratch) {
const Register left = edx;
const Register right = eax;
__ mov(scratch, left);
ASSERT(!scratch.is(right)); // We're about to clobber scratch.
__ SmiUntag(scratch);
__ push(scratch);
__ fild_s(Operand(esp, 0));
__ mov(scratch, right);
__ SmiUntag(scratch);
__ mov(Operand(esp, 0), scratch);
__ fild_s(Operand(esp, 0));
__ pop(scratch);
}
void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
Label* non_float,
Register scratch) {
Label test_other, done;
// Test if both operands are floats or smi -> scratch=k_is_float;
// Otherwise scratch = k_not_float.
__ JumpIfSmi(edx, &test_other, Label::kNear);
__ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
Factory* factory = masm->isolate()->factory();
__ cmp(scratch, factory->heap_number_map());
__ j(not_equal, non_float); // argument in edx is not a number -> NaN
__ bind(&test_other);
__ JumpIfSmi(eax, &done, Label::kNear);
__ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
__ cmp(scratch, factory->heap_number_map());
__ j(not_equal, non_float); // argument in eax is not a number -> NaN
// Fall-through: Both operands are numbers.
__ bind(&done);
}
void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm,
Label* non_int32) {
return;
}
void MathPowStub::Generate(MacroAssembler* masm) {
CpuFeatures::Scope use_sse2(SSE2);
Factory* factory = masm->isolate()->factory();
const Register exponent = eax;
const Register base = edx;
const Register scratch = ecx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ mov(scratch, Immediate(1));
__ cvtsi2sd(double_result, scratch);
if (exponent_type_ == ON_STACK) {
Label base_is_smi, unpack_exponent;
// The exponent and base are supplied as arguments on the stack.
// This can only happen if the stub is called from non-optimized code.
// Load input parameters from stack.
__ mov(base, Operand(esp, 2 * kPointerSize));
__ mov(exponent, Operand(esp, 1 * kPointerSize));
__ JumpIfSmi(base, &base_is_smi, Label::kNear);
__ cmp(FieldOperand(base, HeapObject::kMapOffset),
factory->heap_number_map());
__ j(not_equal, &call_runtime);
__ movdbl(double_base, FieldOperand(base, HeapNumber::kValueOffset));
__ jmp(&unpack_exponent, Label::kNear);
__ bind(&base_is_smi);
__ SmiUntag(base);
__ cvtsi2sd(double_base, base);
__ bind(&unpack_exponent);
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiUntag(exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
factory->heap_number_map());
__ j(not_equal, &call_runtime);
__ movdbl(double_exponent,
FieldOperand(exponent, HeapNumber::kValueOffset));
} else if (exponent_type_ == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiUntag(exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ movdbl(double_exponent,
FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type_ != INTEGER) {
Label fast_power;
// Detect integer exponents stored as double.
__ cvttsd2si(exponent, Operand(double_exponent));
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmp(exponent, Immediate(0x80000000u));
__ j(equal, &call_runtime);
__ cvtsi2sd(double_scratch, exponent);
// Already ruled out NaNs for exponent.
__ ucomisd(double_exponent, double_scratch);
__ j(equal, &int_exponent);
if (exponent_type_ == ON_STACK) {
// Detect square root case. Crankshaft detects constant +/-0.5 at
// compile time and uses DoMathPowHalf instead. We then skip this check
// for non-constant cases of +/-0.5 as these hardly occur.
Label continue_sqrt, continue_rsqrt, not_plus_half;
// Test for 0.5.
// Load double_scratch with 0.5.
__ mov(scratch, Immediate(0x3F000000u));
__ movd(double_scratch, scratch);
__ cvtss2sd(double_scratch, double_scratch);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &not_plus_half, Label::kNear);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
// According to IEEE-754, single-precision -Infinity has the highest
// 9 bits set and the lowest 23 bits cleared.
__ mov(scratch, 0xFF800000u);
__ movd(double_scratch, scratch);
__ cvtss2sd(double_scratch, double_scratch);
__ ucomisd(double_base, double_scratch);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_sqrt, Label::kNear);
__ j(carry, &continue_sqrt, Label::kNear);
// Set result to Infinity in the special case.
__ xorps(double_result, double_result);
__ subsd(double_result, double_scratch);
__ jmp(&done);
__ bind(&continue_sqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(double_scratch, double_scratch);
__ addsd(double_scratch, double_base); // Convert -0 to +0.
__ sqrtsd(double_result, double_scratch);
__ jmp(&done);
// Test for -0.5.
__ bind(&not_plus_half);
// Load double_exponent with -0.5 by substracting 1.
__ subsd(double_scratch, double_result);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &fast_power, Label::kNear);
// Calculates reciprocal of square root of base. Check for the special
// case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
// According to IEEE-754, single-precision -Infinity has the highest
// 9 bits set and the lowest 23 bits cleared.
__ mov(scratch, 0xFF800000u);
__ movd(double_scratch, scratch);
__ cvtss2sd(double_scratch, double_scratch);
__ ucomisd(double_base, double_scratch);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_rsqrt, Label::kNear);
__ j(carry, &continue_rsqrt, Label::kNear);
// Set result to 0 in the special case.
__ xorps(double_result, double_result);
__ jmp(&done);
__ bind(&continue_rsqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(double_exponent, double_exponent);
__ addsd(double_exponent, double_base); // Convert -0 to +0.
__ sqrtsd(double_exponent, double_exponent);
__ divsd(double_result, double_exponent);
__ jmp(&done);
}
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ sub(esp, Immediate(kDoubleSize));
__ movdbl(Operand(esp, 0), double_exponent);
__ fld_d(Operand(esp, 0)); // E
__ movdbl(Operand(esp, 0), double_base);
__ fld_d(Operand(esp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 1, 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1);
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ test_b(eax, 0x5F); // We check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(esp, 0));
__ movdbl(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ add(esp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
__ mov(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, no_multiply;
__ test(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ neg(scratch);
__ bind(&no_neg);
__ bind(&while_true);
__ shr(scratch, 1);
__ j(not_carry, &no_multiply, Label::kNear);
__ mulsd(double_result, double_scratch);
__ bind(&no_multiply);
__ mulsd(double_scratch, double_scratch);
__ j(not_zero, &while_true);
// scratch has the original value of the exponent - if the exponent is
// negative, return 1/result.
__ test(exponent, exponent);
__ j(positive, &done);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// exponent is a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ cvtsi2sd(double_exponent, exponent);
// Returning or bailing out.
Counters* counters = masm->isolate()->counters();
if (exponent_type_ == ON_STACK) {
// The arguments are still on the stack.
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
// The stub is called from non-optimized code, which expects the result
// as heap number in exponent.
__ bind(&done);
__ AllocateHeapNumber(eax, scratch, base, &call_runtime);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
__ IncrementCounter(counters->math_pow(), 1);
__ ret(2 * kPointerSize);
} else {
__ bind(&call_runtime);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(4, scratch);
__ movdbl(Operand(esp, 0 * kDoubleSize), double_base);
__ movdbl(Operand(esp, 1 * kDoubleSize), double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(masm->isolate()), 4);
}
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movdbl(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ bind(&done);
__ IncrementCounter(counters->math_pow(), 1);
__ ret(0);
}
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The key is in edx and the parameter count is in eax.
// The displacement is used for skipping the frame pointer on the
// stack. It is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement = 1 * kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(edx, &slow, Label::kNear);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
__ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adaptor, Label::kNear);
// Check index against formal parameters count limit passed in
// through register eax. Use unsigned comparison to get negative
// check for free.
__ cmp(edx, eax);
__ j(above_equal, &slow, Label::kNear);
// Read the argument from the stack and return it.
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
__ lea(ebx, Operand(ebp, eax, times_2, 0));
__ neg(edx);
__ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
__ ret(0);
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmp(edx, ecx);
__ j(above_equal, &slow, Label::kNear);
// Read the argument from the stack and return it.
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
__ lea(ebx, Operand(ebx, ecx, times_2, 0));
__ neg(edx);
__ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
__ ret(0);
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ pop(ebx); // Return address.
__ push(edx);
__ push(ebx);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
// esp[0] : return address
// esp[4] : number of parameters
// esp[8] : receiver displacement
// esp[12] : function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
__ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &runtime, Label::kNear);
// Patch the arguments.length and the parameters pointer.
__ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ mov(Operand(esp, 1 * kPointerSize), ecx);
__ lea(edx, Operand(edx, ecx, times_2,
StandardFrameConstants::kCallerSPOffset));
__ mov(Operand(esp, 2 * kPointerSize), edx);
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
// esp[0] : return address
// esp[4] : number of parameters (tagged)
// esp[8] : receiver displacement
// esp[12] : function
// ebx = parameter count (tagged)
__ mov(ebx, Operand(esp, 1 * kPointerSize));
// Check if the calling frame is an arguments adaptor frame.
// TODO(rossberg): Factor out some of the bits that are shared with the other
// Generate* functions.
Label runtime;
Label adaptor_frame, try_allocate;
__ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
__ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adaptor_frame, Label::kNear);
// No adaptor, parameter count = argument count.
__ mov(ecx, ebx);
__ jmp(&try_allocate, Label::kNear);
// We have an adaptor frame. Patch the parameters pointer.
__ bind(&adaptor_frame);
__ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ lea(edx, Operand(edx, ecx, times_2,
StandardFrameConstants::kCallerSPOffset));
__ mov(Operand(esp, 2 * kPointerSize), edx);
// ebx = parameter count (tagged)
// ecx = argument count (tagged)
// esp[4] = parameter count (tagged)
// esp[8] = address of receiver argument
// Compute the mapped parameter count = min(ebx, ecx) in ebx.
__ cmp(ebx, ecx);
__ j(less_equal, &try_allocate, Label::kNear);
__ mov(ebx, ecx);
__ bind(&try_allocate);
// Save mapped parameter count.
__ push(ebx);
// Compute the sizes of backing store, parameter map, and arguments object.
// 1. Parameter map, has 2 extra words containing context and backing store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
Label no_parameter_map;
__ test(ebx, ebx);
__ j(zero, &no_parameter_map, Label::kNear);
__ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
__ bind(&no_parameter_map);
// 2. Backing store.
__ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
// 3. Arguments object.
__ add(ebx, Immediate(Heap::kArgumentsObjectSize));
// Do the allocation of all three objects in one go.
__ AllocateInNewSpace(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
// eax = address of new object(s) (tagged)
// ecx = argument count (tagged)
// esp[0] = mapped parameter count (tagged)
// esp[8] = parameter count (tagged)
// esp[12] = address of receiver argument
// Get the arguments boilerplate from the current (global) context into edi.
Label has_mapped_parameters, copy;
__ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
__ mov(ebx, Operand(esp, 0 * kPointerSize));
__ test(ebx, ebx);
__ j(not_zero, &has_mapped_parameters, Label::kNear);
__ mov(edi, Operand(edi,
Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX)));
__ jmp(&copy, Label::kNear);
__ bind(&has_mapped_parameters);
__ mov(edi, Operand(edi,
Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)));
__ bind(&copy);
// eax = address of new object (tagged)
// ebx = mapped parameter count (tagged)
// ecx = argument count (tagged)
// edi = address of boilerplate object (tagged)
// esp[0] = mapped parameter count (tagged)
// esp[8] = parameter count (tagged)
// esp[12] = address of receiver argument
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ mov(edx, FieldOperand(edi, i));
__ mov(FieldOperand(eax, i), edx);
}
// Set up the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
__ mov(edx, Operand(esp, 4 * kPointerSize));
__ mov(FieldOperand(eax, JSObject::kHeaderSize +
Heap::kArgumentsCalleeIndex * kPointerSize),
edx);
// Use the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
__ mov(FieldOperand(eax, JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize),
ecx);
// Set up the elements pointer in the allocated arguments object.
// If we allocated a parameter map, edi will point there, otherwise to the
// backing store.
__ lea(edi, Operand(eax, Heap::kArgumentsObjectSize));
__ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
// eax = address of new object (tagged)
// ebx = mapped parameter count (tagged)
// ecx = argument count (tagged)
// edi = address of parameter map or backing store (tagged)
// esp[0] = mapped parameter count (tagged)
// esp[8] = parameter count (tagged)
// esp[12] = address of receiver argument
// Free a register.
__ push(eax);
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
__ test(ebx, ebx);
__ j(zero, &skip_parameter_map);
__ mov(FieldOperand(edi, FixedArray::kMapOffset),
Immediate(FACTORY->non_strict_arguments_elements_map()));
__ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
__ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
__ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
__ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
__ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. They index the context,
// where parameters are stored in reverse order, at
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
// The mapped parameter thus need to get indices
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
// We loop from right to left.
Label parameters_loop, parameters_test;
__ push(ecx);
__ mov(eax, Operand(esp, 2 * kPointerSize));
__ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
__ add(ebx, Operand(esp, 4 * kPointerSize));
__ sub(ebx, eax);
__ mov(ecx, FACTORY->the_hole_value());
__ mov(edx, edi);
__ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
// eax = loop variable (tagged)
// ebx = mapping index (tagged)
// ecx = the hole value
// edx = address of parameter map (tagged)
// edi = address of backing store (tagged)
// esp[0] = argument count (tagged)
// esp[4] = address of new object (tagged)
// esp[8] = mapped parameter count (tagged)
// esp[16] = parameter count (tagged)
// esp[20] = address of receiver argument
__ jmp(&parameters_test, Label::kNear);
__ bind(&parameters_loop);
__ sub(eax, Immediate(Smi::FromInt(1)));
__ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
__ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
__ add(ebx, Immediate(Smi::FromInt(1)));
__ bind(&parameters_test);
__ test(eax, eax);
__ j(not_zero, &parameters_loop, Label::kNear);
__ pop(ecx);
__ bind(&skip_parameter_map);
// ecx = argument count (tagged)
// edi = address of backing store (tagged)
// esp[0] = address of new object (tagged)
// esp[4] = mapped parameter count (tagged)
// esp[12] = parameter count (tagged)
// esp[16] = address of receiver argument
// Copy arguments header and remaining slots (if there are any).
__ mov(FieldOperand(edi, FixedArray::kMapOffset),
Immediate(FACTORY->fixed_array_map()));
__ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
Label arguments_loop, arguments_test;
__ mov(ebx, Operand(esp, 1 * kPointerSize));
__ mov(edx, Operand(esp, 4 * kPointerSize));
__ sub(edx, ebx); // Is there a smarter way to do negative scaling?
__ sub(edx, ebx);
__ jmp(&arguments_test, Label::kNear);
__ bind(&arguments_loop);
__ sub(edx, Immediate(kPointerSize));
__ mov(eax, Operand(edx, 0));
__ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
__ add(ebx, Immediate(Smi::FromInt(1)));
__ bind(&arguments_test);
__ cmp(ebx, ecx);
__ j(less, &arguments_loop, Label::kNear);
// Restore.
__ pop(eax); // Address of arguments object.
__ pop(ebx); // Parameter count.
// Return and remove the on-stack parameters.
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ pop(eax); // Remove saved parameter count.
__ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
__ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// esp[0] : return address
// esp[4] : number of parameters
// esp[8] : receiver displacement
// esp[12] : function
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
__ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adaptor_frame, Label::kNear);
// Get the length from the frame.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
__ jmp(&try_allocate, Label::kNear);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ mov(Operand(esp, 1 * kPointerSize), ecx);
__ lea(edx, Operand(edx, ecx, times_2,
StandardFrameConstants::kCallerSPOffset));
__ mov(Operand(esp, 2 * kPointerSize), edx);
// Try the new space allocation. Start out with computing the size of
// the arguments object and the elements array.
Label add_arguments_object;
__ bind(&try_allocate);
__ test(ecx, ecx);
__ j(zero, &add_arguments_object, Label::kNear);
__ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
__ bind(&add_arguments_object);
__ add(ecx, Immediate(Heap::kArgumentsObjectSizeStrict));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
__ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
const int offset =
Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX);
__ mov(edi, Operand(edi, offset));
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ mov(ebx, FieldOperand(edi, i));
__ mov(FieldOperand(eax, i), ebx);
}
// Get the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
__ mov(ecx, Operand(esp, 1 * kPointerSize));
__ mov(FieldOperand(eax, JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize),
ecx);
// If there are no actual arguments, we're done.
Label done;
__ test(ecx, ecx);
__ j(zero, &done, Label::kNear);
// Get the parameters pointer from the stack.
__ mov(edx, Operand(esp, 2 * kPointerSize));
// Set up the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ lea(edi, Operand(eax, Heap::kArgumentsObjectSizeStrict));
__ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
__ mov(FieldOperand(edi, FixedArray::kMapOffset),
Immediate(FACTORY->fixed_array_map()));
__ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
// Untag the length for the loop below.
__ SmiUntag(ecx);
// Copy the fixed array slots.
Label loop;
__ bind(&loop);
__ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
__ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
__ add(edi, Immediate(kPointerSize));
__ sub(edx, Immediate(kPointerSize));
__ dec(ecx);
__ j(not_zero, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// esp[0]: return address
// esp[4]: last_match_info (expected JSArray)
// esp[8]: previous index
// esp[12]: subject string
// esp[16]: JSRegExp object
static const int kLastMatchInfoOffset = 1 * kPointerSize;
static const int kPreviousIndexOffset = 2 * kPointerSize;
static const int kSubjectOffset = 3 * kPointerSize;
static const int kJSRegExpOffset = 4 * kPointerSize;
Label runtime, invoke_regexp;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(
masm->isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(masm->isolate());
__ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
__ test(ebx, ebx);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ mov(eax, Operand(esp, kJSRegExpOffset));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &runtime);
__ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ test(ecx, Immediate(kSmiTagMask));
__ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected");
__ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
__ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
}
// ecx: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
__ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
__ j(not_equal, &runtime);
// ecx: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. This
// uses the asumption that smis are 2 * their untagged value.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(edx, Immediate(2)); // edx was a smi.
// Check that the static offsets vector buffer is large enough.
__ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
__ j(above, &runtime);
// ecx: RegExp data (FixedArray)
// edx: Number of capture registers
// Check that the second argument is a string.
__ mov(eax, Operand(esp, kSubjectOffset));
__ JumpIfSmi(eax, &runtime);
Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
__ j(NegateCondition(is_string), &runtime);
// Get the length of the string to ebx.
__ mov(ebx, FieldOperand(eax, String::kLengthOffset));
// ebx: Length of subject string as a smi
// ecx: RegExp data (FixedArray)
// edx: Number of capture registers
// Check that the third argument is a positive smi less than the subject
// string length. A negative value will be greater (unsigned comparison).
__ mov(eax, Operand(esp, kPreviousIndexOffset));
__ JumpIfNotSmi(eax, &runtime);
__ cmp(eax, ebx);
__ j(above_equal, &runtime);
// ecx: RegExp data (FixedArray)
// edx: Number of capture registers
// Check that the fourth object is a JSArray object.
__ mov(eax, Operand(esp, kLastMatchInfoOffset));
__ JumpIfSmi(eax, &runtime);
__ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
__ j(not_equal, &runtime);
// Check that the JSArray is in fast case.
__ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
__ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
Factory* factory = masm->isolate()->factory();
__ cmp(eax, factory->fixed_array_map());
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information.
__ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
__ SmiUntag(eax);
__ add(edx, Immediate(RegExpImpl::kLastMatchOverhead));
__ cmp(edx, eax);
__ j(greater, &runtime);
// Reset offset for possibly sliced string.
__ Set(edi, Immediate(0));
// ecx: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
Label seq_ascii_string, seq_two_byte_string, check_code;
__ mov(eax, Operand(esp, kSubjectOffset));
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
// First check for flat two byte string.
__ and_(ebx, kIsNotStringMask |
kStringRepresentationMask |
kStringEncodingMask |
kShortExternalStringMask);
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string, Label::kNear);
// Any other flat string must be a flat ASCII string. None of the following
// string type tests will succeed if subject is not a string or a short
// external string.
__ and_(ebx, Immediate(kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask));
__ j(zero, &seq_ascii_string, Label::kNear);
// ebx: whether subject is a string and if yes, its string representation
// Check for flat cons string or sliced string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
// In the case of a sliced string its offset has to be taken into account.
Label cons_string, external_string, check_encoding;
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ cmp(ebx, Immediate(kExternalStringTag));
__ j(less, &cons_string);
__ j(equal, &external_string);
// Catch non-string subject or short external string.
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
__ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
__ j(not_zero, &runtime);
// String is sliced.
__ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
__ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
// edi: offset of sliced string, smi-tagged.
// eax: parent string.
__ jmp(&check_encoding, Label::kNear);
// String is a cons string, check whether it is flat.
__ bind(&cons_string);
__ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
__ j(not_equal, &runtime);
__ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
__ bind(&check_encoding);
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
// eax: first part of cons string or parent of sliced string.
// ebx: map of first part of cons string or map of parent of sliced string.
// Is first part of cons or parent of slice a flat two byte string?
__ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
kStringRepresentationMask | kStringEncodingMask);
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string, Label::kNear);
// Any other flat string must be sequential ASCII or external.
__ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
kStringRepresentationMask);
__ j(not_zero, &external_string);
__ bind(&seq_ascii_string);
// eax: subject string (flat ASCII)
// ecx: RegExp data (FixedArray)
__ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset));
__ Set(ecx, Immediate(1)); // Type is ASCII.
__ jmp(&check_code, Label::kNear);
__ bind(&seq_two_byte_string);
// eax: subject string (flat two byte)
// ecx: RegExp data (FixedArray)
__ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
__ Set(ecx, Immediate(0)); // Type is two byte.
__ bind(&check_code);
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(edx, &runtime);
// eax: subject string
// edx: code
// ecx: encoding of subject string (1 if ASCII, 0 if two_byte);
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ mov(ebx, Operand(esp, kPreviousIndexOffset));
__ SmiUntag(ebx); // Previous index from smi.
// eax: subject string
// ebx: previous index
// edx: code
// ecx: encoding of subject string (1 if ASCII 0 if two_byte);
// All checks done. Now push arguments for native regexp code.
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->regexp_entry_native(), 1);
// Isolates: note we add an additional parameter here (isolate pointer).
static const int kRegExpExecuteArguments = 8;
__ EnterApiExitFrame(kRegExpExecuteArguments);
// Argument 8: Pass current isolate address.
__ mov(Operand(esp, 7 * kPointerSize),
Immediate(ExternalReference::isolate_address()));
// Argument 7: Indicate that this is a direct call from JavaScript.
__ mov(Operand(esp, 6 * kPointerSize), Immediate(1));
// Argument 6: Start (high end) of backtracking stack memory area.
__ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
__ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
__ mov(Operand(esp, 5 * kPointerSize), esi);
// Argument 5: static offsets vector buffer.
__ mov(Operand(esp, 4 * kPointerSize),
Immediate(ExternalReference::address_of_static_offsets_vector(
masm->isolate())));
// Argument 2: Previous index.
__ mov(Operand(esp, 1 * kPointerSize), ebx);
// Argument 1: Original subject string.
// The original subject is in the previous stack frame. Therefore we have to
// use ebp, which points exactly to one pointer size below the previous esp.
// (Because creating a new stack frame pushes the previous ebp onto the stack
// and thereby moves up esp by one kPointerSize.)
__ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), esi);
// esi: original subject string
// eax: underlying subject string
// ebx: previous index
// ecx: encoding of subject string (1 if ASCII 0 if two_byte);
// edx: code
// Argument 4: End of string data
// Argument 3: Start of string data
// Prepare start and end index of the input.
// Load the length from the original sliced string if that is the case.
__ mov(esi, FieldOperand(esi, String::kLengthOffset));
__ add(esi, edi); // Calculate input end wrt offset.
__ SmiUntag(edi);
__ add(ebx, edi); // Calculate input start wrt offset.
// ebx: start index of the input string
// esi: end index of the input string
Label setup_two_byte, setup_rest;
__ test(ecx, ecx);
__ j(zero, &setup_two_byte, Label::kNear);
__ SmiUntag(esi);
__ lea(ecx, FieldOperand(eax, esi, times_1, SeqAsciiString::kHeaderSize));
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
__ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize));
__ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
__ jmp(&setup_rest, Label::kNear);
__ bind(&setup_two_byte);
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
__ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
__ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
__ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
__ bind(&setup_rest);
// Locate the code entry and call it.
__ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(edx);
// Drop arguments and come back to JS mode.
__ LeaveApiExitFrame();
// Check the result.
Label success;
__ cmp(eax, NativeRegExpMacroAssembler::SUCCESS);
__ j(equal, &success);
Label failure;
__ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
__ j(equal, &failure);
__ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
// If not exception it can only be retry. Handle that in the runtime system.
__ j(not_equal, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
masm->isolate());
__ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value()));
__ mov(eax, Operand::StaticVariable(pending_exception));
__ cmp(edx, eax);
__ j(equal, &runtime);
// For exception, throw the exception again.
// Clear the pending exception variable.
__ mov(Operand::StaticVariable(pending_exception), edx);
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ cmp(eax, factory->termination_exception());
Label throw_termination_exception;
__ j(equal, &throw_termination_exception, Label::kNear);
// Handle normal exception by following handler chain.
__ Throw(eax);
__ bind(&throw_termination_exception);
__ ThrowUncatchable(eax);
__ bind(&failure);
// For failure to match, return null.
__ mov(eax, factory->null_value());
__ ret(4 * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ mov(eax, Operand(esp, kJSRegExpOffset));
__ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(edx, Immediate(2)); // edx was a smi.
// edx: Number of capture registers
// Load last_match_info which is still known to be a fast case JSArray.
__ mov(eax, Operand(esp, kLastMatchInfoOffset));
__ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
// ebx: last_match_info backing store (FixedArray)
// edx: number of capture registers
// Store the capture count.
__ SmiTag(edx); // Number of capture registers to smi.
__ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
__ SmiUntag(edx); // Number of capture registers back from smi.
// Store last subject and last input.
__ mov(eax, Operand(esp, kSubjectOffset));
__ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
__ RecordWriteField(ebx,
RegExpImpl::kLastSubjectOffset,
eax,
edi,
kDontSaveFPRegs);
__ mov(eax, Operand(esp, kSubjectOffset));
__ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
__ RecordWriteField(ebx,
RegExpImpl::kLastInputOffset,
eax,
edi,
kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(masm->isolate());
__ mov(ecx, Immediate(address_of_static_offsets_vector));
// ebx: last_match_info backing store (FixedArray)
// ecx: offsets vector
// edx: number of capture registers
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ bind(&next_capture);
__ sub(edx, Immediate(1));
__ j(negative, &done, Label::kNear);
// Read the value from the static offsets vector buffer.
__ mov(edi, Operand(ecx, edx, times_int_size, 0));
__ SmiTag(edi);
// Store the smi value in the last match info.
__ mov(FieldOperand(ebx,
edx,
times_pointer_size,
RegExpImpl::kFirstCaptureOffset),
edi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ mov(eax, Operand(esp, kLastMatchInfoOffset));
__ ret(4 * kPointerSize);
// External string. Short external strings have already been ruled out.
// eax: subject string (expected to be external)
// ebx: scratch
__ bind(&external_string);
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ test_b(ebx, kIsIndirectStringMask);
__ Assert(zero, "external string expected, but not found");
}
__ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
__ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kTwoByteStringTag == 0);
__ test_b(ebx, kStringEncodingMask);
__ j(not_zero, &seq_ascii_string);
__ jmp(&seq_two_byte_string);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif // V8_INTERPRETED_REGEXP
}
void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
const int kMaxInlineLength = 100;
Label slowcase;
Label done;
__ mov(ebx, Operand(esp, kPointerSize * 3));
__ JumpIfNotSmi(ebx, &slowcase);
__ cmp(ebx, Immediate(Smi::FromInt(kMaxInlineLength)));
__ j(above, &slowcase);
// Smi-tagging is equivalent to multiplying by 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// Allocate RegExpResult followed by FixedArray with size in ebx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
__ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
times_half_pointer_size,
ebx, // In: Number of elements (times 2, being a smi)
eax, // Out: Start of allocation (tagged).
ecx, // Out: End of allocation.
edx, // Scratch register
&slowcase,
TAG_OBJECT);
// eax: Start of allocated area, object-tagged.
// Set JSArray map to global.regexp_result_map().
// Set empty properties FixedArray.
// Set elements to point to FixedArray allocated right after the JSArray.
// Interleave operations for better latency.
__ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX));
Factory* factory = masm->isolate()->factory();
__ mov(ecx, Immediate(factory->empty_fixed_array()));
__ lea(ebx, Operand(eax, JSRegExpResult::kSize));
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset));
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
__ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX));
__ mov(FieldOperand(eax, HeapObject::kMapOffset), edx);
// Set input, index and length fields from arguments.
__ mov(ecx, Operand(esp, kPointerSize * 1));
__ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx);
__ mov(ecx, Operand(esp, kPointerSize * 2));
__ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx);
__ mov(ecx, Operand(esp, kPointerSize * 3));
__ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx);
// Fill out the elements FixedArray.
// eax: JSArray.
// ebx: FixedArray.
// ecx: Number of elements in array, as smi.
// Set map.
__ mov(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(factory->fixed_array_map()));
// Set length.
__ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx);
// Fill contents of fixed-array with the-hole.
__ SmiUntag(ecx);
__ mov(edx, Immediate(factory->the_hole_value()));
__ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize));
// Fill fixed array elements with hole.
// eax: JSArray.
// ecx: Number of elements to fill.
// ebx: Start of elements in FixedArray.
// edx: the hole.
Label loop;
__ test(ecx, ecx);
__ bind(&loop);
__ j(less_equal, &done, Label::kNear); // Jump if ecx is negative or zero.
__ sub(ecx, Immediate(1));
__ mov(Operand(ebx, ecx, times_pointer_size, 0), edx);
__ jmp(&loop);
__ bind(&done);
__ ret(3 * kPointerSize);
__ bind(&slowcase);
__ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
}
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch1;
Register scratch = scratch2;
// Load the number string cache.
ExternalReference roots_array_start =
ExternalReference::roots_array_start(masm->isolate());
__ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex));
__ mov(number_string_cache,
Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
__ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
__ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
__ sub(mask, Immediate(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label smi_hash_calculated;
Label load_result_from_cache;
if (object_is_smi) {
__ mov(scratch, object);
__ SmiUntag(scratch);
} else {
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(object, &not_smi, Label::kNear);
__ mov(scratch, object);
__ SmiUntag(scratch);
__ jmp(&smi_hash_calculated, Label::kNear);
__ bind(&not_smi);
__ cmp(FieldOperand(object, HeapObject::kMapOffset),
masm->isolate()->factory()->heap_number_map());
__ j(not_equal, not_found);
STATIC_ASSERT(8 == kDoubleSize);
__ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
// Object is heap number and hash is now in scratch. Calculate cache index.
__ and_(scratch, mask);
Register index = scratch;
Register probe = mask;
__ mov(probe,
FieldOperand(number_string_cache,
index,
times_twice_pointer_size,
FixedArray::kHeaderSize));
__ JumpIfSmi(probe, not_found);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope fscope(SSE2);
__ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
__ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm1);
} else {
__ fld_d(FieldOperand(object, HeapNumber::kValueOffset));
__ fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
__ FCmp();
}
__ j(parity_even, not_found); // Bail out if NaN is involved.
__ j(not_equal, not_found); // The cache did not contain this value.
__ jmp(&load_result_from_cache, Label::kNear);
}
__ bind(&smi_hash_calculated);
// Object is smi and hash is now in scratch. Calculate cache index.
__ and_(scratch, mask);
Register index = scratch;
// Check if the entry is the smi we are looking for.
__ cmp(object,
FieldOperand(number_string_cache,
index,
times_twice_pointer_size,
FixedArray::kHeaderSize));
__ j(not_equal, not_found);
// Get the result from the cache.
__ bind(&load_result_from_cache);
__ mov(result,
FieldOperand(number_string_cache,
index,
times_twice_pointer_size,
FixedArray::kHeaderSize + kPointerSize));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->number_to_string_native(), 1);
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
__ mov(ebx, Operand(esp, kPointerSize));
// Generate code to lookup number in the number string cache.
GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime);
__ ret(1 * kPointerSize);
__ bind(&runtime);
// Handle number to string in the runtime system if not found in the cache.
__ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
}
static int NegativeComparisonResult(Condition cc) {
ASSERT(cc != equal);
ASSERT((cc == less) || (cc == less_equal)
|| (cc == greater) || (cc == greater_equal));
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}
void CompareStub::Generate(MacroAssembler* masm) {
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
Label check_unequal_objects;
// Compare two smis if required.
if (include_smi_compare_) {
Label non_smi, smi_done;
__ mov(ecx, edx);
__ or_(ecx, eax);
__ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
__ sub(edx, eax); // Return on the result of the subtraction.
__ j(no_overflow, &smi_done, Label::kNear);
__ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
__ bind(&smi_done);
__ mov(eax, edx);
__ ret(0);
__ bind(&non_smi);
} else if (FLAG_debug_code) {
__ mov(ecx, edx);
__ or_(ecx, eax);
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected smi operands.");
}
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Identical objects can be compared fast, but there are some tricky cases
// for NaN and undefined.
{
Label not_identical;
__ cmp(eax, edx);
__ j(not_equal, &not_identical);
if (cc_ != equal) {
// Check for undefined. undefined OP undefined is false even though
// undefined == undefined.
Label check_for_nan;
__ cmp(edx, masm->isolate()->factory()->undefined_value());
__ j(not_equal, &check_for_nan, Label::kNear);
__ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
__ ret(0);
__ bind(&check_for_nan);
}
// Test for NaN. Sadly, we can't just compare to factory->nan_value(),
// so we do the second best thing - test it ourselves.
// Note: if cc_ != equal, never_nan_nan_ is not used.
if (never_nan_nan_ && (cc_ == equal)) {
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
} else {
Label heap_number;
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->heap_number_map()));
__ j(equal, &heap_number, Label::kNear);
if (cc_ != equal) {
// Call runtime on identical JSObjects. Otherwise return equal.
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &not_identical);
}
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if
// it's not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// We only accept QNaNs, which have bit 51 set.
// Read top bits of double representation (second word of value).
// Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
// all bits in the mask are set. We only need to check the word
// that contains the exponent and high bit of the mantissa.
STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
__ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
__ Set(eax, Immediate(0));
// Shift value and mask so kQuietNaNHighBitsMask applies to topmost
// bits.
__ add(edx, edx);
__ cmp(edx, kQuietNaNHighBitsMask << 1);
if (cc_ == equal) {
STATIC_ASSERT(EQUAL != 1);
__ setcc(above_equal, eax);
__ ret(0);
} else {
Label nan;
__ j(above_equal, &nan, Label::kNear);
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
__ bind(&nan);
__ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
__ ret(0);
}
}
__ bind(&not_identical);
}
// Strict equality can quickly decide whether objects are equal.
// Non-strict object equality is slower, so it is handled later in the stub.
if (cc_ == equal && strict_) {
Label slow; // Fallthrough label.
Label not_smis;
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(0, Smi::FromInt(0));
__ mov(ecx, Immediate(kSmiTagMask));
__ and_(ecx, eax);
__ test(ecx, edx);
__ j(not_zero, &not_smis, Label::kNear);
// One operand is a smi.
// Check whether the non-smi is a heap number.
STATIC_ASSERT(kSmiTagMask == 1);
// ecx still holds eax & kSmiTag, which is either zero or one.
__ sub(ecx, Immediate(0x01));
__ mov(ebx, edx);
__ xor_(ebx, eax);
__ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
__ xor_(ebx, eax);
// if eax was smi, ebx is now edx, else eax.
// Check if the non-smi operand is a heap number.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->heap_number_map()));
// If heap number, handle it in the slow case.
__ j(equal, &slow, Label::kNear);
// Return non-equal (ebx is not zero)
__ mov(eax, ebx);
__ ret(0);
__ bind(&not_smis);
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// Get the type of the first operand.
// If the first object is a JS object, we have done pointer comparison.
Label first_non_object;
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(below, &first_non_object, Label::kNear);
// Return non-zero (eax is not zero)
Label return_not_equal;
STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(ecx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(ecx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
__ bind(&slow);
}
// Generate the number comparison code.
if (include_number_compare_) {
Label non_number_comparison;
Label unordered;
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
CpuFeatures::Scope use_cmov(CMOV);
FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
__ mov(eax, 0); // equal
__ mov(ecx, Immediate(Smi::FromInt(1)));
__ cmov(above, eax, ecx);
__ mov(ecx, Immediate(Smi::FromInt(-1)));
__ cmov(below, eax, ecx);
__ ret(0);
} else {
FloatingPointHelper::CheckFloatOperands(
masm, &non_number_comparison, ebx);
FloatingPointHelper::LoadFloatOperand(masm, eax);
FloatingPointHelper::LoadFloatOperand(masm, edx);
__ FCmp();
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
Label below_label, above_label;
// Return a result of -1, 0, or 1, based on EFLAGS.
__ j(below, &below_label, Label::kNear);
__ j(above, &above_label, Label::kNear);
__ Set(eax, Immediate(0));
__ ret(0);
__ bind(&below_label);
__ mov(eax, Immediate(Smi::FromInt(-1)));
__ ret(0);
__ bind(&above_label);
__ mov(eax, Immediate(Smi::FromInt(1)));
__ ret(0);
}
// If one of the numbers was NaN, then the result is always false.
// The cc is never not-equal.
__ bind(&unordered);
ASSERT(cc_ != not_equal);
if (cc_ == less || cc_ == less_equal) {
__ mov(eax, Immediate(Smi::FromInt(1)));
} else {
__ mov(eax, Immediate(Smi::FromInt(-1)));
}
__ ret(0);
// The number comparison code did not provide a valid result.
__ bind(&non_number_comparison);
}
// Fast negative check for symbol-to-symbol equality.
Label check_for_strings;
if (cc_ == equal) {
BranchIfNonSymbol(masm, &check_for_strings, eax, ecx);
BranchIfNonSymbol(masm, &check_for_strings, edx, ecx);
// We've already checked for object identity, so if both operands
// are symbols they aren't equal. Register eax already holds a
// non-zero value, which indicates not equal, so just return.
__ ret(0);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx,
&check_unequal_objects);
// Inline comparison of ASCII strings.
if (cc_ == equal) {
StringCompareStub::GenerateFlatAsciiStringEquals(masm,
edx,
eax,
ecx,
ebx);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
edx,
eax,
ecx,
ebx,
edi);
}
#ifdef DEBUG
__ Abort("Unexpected fall-through from string comparison");
#endif
__ bind(&check_unequal_objects);
if (cc_ == equal && !strict_) {
// Non-strict equality. Objects are unequal if
// they are both JSObjects and not undetectable,
// and their pointers are different.
Label not_both_objects;
Label return_unequal;
// At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
__ lea(ecx, Operand(eax, edx, times_1, 0));
__ test(ecx, Immediate(kSmiTagMask));
__ j(not_zero, &not_both_objects, Label::kNear);
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(below, &not_both_objects, Label::kNear);
__ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
__ j(below, &not_both_objects, Label::kNear);
// We do not bail out after this point. Both are JSObjects, and
// they are equal if and only if both are undetectable.
// The and of the undetectable flags is 1 if and only if they are equal.
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(zero, &return_unequal, Label::kNear);
__ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(zero, &return_unequal, Label::kNear);
// The objects are both undetectable, so they both compare as the value
// undefined, and are equal.
__ Set(eax, Immediate(EQUAL));
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in eax,
// or return equal if we fell through to here.
__ ret(0); // rax, rdx were pushed
__ bind(&not_both_objects);
}
// Push arguments below the return address.
__ pop(ecx);
__ push(edx);
__ push(eax);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript builtin;
if (cc_ == equal) {
builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
builtin = Builtins::COMPARE;
__ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
}
// Restore return address on the stack.
__ push(ecx);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
}
void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
__ and_(scratch, kIsSymbolMask | kIsNotStringMask);
__ cmp(scratch, kSymbolTag | kStringTag);
__ j(not_equal, label);
}
void StackCheckStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
void InterruptStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a global property cell. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// ebx : cache cell for call target
// edi : the function to call
Isolate* isolate = masm->isolate();
Label initialize, done;
// Load the cache state into ecx.
__ mov(ecx, FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
__ cmp(ecx, edi);
__ j(equal, &done, Label::kNear);
__ cmp(ecx, Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate)));
__ j(equal, &done, Label::kNear);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ cmp(ecx, Immediate(TypeFeedbackCells::UninitializedSentinel(isolate)));
__ j(equal, &initialize, Label::kNear);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset),
Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate)));
__ jmp(&done, Label::kNear);
// An uninitialized cache is patched with the function.
__ bind(&initialize);
__ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), edi);
// No need for a write barrier here - cells are rescanned.
__ bind(&done);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
// ebx : cache cell for call target
// edi : the function to call
Isolate* isolate = masm->isolate();
Label slow, non_function;
// The receiver might implicitly be the global object. This is
// indicated by passing the hole as the receiver to the call
// function stub.
if (ReceiverMightBeImplicit()) {
Label receiver_ok;
// Get the receiver from the stack.
// +1 ~ return address
__ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize));
// Call as function is indicated with the hole.
__ cmp(eax, isolate->factory()->the_hole_value());
__ j(not_equal, &receiver_ok, Label::kNear);
// Patch the receiver on the stack with the global receiver object.
__ mov(ecx, GlobalObjectOperand());
__ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc_ + 1) * kPointerSize), ecx);
__ bind(&receiver_ok);
}
// Check that the function really is a JavaScript function.
__ JumpIfSmi(edi, &non_function);
// Goto slow case if we do not have a function.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm);
}
// Fast-case: Just invoke the function.
ParameterCount actual(argc_);
if (ReceiverMightBeImplicit()) {
Label call_as_function;
__ cmp(eax, isolate->factory()->the_hole_value());
__ j(equal, &call_as_function);
__ InvokeFunction(edi,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
CALL_AS_METHOD);
__ bind(&call_as_function);
}
__ InvokeFunction(edi,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
CALL_AS_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
if (RecordCallTarget()) {
// If there is a call target cache, mark it megamorphic in the
// non-function case. MegamorphicSentinel is an immortal immovable
// object (undefined) so no write barrier is needed.
__ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset),
Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate)));
}
// Check for function proxy.
__ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
__ j(not_equal, &non_function);
__ pop(ecx);
__ push(edi); // put proxy as additional argument under return address
__ push(ecx);
__ Set(eax, Immediate(argc_ + 1));
__ Set(ebx, Immediate(0));
__ SetCallKind(ecx, CALL_AS_FUNCTION);
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
{
Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
__ jmp(adaptor, RelocInfo::CODE_TARGET);
}
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ bind(&non_function);
__ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi);
__ Set(eax, Immediate(argc_));
__ Set(ebx, Immediate(0));
__ SetCallKind(ecx, CALL_AS_METHOD);
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
__ jmp(adaptor, RelocInfo::CODE_TARGET);
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// eax : number of arguments
// ebx : cache cell for call target
// edi : constructor function
Label slow, non_function_call;
// Check that function is not a smi.
__ JumpIfSmi(edi, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm);
}
// Jump to the function-specific construct stub.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset));
__ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
__ jmp(ebx);
// edi: called object
// eax: number of arguments
// ecx: object map
Label do_call;
__ bind(&slow);
__ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
__ j(not_equal, &non_function_call);
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
__ jmp(&do_call);
__ bind(&non_function_call);
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ bind(&do_call);
// Set expected number of arguments to zero (not changing eax).
__ Set(ebx, Immediate(0));
Handle<Code> arguments_adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ SetCallKind(ecx, CALL_AS_METHOD);
__ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
}
bool CEntryStub::NeedsImmovableCode() {
return false;
}
bool CEntryStub::IsPregenerated() {
return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
result_size_ == 1;
}
void CodeStub::GenerateStubsAheadOfTime() {
CEntryStub::GenerateAheadOfTime();
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
// It is important that the store buffer overflow stubs are generated first.
RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
}
void CodeStub::GenerateFPStubs() {
CEntryStub save_doubles(1, kSaveFPRegs);
Handle<Code> code = save_doubles.GetCode();
code->set_is_pregenerated(true);
code->GetIsolate()->set_fp_stubs_generated(true);
}
void CEntryStub::GenerateAheadOfTime() {
CEntryStub stub(1, kDontSaveFPRegs);
Handle<Code> code = stub.GetCode();
code->set_is_pregenerated(true);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate_scope) {
// eax: result parameter for PerformGC, if any
// ebx: pointer to C function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// edi: number of arguments including receiver (C callee-saved)
// esi: pointer to the first argument (C callee-saved)
// Result returned in eax, or eax+edx if result_size_ is 2.
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
if (do_gc) {
// Pass failure code returned from last attempt as first argument to
// PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
// stack alignment is known to be correct. This function takes one argument
// which is passed on the stack, and we know that the stack has been
// prepared to pass at least one argument.
__ mov(Operand(esp, 0 * kPointerSize), eax); // Result.
__ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
if (always_allocate_scope) {
__ inc(Operand::StaticVariable(scope_depth));
}
// Call C function.
__ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
__ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address()));
__ call(ebx);
// Result is in eax or edx:eax - do not destroy these registers!
if (always_allocate_scope) {
__ dec(Operand::StaticVariable(scope_depth));
}
// Make sure we're not trying to return 'the hole' from the runtime
// call as this may lead to crashes in the IC code later.
if (FLAG_debug_code) {
Label okay;
__ cmp(eax, masm->isolate()->factory()->the_hole_value());
__ j(not_equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Check for failure result.
Label failure_returned;
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
__ lea(ecx, Operand(eax, 1));
// Lower 2 bits of ecx are 0 iff eax has failure tag.
__ test(ecx, Immediate(kFailureTagMask));
__ j(zero, &failure_returned);
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, masm->isolate());
// Check that there is no pending exception, otherwise we
// should have returned some failure value.
if (FLAG_debug_code) {
__ push(edx);
__ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value()));
Label okay;
__ cmp(edx, Operand::StaticVariable(pending_exception_address));
// Cannot use check here as it attempts to generate call into runtime.
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
__ pop(edx);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles_ == kSaveFPRegs);
__ ret(0);
// Handling of failure.
__ bind(&failure_returned);
Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry, Label::kNear);
// Special handling of out of memory exceptions.
__ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
__ j(equal, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
__ mov(eax, Operand::StaticVariable(pending_exception_address));
__ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value()));
__ mov(Operand::StaticVariable(pending_exception_address), edx);
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ cmp(eax, masm->isolate()->factory()->termination_exception());
__ j(equal, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
// Retry.
__ bind(&retry);
}
void CEntryStub::Generate(MacroAssembler* masm) {
// eax: number of arguments including receiver
// ebx: pointer to C function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// esi: current context (C callee-saved)
// edi: JS function of the caller (C callee-saved)
// NOTE: Invocations of builtins may return failure objects instead
// of a proper result. The builtin entry handles this by performing
// a garbage collection and retrying the builtin (twice).
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(save_doubles_ == kSaveFPRegs);
// eax: result parameter for PerformGC, if any (setup below)
// ebx: pointer to builtin function (C callee-saved)
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// edi: number of arguments including receiver (C callee-saved)
// esi: argv pointer (C callee-saved)
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true);
__ bind(&throw_out_of_memory_exception);
// Set external caught exception to false.
Isolate* isolate = masm->isolate();
ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
isolate);
__ mov(Operand::StaticVariable(external_caught), Immediate(false));
// Set pending exception and eax to out of memory exception.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate);
__ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
__ mov(Operand::StaticVariable(pending_exception), eax);
// Fall through to the next label.
__ bind(&throw_termination_exception);
__ ThrowUncatchable(eax);
__ bind(&throw_normal_exception);
__ Throw(eax);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
// Set up frame.
__ push(ebp);
__ mov(ebp, esp);
// Push marker in two places.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ push(Immediate(Smi::FromInt(marker))); // context slot
__ push(Immediate(Smi::FromInt(marker))); // function slot
// Save callee-saved registers (C calling conventions).
__ push(edi);
__ push(esi);
__ push(ebx);
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, masm->isolate());
__ push(Operand::StaticVariable(c_entry_fp));
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress,
masm->isolate());
__ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
__ j(not_equal, &not_outermost_js, Label::kNear);
__ mov(Operand::StaticVariable(js_entry_sp), ebp);
__ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
Label cont;
__ jmp(&cont, Label::kNear);
__ bind(&not_outermost_js);
__ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
__ bind(&cont);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
masm->isolate());
__ mov(Operand::StaticVariable(pending_exception), eax);
__ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
__ jmp(&exit);
// Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0.
__ bind(&invoke);
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
// Clear any pending exceptions.
__ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value()));
__ mov(Operand::StaticVariable(pending_exception), edx);
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return. Notice that we cannot store a
// reference to the trampoline code directly in this stub, because the
// builtin stubs may not have been generated yet.
if (is_construct) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
masm->isolate());
__ mov(edx, Immediate(construct_entry));
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline,
masm->isolate());
__ mov(edx, Immediate(entry));
}
__ mov(edx, Operand(edx, 0)); // deref address
__ lea(edx, FieldOperand(edx, Code::kHeaderSize));
__ call(edx);
// Unlink this frame from the handler chain.
__ PopTryHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(ebx);
__ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
__ j(not_equal, &not_outermost_js_2);
__ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
__ pop(Operand::StaticVariable(ExternalReference(
Isolate::kCEntryFPAddress,
masm->isolate())));
// Restore callee-saved registers (C calling conventions).
__ pop(ebx);
__ pop(esi);
__ pop(edi);
__ add(esp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(ebp);
__ ret(0);
}
// Generate stub code for instanceof.
// This code can patch a call site inlined cache of the instance of check,
// which looks like this.
//
// 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
// 75 0a jne <some near label>
// b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
//
// If call site patching is requested the stack will have the delta from the
// return address to the cmp instruction just below the return address. This
// also means that call site patching can only take place with arguments in
// registers. TOS looks like this when call site patching is requested
//
// esp[0] : return address
// esp[4] : delta from return address to cmp instruction
//
void InstanceofStub::Generate(MacroAssembler* masm) {
// Call site inlining and patching implies arguments in registers.
ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
// Fixed register usage throughout the stub.
Register object = eax; // Object (lhs).
Register map = ebx; // Map of the object.
Register function = edx; // Function (rhs).
Register prototype = edi; // Prototype of the function.
Register scratch = ecx;
// Constants describing the call site code to patch.
static const int kDeltaToCmpImmediate = 2;
static const int kDeltaToMov = 8;
static const int kDeltaToMovImmediate = 9;
static const int8_t kCmpEdiOperandByte1 = BitCast<int8_t, uint8_t>(0x3b);
static const int8_t kCmpEdiOperandByte2 = BitCast<int8_t, uint8_t>(0x3d);
static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8);
ExternalReference roots_array_start =
ExternalReference::roots_array_start(masm->isolate());
ASSERT_EQ(object.code(), InstanceofStub::left().code());
ASSERT_EQ(function.code(), InstanceofStub::right().code());
// Get the object and function - they are always both needed.
Label slow, not_js_object;
if (!HasArgsInRegisters()) {
__ mov(object, Operand(esp, 2 * kPointerSize));
__ mov(function, Operand(esp, 1 * kPointerSize));
}
// Check that the left hand is a JS object.
__ JumpIfSmi(object, &not_js_object);
__ IsObjectJSObjectType(object, map, scratch, &not_js_object);
// If there is a call site cache don't look in the global cache, but do the
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck()) {
// Look up the function and the map in the instanceof cache.
Label miss;
__ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
__ cmp(function, Operand::StaticArray(scratch,
times_pointer_size,
roots_array_start));
__ j(not_equal, &miss, Label::kNear);
__ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
__ cmp(map, Operand::StaticArray(
scratch, times_pointer_size, roots_array_start));
__ j(not_equal, &miss, Label::kNear);
__ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
__ mov(eax, Operand::StaticArray(
scratch, times_pointer_size, roots_array_start));
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
__ bind(&miss);
}
// Get the prototype of the function.
__ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
// Check that the function prototype is a JS object.
__ JumpIfSmi(prototype, &slow);
__ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
// Update the global instanceof or call site inlined cache with the current
// map and function. The cached answer will be set when it is known below.
if (!HasCallSiteInlineCheck()) {
__ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
__ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
map);
__ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
__ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
function);
} else {
// The constants for the code patching are based on no push instructions
// at the call site.
ASSERT(HasArgsInRegisters());
// Get return address and delta to inlined map check.
__ mov(scratch, Operand(esp, 0 * kPointerSize));
__ sub(scratch, Operand(esp, 1 * kPointerSize));
if (FLAG_debug_code) {
__ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
__ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)");
__ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
__ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)");
}
__ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
__ mov(Operand(scratch, 0), map);
}
// Loop through the prototype chain of the object looking for the function
// prototype.
__ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
Label loop, is_instance, is_not_instance;
__ bind(&loop);
__ cmp(scratch, prototype);
__ j(equal, &is_instance, Label::kNear);
Factory* factory = masm->isolate()->factory();
__ cmp(scratch, Immediate(factory->null_value()));
__ j(equal, &is_not_instance, Label::kNear);
__ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
__ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
if (!HasCallSiteInlineCheck()) {
__ Set(eax, Immediate(0));
__ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
__ mov(Operand::StaticArray(scratch,
times_pointer_size, roots_array_start), eax);
} else {
// Get return address and delta to inlined map check.
__ mov(eax, factory->true_value());
__ mov(scratch, Operand(esp, 0 * kPointerSize));
__ sub(scratch, Operand(esp, 1 * kPointerSize));
if (FLAG_debug_code) {
__ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
__ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
}
__ mov(Operand(scratch, kDeltaToMovImmediate), eax);
if (!ReturnTrueFalseObject()) {
__ Set(eax, Immediate(0));
}
}
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
__ bind(&is_not_instance);
if (!HasCallSiteInlineCheck()) {
__ Set(eax, Immediate(Smi::FromInt(1)));
__ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
__ mov(Operand::StaticArray(
scratch, times_pointer_size, roots_array_start), eax);
} else {
// Get return address and delta to inlined map check.
__ mov(eax, factory->false_value());
__ mov(scratch, Operand(esp, 0 * kPointerSize));
__ sub(scratch, Operand(esp, 1 * kPointerSize));
if (FLAG_debug_code) {
__ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
__ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
}
__ mov(Operand(scratch, kDeltaToMovImmediate), eax);
if (!ReturnTrueFalseObject()) {
__ Set(eax, Immediate(Smi::FromInt(1)));
}
}
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Label object_not_null, object_not_null_or_smi;
__ bind(&not_js_object);
// Before null, smi and string value checks, check that the rhs is a function
// as for a non-function rhs an exception needs to be thrown.
__ JumpIfSmi(function, &slow, Label::kNear);
__ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
__ j(not_equal, &slow, Label::kNear);
// Null is not instance of anything.
__ cmp(object, factory->null_value());
__ j(not_equal, &object_not_null, Label::kNear);
__ Set(eax, Immediate(Smi::FromInt(1)));
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
__ bind(&object_not_null);
// Smi values is not instance of anything.
__ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
__ Set(eax, Immediate(Smi::FromInt(1)));
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
__ bind(&object_not_null_or_smi);
// String values is not instance of anything.
Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
__ j(NegateCondition(is_string), &slow, Label::kNear);
__ Set(eax, Immediate(Smi::FromInt(1)));
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
// Slow-case: Go through the JavaScript implementation.
__ bind(&slow);
if (!ReturnTrueFalseObject()) {
// Tail call the builtin which returns 0 or 1.
if (HasArgsInRegisters()) {
// Push arguments below return address.
__ pop(scratch);
__ push(object);
__ push(function);
__ push(scratch);
}
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
} else {
// Call the builtin and convert 0/1 to true/false.
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(object);
__ push(function);
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
}
Label true_value, done;
__ test(eax, eax);
__ j(zero, &true_value, Label::kNear);
__ mov(eax, factory->false_value());
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ mov(eax, factory->true_value());
__ bind(&done);
__ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
}
}
Register InstanceofStub::left() { return eax; }
Register InstanceofStub::right() { return edx; }
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
// stubs the never NaN NaN condition is only taken into account if the
// condition is equals.
ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
return ConditionField::encode(static_cast<unsigned>(cc_))
| RegisterField::encode(false) // lhs_ and rhs_ are not used
| StrictField::encode(strict_)
| NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
| IncludeNumberCompareField::encode(include_number_compare_)
| IncludeSmiCompareField::encode(include_smi_compare_);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
void CompareStub::PrintName(StringStream* stream) {
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
const char* cc_name;
switch (cc_) {
case less: cc_name = "LT"; break;
case greater: cc_name = "GT"; break;
case less_equal: cc_name = "LE"; break;
case greater_equal: cc_name = "GE"; break;
case equal: cc_name = "EQ"; break;
case not_equal: cc_name = "NE"; break;
default: cc_name = "UnknownCondition"; break;
}
bool is_equality = cc_ == equal || cc_ == not_equal;
stream->Add("CompareStub_%s", cc_name);
if (strict_ && is_equality) stream->Add("_STRICT");
if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
if (!include_number_compare_) stream->Add("_NO_NUMBER");
if (!include_smi_compare_) stream->Add("_NO_SMI");
}
// -------------------------------------------------------------------------
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ test(result_, Immediate(kIsNotStringMask));
__ j(not_zero, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ cmp(index_, FieldOperand(object_, String::kLengthOffset));
__ j(above_equal, index_out_of_range_);
__ SmiUntag(index_);
Factory* factory = masm->isolate()->factory();
StringCharLoadGenerator::Generate(
masm, factory, object_, index_, result_, &call_runtime_);
__ SmiTag(result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
masm->isolate()->factory()->heap_number_map(),
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_); // Consumed by runtime conversion function.
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
if (!index_.is(eax)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ mov(index_, eax);
}
__ pop(object_);
// Reload the instance type.
__ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ push(object_);
__ SmiTag(index_);
__ push(index_);
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
if (!result_.is(eax)) {
__ mov(result_, eax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiShiftSize == 0);
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
__ test(code_,
Immediate(kSmiTagMask |
((~String::kMaxAsciiCharCode) << kSmiTagSize)));
__ j(not_zero, &slow_case_);
Factory* factory = masm->isolate()->factory();
__ Set(result_, Immediate(factory->single_character_string_cache()));
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiShiftSize == 0);
// At this point code register contains smi tagged ASCII char code.
__ mov(result_, FieldOperand(result_,
code_, times_half_pointer_size,
FixedArray::kHeaderSize));
__ cmp(result_, factory->undefined_value());
__ j(equal, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharFromCode slow case");
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
if (!result_.is(eax)) {
__ mov(result_, eax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharFromCode slow case");
}
// -------------------------------------------------------------------------
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label call_runtime, call_builtin;
Builtins::JavaScript builtin_id = Builtins::ADD;
// Load the two arguments.
__ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
__ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
// Make sure that both arguments are strings if not known in advance.
if (flags_ == NO_STRING_ADD_FLAGS) {
__ JumpIfSmi(eax, &call_runtime);
__ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx);
__ j(above_equal, &call_runtime);
// First argument is a a string, test second.
__ JumpIfSmi(edx, &call_runtime);
__ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx);
__ j(above_equal, &call_runtime);
} else {
// Here at least one of the arguments is definitely a string.
// We convert the one that is not known to be a string.
if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi,
&call_builtin);
builtin_id = Builtins::STRING_ADD_RIGHT;
} else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi,
&call_builtin);
builtin_id = Builtins::STRING_ADD_LEFT;
}
}
// Both arguments are strings.
// eax: first string
// edx: second string
// Check if either of the strings are empty. In that case return the other.
Label second_not_zero_length, both_not_zero_length;
__ mov(ecx, FieldOperand(edx, String::kLengthOffset));
STATIC_ASSERT(kSmiTag == 0);
__ test(ecx, ecx);
__ j(not_zero, &second_not_zero_length, Label::kNear);
// Second string is empty, result is first string which is already in eax.
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&second_not_zero_length);
__ mov(ebx, FieldOperand(eax, String::kLengthOffset));
STATIC_ASSERT(kSmiTag == 0);
__ test(ebx, ebx);
__ j(not_zero, &both_not_zero_length, Label::kNear);
// First string is empty, result is second string which is in edx.
__ mov(eax, edx);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
// Both strings are non-empty.
// eax: first string
// ebx: length of first string as a smi
// ecx: length of second string as a smi
// edx: second string
// Look at the length of the result of adding the two strings.
Label string_add_flat_result, longer_than_two;
__ bind(&both_not_zero_length);
__ add(ebx, ecx);
STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
// Handle exceptionally long strings in the runtime system.
__ j(overflow, &call_runtime);
// Use the symbol table when adding two one character strings, as it
// helps later optimizations to return a symbol here.
__ cmp(ebx, Immediate(Smi::FromInt(2)));
__ j(not_equal, &longer_than_two);
// Check that both strings are non-external ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, &call_runtime);
// Get the two characters forming the new string.
__ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
__ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
// Try to lookup two character string in symbol table. If it is not found
// just allocate a new one.
Label make_two_character_string, make_two_character_string_no_reload;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, ebx, ecx, eax, edx, edi,
&make_two_character_string_no_reload, &make_two_character_string);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
// Allocate a two character string.
__ bind(&make_two_character_string);
// Reload the arguments.
__ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
__ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
// Get the two characters forming the new string.
__ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
__ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
__ bind(&make_two_character_string_no_reload);
__ IncrementCounter(counters->string_add_make_two_char(), 1);
__ AllocateAsciiString(eax, 2, edi, edx, &call_runtime);
// Pack both characters in ebx.
__ shl(ecx, kBitsPerByte);
__ or_(ebx, ecx);
// Set the characters in the new string.
__ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&longer_than_two);
// Check if resulting string will be flat.
__ cmp(ebx, Immediate(Smi::FromInt(ConsString::kMinLength)));
__ j(below, &string_add_flat_result);
// If result is not supposed to be flat allocate a cons string object. If both
// strings are ASCII the result is an ASCII cons string.
Label non_ascii, allocated, ascii_data;
__ mov(edi, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset));
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
__ and_(ecx, edi);
STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ test(ecx, Immediate(kStringEncodingMask));
__ j(zero, &non_ascii);
__ bind(&ascii_data);
// Allocate an ASCII cons string.
__ AllocateAsciiConsString(ecx, edi, no_reg, &call_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
if (FLAG_debug_code) __ AbortIfNotSmi(ebx);
__ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx);
__ mov(FieldOperand(ecx, ConsString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax);
__ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx);
__ mov(eax, ecx);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&non_ascii);
// At least one of the strings is two-byte. Check whether it happens
// to contain only ASCII characters.
// ecx: first instance type AND second instance type.
// edi: second instance type.
__ test(ecx, Immediate(kAsciiDataHintMask));
__ j(not_zero, &ascii_data);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ xor_(edi, ecx);
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
__ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
__ j(equal, &ascii_data);
// Allocate a two byte cons string.
__ AllocateTwoByteConsString(ecx, edi, no_reg, &call_runtime);
__ jmp(&allocated);
// We cannot encounter sliced strings or cons strings here since:
STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
// Handle creating a flat result from either external or sequential strings.
// Locate the first characters' locations.
// eax: first string
// ebx: length of resulting flat string as a smi
// edx: second string
Label first_prepared, second_prepared;
Label first_is_sequential, second_is_sequential;
__ bind(&string_add_flat_result);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
// ecx: instance type of first string
STATIC_ASSERT(kSeqStringTag == 0);
__ test_b(ecx, kStringRepresentationMask);
__ j(zero, &first_is_sequential, Label::kNear);
// Rule out short external string and load string resource.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ test_b(ecx, kShortExternalStringMask);
__ j(not_zero, &call_runtime);
__ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ jmp(&first_prepared, Label::kNear);
__ bind(&first_is_sequential);
__ add(eax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ bind(&first_prepared);
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
// Check whether both strings have same encoding.
// edi: instance type of second string
__ xor_(ecx, edi);
__ test_b(ecx, kStringEncodingMask);
__ j(not_zero, &call_runtime);
STATIC_ASSERT(kSeqStringTag == 0);
__ test_b(edi, kStringRepresentationMask);
__ j(zero, &second_is_sequential, Label::kNear);
// Rule out short external string and load string resource.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ test_b(edi, kShortExternalStringMask);
__ j(not_zero, &call_runtime);
__ mov(edx, FieldOperand(edx, ExternalString::kResourceDataOffset));
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ jmp(&second_prepared, Label::kNear);
__ bind(&second_is_sequential);
__ add(edx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ bind(&second_prepared);
// Push the addresses of both strings' first characters onto the stack.
__ push(edx);
__ push(eax);
Label non_ascii_string_add_flat_result, call_runtime_drop_two;
// edi: instance type of second string
// First string and second string have the same encoding.
STATIC_ASSERT(kTwoByteStringTag == 0);
__ test_b(edi, kStringEncodingMask);
__ j(zero, &non_ascii_string_add_flat_result);
// Both strings are ASCII strings.
// ebx: length of resulting flat string as a smi
__ SmiUntag(ebx);
__ AllocateAsciiString(eax, ebx, ecx, edx, edi, &call_runtime_drop_two);
// eax: result string
__ mov(ecx, eax);
// Locate first character of result.
__ add(ecx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Load first argument's length and first character location. Account for
// values currently on the stack when fetching arguments from it.
__ mov(edx, Operand(esp, 4 * kPointerSize));
__ mov(edi, FieldOperand(edx, String::kLengthOffset));
__ SmiUntag(edi);
__ pop(edx);
// eax: result string
// ecx: first character of result
// edx: first char of first argument
// edi: length of first argument
StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
// Load second argument's length and first character location. Account for
// values currently on the stack when fetching arguments from it.
__ mov(edx, Operand(esp, 2 * kPointerSize));
__ mov(edi, FieldOperand(edx, String::kLengthOffset));
__ SmiUntag(edi);
__ pop(edx);
// eax: result string
// ecx: next character of result
// edx: first char of second argument
// edi: length of second argument
StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
// Handle creating a flat two byte result.
// eax: first string - known to be two byte
// ebx: length of resulting flat string as a smi
// edx: second string
__ bind(&non_ascii_string_add_flat_result);
// Both strings are two byte strings.
__ SmiUntag(ebx);
__ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &call_runtime_drop_two);
// eax: result string
__ mov(ecx, eax);
// Locate first character of result.
__ add(ecx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Load second argument's length and first character location. Account for
// values currently on the stack when fetching arguments from it.
__ mov(edx, Operand(esp, 4 * kPointerSize));
__ mov(edi, FieldOperand(edx, String::kLengthOffset));
__ SmiUntag(edi);
__ pop(edx);
// eax: result string
// ecx: first character of result
// edx: first char of first argument
// edi: length of first argument
StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
// Load second argument's length and first character location. Account for
// values currently on the stack when fetching arguments from it.
__ mov(edx, Operand(esp, 2 * kPointerSize));
__ mov(edi, FieldOperand(edx, String::kLengthOffset));
__ SmiUntag(edi);
__ pop(edx);
// eax: result string
// ecx: next character of result
// edx: first char of second argument
// edi: length of second argument
StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
// Recover stack pointer before jumping to runtime.
__ bind(&call_runtime_drop_two);
__ Drop(2);
// Just jump to runtime to add the two strings.
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
if (call_builtin.is_linked()) {
__ bind(&call_builtin);
__ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
}
}
void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* slow) {
// First check if the argument is already a string.
Label not_string, done;
__ JumpIfSmi(arg, &not_string);
__ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1);
__ j(below, &done);
// Check the number to string cache.
Label not_cached;
__ bind(&not_string);
// Puts the cached result into scratch1.
NumberToStringStub::GenerateLookupNumberStringCache(masm,
arg,
scratch1,
scratch2,
scratch3,
false,
&not_cached);
__ mov(arg, scratch1);
__ mov(Operand(esp, stack_offset), arg);
__ jmp(&done);
// Check if the argument is a safe string wrapper.
__ bind(&not_cached);
__ JumpIfSmi(arg, slow);
__ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1.
__ j(not_equal, slow);
__ test_b(FieldOperand(scratch1, Map::kBitField2Offset),
1 << Map::kStringWrapperSafeForDefaultValueOf);
__ j(zero, slow);
__ mov(arg, FieldOperand(arg, JSValue::kValueOffset));
__ mov(Operand(esp, stack_offset), arg);
__ bind(&done);
}
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii) {
Label loop;
__ bind(&loop);
// This loop just copies one character at a time, as it is only used for very
// short strings.
if (ascii) {
__ mov_b(scratch, Operand(src, 0));
__ mov_b(Operand(dest, 0), scratch);
__ add(src, Immediate(1));
__ add(dest, Immediate(1));
} else {
__ mov_w(scratch, Operand(src, 0));
__ mov_w(Operand(dest, 0), scratch);
__ add(src, Immediate(2));
__ add(dest, Immediate(2));
}
__ sub(count, Immediate(1));
__ j(not_zero, &loop);
}
void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii) {
// Copy characters using rep movs of doublewords.
// The destination is aligned on a 4 byte boundary because we are
// copying to the beginning of a newly allocated string.
ASSERT(dest.is(edi)); // rep movs destination
ASSERT(src.is(esi)); // rep movs source
ASSERT(count.is(ecx)); // rep movs count
ASSERT(!scratch.is(dest));
ASSERT(!scratch.is(src));
ASSERT(!scratch.is(count));
// Nothing to do for zero characters.
Label done;
__ test(count, count);
__ j(zero, &done);
// Make count the number of bytes to copy.
if (!ascii) {
__ shl(count, 1);
}
// Don't enter the rep movs if there are less than 4 bytes to copy.
Label last_bytes;
__ test(count, Immediate(~3));
__ j(zero, &last_bytes, Label::kNear);
// Copy from edi to esi using rep movs instruction.
__ mov(scratch, count);
__ sar(count, 2); // Number of doublewords to copy.
__ cld();
__ rep_movs();
// Find number of bytes left.
__ mov(count, scratch);
__ and_(count, 3);
// Check if there are more bytes to copy.
__ bind(&last_bytes);
__ test(count, count);
__ j(zero, &done);
// Copy remaining characters.
Label loop;
__ bind(&loop);
__ mov_b(scratch, Operand(src, 0));
__ mov_b(Operand(dest, 0), scratch);
__ add(src, Immediate(1));
__ add(dest, Immediate(1));
__ sub(count, Immediate(1));
__ j(not_zero, &loop);
__ bind(&done);
}
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_probed,
Label* not_found) {
// Register scratch3 is the general scratch register in this function.
Register scratch = scratch3;
// Make sure that both characters are not digits as such strings has a
// different hash algorithm. Don't try to look for these in the symbol table.
Label not_array_index;
__ mov(scratch, c1);
__ sub(scratch, Immediate(static_cast<int>('0')));
__ cmp(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(above, &not_array_index, Label::kNear);
__ mov(scratch, c2);
__ sub(scratch, Immediate(static_cast<int>('0')));
__ cmp(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(below_equal, not_probed);
__ bind(&not_array_index);
// Calculate the two character string hash.
Register hash = scratch1;
GenerateHashInit(masm, hash, c1, scratch);
GenerateHashAddCharacter(masm, hash, c2, scratch);
GenerateHashGetHash(masm, hash, scratch);
// Collect the two characters in a register.
Register chars = c1;
__ shl(c2, kBitsPerByte);
__ or_(chars, c2);
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string.
// Load the symbol table.
Register symbol_table = c2;
ExternalReference roots_array_start =
ExternalReference::roots_array_start(masm->isolate());
__ mov(scratch, Immediate(Heap::kSymbolTableRootIndex));
__ mov(symbol_table,
Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
// Calculate capacity mask from the symbol table capacity.
Register mask = scratch2;
__ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
__ SmiUntag(mask);
__ sub(mask, Immediate(1));
// Registers
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string
// symbol_table: symbol table
// mask: capacity mask
// scratch: -
// Perform a number of probes in the symbol table.
static const int kProbes = 4;
Label found_in_symbol_table;
Label next_probe[kProbes], next_probe_pop_mask[kProbes];
Register candidate = scratch; // Scratch register contains candidate.
for (int i = 0; i < kProbes; i++) {
// Calculate entry in symbol table.
__ mov(scratch, hash);
if (i > 0) {
__ add(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
}
__ and_(scratch, mask);
// Load the entry from the symbol table.
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ mov(candidate,
FieldOperand(symbol_table,
scratch,
times_pointer_size,
SymbolTable::kElementsStartOffset));
// If entry is undefined no string with this hash can be found.
Factory* factory = masm->isolate()->factory();
__ cmp(candidate, factory->undefined_value());
__ j(equal, not_found);
__ cmp(candidate, factory->the_hole_value());
__ j(equal, &next_probe[i]);
// If length is not 2 the string is not a candidate.
__ cmp(FieldOperand(candidate, String::kLengthOffset),
Immediate(Smi::FromInt(2)));
__ j(not_equal, &next_probe[i]);
// As we are out of registers save the mask on the stack and use that
// register as a temporary.
__ push(mask);
Register temp = mask;
// Check that the candidate is a non-external ASCII string.
__ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset));
__ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(
temp, temp, &next_probe_pop_mask[i]);
// Check if the two characters match.
__ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
__ and_(temp, 0x0000ffff);
__ cmp(chars, temp);
__ j(equal, &found_in_symbol_table);
__ bind(&next_probe_pop_mask[i]);
__ pop(mask);
__ bind(&next_probe[i]);
}
// No matching 2 character string found by probing.
__ jmp(not_found);
// Scratch register contains result when we fall through to here.
Register result = candidate;
__ bind(&found_in_symbol_table);
__ pop(mask); // Pop saved mask from the stack.
if (!result.is(eax)) {
__ mov(eax, result);
}
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash = (seed + character) + ((seed + character) << 10);
if (Serializer::enabled()) {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(masm->isolate());
__ mov(scratch, Immediate(Heap::kHashSeedRootIndex));
__ mov(scratch, Operand::StaticArray(scratch,
times_pointer_size,
roots_array_start));
__ SmiUntag(scratch);
__ add(scratch, character);
__ mov(hash, scratch);
__ shl(scratch, 10);
__ add(hash, scratch);
} else {
int32_t seed = masm->isolate()->heap()->HashSeed();
__ lea(scratch, Operand(character, seed));
__ shl(scratch, 10);
__ lea(hash, Operand(scratch, character, times_1, seed));
}
// hash ^= hash >> 6;
__ mov(scratch, hash);
__ shr(scratch, 6);
__ xor_(hash, scratch);
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash += character;
__ add(hash, character);
// hash += hash << 10;
__ mov(scratch, hash);
__ shl(scratch, 10);
__ add(hash, scratch);
// hash ^= hash >> 6;
__ mov(scratch, hash);
__ shr(scratch, 6);
__ xor_(hash, scratch);
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch) {
// hash += hash << 3;
__ mov(scratch, hash);
__ shl(scratch, 3);
__ add(hash, scratch);
// hash ^= hash >> 11;
__ mov(scratch, hash);
__ shr(scratch, 11);
__ xor_(hash, scratch);
// hash += hash << 15;
__ mov(scratch, hash);
__ shl(scratch, 15);
__ add(hash, scratch);
__ and_(hash, String::kHashBitMask);
// if (hash == 0) hash = 27;
Label hash_not_zero;
__ j(not_zero, &hash_not_zero, Label::kNear);
__ mov(hash, Immediate(StringHasher::kZeroHash));
__ bind(&hash_not_zero);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// esp[0]: return address
// esp[4]: to
// esp[8]: from
// esp[12]: string
// Make sure first argument is a string.
__ mov(eax, Operand(esp, 3 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &runtime);
Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
__ j(NegateCondition(is_string), &runtime);
// eax: string
// ebx: instance type
// Calculate length of sub string using the smi values.
__ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
__ JumpIfNotSmi(ecx, &runtime);
__ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
__ JumpIfNotSmi(edx, &runtime);
__ sub(ecx, edx);
__ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
Label not_original_string;
__ j(not_equal, &not_original_string, Label::kNear);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(3 * kPointerSize);
__ bind(&not_original_string);
// eax: string
// ebx: instance type
// ecx: sub string length (smi)
// edx: from index (smi)
// Deal with different string types: update the index if necessary
// and put the underlying string into edi.
Label underlying_unpacked, sliced_string, seq_or_external_string;
// If the string is not indirect, it can only be sequential or external.
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
STATIC_ASSERT(kIsIndirectStringMask != 0);
__ test(ebx, Immediate(kIsIndirectStringMask));
__ j(zero, &seq_or_external_string, Label::kNear);
Factory* factory = masm->isolate()->factory();
__ test(ebx, Immediate(kSlicedNotConsMask));
__ j(not_zero, &sliced_string, Label::kNear);
// Cons string. Check whether it is flat, then fetch first part.
// Flat cons strings have an empty second part.
__ cmp(FieldOperand(eax, ConsString::kSecondOffset),
factory->empty_string());
__ j(not_equal, &runtime);
__ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
// Update instance type.
__ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked, Label::kNear);
__ bind(&sliced_string);
// Sliced string. Fetch parent and adjust start index by offset.
__ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
__ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
// Update instance type.
__ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked, Label::kNear);
__ bind(&seq_or_external_string);
// Sequential or external string. Just move string to the expected register.
__ mov(edi, eax);
__ bind(&underlying_unpacked);
if (FLAG_string_slices) {
Label copy_routine;
// edi: underlying subject string
// ebx: instance type of underlying subject string
// edx: adjusted start index (smi)
// ecx: length (smi)
__ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
// Short slice. Copy instead of slicing.
__ j(less, &copy_routine);
// Allocate new sliced string. At this point we do not reload the instance
// type including the string encoding because we simply rely on the info
// provided by the original string. It does not matter if the original
// string's encoding is wrong because we always have to recheck encoding of
// the newly created string's parent anyways due to externalized strings.
Label two_byte_slice, set_slice_header;
STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ test(ebx, Immediate(kStringEncodingMask));
__ j(zero, &two_byte_slice, Label::kNear);
__ AllocateAsciiSlicedString(eax, ebx, no_reg, &runtime);
__ jmp(&set_slice_header, Label::kNear);
__ bind(&two_byte_slice);
__ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
__ bind(&set_slice_header);
__ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
__ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
__ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(3 * kPointerSize);
__ bind(&copy_routine);
}
// edi: underlying subject string
// ebx: instance type of underlying subject string
// edx: adjusted start index (smi)
// ecx: length (smi)
// The subject string can only be external or sequential string of either
// encoding at this point.
Label two_byte_sequential, runtime_drop_two, sequential_string;
STATIC_ASSERT(kExternalStringTag != 0);
STATIC_ASSERT(kSeqStringTag == 0);
__ test_b(ebx, kExternalStringTag);
__ j(zero, &sequential_string);
// Handle external string.
// Rule out short external strings.
STATIC_CHECK(kShortExternalStringTag != 0);
__ test_b(ebx, kShortExternalStringMask);
__ j(not_zero, &runtime);
__ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
__ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ bind(&sequential_string);
// Stash away (adjusted) index and (underlying) string.
__ push(edx);
__ push(edi);
__ SmiUntag(ecx);
STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
__ test_b(ebx, kStringEncodingMask);
__ j(zero, &two_byte_sequential);
// Sequential ASCII string. Allocate the result.
__ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
// eax: result string
// ecx: result string length
__ mov(edx, esi); // esi used by following code.
// Locate first character of result.
__ mov(edi, eax);
__ add(edi, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Load string argument and locate character of sub string start.
__ pop(esi);
__ pop(ebx);
__ SmiUntag(ebx);
__ lea(esi, FieldOperand(esi, ebx, times_1, SeqAsciiString::kHeaderSize));
// eax: result string
// ecx: result length
// edx: original value of esi
// edi: first character of result
// esi: character of sub string start
StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true);
__ mov(esi, edx); // Restore esi.
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(3 * kPointerSize);
__ bind(&two_byte_sequential);
// Sequential two-byte string. Allocate the result.
__ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
// eax: result string
// ecx: result string length
__ mov(edx, esi); // esi used by following code.
// Locate first character of result.
__ mov(edi, eax);
__ add(edi,
Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Load string argument and locate character of sub string start.
__ pop(esi);
__ pop(ebx);
// As from is a smi it is 2 times the value which matches the size of a two
// byte character.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ lea(esi, FieldOperand(esi, ebx, times_1, SeqTwoByteString::kHeaderSize));
// eax: result string
// ecx: result length
// edx: original value of esi
// edi: first character of result
// esi: character of sub string start
StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false);
__ mov(esi, edx); // Restore esi.
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(3 * kPointerSize);
// Drop pushed values on the stack before tail call.
__ bind(&runtime_drop_two);
__ Drop(2);
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
}
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ mov(length, FieldOperand(left, String::kLengthOffset));
__ cmp(length, FieldOperand(right, String::kLengthOffset));
__ j(equal, &check_zero_length, Label::kNear);
__ bind(&strings_not_equal);
__ Set(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
__ ret(0);
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ test(length, length);
__ j(not_zero, &compare_chars, Label::kNear);
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
// Compare characters.
__ bind(&compare_chars);
GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
&strings_not_equal, Label::kNear);
// Characters are equal.
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3) {
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_compare_native(), 1);
// Find minimum length.
Label left_shorter;
__ mov(scratch1, FieldOperand(left, String::kLengthOffset));
__ mov(scratch3, scratch1);
__ sub(scratch3, FieldOperand(right, String::kLengthOffset));
Register length_delta = scratch3;
__ j(less_equal, &left_shorter, Label::kNear);
// Right string is shorter. Change scratch1 to be length of right string.
__ sub(scratch1, length_delta);
__ bind(&left_shorter);
Register min_length = scratch1;
// If either length is zero, just compare lengths.
Label compare_lengths;
__ test(min_length, min_length);
__ j(zero, &compare_lengths, Label::kNear);
// Compare characters.
Label result_not_equal;
GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
&result_not_equal, Label::kNear);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
__ test(length_delta, length_delta);
__ j(not_zero, &result_not_equal, Label::kNear);
// Result is EQUAL.
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
Label result_greater;
__ bind(&result_not_equal);
__ j(greater, &result_greater, Label::kNear);
// Result is LESS.
__ Set(eax, Immediate(Smi::FromInt(LESS)));
__ ret(0);
// Result is GREATER.
__ bind(&result_greater);
__ Set(eax, Immediate(Smi::FromInt(GREATER)));
__ ret(0);
}
void StringCompareStub::GenerateAsciiCharsCompareLoop(
MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch,
Label* chars_not_equal,
Label::Distance chars_not_equal_near) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ lea(left,
FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize));
__ lea(right,
FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize));
__ neg(length);
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ mov_b(scratch, Operand(left, index, times_1, 0));
__ cmpb(scratch, Operand(right, index, times_1, 0));
__ j(not_equal, chars_not_equal, chars_not_equal_near);
__ inc(index);
__ j(not_zero, &loop);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// esp[0]: return address
// esp[4]: right string
// esp[8]: left string
__ mov(edx, Operand(esp, 2 * kPointerSize)); // left
__ mov(eax, Operand(esp, 1 * kPointerSize)); // right
Label not_same;
__ cmp(edx, eax);
__ j(not_equal, &not_same, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ IncrementCounter(masm->isolate()->counters()->string_compare_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&not_same);
// Check that both objects are sequential ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime);
// Compare flat ASCII strings.
// Drop arguments from the stack.
__ pop(ecx);
__ add(esp, Immediate(2 * kPointerSize));
__ push(ecx);
GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SMIS);
Label miss;
__ mov(ecx, edx);
__ or_(ecx, eax);
__ JumpIfNotSmi(ecx, &miss, Label::kNear);
if (GetCondition() == equal) {
// For equality we do not care about the sign of the result.
__ sub(eax, edx);
} else {
Label done;
__ sub(edx, eax);
__ j(no_overflow, &done, Label::kNear);
// Correct sign of result in case of overflow.
__ not_(edx);
__ bind(&done);
__ mov(eax, edx);
}
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::HEAP_NUMBERS);
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
__ mov(ecx, edx);
__ and_(ecx, eax);
__ JumpIfSmi(ecx, &generic_stub, Label::kNear);
__ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx);
__ j(not_equal, &maybe_undefined1, Label::kNear);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
__ j(not_equal, &maybe_undefined2, Label::kNear);
// Inlining the double comparison and falling back to the general compare
// stub if NaN is involved or SS2 or CMOV is unsupported.
if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) {
CpuFeatures::Scope scope1(SSE2);
CpuFeatures::Scope scope2(CMOV);
// Load left and right operand
__ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
__ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
// Compare operands
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
// Performing mov, because xor would destroy the flag register.
__ mov(eax, 0); // equal
__ mov(ecx, Immediate(Smi::FromInt(1)));
__ cmov(above, eax, ecx);
__ mov(ecx, Immediate(Smi::FromInt(-1)));
__ cmov(below, eax, ecx);
__ ret(0);
}
__ bind(&unordered);
CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
__ bind(&generic_stub);
__ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op_)) {
__ cmp(eax, Immediate(masm->isolate()->factory()->undefined_value()));
__ j(not_equal, &miss);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
__ j(not_equal, &maybe_undefined2, Label::kNear);
__ jmp(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op_)) {
__ cmp(edx, Immediate(masm->isolate()->factory()->undefined_value()));
__ j(equal, &unordered);
}
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SYMBOLS);
ASSERT(GetCondition() == equal);
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
Register tmp1 = ecx;
Register tmp2 = ebx;
// Check that both operands are heap objects.
Label miss;
__ mov(tmp1, left);
STATIC_ASSERT(kSmiTag == 0);
__ and_(tmp1, right);
__ JumpIfSmi(tmp1, &miss, Label::kNear);
// Check that both operands are symbols.
__ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSymbolTag != 0);
__ and_(tmp1, tmp2);
__ test(tmp1, Immediate(kIsSymbolMask));
__ j(zero, &miss, Label::kNear);
// Symbols are compared by identity.
Label done;
__ cmp(left, right);
// Make sure eax is non-zero. At this point input operands are
// guaranteed to be non-zero.
ASSERT(right.is(eax));
__ j(not_equal, &done, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ bind(&done);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::STRINGS);
Label miss;
bool equality = Token::IsEqualityOp(op_);
// Registers containing left and right operands respectively.
Register left = edx;
Register right = eax;
Register tmp1 = ecx;
Register tmp2 = ebx;
Register tmp3 = edi;
// Check that both operands are heap objects.
__ mov(tmp1, left);
STATIC_ASSERT(kSmiTag == 0);
__ and_(tmp1, right);
__ JumpIfSmi(tmp1, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
__ mov(tmp3, tmp1);
STATIC_ASSERT(kNotStringTag != 0);
__ or_(tmp3, tmp2);
__ test(tmp3, Immediate(kIsNotStringMask));
__ j(not_zero, &miss);
// Fast check for identical strings.
Label not_same;
__ cmp(left, right);
__ j(not_equal, &not_same, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0);
// Handle not identical strings.
__ bind(&not_same);
// Check that both strings are symbols. If they are, we're done
// because we already know they are not identical. But in the case of
// non-equality compare, we still need to determine the order.
if (equality) {
Label do_compare;
STATIC_ASSERT(kSymbolTag != 0);
__ and_(tmp1, tmp2);
__ test(tmp1, Immediate(kIsSymbolMask));
__ j(zero, &do_compare, Label::kNear);
// Make sure eax is non-zero. At this point input operands are
// guaranteed to be non-zero.
ASSERT(right.is(eax));
__ ret(0);
__ bind(&do_compare);
}
// Check that both strings are sequential ASCII.
Label runtime;
__ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
// Compare flat ASCII strings. Returns when done.
if (equality) {
StringCompareStub::GenerateFlatAsciiStringEquals(
masm, left, right, tmp1, tmp2);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(
masm, left, right, tmp1, tmp2, tmp3);
}
// Handle more complex cases in runtime.
__ bind(&runtime);
__ pop(tmp1); // Return address.
__ push(left);
__ push(right);
__ push(tmp1);
if (equality) {
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
} else {
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::OBJECTS);
Label miss;
__ mov(ecx, edx);
__ and_(ecx, eax);
__ JumpIfSmi(ecx, &miss, Label::kNear);
__ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
__ j(not_equal, &miss, Label::kNear);
__ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
__ j(not_equal, &miss, Label::kNear);
ASSERT(GetCondition() == equal);
__ sub(eax, edx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
Label miss;
__ mov(ecx, edx);
__ and_(ecx, eax);
__ JumpIfSmi(ecx, &miss, Label::kNear);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ cmp(ecx, known_map_);
__ j(not_equal, &miss, Label::kNear);
__ cmp(ebx, known_map_);
__ j(not_equal, &miss, Label::kNear);
__ sub(eax, edx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
masm->isolate());
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edx); // Preserve edx and eax.
__ push(eax);
__ push(edx); // And also use them as the arguments.
__ push(eax);
__ push(Immediate(Smi::FromInt(op_)));
__ CallExternalReference(miss, 3);
// Compute the entry point of the rewritten stub.
__ lea(edi, FieldOperand(eax, Code::kHeaderSize));
__ pop(eax);
__ pop(edx);
}
// Do a tail call to the rewritten stub.
__ jmp(edi);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register properties,
Handle<String> name,
Register r0) {
ASSERT(name->IsSymbol());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
Register index = r0;
// Capacity is smi 2^n.
__ mov(index, FieldOperand(properties, kCapacityOffset));
__ dec(index);
__ and_(index,
Immediate(Smi::FromInt(name->Hash() +
StringDictionary::GetProbeOffset(i))));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
Register entity_name = r0;
// Having undefined at this place means the name is not contained.
ASSERT_EQ(kSmiTagSize, 1);
__ mov(entity_name, Operand(properties, index, times_half_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ cmp(entity_name, masm->isolate()->factory()->undefined_value());
__ j(equal, done);
// Stop if found the property.
__ cmp(entity_name, Handle<String>(name));
__ j(equal, miss);
Label the_hole;
// Check for the hole and skip.
__ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
__ j(equal, &the_hole, Label::kNear);
// Check if the entry name is not a symbol.
__ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
__ test_b(FieldOperand(entity_name, Map::kInstanceTypeOffset),
kIsSymbolMask);
__ j(zero, miss);
__ bind(&the_hole);
}
StringDictionaryLookupStub stub(properties,
r0,
r0,
StringDictionaryLookupStub::NEGATIVE_LOOKUP);
__ push(Immediate(Handle<Object>(name)));
__ push(Immediate(name->Hash()));
__ CallStub(&stub);
__ test(r0, r0);
__ j(not_zero, miss);
__ jmp(done);
}
// Probe the string dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found leaving the
// index into the dictionary in |r0|. Jump to the |miss| label
// otherwise.
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1) {
ASSERT(!elements.is(r0));
ASSERT(!elements.is(r1));
ASSERT(!name.is(r0));
ASSERT(!name.is(r1));
// Assert that name contains a string.
if (FLAG_debug_code) __ AbortIfNotString(name);
__ mov(r1, FieldOperand(elements, kCapacityOffset));
__ shr(r1, kSmiTagSize); // convert smi to int
__ dec(r1);
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ mov(r0, FieldOperand(name, String::kHashFieldOffset));
__ shr(r0, String::kHashShift);
if (i > 0) {
__ add(r0, Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(r0, r1);
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
// Check if the key is identical to the name.
__ cmp(name, Operand(elements,
r0,
times_4,
kElementsStartOffset - kHeapObjectTag));
__ j(equal, done);
}
StringDictionaryLookupStub stub(elements,
r1,
r0,
POSITIVE_LOOKUP);
__ push(name);
__ mov(r0, FieldOperand(name, String::kHashFieldOffset));
__ shr(r0, String::kHashShift);
__ push(r0);
__ CallStub(&stub);
__ test(r1, r1);
__ j(zero, miss);
__ jmp(done);
}
void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Stack frame on entry:
// esp[0 * kPointerSize]: return address.
// esp[1 * kPointerSize]: key's hash.
// esp[2 * kPointerSize]: key.
// Registers:
// dictionary_: StringDictionary to probe.
// result_: used as scratch.
// index_: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
Register scratch = result_;
__ mov(scratch, FieldOperand(dictionary_, kCapacityOffset));
__ dec(scratch);
__ SmiUntag(scratch);
__ push(scratch);
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ mov(scratch, Operand(esp, 2 * kPointerSize));
if (i > 0) {
__ add(scratch, Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(scratch, Operand(esp, 0));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3.
// Having undefined at this place means the name is not contained.
ASSERT_EQ(kSmiTagSize, 1);
__ mov(scratch, Operand(dictionary_,
index_,
times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ cmp(scratch, masm->isolate()->factory()->undefined_value());
__ j(equal, &not_in_dictionary);
// Stop if found the property.
__ cmp(scratch, Operand(esp, 3 * kPointerSize));
__ j(equal, &in_dictionary);
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
// If we hit a non symbol key during negative lookup
// we have to bailout as this key might be equal to the
// key we are looking for.
// Check if the entry name is not a symbol.
__ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
__ test_b(FieldOperand(scratch, Map::kInstanceTypeOffset),
kIsSymbolMask);
__ j(zero, &maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode_ == POSITIVE_LOOKUP) {
__ mov(result_, Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
__ bind(&in_dictionary);
__ mov(result_, Immediate(1));
__ Drop(1);
__ ret(2 * kPointerSize);
__ bind(&not_in_dictionary);
__ mov(result_, Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
struct AheadOfTimeWriteBarrierStubList {
Register object, value, address;
RememberedSetAction action;
};
#define REG(Name) { kRegister_ ## Name ## _Code }
static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
// Used in RegExpExecStub.
{ REG(ebx), REG(eax), REG(edi), EMIT_REMEMBERED_SET },
// Used in CompileArrayPushCall.
{ REG(ebx), REG(ecx), REG(edx), EMIT_REMEMBERED_SET },
{ REG(ebx), REG(edi), REG(edx), OMIT_REMEMBERED_SET },
// Used in CompileStoreGlobal and CallFunctionStub.
{ REG(ebx), REG(ecx), REG(edx), OMIT_REMEMBERED_SET },
// Used in StoreStubCompiler::CompileStoreField and
// KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
{ REG(edx), REG(ecx), REG(ebx), EMIT_REMEMBERED_SET },
// GenerateStoreField calls the stub with two different permutations of
// registers. This is the second.
{ REG(ebx), REG(ecx), REG(edx), EMIT_REMEMBERED_SET },
// StoreIC::GenerateNormal via GenerateDictionaryStore
{ REG(ebx), REG(edi), REG(edx), EMIT_REMEMBERED_SET },
// KeyedStoreIC::GenerateGeneric.
{ REG(ebx), REG(edx), REG(ecx), EMIT_REMEMBERED_SET},
// KeyedStoreStubCompiler::GenerateStoreFastElement.
{ REG(edi), REG(ebx), REG(ecx), EMIT_REMEMBERED_SET},
{ REG(edx), REG(edi), REG(ebx), EMIT_REMEMBERED_SET},
// ElementsTransitionGenerator::GenerateSmiOnlyToObject
// and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
// and ElementsTransitionGenerator::GenerateDoubleToObject
{ REG(edx), REG(ebx), REG(edi), EMIT_REMEMBERED_SET},
{ REG(edx), REG(ebx), REG(edi), OMIT_REMEMBERED_SET},
// ElementsTransitionGenerator::GenerateDoubleToObject
{ REG(eax), REG(edx), REG(esi), EMIT_REMEMBERED_SET},
{ REG(edx), REG(eax), REG(edi), EMIT_REMEMBERED_SET},
// StoreArrayLiteralElementStub::Generate
{ REG(ebx), REG(eax), REG(ecx), EMIT_REMEMBERED_SET},
// Null termination.
{ REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
};
#undef REG
bool RecordWriteStub::IsPregenerated() {
for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
!entry->object.is(no_reg);
entry++) {
if (object_.is(entry->object) &&
value_.is(entry->value) &&
address_.is(entry->address) &&
remembered_set_action_ == entry->action &&
save_fp_regs_mode_ == kDontSaveFPRegs) {
return true;
}
}
return false;
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
StoreBufferOverflowStub stub1(kDontSaveFPRegs);
stub1.GetCode()->set_is_pregenerated(true);
CpuFeatures::TryForceFeatureScope scope(SSE2);
if (CpuFeatures::IsSupported(SSE2)) {
StoreBufferOverflowStub stub2(kSaveFPRegs);
stub2.GetCode()->set_is_pregenerated(true);
}
}
void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
!entry->object.is(no_reg);
entry++) {
RecordWriteStub stub(entry->object,
entry->value,
entry->address,
entry->action,
kDontSaveFPRegs);
stub.GetCode()->set_is_pregenerated(true);
}
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two instructions are generated with labels so as to get the
// offset fixed up correctly by the bind(Label*) call. We patch it back and
// forth between a compare instructions (a nop in this position) and the
// real branch when we start and stop incremental heap marking.
__ jmp(&skip_to_incremental_noncompacting, Label::kNear);
__ jmp(&skip_to_incremental_compacting, Label::kFar);
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
masm->set_byte_at(0, kTwoByteNopInstruction);
masm->set_byte_at(2, kFiveByteNopInstruction);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ mov(regs_.scratch0(), Operand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
regs_.scratch0(),
&dont_need_remembered_set);
__ CheckPageFlag(regs_.object(),
regs_.scratch0(),
1 << MemoryChunk::SCAN_ON_SCAVENGE,
not_zero,
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
mode);
InformIncrementalMarker(masm, mode);
regs_.Restore(masm);
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm,
kReturnOnNoNeedToInformIncrementalMarker,
mode);
InformIncrementalMarker(masm, mode);
regs_.Restore(masm);
__ ret(0);
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
int argument_count = 3;
__ PrepareCallCFunction(argument_count, regs_.scratch0());
__ mov(Operand(esp, 0 * kPointerSize), regs_.object());
if (mode == INCREMENTAL_COMPACTION) {
__ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
} else {
ASSERT(mode == INCREMENTAL);
__ mov(regs_.scratch0(), Operand(regs_.address(), 0));
__ mov(Operand(esp, 1 * kPointerSize), regs_.scratch0()); // Value.
}
__ mov(Operand(esp, 2 * kPointerSize),
Immediate(ExternalReference::isolate_address()));
AllowExternalCallThatCantCauseGC scope(masm);
if (mode == INCREMENTAL_COMPACTION) {
__ CallCFunction(
ExternalReference::incremental_evacuation_record_write_function(
masm->isolate()),
argument_count);
} else {
ASSERT(mode == INCREMENTAL);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(
masm->isolate()),
argument_count);
}
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label object_is_black, need_incremental, need_incremental_pop_object;
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(),
regs_.scratch0(),
regs_.scratch1(),
&object_is_black,
Label::kNear);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&object_is_black);
// Get the value from the slot.
__ mov(regs_.scratch0(), Operand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask,
zero,
&ensure_not_white,
Label::kNear);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
not_zero,
&ensure_not_white,
Label::kNear);
__ jmp(&need_incremental);
__ bind(&ensure_not_white);
}
// We need an extra register for this, so we push the object register
// temporarily.
__ push(regs_.object());
__ EnsureNotWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
&need_incremental_pop_object,
Label::kNear);
__ pop(regs_.object());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&need_incremental_pop_object);
__ pop(regs_.object());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : element value to store
// -- ebx : array literal
// -- edi : map of array literal
// -- ecx : element index as smi
// -- edx : array literal index in function
// -- esp[0] : return address
// -----------------------------------
Label element_done;
Label double_elements;
Label smi_element;
Label slow_elements;
Label slow_elements_from_double;
Label fast_elements;
__ CheckFastElements(edi, &double_elements);
// FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
__ JumpIfSmi(eax, &smi_element);
__ CheckFastSmiOnlyElements(edi, &fast_elements, Label::kNear);
// Store into the array literal requires a elements transition. Call into
// the runtime.
__ bind(&slow_elements);
__ pop(edi); // Pop return address and remember to put back later for tail
// call.
__ push(ebx);
__ push(ecx);
__ push(eax);
__ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
__ push(edx);
__ push(edi); // Return return address so that tail call returns to right
// place.
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
__ bind(&slow_elements_from_double);
__ pop(edx);
__ jmp(&slow_elements);
// Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
__ bind(&fast_elements);
__ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
__ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
FixedArrayBase::kHeaderSize));
__ mov(Operand(ecx, 0), eax);
// Update the write barrier for the array store.
__ RecordWrite(ebx, ecx, eax,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ ret(0);
// Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
// FAST_ELEMENTS, and value is Smi.
__ bind(&smi_element);
__ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
__ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
FixedArrayBase::kHeaderSize), eax);
__ ret(0);
// Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
__ bind(&double_elements);
__ push(edx);
__ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
__ StoreNumberToDoubleElements(eax,
edx,
ecx,
edi,
xmm0,
&slow_elements_from_double,
false);
__ pop(edx);
__ ret(0);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32