| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "bootstrapper.h" |
| #include "code-stubs.h" |
| #include "isolate.h" |
| #include "jsregexp.h" |
| #include "regexp-macro-assembler.h" |
| #include "stub-cache.h" |
| #include "codegen.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void ToNumberStub::Generate(MacroAssembler* masm) { |
| // The ToNumber stub takes one argument in eax. |
| Label check_heap_number, call_builtin; |
| __ JumpIfNotSmi(eax, &check_heap_number, Label::kNear); |
| __ ret(0); |
| |
| __ bind(&check_heap_number); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(ebx, Immediate(factory->heap_number_map())); |
| __ j(not_equal, &call_builtin, Label::kNear); |
| __ ret(0); |
| |
| __ bind(&call_builtin); |
| __ pop(ecx); // Pop return address. |
| __ push(eax); |
| __ push(ecx); // Push return address. |
| __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Create a new closure from the given function info in new |
| // space. Set the context to the current context in esi. |
| Label gc; |
| __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the function info from the stack. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| |
| int map_index = (language_mode_ == CLASSIC_MODE) |
| ? Context::FUNCTION_MAP_INDEX |
| : Context::STRICT_MODE_FUNCTION_MAP_INDEX; |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); |
| __ mov(ecx, Operand(ecx, Context::SlotOffset(map_index))); |
| __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); |
| |
| // Initialize the rest of the function. We don't have to update the |
| // write barrier because the allocated object is in new space. |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(ebx, Immediate(factory->empty_fixed_array())); |
| __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); |
| __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset), |
| Immediate(factory->the_hole_value())); |
| __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx); |
| __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi); |
| __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx); |
| __ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset), |
| Immediate(factory->undefined_value())); |
| |
| // Initialize the code pointer in the function to be the one |
| // found in the shared function info object. |
| __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); |
| __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx); |
| |
| // Return and remove the on-stack parameter. |
| __ ret(1 * kPointerSize); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ pop(ecx); // Temporarily remove return address. |
| __ pop(edx); |
| __ push(esi); |
| __ push(edx); |
| __ push(Immediate(factory->false_value())); |
| __ push(ecx); // Restore return address. |
| __ TailCallRuntime(Runtime::kNewClosure, 3, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
| eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the function from the stack. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| |
| // Set up the object header. |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), |
| factory->function_context_map()); |
| __ mov(FieldOperand(eax, Context::kLengthOffset), |
| Immediate(Smi::FromInt(length))); |
| |
| // Set up the fixed slots. |
| __ Set(ebx, Immediate(0)); // Set to NULL. |
| __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); |
| __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), esi); |
| __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); |
| |
| // Copy the global object from the previous context. |
| __ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); |
| |
| // Initialize the rest of the slots to undefined. |
| __ mov(ebx, factory->undefined_value()); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ mov(Operand(eax, Context::SlotOffset(i)), ebx); |
| } |
| |
| // Return and remove the on-stack parameter. |
| __ mov(esi, eax); |
| __ ret(1 * kPointerSize); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1); |
| } |
| |
| |
| void FastNewBlockContextStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [esp + (1 * kPointerSize)]: function |
| // [esp + (2 * kPointerSize)]: serialized scope info |
| |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| __ AllocateInNewSpace(FixedArray::SizeFor(length), |
| eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the function or sentinel from the stack. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| |
| // Get the serialized scope info from the stack. |
| __ mov(ebx, Operand(esp, 2 * kPointerSize)); |
| |
| // Set up the object header. |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), |
| factory->block_context_map()); |
| __ mov(FieldOperand(eax, Context::kLengthOffset), |
| Immediate(Smi::FromInt(length))); |
| |
| // If this block context is nested in the global context we get a smi |
| // sentinel instead of a function. The block context should get the |
| // canonical empty function of the global context as its closure which |
| // we still have to look up. |
| Label after_sentinel; |
| __ JumpIfNotSmi(ecx, &after_sentinel, Label::kNear); |
| if (FLAG_debug_code) { |
| const char* message = "Expected 0 as a Smi sentinel"; |
| __ cmp(ecx, 0); |
| __ Assert(equal, message); |
| } |
| __ mov(ecx, GlobalObjectOperand()); |
| __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); |
| __ mov(ecx, ContextOperand(ecx, Context::CLOSURE_INDEX)); |
| __ bind(&after_sentinel); |
| |
| // Set up the fixed slots. |
| __ mov(ContextOperand(eax, Context::CLOSURE_INDEX), ecx); |
| __ mov(ContextOperand(eax, Context::PREVIOUS_INDEX), esi); |
| __ mov(ContextOperand(eax, Context::EXTENSION_INDEX), ebx); |
| |
| // Copy the global object from the previous context. |
| __ mov(ebx, ContextOperand(esi, Context::GLOBAL_INDEX)); |
| __ mov(ContextOperand(eax, Context::GLOBAL_INDEX), ebx); |
| |
| // Initialize the rest of the slots to the hole value. |
| if (slots_ == 1) { |
| __ mov(ContextOperand(eax, Context::MIN_CONTEXT_SLOTS), |
| factory->the_hole_value()); |
| } else { |
| __ mov(ebx, factory->the_hole_value()); |
| for (int i = 0; i < slots_; i++) { |
| __ mov(ContextOperand(eax, i + Context::MIN_CONTEXT_SLOTS), ebx); |
| } |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ mov(esi, eax); |
| __ ret(2 * kPointerSize); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); |
| } |
| |
| |
| static void GenerateFastCloneShallowArrayCommon( |
| MacroAssembler* masm, |
| int length, |
| FastCloneShallowArrayStub::Mode mode, |
| Label* fail) { |
| // Registers on entry: |
| // |
| // ecx: boilerplate literal array. |
| ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS); |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = 0; |
| if (length > 0) { |
| elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS |
| ? FixedDoubleArray::SizeFor(length) |
| : FixedArray::SizeFor(length); |
| } |
| int size = JSArray::kSize + elements_size; |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size, eax, ebx, edx, fail, TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length == 0)) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| } |
| |
| if (length > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| __ lea(edx, Operand(eax, JSArray::kSize)); |
| __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); |
| |
| // Copy the elements array. |
| if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) { |
| for (int i = 0; i < elements_size; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(edx, i), ebx); |
| } |
| } else { |
| ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS); |
| int i; |
| for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(edx, i), ebx); |
| } |
| while (i < elements_size) { |
| __ fld_d(FieldOperand(ecx, i)); |
| __ fstp_d(FieldOperand(edx, i)); |
| i += kDoubleSize; |
| } |
| ASSERT(i == elements_size); |
| } |
| } |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [esp + kPointerSize]: constant elements. |
| // [esp + (2 * kPointerSize)]: literal index. |
| // [esp + (3 * kPointerSize)]: literals array. |
| |
| // Load boilerplate object into ecx and check if we need to create a |
| // boilerplate. |
| __ mov(ecx, Operand(esp, 3 * kPointerSize)); |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); |
| STATIC_ASSERT(kPointerSize == 4); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size, |
| FixedArray::kHeaderSize)); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(ecx, factory->undefined_value()); |
| Label slow_case; |
| __ j(equal, &slow_case); |
| |
| FastCloneShallowArrayStub::Mode mode = mode_; |
| // ecx is boilerplate object. |
| if (mode == CLONE_ANY_ELEMENTS) { |
| Label double_elements, check_fast_elements; |
| __ mov(ebx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| __ CheckMap(ebx, factory->fixed_cow_array_map(), |
| &check_fast_elements, DONT_DO_SMI_CHECK); |
| GenerateFastCloneShallowArrayCommon(masm, 0, |
| COPY_ON_WRITE_ELEMENTS, &slow_case); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&check_fast_elements); |
| __ CheckMap(ebx, factory->fixed_array_map(), |
| &double_elements, DONT_DO_SMI_CHECK); |
| GenerateFastCloneShallowArrayCommon(masm, length_, |
| CLONE_ELEMENTS, &slow_case); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&double_elements); |
| mode = CLONE_DOUBLE_ELEMENTS; |
| // Fall through to generate the code to handle double elements. |
| } |
| |
| if (FLAG_debug_code) { |
| const char* message; |
| Handle<Map> expected_map; |
| if (mode == CLONE_ELEMENTS) { |
| message = "Expected (writable) fixed array"; |
| expected_map = factory->fixed_array_map(); |
| } else if (mode == CLONE_DOUBLE_ELEMENTS) { |
| message = "Expected (writable) fixed double array"; |
| expected_map = factory->fixed_double_array_map(); |
| } else { |
| ASSERT(mode == COPY_ON_WRITE_ELEMENTS); |
| message = "Expected copy-on-write fixed array"; |
| expected_map = factory->fixed_cow_array_map(); |
| } |
| __ push(ecx); |
| __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map); |
| __ Assert(equal, message); |
| __ pop(ecx); |
| } |
| |
| GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case); |
| // Return and remove the on-stack parameters. |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| } |
| |
| |
| void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [esp + kPointerSize]: object literal flags. |
| // [esp + (2 * kPointerSize)]: constant properties. |
| // [esp + (3 * kPointerSize)]: literal index. |
| // [esp + (4 * kPointerSize)]: literals array. |
| |
| // Load boilerplate object into ecx and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ mov(ecx, Operand(esp, 4 * kPointerSize)); |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| STATIC_ASSERT(kPointerSize == 4); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size, |
| FixedArray::kHeaderSize)); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(ecx, factory->undefined_value()); |
| __ j(equal, &slow_case); |
| |
| // Check that the boilerplate contains only fast properties and we can |
| // statically determine the instance size. |
| int size = JSObject::kHeaderSize + length_ * kPointerSize; |
| __ mov(eax, FieldOperand(ecx, HeapObject::kMapOffset)); |
| __ movzx_b(eax, FieldOperand(eax, Map::kInstanceSizeOffset)); |
| __ cmp(eax, Immediate(size >> kPointerSizeLog2)); |
| __ j(not_equal, &slow_case); |
| |
| // Allocate the JS object and copy header together with all in-object |
| // properties from the boilerplate. |
| __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); |
| for (int i = 0; i < size; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ ret(4 * kPointerSize); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1); |
| } |
| |
| |
| // The stub expects its argument on the stack and returns its result in tos_: |
| // zero for false, and a non-zero value for true. |
| void ToBooleanStub::Generate(MacroAssembler* masm) { |
| // This stub overrides SometimesSetsUpAFrame() to return false. That means |
| // we cannot call anything that could cause a GC from this stub. |
| Label patch; |
| Factory* factory = masm->isolate()->factory(); |
| const Register argument = eax; |
| const Register map = edx; |
| |
| if (!types_.IsEmpty()) { |
| __ mov(argument, Operand(esp, 1 * kPointerSize)); |
| } |
| |
| // undefined -> false |
| CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false); |
| |
| // Boolean -> its value |
| CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false); |
| CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true); |
| |
| // 'null' -> false. |
| CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false); |
| |
| if (types_.Contains(SMI)) { |
| // Smis: 0 -> false, all other -> true |
| Label not_smi; |
| __ JumpIfNotSmi(argument, ¬_smi, Label::kNear); |
| // argument contains the correct return value already. |
| if (!tos_.is(argument)) { |
| __ mov(tos_, argument); |
| } |
| __ ret(1 * kPointerSize); |
| __ bind(¬_smi); |
| } else if (types_.NeedsMap()) { |
| // If we need a map later and have a Smi -> patch. |
| __ JumpIfSmi(argument, &patch, Label::kNear); |
| } |
| |
| if (types_.NeedsMap()) { |
| __ mov(map, FieldOperand(argument, HeapObject::kMapOffset)); |
| |
| if (types_.CanBeUndetectable()) { |
| __ test_b(FieldOperand(map, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| // Undetectable -> false. |
| Label not_undetectable; |
| __ j(zero, ¬_undetectable, Label::kNear); |
| __ Set(tos_, Immediate(0)); |
| __ ret(1 * kPointerSize); |
| __ bind(¬_undetectable); |
| } |
| } |
| |
| if (types_.Contains(SPEC_OBJECT)) { |
| // spec object -> true. |
| Label not_js_object; |
| __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); |
| __ j(below, ¬_js_object, Label::kNear); |
| // argument contains the correct return value already. |
| if (!tos_.is(argument)) { |
| __ Set(tos_, Immediate(1)); |
| } |
| __ ret(1 * kPointerSize); |
| __ bind(¬_js_object); |
| } |
| |
| if (types_.Contains(STRING)) { |
| // String value -> false iff empty. |
| Label not_string; |
| __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); |
| __ j(above_equal, ¬_string, Label::kNear); |
| __ mov(tos_, FieldOperand(argument, String::kLengthOffset)); |
| __ ret(1 * kPointerSize); // the string length is OK as the return value |
| __ bind(¬_string); |
| } |
| |
| if (types_.Contains(HEAP_NUMBER)) { |
| // heap number -> false iff +0, -0, or NaN. |
| Label not_heap_number, false_result; |
| __ cmp(map, factory->heap_number_map()); |
| __ j(not_equal, ¬_heap_number, Label::kNear); |
| __ fldz(); |
| __ fld_d(FieldOperand(argument, HeapNumber::kValueOffset)); |
| __ FCmp(); |
| __ j(zero, &false_result, Label::kNear); |
| // argument contains the correct return value already. |
| if (!tos_.is(argument)) { |
| __ Set(tos_, Immediate(1)); |
| } |
| __ ret(1 * kPointerSize); |
| __ bind(&false_result); |
| __ Set(tos_, Immediate(0)); |
| __ ret(1 * kPointerSize); |
| __ bind(¬_heap_number); |
| } |
| |
| __ bind(&patch); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { |
| // We don't allow a GC during a store buffer overflow so there is no need to |
| // store the registers in any particular way, but we do have to store and |
| // restore them. |
| __ pushad(); |
| if (save_doubles_ == kSaveFPRegs) { |
| CpuFeatures::Scope scope(SSE2); |
| __ sub(esp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| __ movdbl(Operand(esp, i * kDoubleSize), reg); |
| } |
| } |
| const int argument_count = 1; |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ PrepareCallCFunction(argument_count, ecx); |
| __ mov(Operand(esp, 0 * kPointerSize), |
| Immediate(ExternalReference::isolate_address())); |
| __ CallCFunction( |
| ExternalReference::store_buffer_overflow_function(masm->isolate()), |
| argument_count); |
| if (save_doubles_ == kSaveFPRegs) { |
| CpuFeatures::Scope scope(SSE2); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| __ movdbl(reg, Operand(esp, i * kDoubleSize)); |
| } |
| __ add(esp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); |
| } |
| __ popad(); |
| __ ret(0); |
| } |
| |
| |
| void ToBooleanStub::CheckOddball(MacroAssembler* masm, |
| Type type, |
| Heap::RootListIndex value, |
| bool result) { |
| const Register argument = eax; |
| if (types_.Contains(type)) { |
| // If we see an expected oddball, return its ToBoolean value tos_. |
| Label different_value; |
| __ CompareRoot(argument, value); |
| __ j(not_equal, &different_value, Label::kNear); |
| if (!result) { |
| // If we have to return zero, there is no way around clearing tos_. |
| __ Set(tos_, Immediate(0)); |
| } else if (!tos_.is(argument)) { |
| // If we have to return non-zero, we can re-use the argument if it is the |
| // same register as the result, because we never see Smi-zero here. |
| __ Set(tos_, Immediate(1)); |
| } |
| __ ret(1 * kPointerSize); |
| __ bind(&different_value); |
| } |
| } |
| |
| |
| void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) { |
| __ pop(ecx); // Get return address, operand is now on top of stack. |
| __ push(Immediate(Smi::FromInt(tos_.code()))); |
| __ push(Immediate(Smi::FromInt(types_.ToByte()))); |
| __ push(ecx); // Push return address. |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()), |
| 3, |
| 1); |
| } |
| |
| |
| class FloatingPointHelper : public AllStatic { |
| public: |
| enum ArgLocation { |
| ARGS_ON_STACK, |
| ARGS_IN_REGISTERS |
| }; |
| |
| // Code pattern for loading a floating point value. Input value must |
| // be either a smi or a heap number object (fp value). Requirements: |
| // operand in register number. Returns operand as floating point number |
| // on FPU stack. |
| static void LoadFloatOperand(MacroAssembler* masm, Register number); |
| |
| // Code pattern for loading floating point values. Input values must |
| // be either smi or heap number objects (fp values). Requirements: |
| // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. |
| // Returns operands as floating point numbers on FPU stack. |
| static void LoadFloatOperands(MacroAssembler* masm, |
| Register scratch, |
| ArgLocation arg_location = ARGS_ON_STACK); |
| |
| // Similar to LoadFloatOperand but assumes that both operands are smis. |
| // Expects operands in edx, eax. |
| static void LoadFloatSmis(MacroAssembler* masm, Register scratch); |
| |
| // Test if operands are smi or number objects (fp). Requirements: |
| // operand_1 in eax, operand_2 in edx; falls through on float |
| // operands, jumps to the non_float label otherwise. |
| static void CheckFloatOperands(MacroAssembler* masm, |
| Label* non_float, |
| Register scratch); |
| |
| // Checks that the two floating point numbers on top of the FPU stack |
| // have int32 values. |
| static void CheckFloatOperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32); |
| |
| // Takes the operands in edx and eax and loads them as integers in eax |
| // and ecx. |
| static void LoadUnknownsAsIntegers(MacroAssembler* masm, |
| bool use_sse3, |
| Label* operand_conversion_failure); |
| |
| // Must only be called after LoadUnknownsAsIntegers. Assumes that the |
| // operands are pushed on the stack, and that their conversions to int32 |
| // are in eax and ecx. Checks that the original numbers were in the int32 |
| // range. |
| static void CheckLoadedIntegersWereInt32(MacroAssembler* masm, |
| bool use_sse3, |
| Label* not_int32); |
| |
| // Assumes that operands are smis or heap numbers and loads them |
| // into xmm0 and xmm1. Operands are in edx and eax. |
| // Leaves operands unchanged. |
| static void LoadSSE2Operands(MacroAssembler* masm); |
| |
| // Test if operands are numbers (smi or HeapNumber objects), and load |
| // them into xmm0 and xmm1 if they are. Jump to label not_numbers if |
| // either operand is not a number. Operands are in edx and eax. |
| // Leaves operands unchanged. |
| static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); |
| |
| // Similar to LoadSSE2Operands but assumes that both operands are smis. |
| // Expects operands in edx, eax. |
| static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); |
| |
| // Checks that the two floating point numbers loaded into xmm0 and xmm1 |
| // have int32 values. |
| static void CheckSSE2OperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32, |
| Register scratch); |
| }; |
| |
| |
| // Get the integer part of a heap number. Surprisingly, all this bit twiddling |
| // is faster than using the built-in instructions on floating point registers. |
| // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the |
| // trashed registers. |
| static void IntegerConvert(MacroAssembler* masm, |
| Register source, |
| bool use_sse3, |
| Label* conversion_failure) { |
| ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); |
| Label done, right_exponent, normal_exponent; |
| Register scratch = ebx; |
| Register scratch2 = edi; |
| // Get exponent word. |
| __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| __ mov(scratch2, scratch); |
| __ and_(scratch2, HeapNumber::kExponentMask); |
| if (use_sse3) { |
| CpuFeatures::Scope scope(SSE3); |
| // Check whether the exponent is too big for a 64 bit signed integer. |
| static const uint32_t kTooBigExponent = |
| (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
| __ cmp(scratch2, Immediate(kTooBigExponent)); |
| __ j(greater_equal, conversion_failure); |
| // Load x87 register with heap number. |
| __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); |
| // Reserve space for 64 bit answer. |
| __ sub(esp, Immediate(sizeof(uint64_t))); // Nolint. |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. |
| __ add(esp, Immediate(sizeof(uint64_t))); // Nolint. |
| } else { |
| // Load ecx with zero. We use this either for the final shift or |
| // for the answer. |
| __ xor_(ecx, ecx); |
| // Check whether the exponent matches a 32 bit signed int that cannot be |
| // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the |
| // exponent is 30 (biased). This is the exponent that we are fastest at and |
| // also the highest exponent we can handle here. |
| const uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ cmp(scratch2, Immediate(non_smi_exponent)); |
| // If we have a match of the int32-but-not-Smi exponent then skip some |
| // logic. |
| __ j(equal, &right_exponent, Label::kNear); |
| // If the exponent is higher than that then go to slow case. This catches |
| // numbers that don't fit in a signed int32, infinities and NaNs. |
| __ j(less, &normal_exponent, Label::kNear); |
| |
| { |
| // Handle a big exponent. The only reason we have this code is that the |
| // >>> operator has a tendency to generate numbers with an exponent of 31. |
| const uint32_t big_non_smi_exponent = |
| (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
| __ cmp(scratch2, Immediate(big_non_smi_exponent)); |
| __ j(not_equal, conversion_failure); |
| // We have the big exponent, typically from >>>. This means the number is |
| // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. |
| __ mov(scratch2, scratch); |
| __ and_(scratch2, HeapNumber::kMantissaMask); |
| // Put back the implicit 1. |
| __ or_(scratch2, 1 << HeapNumber::kExponentShift); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to use the full unsigned range so we subtract 1 bit from the |
| // shift distance. |
| const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| __ shl(scratch2, big_shift_distance); |
| // Get the second half of the double. |
| __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 21 bits to get the most significant 11 bits or the low |
| // mantissa word. |
| __ shr(ecx, 32 - big_shift_distance); |
| __ or_(ecx, scratch2); |
| // We have the answer in ecx, but we may need to negate it. |
| __ test(scratch, scratch); |
| __ j(positive, &done, Label::kNear); |
| __ neg(ecx); |
| __ jmp(&done, Label::kNear); |
| } |
| |
| __ bind(&normal_exponent); |
| // Exponent word in scratch, exponent part of exponent word in scratch2. |
| // Zero in ecx. |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. |
| // it rounds to zero. |
| const uint32_t zero_exponent = |
| (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| __ sub(scratch2, Immediate(zero_exponent)); |
| // ecx already has a Smi zero. |
| __ j(less, &done, Label::kNear); |
| |
| // We have a shifted exponent between 0 and 30 in scratch2. |
| __ shr(scratch2, HeapNumber::kExponentShift); |
| __ mov(ecx, Immediate(30)); |
| __ sub(ecx, scratch2); |
| |
| __ bind(&right_exponent); |
| // Here ecx is the shift, scratch is the exponent word. |
| // Get the top bits of the mantissa. |
| __ and_(scratch, HeapNumber::kMantissaMask); |
| // Put back the implicit 1. |
| __ or_(scratch, 1 << HeapNumber::kExponentShift); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We have kExponentShift + 1 significant bits int he low end of the |
| // word. Shift them to the top bits. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ shl(scratch, shift_distance); |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 22 bits to get the most significant 10 bits or the low |
| // mantissa word. |
| __ shr(scratch2, 32 - shift_distance); |
| __ or_(scratch2, scratch); |
| // Move down according to the exponent. |
| __ shr_cl(scratch2); |
| // Now the unsigned answer is in scratch2. We need to move it to ecx and |
| // we may need to fix the sign. |
| Label negative; |
| __ xor_(ecx, ecx); |
| __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); |
| __ j(greater, &negative, Label::kNear); |
| __ mov(ecx, scratch2); |
| __ jmp(&done, Label::kNear); |
| __ bind(&negative); |
| __ sub(ecx, scratch2); |
| __ bind(&done); |
| } |
| } |
| |
| |
| void UnaryOpStub::PrintName(StringStream* stream) { |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name = NULL; // Make g++ happy. |
| switch (mode_) { |
| case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; |
| } |
| stream->Add("UnaryOpStub_%s_%s_%s", |
| op_name, |
| overwrite_name, |
| UnaryOpIC::GetName(operand_type_)); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::Generate(MacroAssembler* masm) { |
| switch (operand_type_) { |
| case UnaryOpIC::UNINITIALIZED: |
| GenerateTypeTransition(masm); |
| break; |
| case UnaryOpIC::SMI: |
| GenerateSmiStub(masm); |
| break; |
| case UnaryOpIC::HEAP_NUMBER: |
| GenerateHeapNumberStub(masm); |
| break; |
| case UnaryOpIC::GENERIC: |
| GenerateGenericStub(masm); |
| break; |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| __ pop(ecx); // Save return address. |
| |
| __ push(eax); // the operand |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ push(Immediate(Smi::FromInt(mode_))); |
| __ push(Immediate(Smi::FromInt(operand_type_))); |
| |
| __ push(ecx); // Push return address. |
| |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
| switch (op_) { |
| case Token::SUB: |
| GenerateSmiStubSub(masm); |
| break; |
| case Token::BIT_NOT: |
| GenerateSmiStubBitNot(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { |
| Label non_smi, undo, slow; |
| GenerateSmiCodeSub(masm, &non_smi, &undo, &slow, |
| Label::kNear, Label::kNear, Label::kNear); |
| __ bind(&undo); |
| GenerateSmiCodeUndo(masm); |
| __ bind(&non_smi); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { |
| Label non_smi; |
| GenerateSmiCodeBitNot(masm, &non_smi); |
| __ bind(&non_smi); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, |
| Label* non_smi, |
| Label* undo, |
| Label* slow, |
| Label::Distance non_smi_near, |
| Label::Distance undo_near, |
| Label::Distance slow_near) { |
| // Check whether the value is a smi. |
| __ JumpIfNotSmi(eax, non_smi, non_smi_near); |
| |
| // We can't handle -0 with smis, so use a type transition for that case. |
| __ test(eax, eax); |
| __ j(zero, slow, slow_near); |
| |
| // Try optimistic subtraction '0 - value', saving operand in eax for undo. |
| __ mov(edx, eax); |
| __ Set(eax, Immediate(0)); |
| __ sub(eax, edx); |
| __ j(overflow, undo, undo_near); |
| __ ret(0); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiCodeBitNot( |
| MacroAssembler* masm, |
| Label* non_smi, |
| Label::Distance non_smi_near) { |
| // Check whether the value is a smi. |
| __ JumpIfNotSmi(eax, non_smi, non_smi_near); |
| |
| // Flip bits and revert inverted smi-tag. |
| __ not_(eax); |
| __ and_(eax, ~kSmiTagMask); |
| __ ret(0); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiCodeUndo(MacroAssembler* masm) { |
| __ mov(eax, edx); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
| switch (op_) { |
| case Token::SUB: |
| GenerateHeapNumberStubSub(masm); |
| break; |
| case Token::BIT_NOT: |
| GenerateHeapNumberStubBitNot(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { |
| Label non_smi, undo, slow, call_builtin; |
| GenerateSmiCodeSub(masm, &non_smi, &undo, &call_builtin, Label::kNear); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeSub(masm, &slow); |
| __ bind(&undo); |
| GenerateSmiCodeUndo(masm); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| __ bind(&call_builtin); |
| GenerateGenericCodeFallback(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberStubBitNot( |
| MacroAssembler* masm) { |
| Label non_smi, slow; |
| GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeBitNot(masm, &slow); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, |
| Label* slow) { |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(edx, masm->isolate()->factory()->heap_number_map()); |
| __ j(not_equal, slow); |
| |
| if (mode_ == UNARY_OVERWRITE) { |
| __ xor_(FieldOperand(eax, HeapNumber::kExponentOffset), |
| Immediate(HeapNumber::kSignMask)); // Flip sign. |
| } else { |
| __ mov(edx, eax); |
| // edx: operand |
| |
| Label slow_allocate_heapnumber, heapnumber_allocated; |
| __ AllocateHeapNumber(eax, ebx, ecx, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated, Label::kNear); |
| |
| __ bind(&slow_allocate_heapnumber); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(edx); |
| __ CallRuntime(Runtime::kNumberAlloc, 0); |
| __ pop(edx); |
| } |
| |
| __ bind(&heapnumber_allocated); |
| // eax: allocated 'empty' number |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. |
| __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); |
| __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); |
| } |
| __ ret(0); |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm, |
| Label* slow) { |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(edx, masm->isolate()->factory()->heap_number_map()); |
| __ j(not_equal, slow); |
| |
| // Convert the heap number in eax to an untagged integer in ecx. |
| IntegerConvert(masm, eax, CpuFeatures::IsSupported(SSE3), slow); |
| |
| // Do the bitwise operation and check if the result fits in a smi. |
| Label try_float; |
| __ not_(ecx); |
| __ cmp(ecx, 0xc0000000); |
| __ j(sign, &try_float, Label::kNear); |
| |
| // Tag the result as a smi and we're done. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ lea(eax, Operand(ecx, times_2, kSmiTag)); |
| __ ret(0); |
| |
| // Try to store the result in a heap number. |
| __ bind(&try_float); |
| if (mode_ == UNARY_NO_OVERWRITE) { |
| Label slow_allocate_heapnumber, heapnumber_allocated; |
| __ mov(ebx, eax); |
| __ AllocateHeapNumber(eax, edx, edi, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated); |
| |
| __ bind(&slow_allocate_heapnumber); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push the original HeapNumber on the stack. The integer value can't |
| // be stored since it's untagged and not in the smi range (so we can't |
| // smi-tag it). We'll recalculate the value after the GC instead. |
| __ push(ebx); |
| __ CallRuntime(Runtime::kNumberAlloc, 0); |
| // New HeapNumber is in eax. |
| __ pop(edx); |
| } |
| // IntegerConvert uses ebx and edi as scratch registers. |
| // This conversion won't go slow-case. |
| IntegerConvert(masm, edx, CpuFeatures::IsSupported(SSE3), slow); |
| __ not_(ecx); |
| |
| __ bind(&heapnumber_allocated); |
| } |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, ecx); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ push(ecx); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(ecx); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(0); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { |
| switch (op_) { |
| case Token::SUB: |
| GenerateGenericStubSub(masm); |
| break; |
| case Token::BIT_NOT: |
| GenerateGenericStubBitNot(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { |
| Label non_smi, undo, slow; |
| GenerateSmiCodeSub(masm, &non_smi, &undo, &slow, Label::kNear); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeSub(masm, &slow); |
| __ bind(&undo); |
| GenerateSmiCodeUndo(masm); |
| __ bind(&slow); |
| GenerateGenericCodeFallback(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { |
| Label non_smi, slow; |
| GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeBitNot(masm, &slow); |
| __ bind(&slow); |
| GenerateGenericCodeFallback(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) { |
| // Handle the slow case by jumping to the corresponding JavaScript builtin. |
| __ pop(ecx); // pop return address. |
| __ push(eax); |
| __ push(ecx); // push return address |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| __ pop(ecx); // Save return address. |
| __ push(edx); |
| __ push(eax); |
| // Left and right arguments are now on top. |
| // Push this stub's key. Although the operation and the type info are |
| // encoded into the key, the encoding is opaque, so push them too. |
| __ push(Immediate(Smi::FromInt(MinorKey()))); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ push(Immediate(Smi::FromInt(operands_type_))); |
| |
| __ push(ecx); // Push return address. |
| |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kBinaryOp_Patch), |
| masm->isolate()), |
| 5, |
| 1); |
| } |
| |
| |
| // Prepare for a type transition runtime call when the args are already on |
| // the stack, under the return address. |
| void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm) { |
| __ pop(ecx); // Save return address. |
| // Left and right arguments are already on top of the stack. |
| // Push this stub's key. Although the operation and the type info are |
| // encoded into the key, the encoding is opaque, so push them too. |
| __ push(Immediate(Smi::FromInt(MinorKey()))); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ push(Immediate(Smi::FromInt(operands_type_))); |
| |
| __ push(ecx); // Push return address. |
| |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kBinaryOp_Patch), |
| masm->isolate()), |
| 5, |
| 1); |
| } |
| |
| |
| void BinaryOpStub::Generate(MacroAssembler* masm) { |
| // Explicitly allow generation of nested stubs. It is safe here because |
| // generation code does not use any raw pointers. |
| AllowStubCallsScope allow_stub_calls(masm, true); |
| |
| switch (operands_type_) { |
| case BinaryOpIC::UNINITIALIZED: |
| GenerateTypeTransition(masm); |
| break; |
| case BinaryOpIC::SMI: |
| GenerateSmiStub(masm); |
| break; |
| case BinaryOpIC::INT32: |
| GenerateInt32Stub(masm); |
| break; |
| case BinaryOpIC::HEAP_NUMBER: |
| GenerateHeapNumberStub(masm); |
| break; |
| case BinaryOpIC::ODDBALL: |
| GenerateOddballStub(masm); |
| break; |
| case BinaryOpIC::BOTH_STRING: |
| GenerateBothStringStub(masm); |
| break; |
| case BinaryOpIC::STRING: |
| GenerateStringStub(masm); |
| break; |
| case BinaryOpIC::GENERIC: |
| GenerateGeneric(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::PrintName(StringStream* stream) { |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| stream->Add("BinaryOpStub_%s_%s_%s", |
| op_name, |
| overwrite_name, |
| BinaryOpIC::GetName(operands_type_)); |
| } |
| |
| |
| void BinaryOpStub::GenerateSmiCode( |
| MacroAssembler* masm, |
| Label* slow, |
| SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { |
| // 1. Move arguments into edx, eax except for DIV and MOD, which need the |
| // dividend in eax and edx free for the division. Use eax, ebx for those. |
| Comment load_comment(masm, "-- Load arguments"); |
| Register left = edx; |
| Register right = eax; |
| if (op_ == Token::DIV || op_ == Token::MOD) { |
| left = eax; |
| right = ebx; |
| __ mov(ebx, eax); |
| __ mov(eax, edx); |
| } |
| |
| |
| // 2. Prepare the smi check of both operands by oring them together. |
| Comment smi_check_comment(masm, "-- Smi check arguments"); |
| Label not_smis; |
| Register combined = ecx; |
| ASSERT(!left.is(combined) && !right.is(combined)); |
| switch (op_) { |
| case Token::BIT_OR: |
| // Perform the operation into eax and smi check the result. Preserve |
| // eax in case the result is not a smi. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, left); // Bitwise or is commutative. |
| combined = right; |
| break; |
| |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| __ mov(combined, right); |
| __ or_(combined, left); |
| break; |
| |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Move the right operand into ecx for the shift operation, use eax |
| // for the smi check register. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, left); |
| combined = right; |
| break; |
| |
| default: |
| break; |
| } |
| |
| // 3. Perform the smi check of the operands. |
| STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. |
| __ JumpIfNotSmi(combined, ¬_smis); |
| |
| // 4. Operands are both smis, perform the operation leaving the result in |
| // eax and check the result if necessary. |
| Comment perform_smi(masm, "-- Perform smi operation"); |
| Label use_fp_on_smis; |
| switch (op_) { |
| case Token::BIT_OR: |
| // Nothing to do. |
| break; |
| |
| case Token::BIT_XOR: |
| ASSERT(right.is(eax)); |
| __ xor_(right, left); // Bitwise xor is commutative. |
| break; |
| |
| case Token::BIT_AND: |
| ASSERT(right.is(eax)); |
| __ and_(right, left); // Bitwise and is commutative. |
| break; |
| |
| case Token::SHL: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shl_cl(left); |
| // Check that the *signed* result fits in a smi. |
| __ cmp(left, 0xc0000000); |
| __ j(sign, &use_fp_on_smis); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SAR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ sar_cl(left); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SHR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shr_cl(left); |
| // Check that the *unsigned* result fits in a smi. |
| // Neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging. |
| // - 0x40000000: this number would convert to negative when |
| // Smi tagging these two cases can only happen with shifts |
| // by 0 or 1 when handed a valid smi. |
| __ test(left, Immediate(0xc0000000)); |
| __ j(not_zero, &use_fp_on_smis); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::ADD: |
| ASSERT(right.is(eax)); |
| __ add(right, left); // Addition is commutative. |
| __ j(overflow, &use_fp_on_smis); |
| break; |
| |
| case Token::SUB: |
| __ sub(left, right); |
| __ j(overflow, &use_fp_on_smis); |
| __ mov(eax, left); |
| break; |
| |
| case Token::MUL: |
| // If the smi tag is 0 we can just leave the tag on one operand. |
| STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| // We can't revert the multiplication if the result is not a smi |
| // so save the right operand. |
| __ mov(ebx, right); |
| // Remove tag from one of the operands (but keep sign). |
| __ SmiUntag(right); |
| // Do multiplication. |
| __ imul(right, left); // Multiplication is commutative. |
| __ j(overflow, &use_fp_on_smis); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(right, combined, &use_fp_on_smis); |
| break; |
| |
| case Token::DIV: |
| // We can't revert the division if the result is not a smi so |
| // save the left operand. |
| __ mov(edi, left); |
| // Check for 0 divisor. |
| __ test(right, right); |
| __ j(zero, &use_fp_on_smis); |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for the corner case of dividing the most negative smi by |
| // -1. We cannot use the overflow flag, since it is not set by idiv |
| // instruction. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ cmp(eax, 0x40000000); |
| __ j(equal, &use_fp_on_smis); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(eax, combined, &use_fp_on_smis); |
| // Check that the remainder is zero. |
| __ test(edx, edx); |
| __ j(not_zero, &use_fp_on_smis); |
| // Tag the result and store it in register eax. |
| __ SmiTag(eax); |
| break; |
| |
| case Token::MOD: |
| // Check for 0 divisor. |
| __ test(right, right); |
| __ j(zero, ¬_smis); |
| |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(edx, combined, slow); |
| // Move remainder to register eax. |
| __ mov(eax, edx); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| // 5. Emit return of result in eax. Some operations have registers pushed. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| __ ret(0); |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| __ ret(2 * kPointerSize); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // 6. For some operations emit inline code to perform floating point |
| // operations on known smis (e.g., if the result of the operation |
| // overflowed the smi range). |
| if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) { |
| __ bind(&use_fp_on_smis); |
| switch (op_) { |
| // Undo the effects of some operations, and some register moves. |
| case Token::SHL: |
| // The arguments are saved on the stack, and only used from there. |
| break; |
| case Token::ADD: |
| // Revert right = right + left. |
| __ sub(right, left); |
| break; |
| case Token::SUB: |
| // Revert left = left - right. |
| __ add(left, right); |
| break; |
| case Token::MUL: |
| // Right was clobbered but a copy is in ebx. |
| __ mov(right, ebx); |
| break; |
| case Token::DIV: |
| // Left was clobbered but a copy is in edi. Right is in ebx for |
| // division. They should be in eax, ebx for jump to not_smi. |
| __ mov(eax, edi); |
| break; |
| default: |
| // No other operators jump to use_fp_on_smis. |
| break; |
| } |
| __ jmp(¬_smis); |
| } else { |
| ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS); |
| switch (op_) { |
| case Token::SHL: |
| case Token::SHR: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Result we want is in left == edx, so we can put the allocated heap |
| // number in eax. |
| __ AllocateHeapNumber(eax, ecx, ebx, slow); |
| // Store the result in the HeapNumber and return. |
| // It's OK to overwrite the arguments on the stack because we |
| // are about to return. |
| if (op_ == Token::SHR) { |
| __ mov(Operand(esp, 1 * kPointerSize), left); |
| __ mov(Operand(esp, 2 * kPointerSize), Immediate(0)); |
| __ fild_d(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } else { |
| ASSERT_EQ(Token::SHL, op_); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, left); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), left); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| } |
| __ ret(2 * kPointerSize); |
| break; |
| } |
| |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Restore arguments to edx, eax. |
| switch (op_) { |
| case Token::ADD: |
| // Revert right = right + left. |
| __ sub(right, left); |
| break; |
| case Token::SUB: |
| // Revert left = left - right. |
| __ add(left, right); |
| break; |
| case Token::MUL: |
| // Right was clobbered but a copy is in ebx. |
| __ mov(right, ebx); |
| break; |
| case Token::DIV: |
| // Left was clobbered but a copy is in edi. Right is in ebx for |
| // division. |
| __ mov(edx, edi); |
| __ mov(eax, right); |
| break; |
| default: UNREACHABLE(); |
| break; |
| } |
| __ AllocateHeapNumber(ecx, ebx, no_reg, slow); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Smis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::LoadFloatSmis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); |
| } |
| __ mov(eax, ecx); |
| __ ret(0); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| // 7. Non-smi operands, fall out to the non-smi code with the operands in |
| // edx and eax. |
| Comment done_comment(masm, "-- Enter non-smi code"); |
| __ bind(¬_smis); |
| switch (op_) { |
| case Token::BIT_OR: |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Right operand is saved in ecx and eax was destroyed by the smi |
| // check. |
| __ mov(eax, ecx); |
| break; |
| |
| case Token::DIV: |
| case Token::MOD: |
| // Operands are in eax, ebx at this point. |
| __ mov(edx, eax); |
| __ mov(eax, ebx); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| GenerateRegisterArgsPush(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (result_type_ == BinaryOpIC::UNINITIALIZED || |
| result_type_ == BinaryOpIC::SMI) { |
| GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS); |
| } else { |
| GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
| } |
| __ bind(&call_runtime); |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| GenerateTypeTransition(masm); |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| GenerateTypeTransitionWithSavedArgs(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) { |
| ASSERT(operands_type_ == BinaryOpIC::STRING); |
| ASSERT(op_ == Token::ADD); |
| // Try to add arguments as strings, otherwise, transition to the generic |
| // BinaryOpIC type. |
| GenerateAddStrings(masm); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { |
| Label call_runtime; |
| ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING); |
| ASSERT(op_ == Token::ADD); |
| // If both arguments are strings, call the string add stub. |
| // Otherwise, do a transition. |
| |
| // Registers containing left and right operands respectively. |
| Register left = edx; |
| Register right = eax; |
| |
| // Test if left operand is a string. |
| __ JumpIfSmi(left, &call_runtime, Label::kNear); |
| __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &call_runtime, Label::kNear); |
| |
| // Test if right operand is a string. |
| __ JumpIfSmi(right, &call_runtime, Label::kNear); |
| __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &call_runtime, Label::kNear); |
| |
| StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_stub); |
| |
| __ bind(&call_runtime); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
| Label call_runtime; |
| ASSERT(operands_type_ == BinaryOpIC::INT32); |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Label not_floats; |
| Label not_int32; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, ¬_int32, ecx); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| // Check result type if it is currently Int32. |
| if (result_type_ <= BinaryOpIC::INT32) { |
| __ cvttsd2si(ecx, Operand(xmm0)); |
| __ cvtsi2sd(xmm2, ecx); |
| __ ucomisd(xmm0, xmm2); |
| __ j(not_zero, ¬_int32); |
| __ j(carry, ¬_int32); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| __ ret(0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| FloatingPointHelper::CheckFloatOperandsAreInt32(masm, ¬_int32); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(0); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| |
| __ bind(¬_floats); |
| __ bind(¬_int32); |
| GenerateTypeTransition(masm); |
| break; |
| } |
| |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| GenerateRegisterArgsPush(masm); |
| Label not_floats; |
| Label not_int32; |
| Label non_smi_result; |
| /* { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, ¬_int32, ecx); |
| }*/ |
| FloatingPointHelper::LoadUnknownsAsIntegers(masm, |
| use_sse3_, |
| ¬_floats); |
| FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_, |
| ¬_int32); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, ecx); break; |
| case Token::BIT_AND: __ and_(eax, ecx); break; |
| case Token::BIT_XOR: __ xor_(eax, ecx); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result, Label::kNear); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, eax); // ebx: result |
| Label skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, ebx); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| } |
| |
| __ bind(¬_floats); |
| __ bind(¬_int32); |
| GenerateTypeTransitionWithSavedArgs(masm); |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If an allocation fails, or SHR or MOD hit a hard case, |
| // use the runtime system to get the correct result. |
| __ bind(&call_runtime); |
| |
| switch (op_) { |
| case Token::ADD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| case Token::SUB: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { |
| if (op_ == Token::ADD) { |
| // Handle string addition here, because it is the only operation |
| // that does not do a ToNumber conversion on the operands. |
| GenerateAddStrings(masm); |
| } |
| |
| Factory* factory = masm->isolate()->factory(); |
| |
| // Convert odd ball arguments to numbers. |
| Label check, done; |
| __ cmp(edx, factory->undefined_value()); |
| __ j(not_equal, &check, Label::kNear); |
| if (Token::IsBitOp(op_)) { |
| __ xor_(edx, edx); |
| } else { |
| __ mov(edx, Immediate(factory->nan_value())); |
| } |
| __ jmp(&done, Label::kNear); |
| __ bind(&check); |
| __ cmp(eax, factory->undefined_value()); |
| __ j(not_equal, &done, Label::kNear); |
| if (Token::IsBitOp(op_)) { |
| __ xor_(eax, eax); |
| } else { |
| __ mov(eax, Immediate(factory->nan_value())); |
| } |
| __ bind(&done); |
| |
| GenerateHeapNumberStub(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Label not_floats; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| __ ret(0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(0); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| |
| __ bind(¬_floats); |
| GenerateTypeTransition(masm); |
| break; |
| } |
| |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| GenerateRegisterArgsPush(masm); |
| Label not_floats; |
| Label non_smi_result; |
| FloatingPointHelper::LoadUnknownsAsIntegers(masm, |
| use_sse3_, |
| ¬_floats); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, ecx); break; |
| case Token::BIT_AND: __ and_(eax, ecx); break; |
| case Token::BIT_XOR: __ xor_(eax, ecx); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result, Label::kNear); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, eax); // ebx: result |
| Label skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, ebx); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| } |
| |
| __ bind(¬_floats); |
| GenerateTypeTransitionWithSavedArgs(masm); |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If an allocation fails, or SHR or MOD hit a hard case, |
| // use the runtime system to get the correct result. |
| __ bind(&call_runtime); |
| |
| switch (op_) { |
| case Token::ADD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| case Token::SUB: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->generic_binary_stub_calls(), 1); |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| GenerateRegisterArgsPush(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Label not_floats; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| __ ret(0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(0); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| __ bind(¬_floats); |
| break; |
| } |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| Label non_smi_result; |
| FloatingPointHelper::LoadUnknownsAsIntegers(masm, |
| use_sse3_, |
| &call_runtime); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, ecx); break; |
| case Token::BIT_AND: __ and_(eax, ecx); break; |
| case Token::BIT_XOR: __ xor_(eax, ecx); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result, Label::kNear); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| __ ret(2 * kPointerSize); // Drop the arguments from the stack. |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, eax); // ebx: result |
| Label skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, ebx); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); |
| } |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If all else fails, use the runtime system to get the correct |
| // result. |
| __ bind(&call_runtime); |
| switch (op_) { |
| case Token::ADD: { |
| GenerateAddStrings(masm); |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| } |
| case Token::SUB: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { |
| ASSERT(op_ == Token::ADD); |
| Label left_not_string, call_runtime; |
| |
| // Registers containing left and right operands respectively. |
| Register left = edx; |
| Register right = eax; |
| |
| // Test if left operand is a string. |
| __ JumpIfSmi(left, &left_not_string, Label::kNear); |
| __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &left_not_string, Label::kNear); |
| |
| StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_left_stub); |
| |
| // Left operand is not a string, test right. |
| __ bind(&left_not_string); |
| __ JumpIfSmi(right, &call_runtime, Label::kNear); |
| __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &call_runtime, Label::kNear); |
| |
| StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_right_stub); |
| |
| // Neither argument is a string. |
| __ bind(&call_runtime); |
| } |
| |
| |
| void BinaryOpStub::GenerateHeapResultAllocation( |
| MacroAssembler* masm, |
| Label* alloc_failure) { |
| Label skip_allocation; |
| OverwriteMode mode = mode_; |
| switch (mode) { |
| case OVERWRITE_LEFT: { |
| // If the argument in edx is already an object, we skip the |
| // allocation of a heap number. |
| __ JumpIfNotSmi(edx, &skip_allocation, Label::kNear); |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now edx can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(edx, ebx); |
| __ bind(&skip_allocation); |
| // Use object in edx as a result holder |
| __ mov(eax, edx); |
| break; |
| } |
| case OVERWRITE_RIGHT: |
| // If the argument in eax is already an object, we skip the |
| // allocation of a heap number. |
| __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); |
| // Fall through! |
| case NO_OVERWRITE: |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now eax can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(eax, ebx); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| __ pop(ecx); |
| __ push(edx); |
| __ push(eax); |
| __ push(ecx); |
| } |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // TAGGED case: |
| // Input: |
| // esp[4]: tagged number input argument (should be number). |
| // esp[0]: return address. |
| // Output: |
| // eax: tagged double result. |
| // UNTAGGED case: |
| // Input:: |
| // esp[0]: return address. |
| // xmm1: untagged double input argument |
| // Output: |
| // xmm1: untagged double result. |
| |
| Label runtime_call; |
| Label runtime_call_clear_stack; |
| Label skip_cache; |
| const bool tagged = (argument_type_ == TAGGED); |
| if (tagged) { |
| // Test that eax is a number. |
| Label input_not_smi; |
| Label loaded; |
| __ mov(eax, Operand(esp, kPointerSize)); |
| __ JumpIfNotSmi(eax, &input_not_smi, Label::kNear); |
| // Input is a smi. Untag and load it onto the FPU stack. |
| // Then load the low and high words of the double into ebx, edx. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ sar(eax, 1); |
| __ sub(esp, Immediate(2 * kPointerSize)); |
| __ mov(Operand(esp, 0), eax); |
| __ fild_s(Operand(esp, 0)); |
| __ fst_d(Operand(esp, 0)); |
| __ pop(edx); |
| __ pop(ebx); |
| __ jmp(&loaded, Label::kNear); |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(ebx, Immediate(factory->heap_number_map())); |
| __ j(not_equal, &runtime_call); |
| // Input is a HeapNumber. Push it on the FPU stack and load its |
| // low and high words into ebx, edx. |
| __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
| |
| __ bind(&loaded); |
| } else { // UNTAGGED. |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatures::Scope sse4_scope(SSE4_1); |
| __ pextrd(edx, xmm1, 0x1); // copy xmm1[63..32] to edx. |
| } else { |
| __ pshufd(xmm0, xmm1, 0x1); |
| __ movd(edx, xmm0); |
| } |
| __ movd(ebx, xmm1); |
| } |
| |
| // ST[0] or xmm1 == double value |
| // ebx = low 32 bits of double value |
| // edx = high 32 bits of double value |
| // Compute hash (the shifts are arithmetic): |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ mov(ecx, ebx); |
| __ xor_(ecx, edx); |
| __ mov(eax, ecx); |
| __ sar(eax, 16); |
| __ xor_(ecx, eax); |
| __ mov(eax, ecx); |
| __ sar(eax, 8); |
| __ xor_(ecx, eax); |
| ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); |
| __ and_(ecx, |
| Immediate(TranscendentalCache::SubCache::kCacheSize - 1)); |
| |
| // ST[0] or xmm1 == double value. |
| // ebx = low 32 bits of double value. |
| // edx = high 32 bits of double value. |
| // ecx = TranscendentalCache::hash(double value). |
| ExternalReference cache_array = |
| ExternalReference::transcendental_cache_array_address(masm->isolate()); |
| __ mov(eax, Immediate(cache_array)); |
| int cache_array_index = |
| type_ * sizeof(masm->isolate()->transcendental_cache()->caches_[0]); |
| __ mov(eax, Operand(eax, cache_array_index)); |
| // Eax points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ test(eax, eax); |
| __ j(zero, &runtime_call_clear_stack); |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { TranscendentalCache::SubCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. |
| __ lea(ecx, Operand(ecx, ecx, times_2, 0)); |
| __ lea(ecx, Operand(eax, ecx, times_4, 0)); |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| Label cache_miss; |
| __ cmp(ebx, Operand(ecx, 0)); |
| __ j(not_equal, &cache_miss, Label::kNear); |
| __ cmp(edx, Operand(ecx, kIntSize)); |
| __ j(not_equal, &cache_miss, Label::kNear); |
| // Cache hit! |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->transcendental_cache_hit(), 1); |
| __ mov(eax, Operand(ecx, 2 * kIntSize)); |
| if (tagged) { |
| __ fstp(0); |
| __ ret(kPointerSize); |
| } else { // UNTAGGED. |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } |
| |
| __ bind(&cache_miss); |
| __ IncrementCounter(counters->transcendental_cache_miss(), 1); |
| // Update cache with new value. |
| // We are short on registers, so use no_reg as scratch. |
| // This gives slightly larger code. |
| if (tagged) { |
| __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
| } else { // UNTAGGED. |
| __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
| __ sub(esp, Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), xmm1); |
| __ fld_d(Operand(esp, 0)); |
| __ add(esp, Immediate(kDoubleSize)); |
| } |
| GenerateOperation(masm, type_); |
| __ mov(Operand(ecx, 0), ebx); |
| __ mov(Operand(ecx, kIntSize), edx); |
| __ mov(Operand(ecx, 2 * kIntSize), eax); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| if (tagged) { |
| __ ret(kPointerSize); |
| } else { // UNTAGGED. |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ Ret(); |
| |
| // Skip cache and return answer directly, only in untagged case. |
| __ bind(&skip_cache); |
| __ sub(esp, Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), xmm1); |
| __ fld_d(Operand(esp, 0)); |
| GenerateOperation(masm, type_); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(xmm1, Operand(esp, 0)); |
| __ add(esp, Immediate(kDoubleSize)); |
| // We return the value in xmm1 without adding it to the cache, but |
| // we cause a scavenging GC so that future allocations will succeed. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Allocate an unused object bigger than a HeapNumber. |
| __ push(Immediate(Smi::FromInt(2 * kDoubleSize))); |
| __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); |
| } |
| __ Ret(); |
| } |
| |
| // Call runtime, doing whatever allocation and cleanup is necessary. |
| if (tagged) { |
| __ bind(&runtime_call_clear_stack); |
| __ fstp(0); |
| __ bind(&runtime_call); |
| ExternalReference runtime = |
| ExternalReference(RuntimeFunction(), masm->isolate()); |
| __ TailCallExternalReference(runtime, 1, 1); |
| } else { // UNTAGGED. |
| __ bind(&runtime_call_clear_stack); |
| __ bind(&runtime_call); |
| __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(eax); |
| __ CallRuntime(RuntimeFunction(), 1); |
| } |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| case TranscendentalCache::TAN: return Runtime::kMath_tan; |
| case TranscendentalCache::LOG: return Runtime::kMath_log; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void TranscendentalCacheStub::GenerateOperation( |
| MacroAssembler* masm, TranscendentalCache::Type type) { |
| // Only free register is edi. |
| // Input value is on FP stack, and also in ebx/edx. |
| // Input value is possibly in xmm1. |
| // Address of result (a newly allocated HeapNumber) may be in eax. |
| if (type == TranscendentalCache::SIN || |
| type == TranscendentalCache::COS || |
| type == TranscendentalCache::TAN) { |
| // Both fsin and fcos require arguments in the range +/-2^63 and |
| // return NaN for infinities and NaN. They can share all code except |
| // the actual fsin/fcos operation. |
| Label in_range, done; |
| // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
| // work. We must reduce it to the appropriate range. |
| __ mov(edi, edx); |
| __ and_(edi, Immediate(0x7ff00000)); // Exponent only. |
| int supported_exponent_limit = |
| (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; |
| __ cmp(edi, Immediate(supported_exponent_limit)); |
| __ j(below, &in_range, Label::kNear); |
| // Check for infinity and NaN. Both return NaN for sin. |
| __ cmp(edi, Immediate(0x7ff00000)); |
| Label non_nan_result; |
| __ j(not_equal, &non_nan_result, Label::kNear); |
| // Input is +/-Infinity or NaN. Result is NaN. |
| __ fstp(0); |
| // NaN is represented by 0x7ff8000000000000. |
| __ push(Immediate(0x7ff80000)); |
| __ push(Immediate(0)); |
| __ fld_d(Operand(esp, 0)); |
| __ add(esp, Immediate(2 * kPointerSize)); |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&non_nan_result); |
| |
| // Use fpmod to restrict argument to the range +/-2*PI. |
| __ mov(edi, eax); // Save eax before using fnstsw_ax. |
| __ fldpi(); |
| __ fadd(0); |
| __ fld(1); |
| // FPU Stack: input, 2*pi, input. |
| { |
| Label no_exceptions; |
| __ fwait(); |
| __ fnstsw_ax(); |
| // Clear if Illegal Operand or Zero Division exceptions are set. |
| __ test(eax, Immediate(5)); |
| __ j(zero, &no_exceptions, Label::kNear); |
| __ fnclex(); |
| __ bind(&no_exceptions); |
| } |
| |
| // Compute st(0) % st(1) |
| { |
| Label partial_remainder_loop; |
| __ bind(&partial_remainder_loop); |
| __ fprem1(); |
| __ fwait(); |
| __ fnstsw_ax(); |
| __ test(eax, Immediate(0x400 /* C2 */)); |
| // If C2 is set, computation only has partial result. Loop to |
| // continue computation. |
| __ j(not_zero, &partial_remainder_loop); |
| } |
| // FPU Stack: input, 2*pi, input % 2*pi |
| __ fstp(2); |
| __ fstp(0); |
| __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). |
| |
| // FPU Stack: input % 2*pi |
| __ bind(&in_range); |
| switch (type) { |
| case TranscendentalCache::SIN: |
| __ fsin(); |
| break; |
| case TranscendentalCache::COS: |
| __ fcos(); |
| break; |
| case TranscendentalCache::TAN: |
| // FPTAN calculates tangent onto st(0) and pushes 1.0 onto the |
| // FP register stack. |
| __ fptan(); |
| __ fstp(0); // Pop FP register stack. |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ bind(&done); |
| } else { |
| ASSERT(type == TranscendentalCache::LOG); |
| __ fldln2(); |
| __ fxch(); |
| __ fyl2x(); |
| } |
| } |
| |
| |
| // Input: edx, eax are the left and right objects of a bit op. |
| // Output: eax, ecx are left and right integers for a bit op. |
| void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm, |
| bool use_sse3, |
| Label* conversion_failure) { |
| // Check float operands. |
| Label arg1_is_object, check_undefined_arg1; |
| Label arg2_is_object, check_undefined_arg2; |
| Label load_arg2, done; |
| |
| // Test if arg1 is a Smi. |
| __ JumpIfNotSmi(edx, &arg1_is_object, Label::kNear); |
| |
| __ SmiUntag(edx); |
| __ jmp(&load_arg2); |
| |
| // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| __ bind(&check_undefined_arg1); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(edx, factory->undefined_value()); |
| __ j(not_equal, conversion_failure); |
| __ mov(edx, Immediate(0)); |
| __ jmp(&load_arg2); |
| |
| __ bind(&arg1_is_object); |
| __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(ebx, factory->heap_number_map()); |
| __ j(not_equal, &check_undefined_arg1); |
| |
| // Get the untagged integer version of the edx heap number in ecx. |
| IntegerConvert(masm, edx, use_sse3, conversion_failure); |
| __ mov(edx, ecx); |
| |
| // Here edx has the untagged integer, eax has a Smi or a heap number. |
| __ bind(&load_arg2); |
| |
| // Test if arg2 is a Smi. |
| __ JumpIfNotSmi(eax, &arg2_is_object, Label::kNear); |
| |
| __ SmiUntag(eax); |
| __ mov(ecx, eax); |
| __ jmp(&done); |
| |
| // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| __ bind(&check_undefined_arg2); |
| __ cmp(eax, factory->undefined_value()); |
| __ j(not_equal, conversion_failure); |
| __ mov(ecx, Immediate(0)); |
| __ jmp(&done); |
| |
| __ bind(&arg2_is_object); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(ebx, factory->heap_number_map()); |
| __ j(not_equal, &check_undefined_arg2); |
| |
| // Get the untagged integer version of the eax heap number in ecx. |
| IntegerConvert(masm, eax, use_sse3, conversion_failure); |
| __ bind(&done); |
| __ mov(eax, edx); |
| } |
| |
| |
| void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm, |
| bool use_sse3, |
| Label* not_int32) { |
| return; |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, |
| Register number) { |
| Label load_smi, done; |
| |
| __ JumpIfSmi(number, &load_smi, Label::kNear); |
| __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&load_smi); |
| __ SmiUntag(number); |
| __ push(number); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(number); |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { |
| Label load_smi_edx, load_eax, load_smi_eax, done; |
| // Load operand in edx into xmm0. |
| __ JumpIfSmi(edx, &load_smi_edx, Label::kNear); |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| |
| __ bind(&load_eax); |
| // Load operand in eax into xmm1. |
| __ JumpIfSmi(eax, &load_smi_eax, Label::kNear); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&load_smi_edx); |
| __ SmiUntag(edx); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm0, edx); |
| __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| __ jmp(&load_eax); |
| |
| __ bind(&load_smi_eax); |
| __ SmiUntag(eax); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm1, eax); |
| __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, |
| Label* not_numbers) { |
| Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; |
| // Load operand in edx into xmm0, or branch to not_numbers. |
| __ JumpIfSmi(edx, &load_smi_edx, Label::kNear); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map()); |
| __ j(not_equal, not_numbers); // Argument in edx is not a number. |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| __ bind(&load_eax); |
| // Load operand in eax into xmm1, or branch to not_numbers. |
| __ JumpIfSmi(eax, &load_smi_eax, Label::kNear); |
| __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map()); |
| __ j(equal, &load_float_eax, Label::kNear); |
| __ jmp(not_numbers); // Argument in eax is not a number. |
| __ bind(&load_smi_edx); |
| __ SmiUntag(edx); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm0, edx); |
| __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| __ jmp(&load_eax); |
| __ bind(&load_smi_eax); |
| __ SmiUntag(eax); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm1, eax); |
| __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| __ jmp(&done, Label::kNear); |
| __ bind(&load_float_eax); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, |
| Register scratch) { |
| const Register left = edx; |
| const Register right = eax; |
| __ mov(scratch, left); |
| ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| __ SmiUntag(scratch); |
| __ cvtsi2sd(xmm0, scratch); |
| |
| __ mov(scratch, right); |
| __ SmiUntag(scratch); |
| __ cvtsi2sd(xmm1, scratch); |
| } |
| |
| |
| void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32, |
| Register scratch) { |
| __ cvttsd2si(scratch, Operand(xmm0)); |
| __ cvtsi2sd(xmm2, scratch); |
| __ ucomisd(xmm0, xmm2); |
| __ j(not_zero, non_int32); |
| __ j(carry, non_int32); |
| __ cvttsd2si(scratch, Operand(xmm1)); |
| __ cvtsi2sd(xmm2, scratch); |
| __ ucomisd(xmm1, xmm2); |
| __ j(not_zero, non_int32); |
| __ j(carry, non_int32); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, |
| Register scratch, |
| ArgLocation arg_location) { |
| Label load_smi_1, load_smi_2, done_load_1, done; |
| if (arg_location == ARGS_IN_REGISTERS) { |
| __ mov(scratch, edx); |
| } else { |
| __ mov(scratch, Operand(esp, 2 * kPointerSize)); |
| } |
| __ JumpIfSmi(scratch, &load_smi_1, Label::kNear); |
| __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| __ bind(&done_load_1); |
| |
| if (arg_location == ARGS_IN_REGISTERS) { |
| __ mov(scratch, eax); |
| } else { |
| __ mov(scratch, Operand(esp, 1 * kPointerSize)); |
| } |
| __ JumpIfSmi(scratch, &load_smi_2, Label::kNear); |
| __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&load_smi_1); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| __ jmp(&done_load_1); |
| |
| __ bind(&load_smi_2); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, |
| Register scratch) { |
| const Register left = edx; |
| const Register right = eax; |
| __ mov(scratch, left); |
| ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| |
| __ mov(scratch, right); |
| __ SmiUntag(scratch); |
| __ mov(Operand(esp, 0), scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| } |
| |
| |
| void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, |
| Label* non_float, |
| Register scratch) { |
| Label test_other, done; |
| // Test if both operands are floats or smi -> scratch=k_is_float; |
| // Otherwise scratch = k_not_float. |
| __ JumpIfSmi(edx, &test_other, Label::kNear); |
| __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(scratch, factory->heap_number_map()); |
| __ j(not_equal, non_float); // argument in edx is not a number -> NaN |
| |
| __ bind(&test_other); |
| __ JumpIfSmi(eax, &done, Label::kNear); |
| __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(scratch, factory->heap_number_map()); |
| __ j(not_equal, non_float); // argument in eax is not a number -> NaN |
| |
| // Fall-through: Both operands are numbers. |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32) { |
| return; |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| Factory* factory = masm->isolate()->factory(); |
| const Register exponent = eax; |
| const Register base = edx; |
| const Register scratch = ecx; |
| const XMMRegister double_result = xmm3; |
| const XMMRegister double_base = xmm2; |
| const XMMRegister double_exponent = xmm1; |
| const XMMRegister double_scratch = xmm4; |
| |
| Label call_runtime, done, exponent_not_smi, int_exponent; |
| |
| // Save 1 in double_result - we need this several times later on. |
| __ mov(scratch, Immediate(1)); |
| __ cvtsi2sd(double_result, scratch); |
| |
| if (exponent_type_ == ON_STACK) { |
| Label base_is_smi, unpack_exponent; |
| // The exponent and base are supplied as arguments on the stack. |
| // This can only happen if the stub is called from non-optimized code. |
| // Load input parameters from stack. |
| __ mov(base, Operand(esp, 2 * kPointerSize)); |
| __ mov(exponent, Operand(esp, 1 * kPointerSize)); |
| |
| __ JumpIfSmi(base, &base_is_smi, Label::kNear); |
| __ cmp(FieldOperand(base, HeapObject::kMapOffset), |
| factory->heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| |
| __ movdbl(double_base, FieldOperand(base, HeapNumber::kValueOffset)); |
| __ jmp(&unpack_exponent, Label::kNear); |
| |
| __ bind(&base_is_smi); |
| __ SmiUntag(base); |
| __ cvtsi2sd(double_base, base); |
| |
| __ bind(&unpack_exponent); |
| __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
| __ SmiUntag(exponent); |
| __ jmp(&int_exponent); |
| |
| __ bind(&exponent_not_smi); |
| __ cmp(FieldOperand(exponent, HeapObject::kMapOffset), |
| factory->heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| __ movdbl(double_exponent, |
| FieldOperand(exponent, HeapNumber::kValueOffset)); |
| } else if (exponent_type_ == TAGGED) { |
| __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
| __ SmiUntag(exponent); |
| __ jmp(&int_exponent); |
| |
| __ bind(&exponent_not_smi); |
| __ movdbl(double_exponent, |
| FieldOperand(exponent, HeapNumber::kValueOffset)); |
| } |
| |
| if (exponent_type_ != INTEGER) { |
| Label fast_power; |
| // Detect integer exponents stored as double. |
| __ cvttsd2si(exponent, Operand(double_exponent)); |
| // Skip to runtime if possibly NaN (indicated by the indefinite integer). |
| __ cmp(exponent, Immediate(0x80000000u)); |
| __ j(equal, &call_runtime); |
| __ cvtsi2sd(double_scratch, exponent); |
| // Already ruled out NaNs for exponent. |
| __ ucomisd(double_exponent, double_scratch); |
| __ j(equal, &int_exponent); |
| |
| if (exponent_type_ == ON_STACK) { |
| // Detect square root case. Crankshaft detects constant +/-0.5 at |
| // compile time and uses DoMathPowHalf instead. We then skip this check |
| // for non-constant cases of +/-0.5 as these hardly occur. |
| Label continue_sqrt, continue_rsqrt, not_plus_half; |
| // Test for 0.5. |
| // Load double_scratch with 0.5. |
| __ mov(scratch, Immediate(0x3F000000u)); |
| __ movd(double_scratch, scratch); |
| __ cvtss2sd(double_scratch, double_scratch); |
| // Already ruled out NaNs for exponent. |
| __ ucomisd(double_scratch, double_exponent); |
| __ j(not_equal, ¬_plus_half, Label::kNear); |
| |
| // Calculates square root of base. Check for the special case of |
| // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). |
| // According to IEEE-754, single-precision -Infinity has the highest |
| // 9 bits set and the lowest 23 bits cleared. |
| __ mov(scratch, 0xFF800000u); |
| __ movd(double_scratch, scratch); |
| __ cvtss2sd(double_scratch, double_scratch); |
| __ ucomisd(double_base, double_scratch); |
| // Comparing -Infinity with NaN results in "unordered", which sets the |
| // zero flag as if both were equal. However, it also sets the carry flag. |
| __ j(not_equal, &continue_sqrt, Label::kNear); |
| __ j(carry, &continue_sqrt, Label::kNear); |
| |
| // Set result to Infinity in the special case. |
| __ xorps(double_result, double_result); |
| __ subsd(double_result, double_scratch); |
| __ jmp(&done); |
| |
| __ bind(&continue_sqrt); |
| // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| __ xorps(double_scratch, double_scratch); |
| __ addsd(double_scratch, double_base); // Convert -0 to +0. |
| __ sqrtsd(double_result, double_scratch); |
| __ jmp(&done); |
| |
| // Test for -0.5. |
| __ bind(¬_plus_half); |
| // Load double_exponent with -0.5 by substracting 1. |
| __ subsd(double_scratch, double_result); |
| // Already ruled out NaNs for exponent. |
| __ ucomisd(double_scratch, double_exponent); |
| __ j(not_equal, &fast_power, Label::kNear); |
| |
| // Calculates reciprocal of square root of base. Check for the special |
| // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). |
| // According to IEEE-754, single-precision -Infinity has the highest |
| // 9 bits set and the lowest 23 bits cleared. |
| __ mov(scratch, 0xFF800000u); |
| __ movd(double_scratch, scratch); |
| __ cvtss2sd(double_scratch, double_scratch); |
| __ ucomisd(double_base, double_scratch); |
| // Comparing -Infinity with NaN results in "unordered", which sets the |
| // zero flag as if both were equal. However, it also sets the carry flag. |
| __ j(not_equal, &continue_rsqrt, Label::kNear); |
| __ j(carry, &continue_rsqrt, Label::kNear); |
| |
| // Set result to 0 in the special case. |
| __ xorps(double_result, double_result); |
| __ jmp(&done); |
| |
| __ bind(&continue_rsqrt); |
| // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| __ xorps(double_exponent, double_exponent); |
| __ addsd(double_exponent, double_base); // Convert -0 to +0. |
| __ sqrtsd(double_exponent, double_exponent); |
| __ divsd(double_result, double_exponent); |
| __ jmp(&done); |
| } |
| |
| // Using FPU instructions to calculate power. |
| Label fast_power_failed; |
| __ bind(&fast_power); |
| __ fnclex(); // Clear flags to catch exceptions later. |
| // Transfer (B)ase and (E)xponent onto the FPU register stack. |
| __ sub(esp, Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), double_exponent); |
| __ fld_d(Operand(esp, 0)); // E |
| __ movdbl(Operand(esp, 0), double_base); |
| __ fld_d(Operand(esp, 0)); // B, E |
| |
| // Exponent is in st(1) and base is in st(0) |
| // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) |
| // FYL2X calculates st(1) * log2(st(0)) |
| __ fyl2x(); // X |
| __ fld(0); // X, X |
| __ frndint(); // rnd(X), X |
| __ fsub(1); // rnd(X), X-rnd(X) |
| __ fxch(1); // X - rnd(X), rnd(X) |
| // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 |
| __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) |
| __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) |
| __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X) |
| // FSCALE calculates st(0) * 2^st(1) |
| __ fscale(); // 2^X, rnd(X) |
| __ fstp(1); |
| // Bail out to runtime in case of exceptions in the status word. |
| __ fnstsw_ax(); |
| __ test_b(eax, 0x5F); // We check for all but precision exception. |
| __ j(not_zero, &fast_power_failed, Label::kNear); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(double_result, Operand(esp, 0)); |
| __ add(esp, Immediate(kDoubleSize)); |
| __ jmp(&done); |
| |
| __ bind(&fast_power_failed); |
| __ fninit(); |
| __ add(esp, Immediate(kDoubleSize)); |
| __ jmp(&call_runtime); |
| } |
| |
| // Calculate power with integer exponent. |
| __ bind(&int_exponent); |
| const XMMRegister double_scratch2 = double_exponent; |
| __ mov(scratch, exponent); // Back up exponent. |
| __ movsd(double_scratch, double_base); // Back up base. |
| __ movsd(double_scratch2, double_result); // Load double_exponent with 1. |
| |
| // Get absolute value of exponent. |
| Label no_neg, while_true, no_multiply; |
| __ test(scratch, scratch); |
| __ j(positive, &no_neg, Label::kNear); |
| __ neg(scratch); |
| __ bind(&no_neg); |
| |
| __ bind(&while_true); |
| __ shr(scratch, 1); |
| __ j(not_carry, &no_multiply, Label::kNear); |
| __ mulsd(double_result, double_scratch); |
| __ bind(&no_multiply); |
| |
| __ mulsd(double_scratch, double_scratch); |
| __ j(not_zero, &while_true); |
| |
| // scratch has the original value of the exponent - if the exponent is |
| // negative, return 1/result. |
| __ test(exponent, exponent); |
| __ j(positive, &done); |
| __ divsd(double_scratch2, double_result); |
| __ movsd(double_result, double_scratch2); |
| // Test whether result is zero. Bail out to check for subnormal result. |
| // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
| __ xorps(double_scratch2, double_scratch2); |
| __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. |
| // double_exponent aliased as double_scratch2 has already been overwritten |
| // and may not have contained the exponent value in the first place when the |
| // exponent is a smi. We reset it with exponent value before bailing out. |
| __ j(not_equal, &done); |
| __ cvtsi2sd(double_exponent, exponent); |
| |
| // Returning or bailing out. |
| Counters* counters = masm->isolate()->counters(); |
| if (exponent_type_ == ON_STACK) { |
| // The arguments are still on the stack. |
| __ bind(&call_runtime); |
| __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| |
| // The stub is called from non-optimized code, which expects the result |
| // as heap number in exponent. |
| __ bind(&done); |
| __ AllocateHeapNumber(eax, scratch, base, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), double_result); |
| __ IncrementCounter(counters->math_pow(), 1); |
| __ ret(2 * kPointerSize); |
| } else { |
| __ bind(&call_runtime); |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ PrepareCallCFunction(4, scratch); |
| __ movdbl(Operand(esp, 0 * kDoubleSize), double_base); |
| __ movdbl(Operand(esp, 1 * kDoubleSize), double_exponent); |
| __ CallCFunction( |
| ExternalReference::power_double_double_function(masm->isolate()), 4); |
| } |
| // Return value is in st(0) on ia32. |
| // Store it into the (fixed) result register. |
| __ sub(esp, Immediate(kDoubleSize)); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(double_result, Operand(esp, 0)); |
| __ add(esp, Immediate(kDoubleSize)); |
| |
| __ bind(&done); |
| __ IncrementCounter(counters->math_pow(), 1); |
| __ ret(0); |
| } |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The key is in edx and the parameter count is in eax. |
| |
| // The displacement is used for skipping the frame pointer on the |
| // stack. It is the offset of the last parameter (if any) relative |
| // to the frame pointer. |
| static const int kDisplacement = 1 * kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ JumpIfNotSmi(edx, &slow, Label::kNear); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); |
| __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor, Label::kNear); |
| |
| // Check index against formal parameters count limit passed in |
| // through register eax. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(edx, eax); |
| __ j(above_equal, &slow, Label::kNear); |
| |
| // Read the argument from the stack and return it. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
| __ lea(ebx, Operand(ebp, eax, times_2, 0)); |
| __ neg(edx); |
| __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| __ ret(0); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(edx, ecx); |
| __ j(above_equal, &slow, Label::kNear); |
| |
| // Read the argument from the stack and return it. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
| __ lea(ebx, Operand(ebx, ecx, times_2, 0)); |
| __ neg(edx); |
| __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| __ ret(0); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ pop(ebx); // Return address. |
| __ push(edx); |
| __ push(ebx); |
| __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { |
| // esp[0] : return address |
| // esp[4] : number of parameters |
| // esp[8] : receiver displacement |
| // esp[12] : function |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label runtime; |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(not_equal, &runtime, Label::kNear); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(Operand(esp, 1 * kPointerSize), ecx); |
| __ lea(edx, Operand(edx, ecx, times_2, |
| StandardFrameConstants::kCallerSPOffset)); |
| __ mov(Operand(esp, 2 * kPointerSize), edx); |
| |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { |
| // esp[0] : return address |
| // esp[4] : number of parameters (tagged) |
| // esp[8] : receiver displacement |
| // esp[12] : function |
| |
| // ebx = parameter count (tagged) |
| __ mov(ebx, Operand(esp, 1 * kPointerSize)); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| // TODO(rossberg): Factor out some of the bits that are shared with the other |
| // Generate* functions. |
| Label runtime; |
| Label adaptor_frame, try_allocate; |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor_frame, Label::kNear); |
| |
| // No adaptor, parameter count = argument count. |
| __ mov(ecx, ebx); |
| __ jmp(&try_allocate, Label::kNear); |
| |
| // We have an adaptor frame. Patch the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ lea(edx, Operand(edx, ecx, times_2, |
| StandardFrameConstants::kCallerSPOffset)); |
| __ mov(Operand(esp, 2 * kPointerSize), edx); |
| |
| // ebx = parameter count (tagged) |
| // ecx = argument count (tagged) |
| // esp[4] = parameter count (tagged) |
| // esp[8] = address of receiver argument |
| // Compute the mapped parameter count = min(ebx, ecx) in ebx. |
| __ cmp(ebx, ecx); |
| __ j(less_equal, &try_allocate, Label::kNear); |
| __ mov(ebx, ecx); |
| |
| __ bind(&try_allocate); |
| |
| // Save mapped parameter count. |
| __ push(ebx); |
| |
| // Compute the sizes of backing store, parameter map, and arguments object. |
| // 1. Parameter map, has 2 extra words containing context and backing store. |
| const int kParameterMapHeaderSize = |
| FixedArray::kHeaderSize + 2 * kPointerSize; |
| Label no_parameter_map; |
| __ test(ebx, ebx); |
| __ j(zero, &no_parameter_map, Label::kNear); |
| __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize)); |
| __ bind(&no_parameter_map); |
| |
| // 2. Backing store. |
| __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize)); |
| |
| // 3. Arguments object. |
| __ add(ebx, Immediate(Heap::kArgumentsObjectSize)); |
| |
| // Do the allocation of all three objects in one go. |
| __ AllocateInNewSpace(ebx, eax, edx, edi, &runtime, TAG_OBJECT); |
| |
| // eax = address of new object(s) (tagged) |
| // ecx = argument count (tagged) |
| // esp[0] = mapped parameter count (tagged) |
| // esp[8] = parameter count (tagged) |
| // esp[12] = address of receiver argument |
| // Get the arguments boilerplate from the current (global) context into edi. |
| Label has_mapped_parameters, copy; |
| __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); |
| __ mov(ebx, Operand(esp, 0 * kPointerSize)); |
| __ test(ebx, ebx); |
| __ j(not_zero, &has_mapped_parameters, Label::kNear); |
| __ mov(edi, Operand(edi, |
| Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX))); |
| __ jmp(©, Label::kNear); |
| |
| __ bind(&has_mapped_parameters); |
| __ mov(edi, Operand(edi, |
| Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX))); |
| __ bind(©); |
| |
| // eax = address of new object (tagged) |
| // ebx = mapped parameter count (tagged) |
| // ecx = argument count (tagged) |
| // edi = address of boilerplate object (tagged) |
| // esp[0] = mapped parameter count (tagged) |
| // esp[8] = parameter count (tagged) |
| // esp[12] = address of receiver argument |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ mov(edx, FieldOperand(edi, i)); |
| __ mov(FieldOperand(eax, i), edx); |
| } |
| |
| // Set up the callee in-object property. |
| STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
| __ mov(edx, Operand(esp, 4 * kPointerSize)); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize + |
| Heap::kArgumentsCalleeIndex * kPointerSize), |
| edx); |
| |
| // Use the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize + |
| Heap::kArgumentsLengthIndex * kPointerSize), |
| ecx); |
| |
| // Set up the elements pointer in the allocated arguments object. |
| // If we allocated a parameter map, edi will point there, otherwise to the |
| // backing store. |
| __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); |
| |
| // eax = address of new object (tagged) |
| // ebx = mapped parameter count (tagged) |
| // ecx = argument count (tagged) |
| // edi = address of parameter map or backing store (tagged) |
| // esp[0] = mapped parameter count (tagged) |
| // esp[8] = parameter count (tagged) |
| // esp[12] = address of receiver argument |
| // Free a register. |
| __ push(eax); |
| |
| // Initialize parameter map. If there are no mapped arguments, we're done. |
| Label skip_parameter_map; |
| __ test(ebx, ebx); |
| __ j(zero, &skip_parameter_map); |
| |
| __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
| Immediate(FACTORY->non_strict_arguments_elements_map())); |
| __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2)))); |
| __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax); |
| __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi); |
| __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize)); |
| __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax); |
| |
| // Copy the parameter slots and the holes in the arguments. |
| // We need to fill in mapped_parameter_count slots. They index the context, |
| // where parameters are stored in reverse order, at |
| // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 |
| // The mapped parameter thus need to get indices |
| // MIN_CONTEXT_SLOTS+parameter_count-1 .. |
| // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count |
| // We loop from right to left. |
| Label parameters_loop, parameters_test; |
| __ push(ecx); |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); |
| __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); |
| __ add(ebx, Operand(esp, 4 * kPointerSize)); |
| __ sub(ebx, eax); |
| __ mov(ecx, FACTORY->the_hole_value()); |
| __ mov(edx, edi); |
| __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize)); |
| // eax = loop variable (tagged) |
| // ebx = mapping index (tagged) |
| // ecx = the hole value |
| // edx = address of parameter map (tagged) |
| // edi = address of backing store (tagged) |
| // esp[0] = argument count (tagged) |
| // esp[4] = address of new object (tagged) |
| // esp[8] = mapped parameter count (tagged) |
| // esp[16] = parameter count (tagged) |
| // esp[20] = address of receiver argument |
| __ jmp(¶meters_test, Label::kNear); |
| |
| __ bind(¶meters_loop); |
| __ sub(eax, Immediate(Smi::FromInt(1))); |
| __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx); |
| __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx); |
| __ add(ebx, Immediate(Smi::FromInt(1))); |
| __ bind(¶meters_test); |
| __ test(eax, eax); |
| __ j(not_zero, ¶meters_loop, Label::kNear); |
| __ pop(ecx); |
| |
| __ bind(&skip_parameter_map); |
| |
| // ecx = argument count (tagged) |
| // edi = address of backing store (tagged) |
| // esp[0] = address of new object (tagged) |
| // esp[4] = mapped parameter count (tagged) |
| // esp[12] = parameter count (tagged) |
| // esp[16] = address of receiver argument |
| // Copy arguments header and remaining slots (if there are any). |
| __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
| Immediate(FACTORY->fixed_array_map())); |
| __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); |
| |
| Label arguments_loop, arguments_test; |
| __ mov(ebx, Operand(esp, 1 * kPointerSize)); |
| __ mov(edx, Operand(esp, 4 * kPointerSize)); |
| __ sub(edx, ebx); // Is there a smarter way to do negative scaling? |
| __ sub(edx, ebx); |
| __ jmp(&arguments_test, Label::kNear); |
| |
| __ bind(&arguments_loop); |
| __ sub(edx, Immediate(kPointerSize)); |
| __ mov(eax, Operand(edx, 0)); |
| __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax); |
| __ add(ebx, Immediate(Smi::FromInt(1))); |
| |
| __ bind(&arguments_test); |
| __ cmp(ebx, ecx); |
| __ j(less, &arguments_loop, Label::kNear); |
| |
| // Restore. |
| __ pop(eax); // Address of arguments object. |
| __ pop(ebx); // Parameter count. |
| |
| // Return and remove the on-stack parameters. |
| __ ret(3 * kPointerSize); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ pop(eax); // Remove saved parameter count. |
| __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count. |
| __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
| // esp[0] : return address |
| // esp[4] : number of parameters |
| // esp[8] : receiver displacement |
| // esp[12] : function |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor_frame, Label::kNear); |
| |
| // Get the length from the frame. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ jmp(&try_allocate, Label::kNear); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(Operand(esp, 1 * kPointerSize), ecx); |
| __ lea(edx, Operand(edx, ecx, times_2, |
| StandardFrameConstants::kCallerSPOffset)); |
| __ mov(Operand(esp, 2 * kPointerSize), edx); |
| |
| // Try the new space allocation. Start out with computing the size of |
| // the arguments object and the elements array. |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ test(ecx, ecx); |
| __ j(zero, &add_arguments_object, Label::kNear); |
| __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); |
| __ bind(&add_arguments_object); |
| __ add(ecx, Immediate(Heap::kArgumentsObjectSizeStrict)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); |
| const int offset = |
| Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX); |
| __ mov(edi, Operand(edi, offset)); |
| |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(edi, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize + |
| Heap::kArgumentsLengthIndex * kPointerSize), |
| ecx); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ test(ecx, ecx); |
| __ j(zero, &done, Label::kNear); |
| |
| // Get the parameters pointer from the stack. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| |
| // Set up the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ lea(edi, Operand(eax, Heap::kArgumentsObjectSizeStrict)); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); |
| __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
| Immediate(FACTORY->fixed_array_map())); |
| |
| __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); |
| // Untag the length for the loop below. |
| __ SmiUntag(ecx); |
| |
| // Copy the fixed array slots. |
| Label loop; |
| __ bind(&loop); |
| __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. |
| __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); |
| __ add(edi, Immediate(kPointerSize)); |
| __ sub(edx, Immediate(kPointerSize)); |
| __ dec(ecx); |
| __ j(not_zero, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ ret(3 * kPointerSize); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifdef V8_INTERPRETED_REGEXP |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #else // V8_INTERPRETED_REGEXP |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: last_match_info (expected JSArray) |
| // esp[8]: previous index |
| // esp[12]: subject string |
| // esp[16]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 1 * kPointerSize; |
| static const int kPreviousIndexOffset = 2 * kPointerSize; |
| static const int kSubjectOffset = 3 * kPointerSize; |
| static const int kJSRegExpOffset = 4 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Ensure that a RegExp stack is allocated. |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address( |
| masm->isolate()); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(masm->isolate()); |
| __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| __ test(ebx, ebx); |
| __ j(zero, &runtime); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(eax, &runtime); |
| __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); |
| __ j(not_equal, &runtime); |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); |
| __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); |
| __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
| } |
| |
| // ecx: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); |
| __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); |
| __ j(not_equal, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(edx, Immediate(2)); // edx was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); |
| __ j(above, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the second argument is a string. |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ JumpIfSmi(eax, &runtime); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| __ j(NegateCondition(is_string), &runtime); |
| // Get the length of the string to ebx. |
| __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| |
| // ebx: Length of subject string as a smi |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (unsigned comparison). |
| __ mov(eax, Operand(esp, kPreviousIndexOffset)); |
| __ JumpIfNotSmi(eax, &runtime); |
| __ cmp(eax, ebx); |
| __ j(above_equal, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the fourth object is a JSArray object. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ JumpIfSmi(eax, &runtime); |
| __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); |
| __ j(not_equal, &runtime); |
| // Check that the JSArray is in fast case. |
| __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(eax, factory->fixed_array_map()); |
| __ j(not_equal, &runtime); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); |
| __ SmiUntag(eax); |
| __ add(edx, Immediate(RegExpImpl::kLastMatchOverhead)); |
| __ cmp(edx, eax); |
| __ j(greater, &runtime); |
| |
| // Reset offset for possibly sliced string. |
| __ Set(edi, Immediate(0)); |
| // ecx: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_ascii_string, seq_two_byte_string, check_code; |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| // First check for flat two byte string. |
| __ and_(ebx, kIsNotStringMask | |
| kStringRepresentationMask | |
| kStringEncodingMask | |
| kShortExternalStringMask); |
| STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
| __ j(zero, &seq_two_byte_string, Label::kNear); |
| // Any other flat string must be a flat ASCII string. None of the following |
| // string type tests will succeed if subject is not a string or a short |
| // external string. |
| __ and_(ebx, Immediate(kIsNotStringMask | |
| kStringRepresentationMask | |
| kShortExternalStringMask)); |
| __ j(zero, &seq_ascii_string, Label::kNear); |
| |
| // ebx: whether subject is a string and if yes, its string representation |
| // Check for flat cons string or sliced string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| // In the case of a sliced string its offset has to be taken into account. |
| Label cons_string, external_string, check_encoding; |
| STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
| STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); |
| STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); |
| __ cmp(ebx, Immediate(kExternalStringTag)); |
| __ j(less, &cons_string); |
| __ j(equal, &external_string); |
| |
| // Catch non-string subject or short external string. |
| STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); |
| __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag)); |
| __ j(not_zero, &runtime); |
| |
| // String is sliced. |
| __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset)); |
| __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset)); |
| // edi: offset of sliced string, smi-tagged. |
| // eax: parent string. |
| __ jmp(&check_encoding, Label::kNear); |
| // String is a cons string, check whether it is flat. |
| __ bind(&cons_string); |
| __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); |
| __ j(not_equal, &runtime); |
| __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); |
| __ bind(&check_encoding); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| // eax: first part of cons string or parent of sliced string. |
| // ebx: map of first part of cons string or map of parent of sliced string. |
| // Is first part of cons or parent of slice a flat two byte string? |
| __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
| kStringRepresentationMask | kStringEncodingMask); |
| STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
| __ j(zero, &seq_two_byte_string, Label::kNear); |
| // Any other flat string must be sequential ASCII or external. |
| __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
| kStringRepresentationMask); |
| __ j(not_zero, &external_string); |
| |
| __ bind(&seq_ascii_string); |
| // eax: subject string (flat ASCII) |
| // ecx: RegExp data (FixedArray) |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); |
| __ Set(ecx, Immediate(1)); // Type is ASCII. |
| __ jmp(&check_code, Label::kNear); |
| |
| __ bind(&seq_two_byte_string); |
| // eax: subject string (flat two byte) |
| // ecx: RegExp data (FixedArray) |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); |
| __ Set(ecx, Immediate(0)); // Type is two byte. |
| |
| __ bind(&check_code); |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // a smi (code flushing support). |
| __ JumpIfSmi(edx, &runtime); |
| |
| // eax: subject string |
| // edx: code |
| // ecx: encoding of subject string (1 if ASCII, 0 if two_byte); |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ mov(ebx, Operand(esp, kPreviousIndexOffset)); |
| __ SmiUntag(ebx); // Previous index from smi. |
| |
| // eax: subject string |
| // ebx: previous index |
| // edx: code |
| // ecx: encoding of subject string (1 if ASCII 0 if two_byte); |
| // All checks done. Now push arguments for native regexp code. |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->regexp_entry_native(), 1); |
| |
| // Isolates: note we add an additional parameter here (isolate pointer). |
| static const int kRegExpExecuteArguments = 8; |
| __ EnterApiExitFrame(kRegExpExecuteArguments); |
| |
| // Argument 8: Pass current isolate address. |
| __ mov(Operand(esp, 7 * kPointerSize), |
| Immediate(ExternalReference::isolate_address())); |
| |
| // Argument 7: Indicate that this is a direct call from JavaScript. |
| __ mov(Operand(esp, 6 * kPointerSize), Immediate(1)); |
| |
| // Argument 6: Start (high end) of backtracking stack memory area. |
| __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
| __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| __ mov(Operand(esp, 5 * kPointerSize), esi); |
| |
| // Argument 5: static offsets vector buffer. |
| __ mov(Operand(esp, 4 * kPointerSize), |
| Immediate(ExternalReference::address_of_static_offsets_vector( |
| masm->isolate()))); |
| |
| // Argument 2: Previous index. |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| |
| // Argument 1: Original subject string. |
| // The original subject is in the previous stack frame. Therefore we have to |
| // use ebp, which points exactly to one pointer size below the previous esp. |
| // (Because creating a new stack frame pushes the previous ebp onto the stack |
| // and thereby moves up esp by one kPointerSize.) |
| __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize)); |
| __ mov(Operand(esp, 0 * kPointerSize), esi); |
| |
| // esi: original subject string |
| // eax: underlying subject string |
| // ebx: previous index |
| // ecx: encoding of subject string (1 if ASCII 0 if two_byte); |
| // edx: code |
| // Argument 4: End of string data |
| // Argument 3: Start of string data |
| // Prepare start and end index of the input. |
| // Load the length from the original sliced string if that is the case. |
| __ mov(esi, FieldOperand(esi, String::kLengthOffset)); |
| __ add(esi, edi); // Calculate input end wrt offset. |
| __ SmiUntag(edi); |
| __ add(ebx, edi); // Calculate input start wrt offset. |
| |
| // ebx: start index of the input string |
| // esi: end index of the input string |
| Label setup_two_byte, setup_rest; |
| __ test(ecx, ecx); |
| __ j(zero, &setup_two_byte, Label::kNear); |
| __ SmiUntag(esi); |
| __ lea(ecx, FieldOperand(eax, esi, times_1, SeqAsciiString::kHeaderSize)); |
| __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
| __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); |
| __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
| __ jmp(&setup_rest, Label::kNear); |
| |
| __ bind(&setup_two_byte); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2). |
| __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize)); |
| __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
| __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); |
| __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
| |
| __ bind(&setup_rest); |
| |
| // Locate the code entry and call it. |
| __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ call(edx); |
| |
| // Drop arguments and come back to JS mode. |
| __ LeaveApiExitFrame(); |
| |
| // Check the result. |
| Label success; |
| __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); |
| __ j(equal, &success); |
| Label failure; |
| __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); |
| __ j(equal, &failure); |
| __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ j(not_equal, &runtime); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| ExternalReference pending_exception(Isolate::kPendingExceptionAddress, |
| masm->isolate()); |
| __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); |
| __ mov(eax, Operand::StaticVariable(pending_exception)); |
| __ cmp(edx, eax); |
| __ j(equal, &runtime); |
| // For exception, throw the exception again. |
| |
| // Clear the pending exception variable. |
| __ mov(Operand::StaticVariable(pending_exception), edx); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(eax, factory->termination_exception()); |
| Label throw_termination_exception; |
| __ j(equal, &throw_termination_exception, Label::kNear); |
| |
| // Handle normal exception by following handler chain. |
| __ Throw(eax); |
| |
| __ bind(&throw_termination_exception); |
| __ ThrowUncatchable(eax); |
| |
| __ bind(&failure); |
| // For failure to match, return null. |
| __ mov(eax, factory->null_value()); |
| __ ret(4 * kPointerSize); |
| |
| // Load RegExp data. |
| __ bind(&success); |
| __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(edx, Immediate(2)); // edx was a smi. |
| |
| // edx: Number of capture registers |
| // Load last_match_info which is still known to be a fast case JSArray. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| |
| // ebx: last_match_info backing store (FixedArray) |
| // edx: number of capture registers |
| // Store the capture count. |
| __ SmiTag(edx); // Number of capture registers to smi. |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); |
| __ SmiUntag(edx); // Number of capture registers back from smi. |
| // Store last subject and last input. |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); |
| __ RecordWriteField(ebx, |
| RegExpImpl::kLastSubjectOffset, |
| eax, |
| edi, |
| kDontSaveFPRegs); |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); |
| __ RecordWriteField(ebx, |
| RegExpImpl::kLastInputOffset, |
| eax, |
| edi, |
| kDontSaveFPRegs); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(masm->isolate()); |
| __ mov(ecx, Immediate(address_of_static_offsets_vector)); |
| |
| // ebx: last_match_info backing store (FixedArray) |
| // ecx: offsets vector |
| // edx: number of capture registers |
| Label next_capture, done; |
| // Capture register counter starts from number of capture registers and |
| // counts down until wraping after zero. |
| __ bind(&next_capture); |
| __ sub(edx, Immediate(1)); |
| __ j(negative, &done, Label::kNear); |
| // Read the value from the static offsets vector buffer. |
| __ mov(edi, Operand(ecx, edx, times_int_size, 0)); |
| __ SmiTag(edi); |
| // Store the smi value in the last match info. |
| __ mov(FieldOperand(ebx, |
| edx, |
| times_pointer_size, |
| RegExpImpl::kFirstCaptureOffset), |
| edi); |
| __ jmp(&next_capture); |
| __ bind(&done); |
| |
| // Return last match info. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ ret(4 * kPointerSize); |
| |
| // External string. Short external strings have already been ruled out. |
| // eax: subject string (expected to be external) |
| // ebx: scratch |
| __ bind(&external_string); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| if (FLAG_debug_code) { |
| // Assert that we do not have a cons or slice (indirect strings) here. |
| // Sequential strings have already been ruled out. |
| __ test_b(ebx, kIsIndirectStringMask); |
| __ Assert(zero, "external string expected, but not found"); |
| } |
| __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); |
| // Move the pointer so that offset-wise, it looks like a sequential string. |
| STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); |
| __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| __ test_b(ebx, kStringEncodingMask); |
| __ j(not_zero, &seq_ascii_string); |
| __ jmp(&seq_two_byte_string); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #endif // V8_INTERPRETED_REGEXP |
| } |
| |
| |
| void RegExpConstructResultStub::Generate(MacroAssembler* masm) { |
| const int kMaxInlineLength = 100; |
| Label slowcase; |
| Label done; |
| __ mov(ebx, Operand(esp, kPointerSize * 3)); |
| __ JumpIfNotSmi(ebx, &slowcase); |
| __ cmp(ebx, Immediate(Smi::FromInt(kMaxInlineLength))); |
| __ j(above, &slowcase); |
| // Smi-tagging is equivalent to multiplying by 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| // Allocate RegExpResult followed by FixedArray with size in ebx. |
| // JSArray: [Map][empty properties][Elements][Length-smi][index][input] |
| // Elements: [Map][Length][..elements..] |
| __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize, |
| times_half_pointer_size, |
| ebx, // In: Number of elements (times 2, being a smi) |
| eax, // Out: Start of allocation (tagged). |
| ecx, // Out: End of allocation. |
| edx, // Scratch register |
| &slowcase, |
| TAG_OBJECT); |
| // eax: Start of allocated area, object-tagged. |
| |
| // Set JSArray map to global.regexp_result_map(). |
| // Set empty properties FixedArray. |
| // Set elements to point to FixedArray allocated right after the JSArray. |
| // Interleave operations for better latency. |
| __ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX)); |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(ecx, Immediate(factory->empty_fixed_array())); |
| __ lea(ebx, Operand(eax, JSRegExpResult::kSize)); |
| __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset)); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); |
| __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx); |
| __ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX)); |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), edx); |
| |
| // Set input, index and length fields from arguments. |
| __ mov(ecx, Operand(esp, kPointerSize * 1)); |
| __ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx); |
| __ mov(ecx, Operand(esp, kPointerSize * 2)); |
| __ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx); |
| __ mov(ecx, Operand(esp, kPointerSize * 3)); |
| __ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx); |
| |
| // Fill out the elements FixedArray. |
| // eax: JSArray. |
| // ebx: FixedArray. |
| // ecx: Number of elements in array, as smi. |
| |
| // Set map. |
| __ mov(FieldOperand(ebx, HeapObject::kMapOffset), |
| Immediate(factory->fixed_array_map())); |
| // Set length. |
| __ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx); |
| // Fill contents of fixed-array with the-hole. |
| __ SmiUntag(ecx); |
| __ mov(edx, Immediate(factory->the_hole_value())); |
| __ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize)); |
| // Fill fixed array elements with hole. |
| // eax: JSArray. |
| // ecx: Number of elements to fill. |
| // ebx: Start of elements in FixedArray. |
| // edx: the hole. |
| Label loop; |
| __ test(ecx, ecx); |
| __ bind(&loop); |
| __ j(less_equal, &done, Label::kNear); // Jump if ecx is negative or zero. |
| __ sub(ecx, Immediate(1)); |
| __ mov(Operand(ebx, ecx, times_pointer_size, 0), edx); |
| __ jmp(&loop); |
| |
| __ bind(&done); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&slowcase); |
| __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| bool object_is_smi, |
| Label* not_found) { |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch1; |
| Register scratch = scratch2; |
| |
| // Load the number string cache. |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(masm->isolate()); |
| __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); |
| __ mov(number_string_cache, |
| Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
| __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. |
| __ sub(mask, Immediate(1)); // Make mask. |
| |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value, and the hash for |
| // doubles is the xor of the upper and lower words. See |
| // Heap::GetNumberStringCache. |
| Label smi_hash_calculated; |
| Label load_result_from_cache; |
| if (object_is_smi) { |
| __ mov(scratch, object); |
| __ SmiUntag(scratch); |
| } else { |
| Label not_smi; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfNotSmi(object, ¬_smi, Label::kNear); |
| __ mov(scratch, object); |
| __ SmiUntag(scratch); |
| __ jmp(&smi_hash_calculated, Label::kNear); |
| __ bind(¬_smi); |
| __ cmp(FieldOperand(object, HeapObject::kMapOffset), |
| masm->isolate()->factory()->heap_number_map()); |
| __ j(not_equal, not_found); |
| STATIC_ASSERT(8 == kDoubleSize); |
| __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
| __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
| // Object is heap number and hash is now in scratch. Calculate cache index. |
| __ and_(scratch, mask); |
| Register index = scratch; |
| Register probe = mask; |
| __ mov(probe, |
| FieldOperand(number_string_cache, |
| index, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ JumpIfSmi(probe, not_found); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope fscope(SSE2); |
| __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
| __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
| __ ucomisd(xmm0, xmm1); |
| } else { |
| __ fld_d(FieldOperand(object, HeapNumber::kValueOffset)); |
| __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); |
| __ FCmp(); |
| } |
| __ j(parity_even, not_found); // Bail out if NaN is involved. |
| __ j(not_equal, not_found); // The cache did not contain this value. |
| __ jmp(&load_result_from_cache, Label::kNear); |
| } |
| |
| __ bind(&smi_hash_calculated); |
| // Object is smi and hash is now in scratch. Calculate cache index. |
| __ and_(scratch, mask); |
| Register index = scratch; |
| // Check if the entry is the smi we are looking for. |
| __ cmp(object, |
| FieldOperand(number_string_cache, |
| index, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ j(not_equal, not_found); |
| |
| // Get the result from the cache. |
| __ bind(&load_result_from_cache); |
| __ mov(result, |
| FieldOperand(number_string_cache, |
| index, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize + kPointerSize)); |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->number_to_string_native(), 1); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ mov(ebx, Operand(esp, kPointerSize)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); |
| __ ret(1 * kPointerSize); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| } |
| |
| |
| static int NegativeComparisonResult(Condition cc) { |
| ASSERT(cc != equal); |
| ASSERT((cc == less) || (cc == less_equal) |
| || (cc == greater) || (cc == greater_equal)); |
| return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
| } |
| |
| void CompareStub::Generate(MacroAssembler* masm) { |
| ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| |
| Label check_unequal_objects; |
| |
| // Compare two smis if required. |
| if (include_smi_compare_) { |
| Label non_smi, smi_done; |
| __ mov(ecx, edx); |
| __ or_(ecx, eax); |
| __ JumpIfNotSmi(ecx, &non_smi, Label::kNear); |
| __ sub(edx, eax); // Return on the result of the subtraction. |
| __ j(no_overflow, &smi_done, Label::kNear); |
| __ not_(edx); // Correct sign in case of overflow. edx is never 0 here. |
| __ bind(&smi_done); |
| __ mov(eax, edx); |
| __ ret(0); |
| __ bind(&non_smi); |
| } else if (FLAG_debug_code) { |
| __ mov(ecx, edx); |
| __ or_(ecx, eax); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, "Unexpected smi operands."); |
| } |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Identical objects can be compared fast, but there are some tricky cases |
| // for NaN and undefined. |
| { |
| Label not_identical; |
| __ cmp(eax, edx); |
| __ j(not_equal, ¬_identical); |
| |
| if (cc_ != equal) { |
| // Check for undefined. undefined OP undefined is false even though |
| // undefined == undefined. |
| Label check_for_nan; |
| __ cmp(edx, masm->isolate()->factory()->undefined_value()); |
| __ j(not_equal, &check_for_nan, Label::kNear); |
| __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| __ ret(0); |
| __ bind(&check_for_nan); |
| } |
| |
| // Test for NaN. Sadly, we can't just compare to factory->nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // Note: if cc_ != equal, never_nan_nan_ is not used. |
| if (never_nan_nan_ && (cc_ == equal)) { |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| } else { |
| Label heap_number; |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
| Immediate(masm->isolate()->factory()->heap_number_map())); |
| __ j(equal, &heap_number, Label::kNear); |
| if (cc_ != equal) { |
| // Call runtime on identical JSObjects. Otherwise return equal. |
| __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(above_equal, ¬_identical); |
| } |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if |
| // it's not NaN. |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // We only accept QNaNs, which have bit 51 set. |
| // Read top bits of double representation (second word of value). |
| |
| // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., |
| // all bits in the mask are set. We only need to check the word |
| // that contains the exponent and high bit of the mantissa. |
| STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0); |
| __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ Set(eax, Immediate(0)); |
| // Shift value and mask so kQuietNaNHighBitsMask applies to topmost |
| // bits. |
| __ add(edx, edx); |
| __ cmp(edx, kQuietNaNHighBitsMask << 1); |
| if (cc_ == equal) { |
| STATIC_ASSERT(EQUAL != 1); |
| __ setcc(above_equal, eax); |
| __ ret(0); |
| } else { |
| Label nan; |
| __ j(above_equal, &nan, Label::kNear); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| __ bind(&nan); |
| __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| __ ret(0); |
| } |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| // Strict equality can quickly decide whether objects are equal. |
| // Non-strict object equality is slower, so it is handled later in the stub. |
| if (cc_ == equal && strict_) { |
| Label slow; // Fallthrough label. |
| Label not_smis; |
| // If we're doing a strict equality comparison, we don't have to do |
| // type conversion, so we generate code to do fast comparison for objects |
| // and oddballs. Non-smi numbers and strings still go through the usual |
| // slow-case code. |
| // If either is a Smi (we know that not both are), then they can only |
| // be equal if the other is a HeapNumber. If so, use the slow case. |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ mov(ecx, Immediate(kSmiTagMask)); |
| __ and_(ecx, eax); |
| __ test(ecx, edx); |
| __ j(not_zero, ¬_smis, Label::kNear); |
| // One operand is a smi. |
| |
| // Check whether the non-smi is a heap number. |
| STATIC_ASSERT(kSmiTagMask == 1); |
| // ecx still holds eax & kSmiTag, which is either zero or one. |
| __ sub(ecx, Immediate(0x01)); |
| __ mov(ebx, edx); |
| __ xor_(ebx, eax); |
| __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx. |
| __ xor_(ebx, eax); |
| // if eax was smi, ebx is now edx, else eax. |
| |
| // Check if the non-smi operand is a heap number. |
| __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), |
| Immediate(masm->isolate()->factory()->heap_number_map())); |
| // If heap number, handle it in the slow case. |
| __ j(equal, &slow, Label::kNear); |
| // Return non-equal (ebx is not zero) |
| __ mov(eax, ebx); |
| __ ret(0); |
| |
| __ bind(¬_smis); |
| // If either operand is a JSObject or an oddball value, then they are not |
| // equal since their pointers are different |
| // There is no test for undetectability in strict equality. |
| |
| // Get the type of the first operand. |
| // If the first object is a JS object, we have done pointer comparison. |
| Label first_non_object; |
| STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); |
| __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(below, &first_non_object, Label::kNear); |
| |
| // Return non-zero (eax is not zero) |
| Label return_not_equal; |
| STATIC_ASSERT(kHeapObjectTag != 0); |
| __ bind(&return_not_equal); |
| __ ret(0); |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ CmpInstanceType(ecx, ODDBALL_TYPE); |
| __ j(equal, &return_not_equal); |
| |
| __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(above_equal, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ CmpInstanceType(ecx, ODDBALL_TYPE); |
| __ j(equal, &return_not_equal); |
| |
| // Fall through to the general case. |
| __ bind(&slow); |
| } |
| |
| // Generate the number comparison code. |
| if (include_number_compare_) { |
| Label non_number_comparison; |
| Label unordered; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| CpuFeatures::Scope use_cmov(CMOV); |
| |
| FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); |
| __ ucomisd(xmm0, xmm1); |
| |
| // Don't base result on EFLAGS when a NaN is involved. |
| __ j(parity_even, &unordered, Label::kNear); |
| // Return a result of -1, 0, or 1, based on EFLAGS. |
| __ mov(eax, 0); // equal |
| __ mov(ecx, Immediate(Smi::FromInt(1))); |
| __ cmov(above, eax, ecx); |
| __ mov(ecx, Immediate(Smi::FromInt(-1))); |
| __ cmov(below, eax, ecx); |
| __ ret(0); |
| } else { |
| FloatingPointHelper::CheckFloatOperands( |
| masm, &non_number_comparison, ebx); |
| FloatingPointHelper::LoadFloatOperand(masm, eax); |
| FloatingPointHelper::LoadFloatOperand(masm, edx); |
| __ FCmp(); |
| |
| // Don't base result on EFLAGS when a NaN is involved. |
| __ j(parity_even, &unordered, Label::kNear); |
| |
| Label below_label, above_label; |
| // Return a result of -1, 0, or 1, based on EFLAGS. |
| __ j(below, &below_label, Label::kNear); |
| __ j(above, &above_label, Label::kNear); |
| |
| __ Set(eax, Immediate(0)); |
| __ ret(0); |
| |
| __ bind(&below_label); |
| __ mov(eax, Immediate(Smi::FromInt(-1))); |
| __ ret(0); |
| |
| __ bind(&above_label); |
| __ mov(eax, Immediate(Smi::FromInt(1))); |
| __ ret(0); |
| } |
| |
| // If one of the numbers was NaN, then the result is always false. |
| // The cc is never not-equal. |
| __ bind(&unordered); |
| ASSERT(cc_ != not_equal); |
| if (cc_ == less || cc_ == less_equal) { |
| __ mov(eax, Immediate(Smi::FromInt(1))); |
| } else { |
| __ mov(eax, Immediate(Smi::FromInt(-1))); |
| } |
| __ ret(0); |
| |
| // The number comparison code did not provide a valid result. |
| __ bind(&non_number_comparison); |
| } |
| |
| // Fast negative check for symbol-to-symbol equality. |
| Label check_for_strings; |
| if (cc_ == equal) { |
| BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); |
| BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); |
| |
| // We've already checked for object identity, so if both operands |
| // are symbols they aren't equal. Register eax already holds a |
| // non-zero value, which indicates not equal, so just return. |
| __ ret(0); |
| } |
| |
| __ bind(&check_for_strings); |
| |
| __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, |
| &check_unequal_objects); |
| |
| // Inline comparison of ASCII strings. |
| if (cc_ == equal) { |
| StringCompareStub::GenerateFlatAsciiStringEquals(masm, |
| edx, |
| eax, |
| ecx, |
| ebx); |
| } else { |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| edx, |
| eax, |
| ecx, |
| ebx, |
| edi); |
| } |
| #ifdef DEBUG |
| __ Abort("Unexpected fall-through from string comparison"); |
| #endif |
| |
| __ bind(&check_unequal_objects); |
| if (cc_ == equal && !strict_) { |
| // Non-strict equality. Objects are unequal if |
| // they are both JSObjects and not undetectable, |
| // and their pointers are different. |
| Label not_both_objects; |
| Label return_unequal; |
| // At most one is a smi, so we can test for smi by adding the two. |
| // A smi plus a heap object has the low bit set, a heap object plus |
| // a heap object has the low bit clear. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagMask == 1); |
| __ lea(ecx, Operand(eax, edx, times_1, 0)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(not_zero, ¬_both_objects, Label::kNear); |
| __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(below, ¬_both_objects, Label::kNear); |
| __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx); |
| __ j(below, ¬_both_objects, Label::kNear); |
| // We do not bail out after this point. Both are JSObjects, and |
| // they are equal if and only if both are undetectable. |
| // The and of the undetectable flags is 1 if and only if they are equal. |
| __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(zero, &return_unequal, Label::kNear); |
| __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(zero, &return_unequal, Label::kNear); |
| // The objects are both undetectable, so they both compare as the value |
| // undefined, and are equal. |
| __ Set(eax, Immediate(EQUAL)); |
| __ bind(&return_unequal); |
| // Return non-equal by returning the non-zero object pointer in eax, |
| // or return equal if we fell through to here. |
| __ ret(0); // rax, rdx were pushed |
| __ bind(¬_both_objects); |
| } |
| |
| // Push arguments below the return address. |
| __ pop(ecx); |
| __ push(edx); |
| __ push(eax); |
| |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript builtin; |
| if (cc_ == equal) { |
| builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| builtin = Builtins::COMPARE; |
| __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| } |
| |
| // Restore return address on the stack. |
| __ push(ecx); |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
| } |
| |
| |
| void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
| Label* label, |
| Register object, |
| Register scratch) { |
| __ JumpIfSmi(object, label); |
| __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
| __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
| __ and_(scratch, kIsSymbolMask | kIsNotStringMask); |
| __ cmp(scratch, kSymbolTag | kStringTag); |
| __ j(not_equal, label); |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| __ TailCallRuntime(Runtime::kStackGuard, 0, 1); |
| } |
| |
| |
| void InterruptStub::Generate(MacroAssembler* masm) { |
| __ TailCallRuntime(Runtime::kInterrupt, 0, 1); |
| } |
| |
| |
| static void GenerateRecordCallTarget(MacroAssembler* masm) { |
| // Cache the called function in a global property cell. Cache states |
| // are uninitialized, monomorphic (indicated by a JSFunction), and |
| // megamorphic. |
| // ebx : cache cell for call target |
| // edi : the function to call |
| Isolate* isolate = masm->isolate(); |
| Label initialize, done; |
| |
| // Load the cache state into ecx. |
| __ mov(ecx, FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset)); |
| |
| // A monomorphic cache hit or an already megamorphic state: invoke the |
| // function without changing the state. |
| __ cmp(ecx, edi); |
| __ j(equal, &done, Label::kNear); |
| __ cmp(ecx, Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate))); |
| __ j(equal, &done, Label::kNear); |
| |
| // A monomorphic miss (i.e, here the cache is not uninitialized) goes |
| // megamorphic. |
| __ cmp(ecx, Immediate(TypeFeedbackCells::UninitializedSentinel(isolate))); |
| __ j(equal, &initialize, Label::kNear); |
| // MegamorphicSentinel is an immortal immovable object (undefined) so no |
| // write-barrier is needed. |
| __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), |
| Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate))); |
| __ jmp(&done, Label::kNear); |
| |
| // An uninitialized cache is patched with the function. |
| __ bind(&initialize); |
| __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), edi); |
| // No need for a write barrier here - cells are rescanned. |
| |
| __ bind(&done); |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| // ebx : cache cell for call target |
| // edi : the function to call |
| Isolate* isolate = masm->isolate(); |
| Label slow, non_function; |
| |
| // The receiver might implicitly be the global object. This is |
| // indicated by passing the hole as the receiver to the call |
| // function stub. |
| if (ReceiverMightBeImplicit()) { |
| Label receiver_ok; |
| // Get the receiver from the stack. |
| // +1 ~ return address |
| __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); |
| // Call as function is indicated with the hole. |
| __ cmp(eax, isolate->factory()->the_hole_value()); |
| __ j(not_equal, &receiver_ok, Label::kNear); |
| // Patch the receiver on the stack with the global receiver object. |
| __ mov(ecx, GlobalObjectOperand()); |
| __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset)); |
| __ mov(Operand(esp, (argc_ + 1) * kPointerSize), ecx); |
| __ bind(&receiver_ok); |
| } |
| |
| // Check that the function really is a JavaScript function. |
| __ JumpIfSmi(edi, &non_function); |
| // Goto slow case if we do not have a function. |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &slow); |
| |
| if (RecordCallTarget()) { |
| GenerateRecordCallTarget(masm); |
| } |
| |
| // Fast-case: Just invoke the function. |
| ParameterCount actual(argc_); |
| |
| if (ReceiverMightBeImplicit()) { |
| Label call_as_function; |
| __ cmp(eax, isolate->factory()->the_hole_value()); |
| __ j(equal, &call_as_function); |
| __ InvokeFunction(edi, |
| actual, |
| JUMP_FUNCTION, |
| NullCallWrapper(), |
| CALL_AS_METHOD); |
| __ bind(&call_as_function); |
| } |
| __ InvokeFunction(edi, |
| actual, |
| JUMP_FUNCTION, |
| NullCallWrapper(), |
| CALL_AS_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| if (RecordCallTarget()) { |
| // If there is a call target cache, mark it megamorphic in the |
| // non-function case. MegamorphicSentinel is an immortal immovable |
| // object (undefined) so no write barrier is needed. |
| __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), |
| Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate))); |
| } |
| // Check for function proxy. |
| __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); |
| __ j(not_equal, &non_function); |
| __ pop(ecx); |
| __ push(edi); // put proxy as additional argument under return address |
| __ push(ecx); |
| __ Set(eax, Immediate(argc_ + 1)); |
| __ Set(ebx, Immediate(0)); |
| __ SetCallKind(ecx, CALL_AS_FUNCTION); |
| __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); |
| { |
| Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); |
| __ jmp(adaptor, RelocInfo::CODE_TARGET); |
| } |
| |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ bind(&non_function); |
| __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); |
| __ Set(eax, Immediate(argc_)); |
| __ Set(ebx, Immediate(0)); |
| __ SetCallKind(ecx, CALL_AS_METHOD); |
| __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); |
| Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); |
| __ jmp(adaptor, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void CallConstructStub::Generate(MacroAssembler* masm) { |
| // eax : number of arguments |
| // ebx : cache cell for call target |
| // edi : constructor function |
| Label slow, non_function_call; |
| |
| // Check that function is not a smi. |
| __ JumpIfSmi(edi, &non_function_call); |
| // Check that function is a JSFunction. |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &slow); |
| |
| if (RecordCallTarget()) { |
| GenerateRecordCallTarget(masm); |
| } |
| |
| // Jump to the function-specific construct stub. |
| __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset)); |
| __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize)); |
| __ jmp(ebx); |
| |
| // edi: called object |
| // eax: number of arguments |
| // ecx: object map |
| Label do_call; |
| __ bind(&slow); |
| __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); |
| __ j(not_equal, &non_function_call); |
| __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); |
| __ jmp(&do_call); |
| |
| __ bind(&non_function_call); |
| __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
| __ bind(&do_call); |
| // Set expected number of arguments to zero (not changing eax). |
| __ Set(ebx, Immediate(0)); |
| Handle<Code> arguments_adaptor = |
| masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| __ SetCallKind(ecx, CALL_AS_METHOD); |
| __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| bool CEntryStub::NeedsImmovableCode() { |
| return false; |
| } |
| |
| |
| bool CEntryStub::IsPregenerated() { |
| return (!save_doubles_ || ISOLATE->fp_stubs_generated()) && |
| result_size_ == 1; |
| } |
| |
| |
| void CodeStub::GenerateStubsAheadOfTime() { |
| CEntryStub::GenerateAheadOfTime(); |
| StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(); |
| // It is important that the store buffer overflow stubs are generated first. |
| RecordWriteStub::GenerateFixedRegStubsAheadOfTime(); |
| } |
| |
| |
| void CodeStub::GenerateFPStubs() { |
| CEntryStub save_doubles(1, kSaveFPRegs); |
| Handle<Code> code = save_doubles.GetCode(); |
| code->set_is_pregenerated(true); |
| code->GetIsolate()->set_fp_stubs_generated(true); |
| } |
| |
| |
| void CEntryStub::GenerateAheadOfTime() { |
| CEntryStub stub(1, kDontSaveFPRegs); |
| Handle<Code> code = stub.GetCode(); |
| code->set_is_pregenerated(true); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate_scope) { |
| // eax: result parameter for PerformGC, if any |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: pointer to the first argument (C callee-saved) |
| |
| // Result returned in eax, or eax+edx if result_size_ is 2. |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| |
| if (do_gc) { |
| // Pass failure code returned from last attempt as first argument to |
| // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
| // stack alignment is known to be correct. This function takes one argument |
| // which is passed on the stack, and we know that the stack has been |
| // prepared to pass at least one argument. |
| __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. |
| __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); |
| if (always_allocate_scope) { |
| __ inc(Operand::StaticVariable(scope_depth)); |
| } |
| |
| // Call C function. |
| __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. |
| __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. |
| __ mov(Operand(esp, 2 * kPointerSize), |
| Immediate(ExternalReference::isolate_address())); |
| __ call(ebx); |
| // Result is in eax or edx:eax - do not destroy these registers! |
| |
| if (always_allocate_scope) { |
| __ dec(Operand::StaticVariable(scope_depth)); |
| } |
| |
| // Make sure we're not trying to return 'the hole' from the runtime |
| // call as this may lead to crashes in the IC code later. |
| if (FLAG_debug_code) { |
| Label okay; |
| __ cmp(eax, masm->isolate()->factory()->the_hole_value()); |
| __ j(not_equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Check for failure result. |
| Label failure_returned; |
| STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| __ lea(ecx, Operand(eax, 1)); |
| // Lower 2 bits of ecx are 0 iff eax has failure tag. |
| __ test(ecx, Immediate(kFailureTagMask)); |
| __ j(zero, &failure_returned); |
| |
| ExternalReference pending_exception_address( |
| Isolate::kPendingExceptionAddress, masm->isolate()); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned some failure value. |
| if (FLAG_debug_code) { |
| __ push(edx); |
| __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); |
| Label okay; |
| __ cmp(edx, Operand::StaticVariable(pending_exception_address)); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ j(equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| __ pop(edx); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles_ == kSaveFPRegs); |
| __ ret(0); |
| |
| // Handling of failure. |
| __ bind(&failure_returned); |
| |
| Label retry; |
| // If the returned exception is RETRY_AFTER_GC continue at retry label |
| STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ j(zero, &retry, Label::kNear); |
| |
| // Special handling of out of memory exceptions. |
| __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| __ j(equal, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ mov(eax, Operand::StaticVariable(pending_exception_address)); |
| __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); |
| __ mov(Operand::StaticVariable(pending_exception_address), edx); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(eax, masm->isolate()->factory()->termination_exception()); |
| __ j(equal, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| // Retry. |
| __ bind(&retry); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // eax: number of arguments including receiver |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // esi: current context (C callee-saved) |
| // edi: JS function of the caller (C callee-saved) |
| |
| // NOTE: Invocations of builtins may return failure objects instead |
| // of a proper result. The builtin entry handles this by performing |
| // a garbage collection and retrying the builtin (twice). |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(save_doubles_ == kSaveFPRegs); |
| |
| // eax: result parameter for PerformGC, if any (setup below) |
| // ebx: pointer to builtin function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: argv pointer (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true); |
| |
| __ bind(&throw_out_of_memory_exception); |
| // Set external caught exception to false. |
| Isolate* isolate = masm->isolate(); |
| ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress, |
| isolate); |
| __ mov(Operand::StaticVariable(external_caught), Immediate(false)); |
| |
| // Set pending exception and eax to out of memory exception. |
| ExternalReference pending_exception(Isolate::kPendingExceptionAddress, |
| isolate); |
| __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| __ mov(Operand::StaticVariable(pending_exception), eax); |
| // Fall through to the next label. |
| |
| __ bind(&throw_termination_exception); |
| __ ThrowUncatchable(eax); |
| |
| __ bind(&throw_normal_exception); |
| __ Throw(eax); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| Label invoke, handler_entry, exit; |
| Label not_outermost_js, not_outermost_js_2; |
| |
| // Set up frame. |
| __ push(ebp); |
| __ mov(ebp, esp); |
| |
| // Push marker in two places. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ push(Immediate(Smi::FromInt(marker))); // context slot |
| __ push(Immediate(Smi::FromInt(marker))); // function slot |
| // Save callee-saved registers (C calling conventions). |
| __ push(edi); |
| __ push(esi); |
| __ push(ebx); |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, masm->isolate()); |
| __ push(Operand::StaticVariable(c_entry_fp)); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, |
| masm->isolate()); |
| __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ j(not_equal, ¬_outermost_js, Label::kNear); |
| __ mov(Operand::StaticVariable(js_entry_sp), ebp); |
| __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| Label cont; |
| __ jmp(&cont, Label::kNear); |
| __ bind(¬_outermost_js); |
| __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); |
| __ bind(&cont); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| handler_offset_ = handler_entry.pos(); |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception(Isolate::kPendingExceptionAddress, |
| masm->isolate()); |
| __ mov(Operand::StaticVariable(pending_exception), eax); |
| __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. There's only one |
| // handler block in this code object, so its index is 0. |
| __ bind(&invoke); |
| __ PushTryHandler(StackHandler::JS_ENTRY, 0); |
| |
| // Clear any pending exceptions. |
| __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); |
| __ mov(Operand::StaticVariable(pending_exception), edx); |
| |
| // Fake a receiver (NULL). |
| __ push(Immediate(0)); // receiver |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. Notice that we cannot store a |
| // reference to the trampoline code directly in this stub, because the |
| // builtin stubs may not have been generated yet. |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, |
| masm->isolate()); |
| __ mov(edx, Immediate(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::kJSEntryTrampoline, |
| masm->isolate()); |
| __ mov(edx, Immediate(entry)); |
| } |
| __ mov(edx, Operand(edx, 0)); // deref address |
| __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| __ call(edx); |
| |
| // Unlink this frame from the handler chain. |
| __ PopTryHandler(); |
| |
| __ bind(&exit); |
| // Check if the current stack frame is marked as the outermost JS frame. |
| __ pop(ebx); |
| __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| |
| // Restore the top frame descriptor from the stack. |
| __ pop(Operand::StaticVariable(ExternalReference( |
| Isolate::kCEntryFPAddress, |
| masm->isolate()))); |
| |
| // Restore callee-saved registers (C calling conventions). |
| __ pop(ebx); |
| __ pop(esi); |
| __ pop(edi); |
| __ add(esp, Immediate(2 * kPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ pop(ebp); |
| __ ret(0); |
| } |
| |
| |
| // Generate stub code for instanceof. |
| // This code can patch a call site inlined cache of the instance of check, |
| // which looks like this. |
| // |
| // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map> |
| // 75 0a jne <some near label> |
| // b8 XX XX XX XX mov eax, <the hole, patched to either true or false> |
| // |
| // If call site patching is requested the stack will have the delta from the |
| // return address to the cmp instruction just below the return address. This |
| // also means that call site patching can only take place with arguments in |
| // registers. TOS looks like this when call site patching is requested |
| // |
| // esp[0] : return address |
| // esp[4] : delta from return address to cmp instruction |
| // |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Call site inlining and patching implies arguments in registers. |
| ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); |
| |
| // Fixed register usage throughout the stub. |
| Register object = eax; // Object (lhs). |
| Register map = ebx; // Map of the object. |
| Register function = edx; // Function (rhs). |
| Register prototype = edi; // Prototype of the function. |
| Register scratch = ecx; |
| |
| // Constants describing the call site code to patch. |
| static const int kDeltaToCmpImmediate = 2; |
| static const int kDeltaToMov = 8; |
| static const int kDeltaToMovImmediate = 9; |
| static const int8_t kCmpEdiOperandByte1 = BitCast<int8_t, uint8_t>(0x3b); |
| static const int8_t kCmpEdiOperandByte2 = BitCast<int8_t, uint8_t>(0x3d); |
| static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8); |
| |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(masm->isolate()); |
| |
| ASSERT_EQ(object.code(), InstanceofStub::left().code()); |
| ASSERT_EQ(function.code(), InstanceofStub::right().code()); |
| |
| // Get the object and function - they are always both needed. |
| Label slow, not_js_object; |
| if (!HasArgsInRegisters()) { |
| __ mov(object, Operand(esp, 2 * kPointerSize)); |
| __ mov(function, Operand(esp, 1 * kPointerSize)); |
| } |
| |
| // Check that the left hand is a JS object. |
| __ JumpIfSmi(object, ¬_js_object); |
| __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
| |
| // If there is a call site cache don't look in the global cache, but do the |
| // real lookup and update the call site cache. |
| if (!HasCallSiteInlineCheck()) { |
| // Look up the function and the map in the instanceof cache. |
| Label miss; |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
| __ cmp(function, Operand::StaticArray(scratch, |
| times_pointer_size, |
| roots_array_start)); |
| __ j(not_equal, &miss, Label::kNear); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
| __ cmp(map, Operand::StaticArray( |
| scratch, times_pointer_size, roots_array_start)); |
| __ j(not_equal, &miss, Label::kNear); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| __ mov(eax, Operand::StaticArray( |
| scratch, times_pointer_size, roots_array_start)); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| __ bind(&miss); |
| } |
| |
| // Get the prototype of the function. |
| __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); |
| |
| // Check that the function prototype is a JS object. |
| __ JumpIfSmi(prototype, &slow); |
| __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
| |
| // Update the global instanceof or call site inlined cache with the current |
| // map and function. The cached answer will be set when it is known below. |
| if (!HasCallSiteInlineCheck()) { |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
| __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), |
| map); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
| __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), |
| function); |
| } else { |
| // The constants for the code patching are based on no push instructions |
| // at the call site. |
| ASSERT(HasArgsInRegisters()); |
| // Get return address and delta to inlined map check. |
| __ mov(scratch, Operand(esp, 0 * kPointerSize)); |
| __ sub(scratch, Operand(esp, 1 * kPointerSize)); |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)"); |
| __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)"); |
| } |
| __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate)); |
| __ mov(Operand(scratch, 0), map); |
| } |
| |
| // Loop through the prototype chain of the object looking for the function |
| // prototype. |
| __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset)); |
| Label loop, is_instance, is_not_instance; |
| __ bind(&loop); |
| __ cmp(scratch, prototype); |
| __ j(equal, &is_instance, Label::kNear); |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(scratch, Immediate(factory->null_value())); |
| __ j(equal, &is_not_instance, Label::kNear); |
| __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); |
| __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ Set(eax, Immediate(0)); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| __ mov(Operand::StaticArray(scratch, |
| times_pointer_size, roots_array_start), eax); |
| } else { |
| // Get return address and delta to inlined map check. |
| __ mov(eax, factory->true_value()); |
| __ mov(scratch, Operand(esp, 0 * kPointerSize)); |
| __ sub(scratch, Operand(esp, 1 * kPointerSize)); |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); |
| } |
| __ mov(Operand(scratch, kDeltaToMovImmediate), eax); |
| if (!ReturnTrueFalseObject()) { |
| __ Set(eax, Immediate(0)); |
| } |
| } |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| __ bind(&is_not_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| __ mov(Operand::StaticArray( |
| scratch, times_pointer_size, roots_array_start), eax); |
| } else { |
| // Get return address and delta to inlined map check. |
| __ mov(eax, factory->false_value()); |
| __ mov(scratch, Operand(esp, 0 * kPointerSize)); |
| __ sub(scratch, Operand(esp, 1 * kPointerSize)); |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); |
| } |
| __ mov(Operand(scratch, kDeltaToMovImmediate), eax); |
| if (!ReturnTrueFalseObject()) { |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| } |
| } |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| Label object_not_null, object_not_null_or_smi; |
| __ bind(¬_js_object); |
| // Before null, smi and string value checks, check that the rhs is a function |
| // as for a non-function rhs an exception needs to be thrown. |
| __ JumpIfSmi(function, &slow, Label::kNear); |
| __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch); |
| __ j(not_equal, &slow, Label::kNear); |
| |
| // Null is not instance of anything. |
| __ cmp(object, factory->null_value()); |
| __ j(not_equal, &object_not_null, Label::kNear); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| __ bind(&object_not_null); |
| // Smi values is not instance of anything. |
| __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| __ bind(&object_not_null_or_smi); |
| // String values is not instance of anything. |
| Condition is_string = masm->IsObjectStringType(object, scratch, scratch); |
| __ j(NegateCondition(is_string), &slow, Label::kNear); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| // Slow-case: Go through the JavaScript implementation. |
| __ bind(&slow); |
| if (!ReturnTrueFalseObject()) { |
| // Tail call the builtin which returns 0 or 1. |
| if (HasArgsInRegisters()) { |
| // Push arguments below return address. |
| __ pop(scratch); |
| __ push(object); |
| __ push(function); |
| __ push(scratch); |
| } |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
| } else { |
| // Call the builtin and convert 0/1 to true/false. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(object); |
| __ push(function); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
| } |
| Label true_value, done; |
| __ test(eax, eax); |
| __ j(zero, &true_value, Label::kNear); |
| __ mov(eax, factory->false_value()); |
| __ jmp(&done, Label::kNear); |
| __ bind(&true_value); |
| __ mov(eax, factory->true_value()); |
| __ bind(&done); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| } |
| } |
| |
| |
| Register InstanceofStub::left() { return eax; } |
| |
| |
| Register InstanceofStub::right() { return edx; } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| // stubs the never NaN NaN condition is only taken into account if the |
| // condition is equals. |
| ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
| ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| return ConditionField::encode(static_cast<unsigned>(cc_)) |
| | RegisterField::encode(false) // lhs_ and rhs_ are not used |
| | StrictField::encode(strict_) |
| | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
| | IncludeNumberCompareField::encode(include_number_compare_) |
| | IncludeSmiCompareField::encode(include_smi_compare_); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| void CompareStub::PrintName(StringStream* stream) { |
| ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| const char* cc_name; |
| switch (cc_) { |
| case less: cc_name = "LT"; break; |
| case greater: cc_name = "GT"; break; |
| case less_equal: cc_name = "LE"; break; |
| case greater_equal: cc_name = "GE"; break; |
| case equal: cc_name = "EQ"; break; |
| case not_equal: cc_name = "NE"; break; |
| default: cc_name = "UnknownCondition"; break; |
| } |
| bool is_equality = cc_ == equal || cc_ == not_equal; |
| stream->Add("CompareStub_%s", cc_name); |
| if (strict_ && is_equality) stream->Add("_STRICT"); |
| if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN"); |
| if (!include_number_compare_) stream->Add("_NO_NUMBER"); |
| if (!include_smi_compare_) stream->Add("_NO_SMI"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharCodeAtGenerator |
| |
| void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| // If the receiver is a smi trigger the non-string case. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(object_, receiver_not_string_); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the non-string case. |
| __ test(result_, Immediate(kIsNotStringMask)); |
| __ j(not_zero, receiver_not_string_); |
| |
| // If the index is non-smi trigger the non-smi case. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfNotSmi(index_, &index_not_smi_); |
| __ bind(&got_smi_index_); |
| |
| // Check for index out of range. |
| __ cmp(index_, FieldOperand(object_, String::kLengthOffset)); |
| __ j(above_equal, index_out_of_range_); |
| |
| __ SmiUntag(index_); |
| |
| Factory* factory = masm->isolate()->factory(); |
| StringCharLoadGenerator::Generate( |
| masm, factory, object_, index_, result_, &call_runtime_); |
| |
| __ SmiTag(result_); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharCodeAtGenerator::GenerateSlow( |
| MacroAssembler* masm, |
| const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| |
| // Index is not a smi. |
| __ bind(&index_not_smi_); |
| // If index is a heap number, try converting it to an integer. |
| __ CheckMap(index_, |
| masm->isolate()->factory()->heap_number_map(), |
| index_not_number_, |
| DONT_DO_SMI_CHECK); |
| call_helper.BeforeCall(masm); |
| __ push(object_); |
| __ push(index_); // Consumed by runtime conversion function. |
| if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| } else { |
| ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| // NumberToSmi discards numbers that are not exact integers. |
| __ CallRuntime(Runtime::kNumberToSmi, 1); |
| } |
| if (!index_.is(eax)) { |
| // Save the conversion result before the pop instructions below |
| // have a chance to overwrite it. |
| __ mov(index_, eax); |
| } |
| __ pop(object_); |
| // Reload the instance type. |
| __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| call_helper.AfterCall(masm); |
| // If index is still not a smi, it must be out of range. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfNotSmi(index_, index_out_of_range_); |
| // Otherwise, return to the fast path. |
| __ jmp(&got_smi_index_); |
| |
| // Call runtime. We get here when the receiver is a string and the |
| // index is a number, but the code of getting the actual character |
| // is too complex (e.g., when the string needs to be flattened). |
| __ bind(&call_runtime_); |
| call_helper.BeforeCall(masm); |
| __ push(object_); |
| __ SmiTag(index_); |
| __ push(index_); |
| __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| if (!result_.is(eax)) { |
| __ mov(result_, eax); |
| } |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharFromCodeGenerator |
| |
| void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| __ test(code_, |
| Immediate(kSmiTagMask | |
| ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| __ j(not_zero, &slow_case_); |
| |
| Factory* factory = masm->isolate()->factory(); |
| __ Set(result_, Immediate(factory->single_character_string_cache())); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| // At this point code register contains smi tagged ASCII char code. |
| __ mov(result_, FieldOperand(result_, |
| code_, times_half_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ cmp(result_, factory->undefined_value()); |
| __ j(equal, &slow_case_); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharFromCodeGenerator::GenerateSlow( |
| MacroAssembler* masm, |
| const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| |
| __ bind(&slow_case_); |
| call_helper.BeforeCall(masm); |
| __ push(code_); |
| __ CallRuntime(Runtime::kCharFromCode, 1); |
| if (!result_.is(eax)) { |
| __ mov(result_, eax); |
| } |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharAtGenerator |
| |
| void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| char_code_at_generator_.GenerateFast(masm); |
| char_from_code_generator_.GenerateFast(masm); |
| } |
| |
| |
| void StringCharAtGenerator::GenerateSlow( |
| MacroAssembler* masm, |
| const RuntimeCallHelper& call_helper) { |
| char_code_at_generator_.GenerateSlow(masm, call_helper); |
| char_from_code_generator_.GenerateSlow(masm, call_helper); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label call_runtime, call_builtin; |
| Builtins::JavaScript builtin_id = Builtins::ADD; |
| |
| // Load the two arguments. |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (flags_ == NO_STRING_ADD_FLAGS) { |
| __ JumpIfSmi(eax, &call_runtime); |
| __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); |
| __ j(above_equal, &call_runtime); |
| |
| // First argument is a a string, test second. |
| __ JumpIfSmi(edx, &call_runtime); |
| __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); |
| __ j(above_equal, &call_runtime); |
| } else { |
| // Here at least one of the arguments is definitely a string. |
| // We convert the one that is not known to be a string. |
| if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); |
| GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi, |
| &call_builtin); |
| builtin_id = Builtins::STRING_ADD_RIGHT; |
| } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); |
| GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi, |
| &call_builtin); |
| builtin_id = Builtins::STRING_ADD_LEFT; |
| } |
| } |
| |
| // Both arguments are strings. |
| // eax: first string |
| // edx: second string |
| // Check if either of the strings are empty. In that case return the other. |
| Label second_not_zero_length, both_not_zero_length; |
| __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(ecx, ecx); |
| __ j(not_zero, &second_not_zero_length, Label::kNear); |
| // Second string is empty, result is first string which is already in eax. |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| __ bind(&second_not_zero_length); |
| __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(ebx, ebx); |
| __ j(not_zero, &both_not_zero_length, Label::kNear); |
| // First string is empty, result is second string which is in edx. |
| __ mov(eax, edx); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| |
| // Both strings are non-empty. |
| // eax: first string |
| // ebx: length of first string as a smi |
| // ecx: length of second string as a smi |
| // edx: second string |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| __ bind(&both_not_zero_length); |
| __ add(ebx, ecx); |
| STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength); |
| // Handle exceptionally long strings in the runtime system. |
| __ j(overflow, &call_runtime); |
| // Use the symbol table when adding two one character strings, as it |
| // helps later optimizations to return a symbol here. |
| __ cmp(ebx, Immediate(Smi::FromInt(2))); |
| __ j(not_equal, &longer_than_two); |
| |
| // Check that both strings are non-external ASCII strings. |
| __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, &call_runtime); |
| |
| // Get the two characters forming the new string. |
| __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string, make_two_character_string_no_reload; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, ebx, ecx, eax, edx, edi, |
| &make_two_character_string_no_reload, &make_two_character_string); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| |
| // Allocate a two character string. |
| __ bind(&make_two_character_string); |
| // Reload the arguments. |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
| // Get the two characters forming the new string. |
| __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
| __ bind(&make_two_character_string_no_reload); |
| __ IncrementCounter(counters->string_add_make_two_char(), 1); |
| __ AllocateAsciiString(eax, 2, edi, edx, &call_runtime); |
| // Pack both characters in ebx. |
| __ shl(ecx, kBitsPerByte); |
| __ or_(ebx, ecx); |
| // Set the characters in the new string. |
| __ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ cmp(ebx, Immediate(Smi::FromInt(ConsString::kMinLength))); |
| __ j(below, &string_add_flat_result); |
| |
| // If result is not supposed to be flat allocate a cons string object. If both |
| // strings are ASCII the result is an ASCII cons string. |
| Label non_ascii, allocated, ascii_data; |
| __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| __ and_(ecx, edi); |
| STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); |
| STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
| __ test(ecx, Immediate(kStringEncodingMask)); |
| __ j(zero, &non_ascii); |
| __ bind(&ascii_data); |
| // Allocate an ASCII cons string. |
| __ AllocateAsciiConsString(ecx, edi, no_reg, &call_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| if (FLAG_debug_code) __ AbortIfNotSmi(ebx); |
| __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); |
| __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); |
| __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); |
| __ mov(eax, ecx); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| __ bind(&non_ascii); |
| // At least one of the strings is two-byte. Check whether it happens |
| // to contain only ASCII characters. |
| // ecx: first instance type AND second instance type. |
| // edi: second instance type. |
| __ test(ecx, Immediate(kAsciiDataHintMask)); |
| __ j(not_zero, &ascii_data); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ xor_(edi, ecx); |
| STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| __ and_(edi, kAsciiStringTag | kAsciiDataHintTag); |
| __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); |
| __ j(equal, &ascii_data); |
| // Allocate a two byte cons string. |
| __ AllocateTwoByteConsString(ecx, edi, no_reg, &call_runtime); |
| __ jmp(&allocated); |
| |
| // We cannot encounter sliced strings or cons strings here since: |
| STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength); |
| // Handle creating a flat result from either external or sequential strings. |
| // Locate the first characters' locations. |
| // eax: first string |
| // ebx: length of resulting flat string as a smi |
| // edx: second string |
| Label first_prepared, second_prepared; |
| Label first_is_sequential, second_is_sequential; |
| __ bind(&string_add_flat_result); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| // ecx: instance type of first string |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ test_b(ecx, kStringRepresentationMask); |
| __ j(zero, &first_is_sequential, Label::kNear); |
| // Rule out short external string and load string resource. |
| STATIC_ASSERT(kShortExternalStringTag != 0); |
| __ test_b(ecx, kShortExternalStringMask); |
| __ j(not_zero, &call_runtime); |
| __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); |
| STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
| __ jmp(&first_prepared, Label::kNear); |
| __ bind(&first_is_sequential); |
| __ add(eax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ bind(&first_prepared); |
| |
| __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| // Check whether both strings have same encoding. |
| // edi: instance type of second string |
| __ xor_(ecx, edi); |
| __ test_b(ecx, kStringEncodingMask); |
| __ j(not_zero, &call_runtime); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ test_b(edi, kStringRepresentationMask); |
| __ j(zero, &second_is_sequential, Label::kNear); |
| // Rule out short external string and load string resource. |
| STATIC_ASSERT(kShortExternalStringTag != 0); |
| __ test_b(edi, kShortExternalStringMask); |
| __ j(not_zero, &call_runtime); |
| __ mov(edx, FieldOperand(edx, ExternalString::kResourceDataOffset)); |
| STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
| __ jmp(&second_prepared, Label::kNear); |
| __ bind(&second_is_sequential); |
| __ add(edx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ bind(&second_prepared); |
| |
| // Push the addresses of both strings' first characters onto the stack. |
| __ push(edx); |
| __ push(eax); |
| |
| Label non_ascii_string_add_flat_result, call_runtime_drop_two; |
| // edi: instance type of second string |
| // First string and second string have the same encoding. |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| __ test_b(edi, kStringEncodingMask); |
| __ j(zero, &non_ascii_string_add_flat_result); |
| |
| // Both strings are ASCII strings. |
| // ebx: length of resulting flat string as a smi |
| __ SmiUntag(ebx); |
| __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &call_runtime_drop_two); |
| // eax: result string |
| __ mov(ecx, eax); |
| // Locate first character of result. |
| __ add(ecx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Load first argument's length and first character location. Account for |
| // values currently on the stack when fetching arguments from it. |
| __ mov(edx, Operand(esp, 4 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ pop(edx); |
| // eax: result string |
| // ecx: first character of result |
| // edx: first char of first argument |
| // edi: length of first argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| // Load second argument's length and first character location. Account for |
| // values currently on the stack when fetching arguments from it. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ pop(edx); |
| // eax: result string |
| // ecx: next character of result |
| // edx: first char of second argument |
| // edi: length of second argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| |
| // Handle creating a flat two byte result. |
| // eax: first string - known to be two byte |
| // ebx: length of resulting flat string as a smi |
| // edx: second string |
| __ bind(&non_ascii_string_add_flat_result); |
| // Both strings are two byte strings. |
| __ SmiUntag(ebx); |
| __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &call_runtime_drop_two); |
| // eax: result string |
| __ mov(ecx, eax); |
| // Locate first character of result. |
| __ add(ecx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Load second argument's length and first character location. Account for |
| // values currently on the stack when fetching arguments from it. |
| __ mov(edx, Operand(esp, 4 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ pop(edx); |
| // eax: result string |
| // ecx: first character of result |
| // edx: first char of first argument |
| // edi: length of first argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| // Load second argument's length and first character location. Account for |
| // values currently on the stack when fetching arguments from it. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ pop(edx); |
| // eax: result string |
| // ecx: next character of result |
| // edx: first char of second argument |
| // edi: length of second argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| __ IncrementCounter(counters->string_add_native(), 1); |
| __ ret(2 * kPointerSize); |
| |
| // Recover stack pointer before jumping to runtime. |
| __ bind(&call_runtime_drop_two); |
| __ Drop(2); |
| // Just jump to runtime to add the two strings. |
| __ bind(&call_runtime); |
| __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| |
| if (call_builtin.is_linked()) { |
| __ bind(&call_builtin); |
| __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); |
| } |
| } |
| |
| |
| void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, |
| int stack_offset, |
| Register arg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* slow) { |
| // First check if the argument is already a string. |
| Label not_string, done; |
| __ JumpIfSmi(arg, ¬_string); |
| __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1); |
| __ j(below, &done); |
| |
| // Check the number to string cache. |
| Label not_cached; |
| __ bind(¬_string); |
| // Puts the cached result into scratch1. |
| NumberToStringStub::GenerateLookupNumberStringCache(masm, |
| arg, |
| scratch1, |
| scratch2, |
| scratch3, |
| false, |
| ¬_cached); |
| __ mov(arg, scratch1); |
| __ mov(Operand(esp, stack_offset), arg); |
| __ jmp(&done); |
| |
| // Check if the argument is a safe string wrapper. |
| __ bind(¬_cached); |
| __ JumpIfSmi(arg, slow); |
| __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1. |
| __ j(not_equal, slow); |
| __ test_b(FieldOperand(scratch1, Map::kBitField2Offset), |
| 1 << Map::kStringWrapperSafeForDefaultValueOf); |
| __ j(zero, slow); |
| __ mov(arg, FieldOperand(arg, JSValue::kValueOffset)); |
| __ mov(Operand(esp, stack_offset), arg); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| __ bind(&loop); |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (ascii) { |
| __ mov_b(scratch, Operand(src, 0)); |
| __ mov_b(Operand(dest, 0), scratch); |
| __ add(src, Immediate(1)); |
| __ add(dest, Immediate(1)); |
| } else { |
| __ mov_w(scratch, Operand(src, 0)); |
| __ mov_w(Operand(dest, 0), scratch); |
| __ add(src, Immediate(2)); |
| __ add(dest, Immediate(2)); |
| } |
| __ sub(count, Immediate(1)); |
| __ j(not_zero, &loop); |
| } |
| |
| |
| void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| // Copy characters using rep movs of doublewords. |
| // The destination is aligned on a 4 byte boundary because we are |
| // copying to the beginning of a newly allocated string. |
| ASSERT(dest.is(edi)); // rep movs destination |
| ASSERT(src.is(esi)); // rep movs source |
| ASSERT(count.is(ecx)); // rep movs count |
| ASSERT(!scratch.is(dest)); |
| ASSERT(!scratch.is(src)); |
| ASSERT(!scratch.is(count)); |
| |
| // Nothing to do for zero characters. |
| Label done; |
| __ test(count, count); |
| __ j(zero, &done); |
| |
| // Make count the number of bytes to copy. |
| if (!ascii) { |
| __ shl(count, 1); |
| } |
| |
| // Don't enter the rep movs if there are less than 4 bytes to copy. |
| Label last_bytes; |
| __ test(count, Immediate(~3)); |
| __ j(zero, &last_bytes, Label::kNear); |
| |
| // Copy from edi to esi using rep movs instruction. |
| __ mov(scratch, count); |
| __ sar(count, 2); // Number of doublewords to copy. |
| __ cld(); |
| __ rep_movs(); |
| |
| // Find number of bytes left. |
| __ mov(count, scratch); |
| __ and_(count, 3); |
| |
| // Check if there are more bytes to copy. |
| __ bind(&last_bytes); |
| __ test(count, count); |
| __ j(zero, &done); |
| |
| // Copy remaining characters. |
| Label loop; |
| __ bind(&loop); |
| __ mov_b(scratch, Operand(src, 0)); |
| __ mov_b(Operand(dest, 0), scratch); |
| __ add(src, Immediate(1)); |
| __ add(dest, Immediate(1)); |
| __ sub(count, Immediate(1)); |
| __ j(not_zero, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* not_probed, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| Label not_array_index; |
| __ mov(scratch, c1); |
| __ sub(scratch, Immediate(static_cast<int>('0'))); |
| __ cmp(scratch, Immediate(static_cast<int>('9' - '0'))); |
| __ j(above, ¬_array_index, Label::kNear); |
| __ mov(scratch, c2); |
| __ sub(scratch, Immediate(static_cast<int>('0'))); |
| __ cmp(scratch, Immediate(static_cast<int>('9' - '0'))); |
| __ j(below_equal, not_probed); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| GenerateHashInit(masm, hash, c1, scratch); |
| GenerateHashAddCharacter(masm, hash, c2, scratch); |
| GenerateHashGetHash(masm, hash, scratch); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ shl(c2, kBitsPerByte); |
| __ or_(chars, c2); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load the symbol table. |
| Register symbol_table = c2; |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(masm->isolate()); |
| __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); |
| __ mov(symbol_table, |
| Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| __ SmiUntag(mask); |
| __ sub(mask, Immediate(1)); |
| |
| // Registers |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // symbol_table: symbol table |
| // mask: capacity mask |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes], next_probe_pop_mask[kProbes]; |
| Register candidate = scratch; // Scratch register contains candidate. |
| for (int i = 0; i < kProbes; i++) { |
| // Calculate entry in symbol table. |
| __ mov(scratch, hash); |
| if (i > 0) { |
| __ add(scratch, Immediate(SymbolTable::GetProbeOffset(i))); |
| } |
| __ and_(scratch, mask); |
| |
| // Load the entry from the symbol table. |
| STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| __ mov(candidate, |
| FieldOperand(symbol_table, |
| scratch, |
| times_pointer_size, |
| SymbolTable::kElementsStartOffset)); |
| |
| // If entry is undefined no string with this hash can be found. |
| Factory* factory = masm->isolate()->factory(); |
| __ cmp(candidate, factory->undefined_value()); |
| __ j(equal, not_found); |
| __ cmp(candidate, factory->the_hole_value()); |
| __ j(equal, &next_probe[i]); |
| |
| // If length is not 2 the string is not a candidate. |
| __ cmp(FieldOperand(candidate, String::kLengthOffset), |
| Immediate(Smi::FromInt(2))); |
| __ j(not_equal, &next_probe[i]); |
| |
| // As we are out of registers save the mask on the stack and use that |
| // register as a temporary. |
| __ push(mask); |
| Register temp = mask; |
| |
| // Check that the candidate is a non-external ASCII string. |
| __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
| __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii( |
| temp, temp, &next_probe_pop_mask[i]); |
| |
| // Check if the two characters match. |
| __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ and_(temp, 0x0000ffff); |
| __ cmp(chars, temp); |
| __ j(equal, &found_in_symbol_table); |
| __ bind(&next_probe_pop_mask[i]); |
| __ pop(mask); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = candidate; |
| __ bind(&found_in_symbol_table); |
| __ pop(mask); // Pop saved mask from the stack. |
| if (!result.is(eax)) { |
| __ mov(eax, result); |
| } |
| } |
| |
| |
| void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch) { |
| // hash = (seed + character) + ((seed + character) << 10); |
| if (Serializer::enabled()) { |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(masm->isolate()); |
| __ mov(scratch, Immediate(Heap::kHashSeedRootIndex)); |
| __ mov(scratch, Operand::StaticArray(scratch, |
| times_pointer_size, |
| roots_array_start)); |
| __ SmiUntag(scratch); |
| __ add(scratch, character); |
| __ mov(hash, scratch); |
| __ shl(scratch, 10); |
| __ add(hash, scratch); |
| } else { |
| int32_t seed = masm->isolate()->heap()->HashSeed(); |
| __ lea(scratch, Operand(character, seed)); |
| __ shl(scratch, 10); |
| __ lea(hash, Operand(scratch, character, times_1, seed)); |
| } |
| // hash ^= hash >> 6; |
| __ mov(scratch, hash); |
| __ shr(scratch, 6); |
| __ xor_(hash, scratch); |
| } |
| |
| |
| void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch) { |
| // hash += character; |
| __ add(hash, character); |
| // hash += hash << 10; |
| __ mov(scratch, hash); |
| __ shl(scratch, 10); |
| __ add(hash, scratch); |
| // hash ^= hash >> 6; |
| __ mov(scratch, hash); |
| __ shr(scratch, 6); |
| __ xor_(hash, scratch); |
| } |
| |
| |
| void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash, |
| Register scratch) { |
| // hash += hash << 3; |
| __ mov(scratch, hash); |
| __ shl(scratch, 3); |
| __ add(hash, scratch); |
| // hash ^= hash >> 11; |
| __ mov(scratch, hash); |
| __ shr(scratch, 11); |
| __ xor_(hash, scratch); |
| // hash += hash << 15; |
| __ mov(scratch, hash); |
| __ shl(scratch, 15); |
| __ add(hash, scratch); |
| |
| __ and_(hash, String::kHashBitMask); |
| |
| // if (hash == 0) hash = 27; |
| Label hash_not_zero; |
| __ j(not_zero, &hash_not_zero, Label::kNear); |
| __ mov(hash, Immediate(StringHasher::kZeroHash)); |
| __ bind(&hash_not_zero); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: to |
| // esp[8]: from |
| // esp[12]: string |
| |
| // Make sure first argument is a string. |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(eax, &runtime); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| __ j(NegateCondition(is_string), &runtime); |
| |
| // eax: string |
| // ebx: instance type |
| |
| // Calculate length of sub string using the smi values. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. |
| __ JumpIfNotSmi(ecx, &runtime); |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. |
| __ JumpIfNotSmi(edx, &runtime); |
| __ sub(ecx, edx); |
| __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); |
| Label not_original_string; |
| __ j(not_equal, ¬_original_string, Label::kNear); |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->sub_string_native(), 1); |
| __ ret(3 * kPointerSize); |
| __ bind(¬_original_string); |
| |
| // eax: string |
| // ebx: instance type |
| // ecx: sub string length (smi) |
| // edx: from index (smi) |
| // Deal with different string types: update the index if necessary |
| // and put the underlying string into edi. |
| Label underlying_unpacked, sliced_string, seq_or_external_string; |
| // If the string is not indirect, it can only be sequential or external. |
| STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
| STATIC_ASSERT(kIsIndirectStringMask != 0); |
| __ test(ebx, Immediate(kIsIndirectStringMask)); |
| __ j(zero, &seq_or_external_string, Label::kNear); |
| |
| Factory* factory = masm->isolate()->factory(); |
| __ test(ebx, Immediate(kSlicedNotConsMask)); |
| __ j(not_zero, &sliced_string, Label::kNear); |
| // Cons string. Check whether it is flat, then fetch first part. |
| // Flat cons strings have an empty second part. |
| __ cmp(FieldOperand(eax, ConsString::kSecondOffset), |
| factory->empty_string()); |
| __ j(not_equal, &runtime); |
| __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset)); |
| // Update instance type. |
| __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| __ jmp(&underlying_unpacked, Label::kNear); |
| |
| __ bind(&sliced_string); |
| // Sliced string. Fetch parent and adjust start index by offset. |
| __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset)); |
| __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset)); |
| // Update instance type. |
| __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| __ jmp(&underlying_unpacked, Label::kNear); |
| |
| __ bind(&seq_or_external_string); |
| // Sequential or external string. Just move string to the expected register. |
| __ mov(edi, eax); |
| |
| __ bind(&underlying_unpacked); |
| |
| if (FLAG_string_slices) { |
| Label copy_routine; |
| // edi: underlying subject string |
| // ebx: instance type of underlying subject string |
| // edx: adjusted start index (smi) |
| // ecx: length (smi) |
| __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength))); |
| // Short slice. Copy instead of slicing. |
| __ j(less, ©_routine); |
| // Allocate new sliced string. At this point we do not reload the instance |
| // type including the string encoding because we simply rely on the info |
| // provided by the original string. It does not matter if the original |
| // string's encoding is wrong because we always have to recheck encoding of |
| // the newly created string's parent anyways due to externalized strings. |
| Label two_byte_slice, set_slice_header; |
| STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); |
| STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
| __ test(ebx, Immediate(kStringEncodingMask)); |
| __ j(zero, &two_byte_slice, Label::kNear); |
| __ AllocateAsciiSlicedString(eax, ebx, no_reg, &runtime); |
| __ jmp(&set_slice_header, Label::kNear); |
| __ bind(&two_byte_slice); |
| __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime); |
| __ bind(&set_slice_header); |
| __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx); |
| __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi); |
| __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx); |
| __ IncrementCounter(counters->sub_string_native(), 1); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(©_routine); |
| } |
| |
| // edi: underlying subject string |
| // ebx: instance type of underlying subject string |
| // edx: adjusted start index (smi) |
| // ecx: length (smi) |
| // The subject string can only be external or sequential string of either |
| // encoding at this point. |
| Label two_byte_sequential, runtime_drop_two, sequential_string; |
| STATIC_ASSERT(kExternalStringTag != 0); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ test_b(ebx, kExternalStringTag); |
| __ j(zero, &sequential_string); |
| |
| // Handle external string. |
| // Rule out short external strings. |
| STATIC_CHECK(kShortExternalStringTag != 0); |
| __ test_b(ebx, kShortExternalStringMask); |
| __ j(not_zero, &runtime); |
| __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset)); |
| // Move the pointer so that offset-wise, it looks like a sequential string. |
| STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); |
| __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| __ bind(&sequential_string); |
| // Stash away (adjusted) index and (underlying) string. |
| __ push(edx); |
| __ push(edi); |
| __ SmiUntag(ecx); |
| STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0); |
| __ test_b(ebx, kStringEncodingMask); |
| __ j(zero, &two_byte_sequential); |
| |
| // Sequential ASCII string. Allocate the result. |
| __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime_drop_two); |
| |
| // eax: result string |
| // ecx: result string length |
| __ mov(edx, esi); // esi used by following code. |
| // Locate first character of result. |
| __ mov(edi, eax); |
| __ add(edi, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Load string argument and locate character of sub string start. |
| __ pop(esi); |
| __ pop(ebx); |
| __ SmiUntag(ebx); |
| __ lea(esi, FieldOperand(esi, ebx, times_1, SeqAsciiString::kHeaderSize)); |
| |
| // eax: result string |
| // ecx: result length |
| // edx: original value of esi |
| // edi: first character of result |
| // esi: character of sub string start |
| StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); |
| __ mov(esi, edx); // Restore esi. |
| __ IncrementCounter(counters->sub_string_native(), 1); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&two_byte_sequential); |
| // Sequential two-byte string. Allocate the result. |
| __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two); |
| |
| // eax: result string |
| // ecx: result string length |
| __ mov(edx, esi); // esi used by following code. |
| // Locate first character of result. |
| __ mov(edi, eax); |
| __ add(edi, |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Load string argument and locate character of sub string start. |
| __ pop(esi); |
| __ pop(ebx); |
| // As from is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ lea(esi, FieldOperand(esi, ebx, times_1, SeqTwoByteString::kHeaderSize)); |
| |
| // eax: result string |
| // ecx: result length |
| // edx: original value of esi |
| // edi: first character of result |
| // esi: character of sub string start |
| StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); |
| __ mov(esi, edx); // Restore esi. |
| __ IncrementCounter(counters->sub_string_native(), 1); |
| __ ret(3 * kPointerSize); |
| |
| // Drop pushed values on the stack before tail call. |
| __ bind(&runtime_drop_two); |
| __ Drop(2); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2) { |
| Register length = scratch1; |
| |
| // Compare lengths. |
| Label strings_not_equal, check_zero_length; |
| __ mov(length, FieldOperand(left, String::kLengthOffset)); |
| __ cmp(length, FieldOperand(right, String::kLengthOffset)); |
| __ j(equal, &check_zero_length, Label::kNear); |
| __ bind(&strings_not_equal); |
| __ Set(eax, Immediate(Smi::FromInt(NOT_EQUAL))); |
| __ ret(0); |
| |
| // Check if the length is zero. |
| Label compare_chars; |
| __ bind(&check_zero_length); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(length, length); |
| __ j(not_zero, &compare_chars, Label::kNear); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| |
| // Compare characters. |
| __ bind(&compare_chars); |
| GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, |
| &strings_not_equal, Label::kNear); |
| |
| // Characters are equal. |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3) { |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->string_compare_native(), 1); |
| |
| // Find minimum length. |
| Label left_shorter; |
| __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); |
| __ mov(scratch3, scratch1); |
| __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); |
| |
| Register length_delta = scratch3; |
| |
| __ j(less_equal, &left_shorter, Label::kNear); |
| // Right string is shorter. Change scratch1 to be length of right string. |
| __ sub(scratch1, length_delta); |
| __ bind(&left_shorter); |
| |
| Register min_length = scratch1; |
| |
| // If either length is zero, just compare lengths. |
| Label compare_lengths; |
| __ test(min_length, min_length); |
| __ j(zero, &compare_lengths, Label::kNear); |
| |
| // Compare characters. |
| Label result_not_equal; |
| GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, |
| &result_not_equal, Label::kNear); |
| |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| __ test(length_delta, length_delta); |
| __ j(not_zero, &result_not_equal, Label::kNear); |
| |
| // Result is EQUAL. |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| |
| Label result_greater; |
| __ bind(&result_not_equal); |
| __ j(greater, &result_greater, Label::kNear); |
| |
| // Result is LESS. |
| __ Set(eax, Immediate(Smi::FromInt(LESS))); |
| __ ret(0); |
| |
| // Result is GREATER. |
| __ bind(&result_greater); |
| __ Set(eax, Immediate(Smi::FromInt(GREATER))); |
| __ ret(0); |
| } |
| |
| |
| void StringCompareStub::GenerateAsciiCharsCompareLoop( |
| MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register length, |
| Register scratch, |
| Label* chars_not_equal, |
| Label::Distance chars_not_equal_near) { |
| // Change index to run from -length to -1 by adding length to string |
| // start. This means that loop ends when index reaches zero, which |
| // doesn't need an additional compare. |
| __ SmiUntag(length); |
| __ lea(left, |
| FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize)); |
| __ lea(right, |
| FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize)); |
| __ neg(length); |
| Register index = length; // index = -length; |
| |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| __ mov_b(scratch, Operand(left, index, times_1, 0)); |
| __ cmpb(scratch, Operand(right, index, times_1, 0)); |
| __ j(not_equal, chars_not_equal, chars_not_equal_near); |
| __ inc(index); |
| __ j(not_zero, &loop); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: right string |
| // esp[8]: left string |
| |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); // left |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); // right |
| |
| Label not_same; |
| __ cmp(edx, eax); |
| __ j(not_equal, ¬_same, Label::kNear); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(masm->isolate()->counters()->string_compare_native(), 1); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ASCII strings. |
| __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); |
| |
| // Compare flat ASCII strings. |
| // Drop arguments from the stack. |
| __ pop(ecx); |
| __ add(esp, Immediate(2 * kPointerSize)); |
| __ push(ecx); |
| GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| |
| void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::SMIS); |
| Label miss; |
| __ mov(ecx, edx); |
| __ or_(ecx, eax); |
| __ JumpIfNotSmi(ecx, &miss, Label::kNear); |
| |
| if (GetCondition() == equal) { |
| // For equality we do not care about the sign of the result. |
| __ sub(eax, edx); |
| } else { |
| Label done; |
| __ sub(edx, eax); |
| __ j(no_overflow, &done, Label::kNear); |
| // Correct sign of result in case of overflow. |
| __ not_(edx); |
| __ bind(&done); |
| __ mov(eax, edx); |
| } |
| __ ret(0); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::HEAP_NUMBERS); |
| |
| Label generic_stub; |
| Label unordered, maybe_undefined1, maybe_undefined2; |
| Label miss; |
| __ mov(ecx, edx); |
| __ and_(ecx, eax); |
| __ JumpIfSmi(ecx, &generic_stub, Label::kNear); |
| |
| __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx); |
| __ j(not_equal, &maybe_undefined1, Label::kNear); |
| __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); |
| __ j(not_equal, &maybe_undefined2, Label::kNear); |
| |
| // Inlining the double comparison and falling back to the general compare |
| // stub if NaN is involved or SS2 or CMOV is unsupported. |
| if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) { |
| CpuFeatures::Scope scope1(SSE2); |
| CpuFeatures::Scope scope2(CMOV); |
| |
| // Load left and right operand |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| |
| // Compare operands |
| __ ucomisd(xmm0, xmm1); |
| |
| // Don't base result on EFLAGS when a NaN is involved. |
| __ j(parity_even, &unordered, Label::kNear); |
| |
| // Return a result of -1, 0, or 1, based on EFLAGS. |
| // Performing mov, because xor would destroy the flag register. |
| __ mov(eax, 0); // equal |
| __ mov(ecx, Immediate(Smi::FromInt(1))); |
| __ cmov(above, eax, ecx); |
| __ mov(ecx, Immediate(Smi::FromInt(-1))); |
| __ cmov(below, eax, ecx); |
| __ ret(0); |
| } |
| |
| __ bind(&unordered); |
| CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS); |
| __ bind(&generic_stub); |
| __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); |
| |
| __ bind(&maybe_undefined1); |
| if (Token::IsOrderedRelationalCompareOp(op_)) { |
| __ cmp(eax, Immediate(masm->isolate()->factory()->undefined_value())); |
| __ j(not_equal, &miss); |
| __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); |
| __ j(not_equal, &maybe_undefined2, Label::kNear); |
| __ jmp(&unordered); |
| } |
| |
| __ bind(&maybe_undefined2); |
| if (Token::IsOrderedRelationalCompareOp(op_)) { |
| __ cmp(edx, Immediate(masm->isolate()->factory()->undefined_value())); |
| __ j(equal, &unordered); |
| } |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::SYMBOLS); |
| ASSERT(GetCondition() == equal); |
| |
| // Registers containing left and right operands respectively. |
| Register left = edx; |
| Register right = eax; |
| Register tmp1 = ecx; |
| Register tmp2 = ebx; |
| |
| // Check that both operands are heap objects. |
| Label miss; |
| __ mov(tmp1, left); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ and_(tmp1, right); |
| __ JumpIfSmi(tmp1, &miss, Label::kNear); |
| |
| // Check that both operands are symbols. |
| __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); |
| __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); |
| __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); |
| __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ and_(tmp1, tmp2); |
| __ test(tmp1, Immediate(kIsSymbolMask)); |
| __ j(zero, &miss, Label::kNear); |
| |
| // Symbols are compared by identity. |
| Label done; |
| __ cmp(left, right); |
| // Make sure eax is non-zero. At this point input operands are |
| // guaranteed to be non-zero. |
| ASSERT(right.is(eax)); |
| __ j(not_equal, &done, Label::kNear); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ bind(&done); |
| __ ret(0); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::STRINGS); |
| Label miss; |
| |
| bool equality = Token::IsEqualityOp(op_); |
| |
| // Registers containing left and right operands respectively. |
| Register left = edx; |
| Register right = eax; |
| Register tmp1 = ecx; |
| Register tmp2 = ebx; |
| Register tmp3 = edi; |
| |
| // Check that both operands are heap objects. |
| __ mov(tmp1, left); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ and_(tmp1, right); |
| __ JumpIfSmi(tmp1, &miss); |
| |
| // Check that both operands are strings. This leaves the instance |
| // types loaded in tmp1 and tmp2. |
| __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); |
| __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); |
| __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); |
| __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); |
| __ mov(tmp3, tmp1); |
| STATIC_ASSERT(kNotStringTag != 0); |
| __ or_(tmp3, tmp2); |
| __ test(tmp3, Immediate(kIsNotStringMask)); |
| __ j(not_zero, &miss); |
| |
| // Fast check for identical strings. |
| Label not_same; |
| __ cmp(left, right); |
| __ j(not_equal, ¬_same, Label::kNear); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| |
| // Handle not identical strings. |
| __ bind(¬_same); |
| |
| // Check that both strings are symbols. If they are, we're done |
| // because we already know they are not identical. But in the case of |
| // non-equality compare, we still need to determine the order. |
| if (equality) { |
| Label do_compare; |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ and_(tmp1, tmp2); |
| __ test(tmp1, Immediate(kIsSymbolMask)); |
| __ j(zero, &do_compare, Label::kNear); |
| // Make sure eax is non-zero. At this point input operands are |
| // guaranteed to be non-zero. |
| ASSERT(right.is(eax)); |
| __ ret(0); |
| __ bind(&do_compare); |
| } |
| |
| // Check that both strings are sequential ASCII. |
| Label runtime; |
| __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime); |
| |
| // Compare flat ASCII strings. Returns when done. |
| if (equality) { |
| StringCompareStub::GenerateFlatAsciiStringEquals( |
| masm, left, right, tmp1, tmp2); |
| } else { |
| StringCompareStub::GenerateCompareFlatAsciiStrings( |
| masm, left, right, tmp1, tmp2, tmp3); |
| } |
| |
| // Handle more complex cases in runtime. |
| __ bind(&runtime); |
| __ pop(tmp1); // Return address. |
| __ push(left); |
| __ push(right); |
| __ push(tmp1); |
| if (equality) { |
| __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
| } else { |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::OBJECTS); |
| Label miss; |
| __ mov(ecx, edx); |
| __ and_(ecx, eax); |
| __ JumpIfSmi(ecx, &miss, Label::kNear); |
| |
| __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx); |
| __ j(not_equal, &miss, Label::kNear); |
| __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx); |
| __ j(not_equal, &miss, Label::kNear); |
| |
| ASSERT(GetCondition() == equal); |
| __ sub(eax, edx); |
| __ ret(0); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { |
| Label miss; |
| __ mov(ecx, edx); |
| __ and_(ecx, eax); |
| __ JumpIfSmi(ecx, &miss, Label::kNear); |
| |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(ecx, known_map_); |
| __ j(not_equal, &miss, Label::kNear); |
| __ cmp(ebx, known_map_); |
| __ j(not_equal, &miss, Label::kNear); |
| |
| __ sub(eax, edx); |
| __ ret(0); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
| { |
| // Call the runtime system in a fresh internal frame. |
| ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), |
| masm->isolate()); |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(edx); // Preserve edx and eax. |
| __ push(eax); |
| __ push(edx); // And also use them as the arguments. |
| __ push(eax); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ CallExternalReference(miss, 3); |
| // Compute the entry point of the rewritten stub. |
| __ lea(edi, FieldOperand(eax, Code::kHeaderSize)); |
| __ pop(eax); |
| __ pop(edx); |
| } |
| |
| // Do a tail call to the rewritten stub. |
| __ jmp(edi); |
| } |
| |
| |
| // Helper function used to check that the dictionary doesn't contain |
| // the property. This function may return false negatives, so miss_label |
| // must always call a backup property check that is complete. |
| // This function is safe to call if the receiver has fast properties. |
| // Name must be a symbol and receiver must be a heap object. |
| void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register properties, |
| Handle<String> name, |
| Register r0) { |
| ASSERT(name->IsSymbol()); |
| |
| // If names of slots in range from 1 to kProbes - 1 for the hash value are |
| // not equal to the name and kProbes-th slot is not used (its name is the |
| // undefined value), it guarantees the hash table doesn't contain the |
| // property. It's true even if some slots represent deleted properties |
| // (their names are the hole value). |
| for (int i = 0; i < kInlinedProbes; i++) { |
| // Compute the masked index: (hash + i + i * i) & mask. |
| Register index = r0; |
| // Capacity is smi 2^n. |
| __ mov(index, FieldOperand(properties, kCapacityOffset)); |
| __ dec(index); |
| __ and_(index, |
| Immediate(Smi::FromInt(name->Hash() + |
| StringDictionary::GetProbeOffset(i)))); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| __ lea(index, Operand(index, index, times_2, 0)); // index *= 3. |
| Register entity_name = r0; |
| // Having undefined at this place means the name is not contained. |
| ASSERT_EQ(kSmiTagSize, 1); |
| __ mov(entity_name, Operand(properties, index, times_half_pointer_size, |
| kElementsStartOffset - kHeapObjectTag)); |
| __ cmp(entity_name, masm->isolate()->factory()->undefined_value()); |
| __ j(equal, done); |
| |
| // Stop if found the property. |
| __ cmp(entity_name, Handle<String>(name)); |
| __ j(equal, miss); |
| |
| Label the_hole; |
| // Check for the hole and skip. |
| __ cmp(entity_name, masm->isolate()->factory()->the_hole_value()); |
| __ j(equal, &the_hole, Label::kNear); |
| |
| // Check if the entry name is not a symbol. |
| __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(entity_name, Map::kInstanceTypeOffset), |
| kIsSymbolMask); |
| __ j(zero, miss); |
| __ bind(&the_hole); |
| } |
| |
| StringDictionaryLookupStub stub(properties, |
| r0, |
| r0, |
| StringDictionaryLookupStub::NEGATIVE_LOOKUP); |
| __ push(Immediate(Handle<Object>(name))); |
| __ push(Immediate(name->Hash())); |
| __ CallStub(&stub); |
| __ test(r0, r0); |
| __ j(not_zero, miss); |
| __ jmp(done); |
| } |
| |
| |
| // Probe the string dictionary in the |elements| register. Jump to the |
| // |done| label if a property with the given name is found leaving the |
| // index into the dictionary in |r0|. Jump to the |miss| label |
| // otherwise. |
| void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register elements, |
| Register name, |
| Register r0, |
| Register r1) { |
| ASSERT(!elements.is(r0)); |
| ASSERT(!elements.is(r1)); |
| ASSERT(!name.is(r0)); |
| ASSERT(!name.is(r1)); |
| |
| // Assert that name contains a string. |
| if (FLAG_debug_code) __ AbortIfNotString(name); |
| |
| __ mov(r1, FieldOperand(elements, kCapacityOffset)); |
| __ shr(r1, kSmiTagSize); // convert smi to int |
| __ dec(r1); |
| |
| // Generate an unrolled loop that performs a few probes before |
| // giving up. Measurements done on Gmail indicate that 2 probes |
| // cover ~93% of loads from dictionaries. |
| for (int i = 0; i < kInlinedProbes; i++) { |
| // Compute the masked index: (hash + i + i * i) & mask. |
| __ mov(r0, FieldOperand(name, String::kHashFieldOffset)); |
| __ shr(r0, String::kHashShift); |
| if (i > 0) { |
| __ add(r0, Immediate(StringDictionary::GetProbeOffset(i))); |
| } |
| __ and_(r0, r1); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3 |
| |
| // Check if the key is identical to the name. |
| __ cmp(name, Operand(elements, |
| r0, |
| times_4, |
| kElementsStartOffset - kHeapObjectTag)); |
| __ j(equal, done); |
| } |
| |
| StringDictionaryLookupStub stub(elements, |
| r1, |
| r0, |
| POSITIVE_LOOKUP); |
| __ push(name); |
| __ mov(r0, FieldOperand(name, String::kHashFieldOffset)); |
| __ shr(r0, String::kHashShift); |
| __ push(r0); |
| __ CallStub(&stub); |
| |
| __ test(r1, r1); |
| __ j(zero, miss); |
| __ jmp(done); |
| } |
| |
| |
| void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { |
| // This stub overrides SometimesSetsUpAFrame() to return false. That means |
| // we cannot call anything that could cause a GC from this stub. |
| // Stack frame on entry: |
| // esp[0 * kPointerSize]: return address. |
| // esp[1 * kPointerSize]: key's hash. |
| // esp[2 * kPointerSize]: key. |
| // Registers: |
| // dictionary_: StringDictionary to probe. |
| // result_: used as scratch. |
| // index_: will hold an index of entry if lookup is successful. |
| // might alias with result_. |
| // Returns: |
| // result_ is zero if lookup failed, non zero otherwise. |
| |
| Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
| |
| Register scratch = result_; |
| |
| __ mov(scratch, FieldOperand(dictionary_, kCapacityOffset)); |
| __ dec(scratch); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| |
| // If names of slots in range from 1 to kProbes - 1 for the hash value are |
| // not equal to the name and kProbes-th slot is not used (its name is the |
| // undefined value), it guarantees the hash table doesn't contain the |
| // property. It's true even if some slots represent deleted properties |
| // (their names are the null value). |
| for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
| // Compute the masked index: (hash + i + i * i) & mask. |
| __ mov(scratch, Operand(esp, 2 * kPointerSize)); |
| if (i > 0) { |
| __ add(scratch, Immediate(StringDictionary::GetProbeOffset(i))); |
| } |
| __ and_(scratch, Operand(esp, 0)); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| __ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3. |
| |
| // Having undefined at this place means the name is not contained. |
| ASSERT_EQ(kSmiTagSize, 1); |
| __ mov(scratch, Operand(dictionary_, |
| index_, |
| times_pointer_size, |
| kElementsStartOffset - kHeapObjectTag)); |
| __ cmp(scratch, masm->isolate()->factory()->undefined_value()); |
| __ j(equal, ¬_in_dictionary); |
| |
| // Stop if found the property. |
| __ cmp(scratch, Operand(esp, 3 * kPointerSize)); |
| __ j(equal, &in_dictionary); |
| |
| if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
| // If we hit a non symbol key during negative lookup |
| // we have to bailout as this key might be equal to the |
| // key we are looking for. |
| |
| // Check if the entry name is not a symbol. |
| __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(scratch, Map::kInstanceTypeOffset), |
| kIsSymbolMask); |
| __ j(zero, &maybe_in_dictionary); |
| } |
| } |
| |
| __ bind(&maybe_in_dictionary); |
| // If we are doing negative lookup then probing failure should be |
| // treated as a lookup success. For positive lookup probing failure |
| // should be treated as lookup failure. |
| if (mode_ == POSITIVE_LOOKUP) { |
| __ mov(result_, Immediate(0)); |
| __ Drop(1); |
| __ ret(2 * kPointerSize); |
| } |
| |
| __ bind(&in_dictionary); |
| __ mov(result_, Immediate(1)); |
| __ Drop(1); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(¬_in_dictionary); |
| __ mov(result_, Immediate(0)); |
| __ Drop(1); |
| __ ret(2 * kPointerSize); |
| } |
| |
| |
| struct AheadOfTimeWriteBarrierStubList { |
| Register object, value, address; |
| RememberedSetAction action; |
| }; |
| |
| |
| #define REG(Name) { kRegister_ ## Name ## _Code } |
| |
| static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = { |
| // Used in RegExpExecStub. |
| { REG(ebx), REG(eax), REG(edi), EMIT_REMEMBERED_SET }, |
| // Used in CompileArrayPushCall. |
| { REG(ebx), REG(ecx), REG(edx), EMIT_REMEMBERED_SET }, |
| { REG(ebx), REG(edi), REG(edx), OMIT_REMEMBERED_SET }, |
| // Used in CompileStoreGlobal and CallFunctionStub. |
| { REG(ebx), REG(ecx), REG(edx), OMIT_REMEMBERED_SET }, |
| // Used in StoreStubCompiler::CompileStoreField and |
| // KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField. |
| { REG(edx), REG(ecx), REG(ebx), EMIT_REMEMBERED_SET }, |
| // GenerateStoreField calls the stub with two different permutations of |
| // registers. This is the second. |
| { REG(ebx), REG(ecx), REG(edx), EMIT_REMEMBERED_SET }, |
| // StoreIC::GenerateNormal via GenerateDictionaryStore |
| { REG(ebx), REG(edi), REG(edx), EMIT_REMEMBERED_SET }, |
| // KeyedStoreIC::GenerateGeneric. |
| { REG(ebx), REG(edx), REG(ecx), EMIT_REMEMBERED_SET}, |
| // KeyedStoreStubCompiler::GenerateStoreFastElement. |
| { REG(edi), REG(ebx), REG(ecx), EMIT_REMEMBERED_SET}, |
| { REG(edx), REG(edi), REG(ebx), EMIT_REMEMBERED_SET}, |
| // ElementsTransitionGenerator::GenerateSmiOnlyToObject |
| // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble |
| // and ElementsTransitionGenerator::GenerateDoubleToObject |
| { REG(edx), REG(ebx), REG(edi), EMIT_REMEMBERED_SET}, |
| { REG(edx), REG(ebx), REG(edi), OMIT_REMEMBERED_SET}, |
| // ElementsTransitionGenerator::GenerateDoubleToObject |
| { REG(eax), REG(edx), REG(esi), EMIT_REMEMBERED_SET}, |
| { REG(edx), REG(eax), REG(edi), EMIT_REMEMBERED_SET}, |
| // StoreArrayLiteralElementStub::Generate |
| { REG(ebx), REG(eax), REG(ecx), EMIT_REMEMBERED_SET}, |
| // Null termination. |
| { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET} |
| }; |
| |
| #undef REG |
| |
| bool RecordWriteStub::IsPregenerated() { |
| for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; |
| !entry->object.is(no_reg); |
| entry++) { |
| if (object_.is(entry->object) && |
| value_.is(entry->value) && |
| address_.is(entry->address) && |
| remembered_set_action_ == entry->action && |
| save_fp_regs_mode_ == kDontSaveFPRegs) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() { |
| StoreBufferOverflowStub stub1(kDontSaveFPRegs); |
| stub1.GetCode()->set_is_pregenerated(true); |
| |
| CpuFeatures::TryForceFeatureScope scope(SSE2); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| StoreBufferOverflowStub stub2(kSaveFPRegs); |
| stub2.GetCode()->set_is_pregenerated(true); |
| } |
| } |
| |
| |
| void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() { |
| for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; |
| !entry->object.is(no_reg); |
| entry++) { |
| RecordWriteStub stub(entry->object, |
| entry->value, |
| entry->address, |
| entry->action, |
| kDontSaveFPRegs); |
| stub.GetCode()->set_is_pregenerated(true); |
| } |
| } |
| |
| |
| // Takes the input in 3 registers: address_ value_ and object_. A pointer to |
| // the value has just been written into the object, now this stub makes sure |
| // we keep the GC informed. The word in the object where the value has been |
| // written is in the address register. |
| void RecordWriteStub::Generate(MacroAssembler* masm) { |
| Label skip_to_incremental_noncompacting; |
| Label skip_to_incremental_compacting; |
| |
| // The first two instructions are generated with labels so as to get the |
| // offset fixed up correctly by the bind(Label*) call. We patch it back and |
| // forth between a compare instructions (a nop in this position) and the |
| // real branch when we start and stop incremental heap marking. |
| __ jmp(&skip_to_incremental_noncompacting, Label::kNear); |
| __ jmp(&skip_to_incremental_compacting, Label::kFar); |
| |
| if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
| __ RememberedSetHelper(object_, |
| address_, |
| value_, |
| save_fp_regs_mode_, |
| MacroAssembler::kReturnAtEnd); |
| } else { |
| __ ret(0); |
| } |
| |
| __ bind(&skip_to_incremental_noncompacting); |
| GenerateIncremental(masm, INCREMENTAL); |
| |
| __ bind(&skip_to_incremental_compacting); |
| GenerateIncremental(masm, INCREMENTAL_COMPACTION); |
| |
| // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. |
| // Will be checked in IncrementalMarking::ActivateGeneratedStub. |
| masm->set_byte_at(0, kTwoByteNopInstruction); |
| masm->set_byte_at(2, kFiveByteNopInstruction); |
| } |
| |
| |
| void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { |
| regs_.Save(masm); |
| |
| if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
| Label dont_need_remembered_set; |
| |
| __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); |
| __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. |
| regs_.scratch0(), |
| &dont_need_remembered_set); |
| |
| __ CheckPageFlag(regs_.object(), |
| regs_.scratch0(), |
| 1 << MemoryChunk::SCAN_ON_SCAVENGE, |
| not_zero, |
| &dont_need_remembered_set); |
| |
| // First notify the incremental marker if necessary, then update the |
| // remembered set. |
| CheckNeedsToInformIncrementalMarker( |
| masm, |
| kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, |
| mode); |
| InformIncrementalMarker(masm, mode); |
| regs_.Restore(masm); |
| __ RememberedSetHelper(object_, |
| address_, |
| value_, |
| save_fp_regs_mode_, |
| MacroAssembler::kReturnAtEnd); |
| |
| __ bind(&dont_need_remembered_set); |
| } |
| |
| CheckNeedsToInformIncrementalMarker( |
| masm, |
| kReturnOnNoNeedToInformIncrementalMarker, |
| mode); |
| InformIncrementalMarker(masm, mode); |
| regs_.Restore(masm); |
| __ ret(0); |
| } |
| |
| |
| void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { |
| regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); |
| int argument_count = 3; |
| __ PrepareCallCFunction(argument_count, regs_.scratch0()); |
| __ mov(Operand(esp, 0 * kPointerSize), regs_.object()); |
| if (mode == INCREMENTAL_COMPACTION) { |
| __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot. |
| } else { |
| ASSERT(mode == INCREMENTAL); |
| __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); |
| __ mov(Operand(esp, 1 * kPointerSize), regs_.scratch0()); // Value. |
| } |
| __ mov(Operand(esp, 2 * kPointerSize), |
| Immediate(ExternalReference::isolate_address())); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| if (mode == INCREMENTAL_COMPACTION) { |
| __ CallCFunction( |
| ExternalReference::incremental_evacuation_record_write_function( |
| masm->isolate()), |
| argument_count); |
| } else { |
| ASSERT(mode == INCREMENTAL); |
| __ CallCFunction( |
| ExternalReference::incremental_marking_record_write_function( |
| masm->isolate()), |
| argument_count); |
| } |
| regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); |
| } |
| |
| |
| void RecordWriteStub::CheckNeedsToInformIncrementalMarker( |
| MacroAssembler* masm, |
| OnNoNeedToInformIncrementalMarker on_no_need, |
| Mode mode) { |
| Label object_is_black, need_incremental, need_incremental_pop_object; |
| |
| // Let's look at the color of the object: If it is not black we don't have |
| // to inform the incremental marker. |
| __ JumpIfBlack(regs_.object(), |
| regs_.scratch0(), |
| regs_.scratch1(), |
| &object_is_black, |
| Label::kNear); |
| |
| regs_.Restore(masm); |
| if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
| __ RememberedSetHelper(object_, |
| address_, |
| value_, |
| save_fp_regs_mode_, |
| MacroAssembler::kReturnAtEnd); |
| } else { |
| __ ret(0); |
| } |
| |
| __ bind(&object_is_black); |
| |
| // Get the value from the slot. |
| __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); |
| |
| if (mode == INCREMENTAL_COMPACTION) { |
| Label ensure_not_white; |
| |
| __ CheckPageFlag(regs_.scratch0(), // Contains value. |
| regs_.scratch1(), // Scratch. |
| MemoryChunk::kEvacuationCandidateMask, |
| zero, |
| &ensure_not_white, |
| Label::kNear); |
| |
| __ CheckPageFlag(regs_.object(), |
| regs_.scratch1(), // Scratch. |
| MemoryChunk::kSkipEvacuationSlotsRecordingMask, |
| not_zero, |
| &ensure_not_white, |
| Label::kNear); |
| |
| __ jmp(&need_incremental); |
| |
| __ bind(&ensure_not_white); |
| } |
| |
| // We need an extra register for this, so we push the object register |
| // temporarily. |
| __ push(regs_.object()); |
| __ EnsureNotWhite(regs_.scratch0(), // The value. |
| regs_.scratch1(), // Scratch. |
| regs_.object(), // Scratch. |
| &need_incremental_pop_object, |
| Label::kNear); |
| __ pop(regs_.object()); |
| |
| regs_.Restore(masm); |
| if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
| __ RememberedSetHelper(object_, |
| address_, |
| value_, |
| save_fp_regs_mode_, |
| MacroAssembler::kReturnAtEnd); |
| } else { |
| __ ret(0); |
| } |
| |
| __ bind(&need_incremental_pop_object); |
| __ pop(regs_.object()); |
| |
| __ bind(&need_incremental); |
| |
| // Fall through when we need to inform the incremental marker. |
| } |
| |
| |
| void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : element value to store |
| // -- ebx : array literal |
| // -- edi : map of array literal |
| // -- ecx : element index as smi |
| // -- edx : array literal index in function |
| // -- esp[0] : return address |
| // ----------------------------------- |
| |
| Label element_done; |
| Label double_elements; |
| Label smi_element; |
| Label slow_elements; |
| Label slow_elements_from_double; |
| Label fast_elements; |
| |
| __ CheckFastElements(edi, &double_elements); |
| |
| // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS |
| __ JumpIfSmi(eax, &smi_element); |
| __ CheckFastSmiOnlyElements(edi, &fast_elements, Label::kNear); |
| |
| // Store into the array literal requires a elements transition. Call into |
| // the runtime. |
| |
| __ bind(&slow_elements); |
| __ pop(edi); // Pop return address and remember to put back later for tail |
| // call. |
| __ push(ebx); |
| __ push(ecx); |
| __ push(eax); |
| __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset)); |
| __ push(edx); |
| __ push(edi); // Return return address so that tail call returns to right |
| // place. |
| __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); |
| |
| __ bind(&slow_elements_from_double); |
| __ pop(edx); |
| __ jmp(&slow_elements); |
| |
| // Array literal has ElementsKind of FAST_ELEMENTS and value is an object. |
| __ bind(&fast_elements); |
| __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); |
| __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size, |
| FixedArrayBase::kHeaderSize)); |
| __ mov(Operand(ecx, 0), eax); |
| // Update the write barrier for the array store. |
| __ RecordWrite(ebx, ecx, eax, |
| kDontSaveFPRegs, |
| EMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| __ ret(0); |
| |
| // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or |
| // FAST_ELEMENTS, and value is Smi. |
| __ bind(&smi_element); |
| __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); |
| __ mov(FieldOperand(ebx, ecx, times_half_pointer_size, |
| FixedArrayBase::kHeaderSize), eax); |
| __ ret(0); |
| |
| // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. |
| __ bind(&double_elements); |
| |
| __ push(edx); |
| __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset)); |
| __ StoreNumberToDoubleElements(eax, |
| edx, |
| ecx, |
| edi, |
| xmm0, |
| &slow_elements_from_double, |
| false); |
| __ pop(edx); |
| __ ret(0); |
| } |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |