blob: 803a711de9694efeacc907db44d1f7342980d006 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_IA32_CODE_STUBS_IA32_H_
#define V8_IA32_CODE_STUBS_IA32_H_
#include "macro-assembler.h"
#include "code-stubs.h"
#include "ic-inl.h"
namespace v8 {
namespace internal {
// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
public:
enum ArgumentType {
TAGGED = 0,
UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
};
TranscendentalCacheStub(TranscendentalCache::Type type,
ArgumentType argument_type)
: type_(type), argument_type_(argument_type) {}
void Generate(MacroAssembler* masm);
static void GenerateOperation(MacroAssembler* masm,
TranscendentalCache::Type type);
private:
TranscendentalCache::Type type_;
ArgumentType argument_type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_ | argument_type_; }
Runtime::FunctionId RuntimeFunction();
};
class StoreBufferOverflowStub: public CodeStub {
public:
explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp)
: save_doubles_(save_fp) { }
void Generate(MacroAssembler* masm);
virtual bool IsPregenerated() { return true; }
static void GenerateFixedRegStubsAheadOfTime();
virtual bool SometimesSetsUpAFrame() { return false; }
private:
SaveFPRegsMode save_doubles_;
Major MajorKey() { return StoreBufferOverflow; }
int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
};
class UnaryOpStub: public CodeStub {
public:
UnaryOpStub(Token::Value op,
UnaryOverwriteMode mode,
UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
: op_(op),
mode_(mode),
operand_type_(operand_type) {
}
private:
Token::Value op_;
UnaryOverwriteMode mode_;
// Operand type information determined at runtime.
UnaryOpIC::TypeInfo operand_type_;
virtual void PrintName(StringStream* stream);
class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
class OpBits: public BitField<Token::Value, 1, 7> {};
class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};
Major MajorKey() { return UnaryOp; }
int MinorKey() {
return ModeBits::encode(mode_)
| OpBits::encode(op_)
| OperandTypeInfoBits::encode(operand_type_);
}
// Note: A lot of the helper functions below will vanish when we use virtual
// function instead of switch more often.
void Generate(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
void GenerateSmiStub(MacroAssembler* masm);
void GenerateSmiStubSub(MacroAssembler* masm);
void GenerateSmiStubBitNot(MacroAssembler* masm);
void GenerateSmiCodeSub(MacroAssembler* masm,
Label* non_smi,
Label* undo,
Label* slow,
Label::Distance non_smi_near = Label::kFar,
Label::Distance undo_near = Label::kFar,
Label::Distance slow_near = Label::kFar);
void GenerateSmiCodeBitNot(MacroAssembler* masm,
Label* non_smi,
Label::Distance non_smi_near = Label::kFar);
void GenerateSmiCodeUndo(MacroAssembler* masm);
void GenerateHeapNumberStub(MacroAssembler* masm);
void GenerateHeapNumberStubSub(MacroAssembler* masm);
void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);
void GenerateGenericStub(MacroAssembler* masm);
void GenerateGenericStubSub(MacroAssembler* masm);
void GenerateGenericStubBitNot(MacroAssembler* masm);
void GenerateGenericCodeFallback(MacroAssembler* masm);
virtual int GetCodeKind() { return Code::UNARY_OP_IC; }
virtual InlineCacheState GetICState() {
return UnaryOpIC::ToState(operand_type_);
}
virtual void FinishCode(Handle<Code> code) {
code->set_unary_op_type(operand_type_);
}
};
class BinaryOpStub: public CodeStub {
public:
BinaryOpStub(Token::Value op, OverwriteMode mode)
: op_(op),
mode_(mode),
operands_type_(BinaryOpIC::UNINITIALIZED),
result_type_(BinaryOpIC::UNINITIALIZED) {
use_sse3_ = CpuFeatures::IsSupported(SSE3);
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
}
BinaryOpStub(
int key,
BinaryOpIC::TypeInfo operands_type,
BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED)
: op_(OpBits::decode(key)),
mode_(ModeBits::decode(key)),
use_sse3_(SSE3Bits::decode(key)),
operands_type_(operands_type),
result_type_(result_type) { }
private:
enum SmiCodeGenerateHeapNumberResults {
ALLOW_HEAPNUMBER_RESULTS,
NO_HEAPNUMBER_RESULTS
};
Token::Value op_;
OverwriteMode mode_;
bool use_sse3_;
// Operand type information determined at runtime.
BinaryOpIC::TypeInfo operands_type_;
BinaryOpIC::TypeInfo result_type_;
virtual void PrintName(StringStream* stream);
// Minor key encoding in 16 bits RRRTTTSOOOOOOOMM.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 7> {};
class SSE3Bits: public BitField<bool, 9, 1> {};
class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 10, 3> {};
class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 13, 3> {};
Major MajorKey() { return BinaryOp; }
int MinorKey() {
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| SSE3Bits::encode(use_sse3_)
| OperandTypeInfoBits::encode(operands_type_)
| ResultTypeInfoBits::encode(result_type_);
}
void Generate(MacroAssembler* masm);
void GenerateGeneric(MacroAssembler* masm);
void GenerateSmiCode(MacroAssembler* masm,
Label* slow,
SmiCodeGenerateHeapNumberResults heapnumber_results);
void GenerateLoadArguments(MacroAssembler* masm);
void GenerateReturn(MacroAssembler* masm);
void GenerateUninitializedStub(MacroAssembler* masm);
void GenerateSmiStub(MacroAssembler* masm);
void GenerateInt32Stub(MacroAssembler* masm);
void GenerateHeapNumberStub(MacroAssembler* masm);
void GenerateOddballStub(MacroAssembler* masm);
void GenerateStringStub(MacroAssembler* masm);
void GenerateBothStringStub(MacroAssembler* masm);
void GenerateGenericStub(MacroAssembler* masm);
void GenerateAddStrings(MacroAssembler* masm);
void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
void GenerateRegisterArgsPush(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);
virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
virtual InlineCacheState GetICState() {
return BinaryOpIC::ToState(operands_type_);
}
virtual void FinishCode(Handle<Code> code) {
code->set_binary_op_type(operands_type_);
code->set_binary_op_result_type(result_type_);
}
friend class CodeGenerator;
};
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersREP adds too much
// overhead. Copying of overlapping regions is not supported.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii);
// Generate code for copying characters using the rep movs instruction.
// Copies ecx characters from esi to edi. Copying of overlapping regions is
// not supported.
static void GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest, // Must be edi.
Register src, // Must be esi.
Register count, // Must be ecx.
Register scratch, // Neither of above.
bool ascii);
// Probe the symbol table for a two character string. If the string
// requires non-standard hashing a jump to the label not_probed is
// performed and registers c1 and c2 are preserved. In all other
// cases they are clobbered. If the string is not found by probing a
// jump to the label not_found is performed. This jump does not
// guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in
// register eax.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_probed,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
NO_STRING_ADD_FLAGS = 0,
// Omit left string check in stub (left is definitely a string).
NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
// Omit right string check in stub (right is definitely a string).
NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
// Omit both string checks in stub.
NO_STRING_CHECK_IN_STUB =
NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
};
class StringAddStub: public CodeStub {
public:
explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
private:
Major MajorKey() { return StringAdd; }
int MinorKey() { return flags_; }
void Generate(MacroAssembler* masm);
void GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* slow);
const StringAddFlags flags_;
};
class SubStringStub: public CodeStub {
public:
SubStringStub() {}
private:
Major MajorKey() { return SubString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringCompareStub: public CodeStub {
public:
StringCompareStub() { }
// Compares two flat ASCII strings and returns result in eax.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3);
// Compares two flat ASCII strings for equality and returns result
// in eax.
static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2);
private:
virtual Major MajorKey() { return StringCompare; }
virtual int MinorKey() { return 0; }
virtual void Generate(MacroAssembler* masm);
static void GenerateAsciiCharsCompareLoop(
MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch,
Label* chars_not_equal,
Label::Distance chars_not_equal_near = Label::kFar);
};
class NumberToStringStub: public CodeStub {
public:
NumberToStringStub() { }
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found);
private:
Major MajorKey() { return NumberToString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringDictionaryLookupStub: public CodeStub {
public:
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
StringDictionaryLookupStub(Register dictionary,
Register result,
Register index,
LookupMode mode)
: dictionary_(dictionary), result_(result), index_(index), mode_(mode) { }
void Generate(MacroAssembler* masm);
static void GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register properties,
Handle<String> name,
Register r0);
static void GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1);
virtual bool SometimesSetsUpAFrame() { return false; }
private:
static const int kInlinedProbes = 4;
static const int kTotalProbes = 20;
static const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
static const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
Major MajorKey() { return StringDictionaryLookup; }
int MinorKey() {
return DictionaryBits::encode(dictionary_.code()) |
ResultBits::encode(result_.code()) |
IndexBits::encode(index_.code()) |
LookupModeBits::encode(mode_);
}
class DictionaryBits: public BitField<int, 0, 3> {};
class ResultBits: public BitField<int, 3, 3> {};
class IndexBits: public BitField<int, 6, 3> {};
class LookupModeBits: public BitField<LookupMode, 9, 1> {};
Register dictionary_;
Register result_;
Register index_;
LookupMode mode_;
};
class RecordWriteStub: public CodeStub {
public:
RecordWriteStub(Register object,
Register value,
Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode)
: object_(object),
value_(value),
address_(address),
remembered_set_action_(remembered_set_action),
save_fp_regs_mode_(fp_mode),
regs_(object, // An input reg.
address, // An input reg.
value) { // One scratch reg.
}
enum Mode {
STORE_BUFFER_ONLY,
INCREMENTAL,
INCREMENTAL_COMPACTION
};
virtual bool IsPregenerated();
static void GenerateFixedRegStubsAheadOfTime();
virtual bool SometimesSetsUpAFrame() { return false; }
static const byte kTwoByteNopInstruction = 0x3c; // Cmpb al, #imm8.
static const byte kTwoByteJumpInstruction = 0xeb; // Jmp #imm8.
static const byte kFiveByteNopInstruction = 0x3d; // Cmpl eax, #imm32.
static const byte kFiveByteJumpInstruction = 0xe9; // Jmp #imm32.
static Mode GetMode(Code* stub) {
byte first_instruction = stub->instruction_start()[0];
byte second_instruction = stub->instruction_start()[2];
if (first_instruction == kTwoByteJumpInstruction) {
return INCREMENTAL;
}
ASSERT(first_instruction == kTwoByteNopInstruction);
if (second_instruction == kFiveByteJumpInstruction) {
return INCREMENTAL_COMPACTION;
}
ASSERT(second_instruction == kFiveByteNopInstruction);
return STORE_BUFFER_ONLY;
}
static void Patch(Code* stub, Mode mode) {
switch (mode) {
case STORE_BUFFER_ONLY:
ASSERT(GetMode(stub) == INCREMENTAL ||
GetMode(stub) == INCREMENTAL_COMPACTION);
stub->instruction_start()[0] = kTwoByteNopInstruction;
stub->instruction_start()[2] = kFiveByteNopInstruction;
break;
case INCREMENTAL:
ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
stub->instruction_start()[0] = kTwoByteJumpInstruction;
break;
case INCREMENTAL_COMPACTION:
ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
stub->instruction_start()[0] = kTwoByteNopInstruction;
stub->instruction_start()[2] = kFiveByteJumpInstruction;
break;
}
ASSERT(GetMode(stub) == mode);
CPU::FlushICache(stub->instruction_start(), 7);
}
private:
// This is a helper class for freeing up 3 scratch registers, where the third
// is always ecx (needed for shift operations). The input is two registers
// that must be preserved and one scratch register provided by the caller.
class RegisterAllocation {
public:
RegisterAllocation(Register object,
Register address,
Register scratch0)
: object_orig_(object),
address_orig_(address),
scratch0_orig_(scratch0),
object_(object),
address_(address),
scratch0_(scratch0) {
ASSERT(!AreAliased(scratch0, object, address, no_reg));
scratch1_ = GetRegThatIsNotEcxOr(object_, address_, scratch0_);
if (scratch0.is(ecx)) {
scratch0_ = GetRegThatIsNotEcxOr(object_, address_, scratch1_);
}
if (object.is(ecx)) {
object_ = GetRegThatIsNotEcxOr(address_, scratch0_, scratch1_);
}
if (address.is(ecx)) {
address_ = GetRegThatIsNotEcxOr(object_, scratch0_, scratch1_);
}
ASSERT(!AreAliased(scratch0_, object_, address_, ecx));
}
void Save(MacroAssembler* masm) {
ASSERT(!address_orig_.is(object_));
ASSERT(object_.is(object_orig_) || address_.is(address_orig_));
ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_));
ASSERT(!AreAliased(object_orig_, address_, scratch1_, scratch0_));
ASSERT(!AreAliased(object_, address_orig_, scratch1_, scratch0_));
// We don't have to save scratch0_orig_ because it was given to us as
// a scratch register. But if we had to switch to a different reg then
// we should save the new scratch0_.
if (!scratch0_.is(scratch0_orig_)) masm->push(scratch0_);
if (!ecx.is(scratch0_orig_) &&
!ecx.is(object_orig_) &&
!ecx.is(address_orig_)) {
masm->push(ecx);
}
masm->push(scratch1_);
if (!address_.is(address_orig_)) {
masm->push(address_);
masm->mov(address_, address_orig_);
}
if (!object_.is(object_orig_)) {
masm->push(object_);
masm->mov(object_, object_orig_);
}
}
void Restore(MacroAssembler* masm) {
// These will have been preserved the entire time, so we just need to move
// them back. Only in one case is the orig_ reg different from the plain
// one, since only one of them can alias with ecx.
if (!object_.is(object_orig_)) {
masm->mov(object_orig_, object_);
masm->pop(object_);
}
if (!address_.is(address_orig_)) {
masm->mov(address_orig_, address_);
masm->pop(address_);
}
masm->pop(scratch1_);
if (!ecx.is(scratch0_orig_) &&
!ecx.is(object_orig_) &&
!ecx.is(address_orig_)) {
masm->pop(ecx);
}
if (!scratch0_.is(scratch0_orig_)) masm->pop(scratch0_);
}
// If we have to call into C then we need to save and restore all caller-
// saved registers that were not already preserved. The caller saved
// registers are eax, ecx and edx. The three scratch registers (incl. ecx)
// will be restored by other means so we don't bother pushing them here.
void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
if (!scratch0_.is(eax) && !scratch1_.is(eax)) masm->push(eax);
if (!scratch0_.is(edx) && !scratch1_.is(edx)) masm->push(edx);
if (mode == kSaveFPRegs) {
CpuFeatures::Scope scope(SSE2);
masm->sub(esp,
Immediate(kDoubleSize * (XMMRegister::kNumRegisters - 1)));
// Save all XMM registers except XMM0.
for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) {
XMMRegister reg = XMMRegister::from_code(i);
masm->movdbl(Operand(esp, (i - 1) * kDoubleSize), reg);
}
}
}
inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
SaveFPRegsMode mode) {
if (mode == kSaveFPRegs) {
CpuFeatures::Scope scope(SSE2);
// Restore all XMM registers except XMM0.
for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) {
XMMRegister reg = XMMRegister::from_code(i);
masm->movdbl(reg, Operand(esp, (i - 1) * kDoubleSize));
}
masm->add(esp,
Immediate(kDoubleSize * (XMMRegister::kNumRegisters - 1)));
}
if (!scratch0_.is(edx) && !scratch1_.is(edx)) masm->pop(edx);
if (!scratch0_.is(eax) && !scratch1_.is(eax)) masm->pop(eax);
}
inline Register object() { return object_; }
inline Register address() { return address_; }
inline Register scratch0() { return scratch0_; }
inline Register scratch1() { return scratch1_; }
private:
Register object_orig_;
Register address_orig_;
Register scratch0_orig_;
Register object_;
Register address_;
Register scratch0_;
Register scratch1_;
// Third scratch register is always ecx.
Register GetRegThatIsNotEcxOr(Register r1,
Register r2,
Register r3) {
for (int i = 0; i < Register::kNumAllocatableRegisters; i++) {
Register candidate = Register::FromAllocationIndex(i);
if (candidate.is(ecx)) continue;
if (candidate.is(r1)) continue;
if (candidate.is(r2)) continue;
if (candidate.is(r3)) continue;
return candidate;
}
UNREACHABLE();
return no_reg;
}
friend class RecordWriteStub;
};
enum OnNoNeedToInformIncrementalMarker {
kReturnOnNoNeedToInformIncrementalMarker,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
}
;
void Generate(MacroAssembler* masm);
void GenerateIncremental(MacroAssembler* masm, Mode mode);
void CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode);
void InformIncrementalMarker(MacroAssembler* masm, Mode mode);
Major MajorKey() { return RecordWrite; }
int MinorKey() {
return ObjectBits::encode(object_.code()) |
ValueBits::encode(value_.code()) |
AddressBits::encode(address_.code()) |
RememberedSetActionBits::encode(remembered_set_action_) |
SaveFPRegsModeBits::encode(save_fp_regs_mode_);
}
void Activate(Code* code) {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
class ObjectBits: public BitField<int, 0, 3> {};
class ValueBits: public BitField<int, 3, 3> {};
class AddressBits: public BitField<int, 6, 3> {};
class RememberedSetActionBits: public BitField<RememberedSetAction, 9, 1> {};
class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 10, 1> {};
Register object_;
Register value_;
Register address_;
RememberedSetAction remembered_set_action_;
SaveFPRegsMode save_fp_regs_mode_;
RegisterAllocation regs_;
};
} } // namespace v8::internal
#endif // V8_IA32_CODE_STUBS_IA32_H_