| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "bootstrapper.h" |
| #include "codegen.h" |
| #include "debug.h" |
| #include "runtime.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ------------------------------------------------------------------------- |
| // MacroAssembler implementation. |
| |
| MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) |
| : Assembler(arg_isolate, buffer, size), |
| generating_stub_(false), |
| allow_stub_calls_(true), |
| has_frame_(false) { |
| if (isolate() != NULL) { |
| code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), |
| isolate()); |
| } |
| } |
| |
| |
| void MacroAssembler::InNewSpace( |
| Register object, |
| Register scratch, |
| Condition cc, |
| Label* condition_met, |
| Label::Distance condition_met_distance) { |
| ASSERT(cc == equal || cc == not_equal); |
| if (scratch.is(object)) { |
| and_(scratch, Immediate(~Page::kPageAlignmentMask)); |
| } else { |
| mov(scratch, Immediate(~Page::kPageAlignmentMask)); |
| and_(scratch, object); |
| } |
| // Check that we can use a test_b. |
| ASSERT(MemoryChunk::IN_FROM_SPACE < 8); |
| ASSERT(MemoryChunk::IN_TO_SPACE < 8); |
| int mask = (1 << MemoryChunk::IN_FROM_SPACE) |
| | (1 << MemoryChunk::IN_TO_SPACE); |
| // If non-zero, the page belongs to new-space. |
| test_b(Operand(scratch, MemoryChunk::kFlagsOffset), |
| static_cast<uint8_t>(mask)); |
| j(cc, condition_met, condition_met_distance); |
| } |
| |
| |
| void MacroAssembler::RememberedSetHelper( |
| Register object, // Only used for debug checks. |
| Register addr, |
| Register scratch, |
| SaveFPRegsMode save_fp, |
| MacroAssembler::RememberedSetFinalAction and_then) { |
| Label done; |
| if (FLAG_debug_code) { |
| Label ok; |
| JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| // Load store buffer top. |
| ExternalReference store_buffer = |
| ExternalReference::store_buffer_top(isolate()); |
| mov(scratch, Operand::StaticVariable(store_buffer)); |
| // Store pointer to buffer. |
| mov(Operand(scratch, 0), addr); |
| // Increment buffer top. |
| add(scratch, Immediate(kPointerSize)); |
| // Write back new top of buffer. |
| mov(Operand::StaticVariable(store_buffer), scratch); |
| // Call stub on end of buffer. |
| // Check for end of buffer. |
| test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit)); |
| if (and_then == kReturnAtEnd) { |
| Label buffer_overflowed; |
| j(not_equal, &buffer_overflowed, Label::kNear); |
| ret(0); |
| bind(&buffer_overflowed); |
| } else { |
| ASSERT(and_then == kFallThroughAtEnd); |
| j(equal, &done, Label::kNear); |
| } |
| StoreBufferOverflowStub store_buffer_overflow = |
| StoreBufferOverflowStub(save_fp); |
| CallStub(&store_buffer_overflow); |
| if (and_then == kReturnAtEnd) { |
| ret(0); |
| } else { |
| ASSERT(and_then == kFallThroughAtEnd); |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg, |
| XMMRegister scratch_reg, |
| Register result_reg) { |
| Label done; |
| ExternalReference zero_ref = ExternalReference::address_of_zero(); |
| movdbl(scratch_reg, Operand::StaticVariable(zero_ref)); |
| Set(result_reg, Immediate(0)); |
| ucomisd(input_reg, scratch_reg); |
| j(below, &done, Label::kNear); |
| ExternalReference half_ref = ExternalReference::address_of_one_half(); |
| movdbl(scratch_reg, Operand::StaticVariable(half_ref)); |
| addsd(scratch_reg, input_reg); |
| cvttsd2si(result_reg, Operand(scratch_reg)); |
| test(result_reg, Immediate(0xFFFFFF00)); |
| j(zero, &done, Label::kNear); |
| Set(result_reg, Immediate(255)); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::ClampUint8(Register reg) { |
| Label done; |
| test(reg, Immediate(0xFFFFFF00)); |
| j(zero, &done, Label::kNear); |
| setcc(negative, reg); // 1 if negative, 0 if positive. |
| dec_b(reg); // 0 if negative, 255 if positive. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::RecordWriteArray(Register object, |
| Register value, |
| Register index, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| ASSERT_EQ(0, kSmiTag); |
| test(value, Immediate(kSmiTagMask)); |
| j(zero, &done); |
| } |
| |
| // Array access: calculate the destination address in the same manner as |
| // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset |
| // into an array of words. |
| Register dst = index; |
| lea(dst, Operand(object, index, times_half_pointer_size, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| |
| RecordWrite( |
| object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Immediate(BitCast<int32_t>(kZapValue))); |
| mov(index, Immediate(BitCast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| void MacroAssembler::RecordWriteField( |
| Register object, |
| int offset, |
| Register value, |
| Register dst, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done, Label::kNear); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| ASSERT(IsAligned(offset, kPointerSize)); |
| |
| lea(dst, FieldOperand(object, offset)); |
| if (emit_debug_code()) { |
| Label ok; |
| test_b(dst, (1 << kPointerSizeLog2) - 1); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| RecordWrite( |
| object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Immediate(BitCast<int32_t>(kZapValue))); |
| mov(dst, Immediate(BitCast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| void MacroAssembler::RecordWrite(Register object, |
| Register address, |
| Register value, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| ASSERT(!object.is(value)); |
| ASSERT(!object.is(address)); |
| ASSERT(!value.is(address)); |
| if (emit_debug_code()) { |
| AbortIfSmi(object); |
| } |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| |
| if (FLAG_debug_code) { |
| Label ok; |
| cmp(value, Operand(address, 0)); |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis and stores into young gen. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| // Skip barrier if writing a smi. |
| JumpIfSmi(value, &done, Label::kNear); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, |
| zero, |
| &done, |
| Label::kNear); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, |
| zero, |
| &done, |
| Label::kNear); |
| |
| RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); |
| CallStub(&stub); |
| |
| bind(&done); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(address, Immediate(BitCast<int32_t>(kZapValue))); |
| mov(value, Immediate(BitCast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| void MacroAssembler::DebugBreak() { |
| Set(eax, Immediate(0)); |
| mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate()))); |
| CEntryStub ces(1); |
| call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| } |
| #endif |
| |
| |
| void MacroAssembler::Set(Register dst, const Immediate& x) { |
| if (x.is_zero()) { |
| xor_(dst, dst); // Shorter than mov. |
| } else { |
| mov(dst, x); |
| } |
| } |
| |
| |
| void MacroAssembler::Set(const Operand& dst, const Immediate& x) { |
| mov(dst, x); |
| } |
| |
| |
| bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) { |
| static const int kMaxImmediateBits = 17; |
| if (x.rmode_ != RelocInfo::NONE) return false; |
| return !is_intn(x.x_, kMaxImmediateBits); |
| } |
| |
| |
| void MacroAssembler::SafeSet(Register dst, const Immediate& x) { |
| if (IsUnsafeImmediate(x) && jit_cookie() != 0) { |
| Set(dst, Immediate(x.x_ ^ jit_cookie())); |
| xor_(dst, jit_cookie()); |
| } else { |
| Set(dst, x); |
| } |
| } |
| |
| |
| void MacroAssembler::SafePush(const Immediate& x) { |
| if (IsUnsafeImmediate(x) && jit_cookie() != 0) { |
| push(Immediate(x.x_ ^ jit_cookie())); |
| xor_(Operand(esp, 0), Immediate(jit_cookie())); |
| } else { |
| push(x); |
| } |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { |
| // see ROOT_ACCESSOR macro in factory.h |
| Handle<Object> value(&isolate()->heap()->roots_array_start()[index]); |
| cmp(with, value); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(const Operand& with, |
| Heap::RootListIndex index) { |
| // see ROOT_ACCESSOR macro in factory.h |
| Handle<Object> value(&isolate()->heap()->roots_array_start()[index]); |
| cmp(with, value); |
| } |
| |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, |
| InstanceType type, |
| Register map) { |
| mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| CmpInstanceType(map, type); |
| } |
| |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpb(FieldOperand(map, Map::kInstanceTypeOffset), |
| static_cast<int8_t>(type)); |
| } |
| |
| |
| void MacroAssembler::CheckFastElements(Register map, |
| Label* fail, |
| Label::Distance distance) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_ELEMENTS == 1); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Map::kMaximumBitField2FastElementValue); |
| j(above, fail, distance); |
| } |
| |
| |
| void MacroAssembler::CheckFastObjectElements(Register map, |
| Label* fail, |
| Label::Distance distance) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_ELEMENTS == 1); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Map::kMaximumBitField2FastSmiOnlyElementValue); |
| j(below_equal, fail, distance); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Map::kMaximumBitField2FastElementValue); |
| j(above, fail, distance); |
| } |
| |
| |
| void MacroAssembler::CheckFastSmiOnlyElements(Register map, |
| Label* fail, |
| Label::Distance distance) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Map::kMaximumBitField2FastSmiOnlyElementValue); |
| j(above, fail, distance); |
| } |
| |
| |
| void MacroAssembler::StoreNumberToDoubleElements( |
| Register maybe_number, |
| Register elements, |
| Register key, |
| Register scratch1, |
| XMMRegister scratch2, |
| Label* fail, |
| bool specialize_for_processor) { |
| Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value; |
| JumpIfSmi(maybe_number, &smi_value, Label::kNear); |
| |
| CheckMap(maybe_number, |
| isolate()->factory()->heap_number_map(), |
| fail, |
| DONT_DO_SMI_CHECK); |
| |
| // Double value, canonicalize NaN. |
| uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32); |
| cmp(FieldOperand(maybe_number, offset), |
| Immediate(kNaNOrInfinityLowerBoundUpper32)); |
| j(greater_equal, &maybe_nan, Label::kNear); |
| |
| bind(¬_nan); |
| ExternalReference canonical_nan_reference = |
| ExternalReference::address_of_canonical_non_hole_nan(); |
| if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| movdbl(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset)); |
| bind(&have_double_value); |
| movdbl(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize), |
| scratch2); |
| } else { |
| fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset)); |
| bind(&have_double_value); |
| fstp_d(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize)); |
| } |
| jmp(&done); |
| |
| bind(&maybe_nan); |
| // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise |
| // it's an Infinity, and the non-NaN code path applies. |
| j(greater, &is_nan, Label::kNear); |
| cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0)); |
| j(zero, ¬_nan); |
| bind(&is_nan); |
| if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| movdbl(scratch2, Operand::StaticVariable(canonical_nan_reference)); |
| } else { |
| fld_d(Operand::StaticVariable(canonical_nan_reference)); |
| } |
| jmp(&have_double_value, Label::kNear); |
| |
| bind(&smi_value); |
| // Value is a smi. Convert to a double and store. |
| // Preserve original value. |
| mov(scratch1, maybe_number); |
| SmiUntag(scratch1); |
| if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) { |
| CpuFeatures::Scope fscope(SSE2); |
| cvtsi2sd(scratch2, scratch1); |
| movdbl(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize), |
| scratch2); |
| } else { |
| push(scratch1); |
| fild_s(Operand(esp, 0)); |
| pop(scratch1); |
| fstp_d(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize)); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CompareMap(Register obj, |
| Handle<Map> map, |
| Label* early_success, |
| CompareMapMode mode) { |
| cmp(FieldOperand(obj, HeapObject::kMapOffset), map); |
| if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) { |
| Map* transitioned_fast_element_map( |
| map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL)); |
| ASSERT(transitioned_fast_element_map == NULL || |
| map->elements_kind() != FAST_ELEMENTS); |
| if (transitioned_fast_element_map != NULL) { |
| j(equal, early_success, Label::kNear); |
| cmp(FieldOperand(obj, HeapObject::kMapOffset), |
| Handle<Map>(transitioned_fast_element_map)); |
| } |
| |
| Map* transitioned_double_map( |
| map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL)); |
| ASSERT(transitioned_double_map == NULL || |
| map->elements_kind() == FAST_SMI_ONLY_ELEMENTS); |
| if (transitioned_double_map != NULL) { |
| j(equal, early_success, Label::kNear); |
| cmp(FieldOperand(obj, HeapObject::kMapOffset), |
| Handle<Map>(transitioned_double_map)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Handle<Map> map, |
| Label* fail, |
| SmiCheckType smi_check_type, |
| CompareMapMode mode) { |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, fail); |
| } |
| |
| Label success; |
| CompareMap(obj, map, &success, mode); |
| j(not_equal, fail); |
| bind(&success); |
| } |
| |
| |
| void MacroAssembler::DispatchMap(Register obj, |
| Handle<Map> map, |
| Handle<Code> success, |
| SmiCheckType smi_check_type) { |
| Label fail; |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, &fail); |
| } |
| cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map)); |
| j(equal, success); |
| |
| bind(&fail); |
| } |
| |
| |
| Condition MacroAssembler::IsObjectStringType(Register heap_object, |
| Register map, |
| Register instance_type) { |
| mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kNotStringTag != 0); |
| test(instance_type, Immediate(kIsNotStringMask)); |
| return zero; |
| } |
| |
| |
| void MacroAssembler::IsObjectJSObjectType(Register heap_object, |
| Register map, |
| Register scratch, |
| Label* fail) { |
| mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| IsInstanceJSObjectType(map, scratch, fail); |
| } |
| |
| |
| void MacroAssembler::IsInstanceJSObjectType(Register map, |
| Register scratch, |
| Label* fail) { |
| movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset)); |
| sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| cmp(scratch, |
| LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); |
| j(above, fail); |
| } |
| |
| |
| void MacroAssembler::FCmp() { |
| if (CpuFeatures::IsSupported(CMOV)) { |
| fucomip(); |
| fstp(0); |
| } else { |
| fucompp(); |
| push(eax); |
| fnstsw_ax(); |
| sahf(); |
| pop(eax); |
| } |
| } |
| |
| |
| void MacroAssembler::AbortIfNotNumber(Register object) { |
| Label ok; |
| JumpIfSmi(object, &ok); |
| cmp(FieldOperand(object, HeapObject::kMapOffset), |
| isolate()->factory()->heap_number_map()); |
| Assert(equal, "Operand not a number"); |
| bind(&ok); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotSmi(Register object) { |
| test(object, Immediate(kSmiTagMask)); |
| Assert(equal, "Operand is not a smi"); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotString(Register object) { |
| test(object, Immediate(kSmiTagMask)); |
| Assert(not_equal, "Operand is not a string"); |
| push(object); |
| mov(object, FieldOperand(object, HeapObject::kMapOffset)); |
| CmpInstanceType(object, FIRST_NONSTRING_TYPE); |
| pop(object); |
| Assert(below, "Operand is not a string"); |
| } |
| |
| |
| void MacroAssembler::AbortIfSmi(Register object) { |
| test(object, Immediate(kSmiTagMask)); |
| Assert(not_equal, "Operand is a smi"); |
| } |
| |
| |
| void MacroAssembler::EnterFrame(StackFrame::Type type) { |
| push(ebp); |
| mov(ebp, esp); |
| push(esi); |
| push(Immediate(Smi::FromInt(type))); |
| push(Immediate(CodeObject())); |
| if (emit_debug_code()) { |
| cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); |
| Check(not_equal, "code object not properly patched"); |
| } |
| } |
| |
| |
| void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
| if (emit_debug_code()) { |
| cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), |
| Immediate(Smi::FromInt(type))); |
| Check(equal, "stack frame types must match"); |
| } |
| leave(); |
| } |
| |
| |
| void MacroAssembler::EnterExitFramePrologue() { |
| // Set up the frame structure on the stack. |
| ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); |
| ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); |
| ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); |
| push(ebp); |
| mov(ebp, esp); |
| |
| // Reserve room for entry stack pointer and push the code object. |
| ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); |
| push(Immediate(0)); // Saved entry sp, patched before call. |
| push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. |
| |
| // Save the frame pointer and the context in top. |
| ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, |
| isolate()); |
| ExternalReference context_address(Isolate::kContextAddress, |
| isolate()); |
| mov(Operand::StaticVariable(c_entry_fp_address), ebp); |
| mov(Operand::StaticVariable(context_address), esi); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { |
| // Optionally save all XMM registers. |
| if (save_doubles) { |
| CpuFeatures::Scope scope(SSE2); |
| int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize; |
| sub(esp, Immediate(space)); |
| const int offset = -2 * kPointerSize; |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movdbl(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); |
| } |
| } else { |
| sub(esp, Immediate(argc * kPointerSize)); |
| } |
| |
| // Get the required frame alignment for the OS. |
| const int kFrameAlignment = OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| ASSERT(IsPowerOf2(kFrameAlignment)); |
| and_(esp, -kFrameAlignment); |
| } |
| |
| // Patch the saved entry sp. |
| mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrame(bool save_doubles) { |
| EnterExitFramePrologue(); |
| |
| // Set up argc and argv in callee-saved registers. |
| int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| mov(edi, eax); |
| lea(esi, Operand(ebp, eax, times_4, offset)); |
| |
| // Reserve space for argc, argv and isolate. |
| EnterExitFrameEpilogue(3, save_doubles); |
| } |
| |
| |
| void MacroAssembler::EnterApiExitFrame(int argc) { |
| EnterExitFramePrologue(); |
| EnterExitFrameEpilogue(argc, false); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles) { |
| // Optionally restore all XMM registers. |
| if (save_doubles) { |
| CpuFeatures::Scope scope(SSE2); |
| const int offset = -2 * kPointerSize; |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movdbl(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); |
| } |
| } |
| |
| // Get the return address from the stack and restore the frame pointer. |
| mov(ecx, Operand(ebp, 1 * kPointerSize)); |
| mov(ebp, Operand(ebp, 0 * kPointerSize)); |
| |
| // Pop the arguments and the receiver from the caller stack. |
| lea(esp, Operand(esi, 1 * kPointerSize)); |
| |
| // Push the return address to get ready to return. |
| push(ecx); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveExitFrameEpilogue() { |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address(Isolate::kContextAddress, isolate()); |
| mov(esi, Operand::StaticVariable(context_address)); |
| #ifdef DEBUG |
| mov(Operand::StaticVariable(context_address), Immediate(0)); |
| #endif |
| |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, |
| isolate()); |
| mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); |
| } |
| |
| |
| void MacroAssembler::LeaveApiExitFrame() { |
| mov(esp, ebp); |
| pop(ebp); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| |
| void MacroAssembler::PushTryHandler(StackHandler::Kind kind, |
| int handler_index) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // We will build up the handler from the bottom by pushing on the stack. |
| // First push the frame pointer and context. |
| if (kind == StackHandler::JS_ENTRY) { |
| // The frame pointer does not point to a JS frame so we save NULL for |
| // ebp. We expect the code throwing an exception to check ebp before |
| // dereferencing it to restore the context. |
| push(Immediate(0)); // NULL frame pointer. |
| push(Immediate(Smi::FromInt(0))); // No context. |
| } else { |
| push(ebp); |
| push(esi); |
| } |
| // Push the state and the code object. |
| unsigned state = |
| StackHandler::IndexField::encode(handler_index) | |
| StackHandler::KindField::encode(kind); |
| push(Immediate(state)); |
| Push(CodeObject()); |
| |
| // Link the current handler as the next handler. |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| push(Operand::StaticVariable(handler_address)); |
| // Set this new handler as the current one. |
| mov(Operand::StaticVariable(handler_address), esp); |
| } |
| |
| |
| void MacroAssembler::PopTryHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| pop(Operand::StaticVariable(handler_address)); |
| add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| } |
| |
| |
| void MacroAssembler::JumpToHandlerEntry() { |
| // Compute the handler entry address and jump to it. The handler table is |
| // a fixed array of (smi-tagged) code offsets. |
| // eax = exception, edi = code object, edx = state. |
| mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset)); |
| shr(edx, StackHandler::kKindWidth); |
| mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize)); |
| SmiUntag(edx); |
| lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize)); |
| jmp(edi); |
| } |
| |
| |
| void MacroAssembler::Throw(Register value) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // The exception is expected in eax. |
| if (!value.is(eax)) { |
| mov(eax, value); |
| } |
| // Drop the stack pointer to the top of the top handler. |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| mov(esp, Operand::StaticVariable(handler_address)); |
| // Restore the next handler. |
| pop(Operand::StaticVariable(handler_address)); |
| |
| // Remove the code object and state, compute the handler address in edi. |
| pop(edi); // Code object. |
| pop(edx); // Index and state. |
| |
| // Restore the context and frame pointer. |
| pop(esi); // Context. |
| pop(ebp); // Frame pointer. |
| |
| // If the handler is a JS frame, restore the context to the frame. |
| // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either |
| // ebp or esi. |
| Label skip; |
| test(esi, esi); |
| j(zero, &skip, Label::kNear); |
| mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); |
| bind(&skip); |
| |
| JumpToHandlerEntry(); |
| } |
| |
| |
| void MacroAssembler::ThrowUncatchable(Register value) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // The exception is expected in eax. |
| if (!value.is(eax)) { |
| mov(eax, value); |
| } |
| // Drop the stack pointer to the top of the top stack handler. |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| mov(esp, Operand::StaticVariable(handler_address)); |
| |
| // Unwind the handlers until the top ENTRY handler is found. |
| Label fetch_next, check_kind; |
| jmp(&check_kind, Label::kNear); |
| bind(&fetch_next); |
| mov(esp, Operand(esp, StackHandlerConstants::kNextOffset)); |
| |
| bind(&check_kind); |
| STATIC_ASSERT(StackHandler::JS_ENTRY == 0); |
| test(Operand(esp, StackHandlerConstants::kStateOffset), |
| Immediate(StackHandler::KindField::kMask)); |
| j(not_zero, &fetch_next); |
| |
| // Set the top handler address to next handler past the top ENTRY handler. |
| pop(Operand::StaticVariable(handler_address)); |
| |
| // Remove the code object and state, compute the handler address in edi. |
| pop(edi); // Code object. |
| pop(edx); // Index and state. |
| |
| // Clear the context pointer and frame pointer (0 was saved in the handler). |
| pop(esi); |
| pop(ebp); |
| |
| JumpToHandlerEntry(); |
| } |
| |
| |
| void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| Label same_contexts; |
| |
| ASSERT(!holder_reg.is(scratch)); |
| |
| // Load current lexical context from the stack frame. |
| mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| |
| // When generating debug code, make sure the lexical context is set. |
| if (emit_debug_code()) { |
| cmp(scratch, Immediate(0)); |
| Check(not_equal, "we should not have an empty lexical context"); |
| } |
| // Load the global context of the current context. |
| int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| mov(scratch, FieldOperand(scratch, offset)); |
| mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check the context is a global context. |
| if (emit_debug_code()) { |
| push(scratch); |
| // Read the first word and compare to global_context_map. |
| mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); |
| cmp(scratch, isolate()->factory()->global_context_map()); |
| Check(equal, "JSGlobalObject::global_context should be a global context."); |
| pop(scratch); |
| } |
| |
| // Check if both contexts are the same. |
| cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| j(equal, &same_contexts); |
| |
| // Compare security tokens, save holder_reg on the stack so we can use it |
| // as a temporary register. |
| // |
| // TODO(119): avoid push(holder_reg)/pop(holder_reg) |
| push(holder_reg); |
| // Check that the security token in the calling global object is |
| // compatible with the security token in the receiving global |
| // object. |
| mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| |
| // Check the context is a global context. |
| if (emit_debug_code()) { |
| cmp(holder_reg, isolate()->factory()->null_value()); |
| Check(not_equal, "JSGlobalProxy::context() should not be null."); |
| |
| push(holder_reg); |
| // Read the first word and compare to global_context_map(), |
| mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); |
| cmp(holder_reg, isolate()->factory()->global_context_map()); |
| Check(equal, "JSGlobalObject::global_context should be a global context."); |
| pop(holder_reg); |
| } |
| |
| int token_offset = Context::kHeaderSize + |
| Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| mov(scratch, FieldOperand(scratch, token_offset)); |
| cmp(scratch, FieldOperand(holder_reg, token_offset)); |
| pop(holder_reg); |
| j(not_equal, miss); |
| |
| bind(&same_contexts); |
| } |
| |
| |
| // Compute the hash code from the untagged key. This must be kept in sync |
| // with ComputeIntegerHash in utils.h. |
| // |
| // Note: r0 will contain hash code |
| void MacroAssembler::GetNumberHash(Register r0, Register scratch) { |
| // Xor original key with a seed. |
| if (Serializer::enabled()) { |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(isolate()); |
| mov(scratch, Immediate(Heap::kHashSeedRootIndex)); |
| mov(scratch, |
| Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); |
| SmiUntag(scratch); |
| xor_(r0, scratch); |
| } else { |
| int32_t seed = isolate()->heap()->HashSeed(); |
| xor_(r0, Immediate(seed)); |
| } |
| |
| // hash = ~hash + (hash << 15); |
| mov(scratch, r0); |
| not_(r0); |
| shl(scratch, 15); |
| add(r0, scratch); |
| // hash = hash ^ (hash >> 12); |
| mov(scratch, r0); |
| shr(scratch, 12); |
| xor_(r0, scratch); |
| // hash = hash + (hash << 2); |
| lea(r0, Operand(r0, r0, times_4, 0)); |
| // hash = hash ^ (hash >> 4); |
| mov(scratch, r0); |
| shr(scratch, 4); |
| xor_(r0, scratch); |
| // hash = hash * 2057; |
| imul(r0, r0, 2057); |
| // hash = hash ^ (hash >> 16); |
| mov(scratch, r0); |
| shr(scratch, 16); |
| xor_(r0, scratch); |
| } |
| |
| |
| |
| void MacroAssembler::LoadFromNumberDictionary(Label* miss, |
| Register elements, |
| Register key, |
| Register r0, |
| Register r1, |
| Register r2, |
| Register result) { |
| // Register use: |
| // |
| // elements - holds the slow-case elements of the receiver and is unchanged. |
| // |
| // key - holds the smi key on entry and is unchanged. |
| // |
| // Scratch registers: |
| // |
| // r0 - holds the untagged key on entry and holds the hash once computed. |
| // |
| // r1 - used to hold the capacity mask of the dictionary |
| // |
| // r2 - used for the index into the dictionary. |
| // |
| // result - holds the result on exit if the load succeeds and we fall through. |
| |
| Label done; |
| |
| GetNumberHash(r0, r1); |
| |
| // Compute capacity mask. |
| mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset)); |
| shr(r1, kSmiTagSize); // convert smi to int |
| dec(r1); |
| |
| // Generate an unrolled loop that performs a few probes before giving up. |
| const int kProbes = 4; |
| for (int i = 0; i < kProbes; i++) { |
| // Use r2 for index calculations and keep the hash intact in r0. |
| mov(r2, r0); |
| // Compute the masked index: (hash + i + i * i) & mask. |
| if (i > 0) { |
| add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i))); |
| } |
| and_(r2, r1); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(SeededNumberDictionary::kEntrySize == 3); |
| lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3 |
| |
| // Check if the key matches. |
| cmp(key, FieldOperand(elements, |
| r2, |
| times_pointer_size, |
| SeededNumberDictionary::kElementsStartOffset)); |
| if (i != (kProbes - 1)) { |
| j(equal, &done); |
| } else { |
| j(not_equal, miss); |
| } |
| } |
| |
| bind(&done); |
| // Check that the value is a normal propety. |
| const int kDetailsOffset = |
| SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
| ASSERT_EQ(NORMAL, 0); |
| test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset), |
| Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize)); |
| j(not_zero, miss); |
| |
| // Get the value at the masked, scaled index. |
| const int kValueOffset = |
| SeededNumberDictionary::kElementsStartOffset + kPointerSize; |
| mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset)); |
| } |
| |
| |
| void MacroAssembler::LoadAllocationTopHelper(Register result, |
| Register scratch, |
| AllocationFlags flags) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Just return if allocation top is already known. |
| if ((flags & RESULT_CONTAINS_TOP) != 0) { |
| // No use of scratch if allocation top is provided. |
| ASSERT(scratch.is(no_reg)); |
| #ifdef DEBUG |
| // Assert that result actually contains top on entry. |
| cmp(result, Operand::StaticVariable(new_space_allocation_top)); |
| Check(equal, "Unexpected allocation top"); |
| #endif |
| return; |
| } |
| |
| // Move address of new object to result. Use scratch register if available. |
| if (scratch.is(no_reg)) { |
| mov(result, Operand::StaticVariable(new_space_allocation_top)); |
| } else { |
| mov(scratch, Immediate(new_space_allocation_top)); |
| mov(result, Operand(scratch, 0)); |
| } |
| } |
| |
| |
| void MacroAssembler::UpdateAllocationTopHelper(Register result_end, |
| Register scratch) { |
| if (emit_debug_code()) { |
| test(result_end, Immediate(kObjectAlignmentMask)); |
| Check(zero, "Unaligned allocation in new space"); |
| } |
| |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Update new top. Use scratch if available. |
| if (scratch.is(no_reg)) { |
| mov(Operand::StaticVariable(new_space_allocation_top), result_end); |
| } else { |
| mov(Operand(scratch, 0), result_end); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| mov(result, Immediate(0x7091)); |
| if (result_end.is_valid()) { |
| mov(result_end, Immediate(0x7191)); |
| } |
| if (scratch.is_valid()) { |
| mov(scratch, Immediate(0x7291)); |
| } |
| } |
| jmp(gc_required); |
| return; |
| } |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, scratch, flags); |
| |
| Register top_reg = result_end.is_valid() ? result_end : result; |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| |
| if (!top_reg.is(result)) { |
| mov(top_reg, result); |
| } |
| add(top_reg, Immediate(object_size)); |
| j(carry, gc_required); |
| cmp(top_reg, Operand::StaticVariable(new_space_allocation_limit)); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(top_reg, scratch); |
| |
| // Tag result if requested. |
| if (top_reg.is(result)) { |
| if ((flags & TAG_OBJECT) != 0) { |
| sub(result, Immediate(object_size - kHeapObjectTag)); |
| } else { |
| sub(result, Immediate(object_size)); |
| } |
| } else if ((flags & TAG_OBJECT) != 0) { |
| add(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int header_size, |
| ScaleFactor element_size, |
| Register element_count, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| mov(result, Immediate(0x7091)); |
| mov(result_end, Immediate(0x7191)); |
| if (scratch.is_valid()) { |
| mov(scratch, Immediate(0x7291)); |
| } |
| // Register element_count is not modified by the function. |
| } |
| jmp(gc_required); |
| return; |
| } |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| |
| // We assume that element_count*element_size + header_size does not |
| // overflow. |
| lea(result_end, Operand(element_count, element_size, header_size)); |
| add(result_end, result); |
| j(carry, gc_required); |
| cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); |
| j(above, gc_required); |
| |
| // Tag result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| lea(result, Operand(result, kHeapObjectTag)); |
| } |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(Register object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| mov(result, Immediate(0x7091)); |
| mov(result_end, Immediate(0x7191)); |
| if (scratch.is_valid()) { |
| mov(scratch, Immediate(0x7291)); |
| } |
| // object_size is left unchanged by this function. |
| } |
| jmp(gc_required); |
| return; |
| } |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| if (!object_size.is(result_end)) { |
| mov(result_end, object_size); |
| } |
| add(result_end, result); |
| j(carry, gc_required); |
| cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); |
| j(above, gc_required); |
| |
| // Tag result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| lea(result, Operand(result, kHeapObjectTag)); |
| } |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| } |
| |
| |
| void MacroAssembler::UndoAllocationInNewSpace(Register object) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Make sure the object has no tag before resetting top. |
| and_(object, Immediate(~kHeapObjectTagMask)); |
| #ifdef DEBUG |
| cmp(object, Operand::StaticVariable(new_space_allocation_top)); |
| Check(below, "Undo allocation of non allocated memory"); |
| #endif |
| mov(Operand::StaticVariable(new_space_allocation_top), object); |
| } |
| |
| |
| void MacroAssembler::AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(HeapNumber::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->heap_number_map())); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| ASSERT(kShortSize == 2); |
| // scratch1 = length * 2 + kObjectAlignmentMask. |
| lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); |
| and_(scratch1, Immediate(~kObjectAlignmentMask)); |
| |
| // Allocate two byte string in new space. |
| AllocateInNewSpace(SeqTwoByteString::kHeaderSize, |
| times_1, |
| scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->string_map())); |
| mov(scratch1, length); |
| SmiTag(scratch1); |
| mov(FieldOperand(result, String::kLengthOffset), scratch1); |
| mov(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| mov(scratch1, length); |
| ASSERT(kCharSize == 1); |
| add(scratch1, Immediate(kObjectAlignmentMask)); |
| and_(scratch1, Immediate(~kObjectAlignmentMask)); |
| |
| // Allocate ASCII string in new space. |
| AllocateInNewSpace(SeqAsciiString::kHeaderSize, |
| times_1, |
| scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->ascii_string_map())); |
| mov(scratch1, length); |
| SmiTag(scratch1); |
| mov(FieldOperand(result, String::kLengthOffset), scratch1); |
| mov(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| int length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| ASSERT(length > 0); |
| |
| // Allocate ASCII string in new space. |
| AllocateInNewSpace(SeqAsciiString::SizeFor(length), |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->ascii_string_map())); |
| mov(FieldOperand(result, String::kLengthOffset), |
| Immediate(Smi::FromInt(length))); |
| mov(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->cons_string_map())); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->cons_ascii_string_map())); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteSlicedString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(SlicedString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->sliced_string_map())); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiSlicedString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(SlicedString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| mov(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(isolate()->factory()->sliced_ascii_string_map())); |
| } |
| |
| |
| // Copy memory, byte-by-byte, from source to destination. Not optimized for |
| // long or aligned copies. The contents of scratch and length are destroyed. |
| // Source and destination are incremented by length. |
| // Many variants of movsb, loop unrolling, word moves, and indexed operands |
| // have been tried here already, and this is fastest. |
| // A simpler loop is faster on small copies, but 30% slower on large ones. |
| // The cld() instruction must have been emitted, to set the direction flag(), |
| // before calling this function. |
| void MacroAssembler::CopyBytes(Register source, |
| Register destination, |
| Register length, |
| Register scratch) { |
| Label loop, done, short_string, short_loop; |
| // Experimentation shows that the short string loop is faster if length < 10. |
| cmp(length, Immediate(10)); |
| j(less_equal, &short_string); |
| |
| ASSERT(source.is(esi)); |
| ASSERT(destination.is(edi)); |
| ASSERT(length.is(ecx)); |
| |
| // Because source is 4-byte aligned in our uses of this function, |
| // we keep source aligned for the rep_movs call by copying the odd bytes |
| // at the end of the ranges. |
| mov(scratch, Operand(source, length, times_1, -4)); |
| mov(Operand(destination, length, times_1, -4), scratch); |
| mov(scratch, ecx); |
| shr(ecx, 2); |
| rep_movs(); |
| and_(scratch, Immediate(0x3)); |
| add(destination, scratch); |
| jmp(&done); |
| |
| bind(&short_string); |
| test(length, length); |
| j(zero, &done); |
| |
| bind(&short_loop); |
| mov_b(scratch, Operand(source, 0)); |
| mov_b(Operand(destination, 0), scratch); |
| inc(source); |
| inc(destination); |
| dec(length); |
| j(not_zero, &short_loop); |
| |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, |
| Register end_offset, |
| Register filler) { |
| Label loop, entry; |
| jmp(&entry); |
| bind(&loop); |
| mov(Operand(start_offset, 0), filler); |
| add(start_offset, Immediate(kPointerSize)); |
| bind(&entry); |
| cmp(start_offset, end_offset); |
| j(less, &loop); |
| } |
| |
| |
| void MacroAssembler::BooleanBitTest(Register object, |
| int field_offset, |
| int bit_index) { |
| bit_index += kSmiTagSize + kSmiShiftSize; |
| ASSERT(IsPowerOf2(kBitsPerByte)); |
| int byte_index = bit_index / kBitsPerByte; |
| int byte_bit_index = bit_index & (kBitsPerByte - 1); |
| test_b(FieldOperand(object, field_offset + byte_index), |
| static_cast<byte>(1 << byte_bit_index)); |
| } |
| |
| |
| |
| void MacroAssembler::NegativeZeroTest(Register result, |
| Register op, |
| Label* then_label) { |
| Label ok; |
| test(result, result); |
| j(not_zero, &ok); |
| test(op, op); |
| j(sign, then_label); |
| bind(&ok); |
| } |
| |
| |
| void MacroAssembler::NegativeZeroTest(Register result, |
| Register op1, |
| Register op2, |
| Register scratch, |
| Label* then_label) { |
| Label ok; |
| test(result, result); |
| j(not_zero, &ok); |
| mov(scratch, op1); |
| or_(scratch, op2); |
| j(sign, then_label); |
| bind(&ok); |
| } |
| |
| |
| void MacroAssembler::TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss, |
| bool miss_on_bound_function) { |
| // Check that the receiver isn't a smi. |
| JumpIfSmi(function, miss); |
| |
| // Check that the function really is a function. |
| CmpObjectType(function, JS_FUNCTION_TYPE, result); |
| j(not_equal, miss); |
| |
| if (miss_on_bound_function) { |
| // If a bound function, go to miss label. |
| mov(scratch, |
| FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset, |
| SharedFunctionInfo::kBoundFunction); |
| j(not_zero, miss); |
| } |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset)); |
| test(scratch, Immediate(1 << Map::kHasNonInstancePrototype)); |
| j(not_zero, &non_instance); |
| |
| // Get the prototype or initial map from the function. |
| mov(result, |
| FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // If the prototype or initial map is the hole, don't return it and |
| // simply miss the cache instead. This will allow us to allocate a |
| // prototype object on-demand in the runtime system. |
| cmp(result, Immediate(isolate()->factory()->the_hole_value())); |
| j(equal, miss); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| CmpObjectType(result, MAP_TYPE, scratch); |
| j(not_equal, &done); |
| |
| // Get the prototype from the initial map. |
| mov(result, FieldOperand(result, Map::kPrototypeOffset)); |
| jmp(&done); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| bind(&non_instance); |
| mov(result, FieldOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) { |
| ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. |
| call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub) { |
| ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe()); |
| jmp(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::StubReturn(int argc) { |
| ASSERT(argc >= 1 && generating_stub()); |
| ret((argc - 1) * kPointerSize); |
| } |
| |
| |
| bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { |
| if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false; |
| return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(); |
| } |
| |
| |
| void MacroAssembler::IllegalOperation(int num_arguments) { |
| if (num_arguments > 0) { |
| add(esp, Immediate(num_arguments * kPointerSize)); |
| } |
| mov(eax, Immediate(isolate()->factory()->undefined_value())); |
| } |
| |
| |
| void MacroAssembler::IndexFromHash(Register hash, Register index) { |
| // The assert checks that the constants for the maximum number of digits |
| // for an array index cached in the hash field and the number of bits |
| // reserved for it does not conflict. |
| ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
| (1 << String::kArrayIndexValueBits)); |
| // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in |
| // the low kHashShift bits. |
| and_(hash, String::kArrayIndexValueMask); |
| STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0); |
| if (String::kHashShift > kSmiTagSize) { |
| shr(hash, String::kHashShift - kSmiTagSize); |
| } |
| if (!index.is(hash)) { |
| mov(index, hash); |
| } |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { |
| CallRuntime(Runtime::FunctionForId(id), num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { |
| const Runtime::Function* function = Runtime::FunctionForId(id); |
| Set(eax, Immediate(function->nargs)); |
| mov(ebx, Immediate(ExternalReference(function, isolate()))); |
| CEntryStub ces(1, kSaveFPRegs); |
| CallStub(&ces); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, |
| int num_arguments) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| if (f->nargs >= 0 && f->nargs != num_arguments) { |
| IllegalOperation(num_arguments); |
| return; |
| } |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(eax, Immediate(num_arguments)); |
| mov(ebx, Immediate(ExternalReference(f, isolate()))); |
| CEntryStub ces(1); |
| CallStub(&ces); |
| } |
| |
| |
| void MacroAssembler::CallExternalReference(ExternalReference ref, |
| int num_arguments) { |
| mov(eax, Immediate(num_arguments)); |
| mov(ebx, Immediate(ref)); |
| |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(eax, Immediate(num_arguments)); |
| JumpToExternalReference(ext); |
| } |
| |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size) { |
| TailCallExternalReference(ExternalReference(fid, isolate()), |
| num_arguments, |
| result_size); |
| } |
| |
| |
| // If true, a Handle<T> returned by value from a function with cdecl calling |
| // convention will be returned directly as a value of location_ field in a |
| // register eax. |
| // If false, it is returned as a pointer to a preallocated by caller memory |
| // region. Pointer to this region should be passed to a function as an |
| // implicit first argument. |
| #if defined(USING_BSD_ABI) || defined(__MINGW32__) || defined(__CYGWIN__) |
| static const bool kReturnHandlesDirectly = true; |
| #else |
| static const bool kReturnHandlesDirectly = false; |
| #endif |
| |
| |
| Operand ApiParameterOperand(int index) { |
| return Operand( |
| esp, (index + (kReturnHandlesDirectly ? 0 : 1)) * kPointerSize); |
| } |
| |
| |
| void MacroAssembler::PrepareCallApiFunction(int argc) { |
| if (kReturnHandlesDirectly) { |
| EnterApiExitFrame(argc); |
| // When handles are returned directly we don't have to allocate extra |
| // space for and pass an out parameter. |
| if (emit_debug_code()) { |
| mov(esi, Immediate(BitCast<int32_t>(kZapValue))); |
| } |
| } else { |
| // We allocate two additional slots: return value and pointer to it. |
| EnterApiExitFrame(argc + 2); |
| |
| // The argument slots are filled as follows: |
| // |
| // n + 1: output slot |
| // n: arg n |
| // ... |
| // 1: arg1 |
| // 0: pointer to the output slot |
| |
| lea(esi, Operand(esp, (argc + 1) * kPointerSize)); |
| mov(Operand(esp, 0 * kPointerSize), esi); |
| if (emit_debug_code()) { |
| mov(Operand(esi, 0), Immediate(0)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CallApiFunctionAndReturn(Address function_address, |
| int stack_space) { |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(); |
| ExternalReference limit_address = |
| ExternalReference::handle_scope_limit_address(); |
| ExternalReference level_address = |
| ExternalReference::handle_scope_level_address(); |
| |
| // Allocate HandleScope in callee-save registers. |
| mov(ebx, Operand::StaticVariable(next_address)); |
| mov(edi, Operand::StaticVariable(limit_address)); |
| add(Operand::StaticVariable(level_address), Immediate(1)); |
| |
| // Call the api function. |
| call(function_address, RelocInfo::RUNTIME_ENTRY); |
| |
| if (!kReturnHandlesDirectly) { |
| // PrepareCallApiFunction saved pointer to the output slot into |
| // callee-save register esi. |
| mov(eax, Operand(esi, 0)); |
| } |
| |
| Label empty_handle; |
| Label prologue; |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| |
| // Check if the result handle holds 0. |
| test(eax, eax); |
| j(zero, &empty_handle); |
| // It was non-zero. Dereference to get the result value. |
| mov(eax, Operand(eax, 0)); |
| bind(&prologue); |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| mov(Operand::StaticVariable(next_address), ebx); |
| sub(Operand::StaticVariable(level_address), Immediate(1)); |
| Assert(above_equal, "Invalid HandleScope level"); |
| cmp(edi, Operand::StaticVariable(limit_address)); |
| j(not_equal, &delete_allocated_handles); |
| bind(&leave_exit_frame); |
| |
| // Check if the function scheduled an exception. |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(isolate()); |
| cmp(Operand::StaticVariable(scheduled_exception_address), |
| Immediate(isolate()->factory()->the_hole_value())); |
| j(not_equal, &promote_scheduled_exception); |
| LeaveApiExitFrame(); |
| ret(stack_space * kPointerSize); |
| bind(&promote_scheduled_exception); |
| TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
| |
| bind(&empty_handle); |
| // It was zero; the result is undefined. |
| mov(eax, isolate()->factory()->undefined_value()); |
| jmp(&prologue); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| ExternalReference delete_extensions = |
| ExternalReference::delete_handle_scope_extensions(isolate()); |
| bind(&delete_allocated_handles); |
| mov(Operand::StaticVariable(limit_address), edi); |
| mov(edi, eax); |
| mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address())); |
| mov(eax, Immediate(delete_extensions)); |
| call(eax); |
| mov(eax, edi); |
| jmp(&leave_exit_frame); |
| } |
| |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) { |
| // Set the entry point and jump to the C entry runtime stub. |
| mov(ebx, Immediate(ext)); |
| CEntryStub ces(1); |
| jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { |
| // This macro takes the dst register to make the code more readable |
| // at the call sites. However, the dst register has to be ecx to |
| // follow the calling convention which requires the call type to be |
| // in ecx. |
| ASSERT(dst.is(ecx)); |
| if (call_kind == CALL_AS_FUNCTION) { |
| // Set to some non-zero smi by updating the least significant |
| // byte. |
| mov_b(dst, 1 << kSmiTagSize); |
| } else { |
| // Set to smi zero by clearing the register. |
| xor_(dst, dst); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| const Operand& code_operand, |
| Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| Label::Distance done_near, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label invoke; |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| mov(eax, actual.immediate()); |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| mov(ebx, expected.immediate()); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| // Expected is in register, actual is immediate. This is the |
| // case when we invoke function values without going through the |
| // IC mechanism. |
| cmp(expected.reg(), actual.immediate()); |
| j(equal, &invoke); |
| ASSERT(expected.reg().is(ebx)); |
| mov(eax, actual.immediate()); |
| } else if (!expected.reg().is(actual.reg())) { |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmp(expected.reg(), actual.reg()); |
| j(equal, &invoke); |
| ASSERT(actual.reg().is(eax)); |
| ASSERT(expected.reg().is(ebx)); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = |
| isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| if (!code_constant.is_null()) { |
| mov(edx, Immediate(code_constant)); |
| add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } else if (!code_operand.is_reg(edx)) { |
| mov(edx, code_operand); |
| } |
| |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET)); |
| SetCallKind(ecx, call_kind); |
| call(adaptor, RelocInfo::CODE_TARGET); |
| call_wrapper.AfterCall(); |
| if (!*definitely_mismatches) { |
| jmp(done, done_near); |
| } |
| } else { |
| SetCallKind(ecx, call_kind); |
| jmp(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(&invoke); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(const Operand& code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, Handle<Code>::null(), code, |
| &done, &definitely_mismatches, flag, Label::kNear, |
| call_wrapper, call_kind); |
| if (!definitely_mismatches) { |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(code)); |
| SetCallKind(ecx, call_kind); |
| call(code); |
| call_wrapper.AfterCall(); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| SetCallKind(ecx, call_kind); |
| jmp(code); |
| } |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| Label done; |
| Operand dummy(eax, 0); |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, code, dummy, &done, &definitely_mismatches, |
| flag, Label::kNear, call_wrapper, call_kind); |
| if (!definitely_mismatches) { |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(code, rmode)); |
| SetCallKind(ecx, call_kind); |
| call(code, rmode); |
| call_wrapper.AfterCall(); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| SetCallKind(ecx, call_kind); |
| jmp(code, rmode); |
| } |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Register fun, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| ASSERT(fun.is(edi)); |
| mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| SmiUntag(ebx); |
| |
| ParameterCount expected(ebx); |
| InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), |
| expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Get the function and setup the context. |
| LoadHeapObject(edi, function); |
| mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| |
| ParameterCount expected(function->shared()->formal_parameter_count()); |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), |
| expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| |
| void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper) { |
| // You can't call a builtin without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Rely on the assertion to check that the number of provided |
| // arguments match the expected number of arguments. Fake a |
| // parameter count to avoid emitting code to do the check. |
| ParameterCount expected(0); |
| GetBuiltinFunction(edi, id); |
| InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), |
| expected, expected, flag, call_wrapper, CALL_AS_METHOD); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinFunction(Register target, |
| Builtins::JavaScript id) { |
| // Load the JavaScript builtin function from the builtins object. |
| mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); |
| mov(target, FieldOperand(target, |
| JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| ASSERT(!target.is(edi)); |
| // Load the JavaScript builtin function from the builtins object. |
| GetBuiltinFunction(edi, id); |
| // Load the code entry point from the function into the target register. |
| mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset)); |
| } |
| |
| |
| void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| if (context_chain_length > 0) { |
| // Move up the chain of contexts to the context containing the slot. |
| mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| for (int i = 1; i < context_chain_length; i++) { |
| mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| } |
| } else { |
| // Slot is in the current function context. Move it into the |
| // destination register in case we store into it (the write barrier |
| // cannot be allowed to destroy the context in esi). |
| mov(dst, esi); |
| } |
| |
| // We should not have found a with context by walking the context chain |
| // (i.e., the static scope chain and runtime context chain do not agree). |
| // A variable occurring in such a scope should have slot type LOOKUP and |
| // not CONTEXT. |
| if (emit_debug_code()) { |
| cmp(FieldOperand(dst, HeapObject::kMapOffset), |
| isolate()->factory()->with_context_map()); |
| Check(not_equal, "Variable resolved to with context."); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadTransitionedArrayMapConditional( |
| ElementsKind expected_kind, |
| ElementsKind transitioned_kind, |
| Register map_in_out, |
| Register scratch, |
| Label* no_map_match) { |
| // Load the global or builtins object from the current context. |
| mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check that the function's map is the same as the expected cached map. |
| int expected_index = |
| Context::GetContextMapIndexFromElementsKind(expected_kind); |
| cmp(map_in_out, Operand(scratch, Context::SlotOffset(expected_index))); |
| j(not_equal, no_map_match); |
| |
| // Use the transitioned cached map. |
| int trans_index = |
| Context::GetContextMapIndexFromElementsKind(transitioned_kind); |
| mov(map_in_out, Operand(scratch, Context::SlotOffset(trans_index))); |
| } |
| |
| |
| void MacroAssembler::LoadInitialArrayMap( |
| Register function_in, Register scratch, Register map_out) { |
| ASSERT(!function_in.is(map_out)); |
| Label done; |
| mov(map_out, FieldOperand(function_in, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| if (!FLAG_smi_only_arrays) { |
| LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, |
| FAST_ELEMENTS, |
| map_out, |
| scratch, |
| &done); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
| // Load the global or builtins object from the current context. |
| mov(function, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| // Load the global context from the global or builtins object. |
| mov(function, FieldOperand(function, GlobalObject::kGlobalContextOffset)); |
| // Load the function from the global context. |
| mov(function, Operand(function, Context::SlotOffset(index))); |
| } |
| |
| |
| void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
| Register map) { |
| // Load the initial map. The global functions all have initial maps. |
| mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| if (emit_debug_code()) { |
| Label ok, fail; |
| CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); |
| jmp(&ok); |
| bind(&fail); |
| Abort("Global functions must have initial map"); |
| bind(&ok); |
| } |
| } |
| |
| |
| // Store the value in register src in the safepoint register stack |
| // slot for register dst. |
| void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { |
| mov(SafepointRegisterSlot(dst), src); |
| } |
| |
| |
| void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) { |
| mov(SafepointRegisterSlot(dst), src); |
| } |
| |
| |
| void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { |
| mov(dst, SafepointRegisterSlot(src)); |
| } |
| |
| |
| Operand MacroAssembler::SafepointRegisterSlot(Register reg) { |
| return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); |
| } |
| |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the lowest encoding, |
| // which means that lowest encodings are furthest away from |
| // the stack pointer. |
| ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters); |
| return kNumSafepointRegisters - reg_code - 1; |
| } |
| |
| |
| void MacroAssembler::LoadHeapObject(Register result, |
| Handle<HeapObject> object) { |
| if (isolate()->heap()->InNewSpace(*object)) { |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(object); |
| mov(result, Operand::Cell(cell)); |
| } else { |
| mov(result, object); |
| } |
| } |
| |
| |
| void MacroAssembler::PushHeapObject(Handle<HeapObject> object) { |
| if (isolate()->heap()->InNewSpace(*object)) { |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(object); |
| push(Operand::Cell(cell)); |
| } else { |
| Push(object); |
| } |
| } |
| |
| |
| void MacroAssembler::Ret() { |
| ret(0); |
| } |
| |
| |
| void MacroAssembler::Ret(int bytes_dropped, Register scratch) { |
| if (is_uint16(bytes_dropped)) { |
| ret(bytes_dropped); |
| } else { |
| pop(scratch); |
| add(esp, Immediate(bytes_dropped)); |
| push(scratch); |
| ret(0); |
| } |
| } |
| |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| add(esp, Immediate(stack_elements * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::Move(Register dst, Register src) { |
| if (!dst.is(src)) { |
| mov(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SetCounter(StatsCounter* counter, int value) { |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand operand = Operand::StaticVariable(ExternalReference(counter)); |
| if (value == 1) { |
| inc(operand); |
| } else { |
| add(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand operand = Operand::StaticVariable(ExternalReference(counter)); |
| if (value == 1) { |
| dec(operand); |
| } else { |
| sub(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(Condition cc, |
| StatsCounter* counter, |
| int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Label skip; |
| j(NegateCondition(cc), &skip); |
| pushfd(); |
| IncrementCounter(counter, value); |
| popfd(); |
| bind(&skip); |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(Condition cc, |
| StatsCounter* counter, |
| int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Label skip; |
| j(NegateCondition(cc), &skip); |
| pushfd(); |
| DecrementCounter(counter, value); |
| popfd(); |
| bind(&skip); |
| } |
| } |
| |
| |
| void MacroAssembler::Assert(Condition cc, const char* msg) { |
| if (emit_debug_code()) Check(cc, msg); |
| } |
| |
| |
| void MacroAssembler::AssertFastElements(Register elements) { |
| if (emit_debug_code()) { |
| Factory* factory = isolate()->factory(); |
| Label ok; |
| cmp(FieldOperand(elements, HeapObject::kMapOffset), |
| Immediate(factory->fixed_array_map())); |
| j(equal, &ok); |
| cmp(FieldOperand(elements, HeapObject::kMapOffset), |
| Immediate(factory->fixed_double_array_map())); |
| j(equal, &ok); |
| cmp(FieldOperand(elements, HeapObject::kMapOffset), |
| Immediate(factory->fixed_cow_array_map())); |
| j(equal, &ok); |
| Abort("JSObject with fast elements map has slow elements"); |
| bind(&ok); |
| } |
| } |
| |
| |
| void MacroAssembler::Check(Condition cc, const char* msg) { |
| Label L; |
| j(cc, &L); |
| Abort(msg); |
| // will not return here |
| bind(&L); |
| } |
| |
| |
| void MacroAssembler::CheckStackAlignment() { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| ASSERT(IsPowerOf2(frame_alignment)); |
| Label alignment_as_expected; |
| test(esp, Immediate(frame_alignment_mask)); |
| j(zero, &alignment_as_expected); |
| // Abort if stack is not aligned. |
| int3(); |
| bind(&alignment_as_expected); |
| } |
| } |
| |
| |
| void MacroAssembler::Abort(const char* msg) { |
| // We want to pass the msg string like a smi to avoid GC |
| // problems, however msg is not guaranteed to be aligned |
| // properly. Instead, we pass an aligned pointer that is |
| // a proper v8 smi, but also pass the alignment difference |
| // from the real pointer as a smi. |
| intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| #ifdef DEBUG |
| if (msg != NULL) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| #endif |
| |
| push(eax); |
| push(Immediate(p0)); |
| push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0)))); |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame_) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| CallRuntime(Runtime::kAbort, 2); |
| } else { |
| CallRuntime(Runtime::kAbort, 2); |
| } |
| // will not return here |
| int3(); |
| } |
| |
| |
| void MacroAssembler::LoadInstanceDescriptors(Register map, |
| Register descriptors) { |
| mov(descriptors, |
| FieldOperand(map, Map::kInstanceDescriptorsOrBitField3Offset)); |
| Label not_smi; |
| JumpIfNotSmi(descriptors, ¬_smi); |
| mov(descriptors, isolate()->factory()->empty_descriptor_array()); |
| bind(¬_smi); |
| } |
| |
| |
| void MacroAssembler::LoadPowerOf2(XMMRegister dst, |
| Register scratch, |
| int power) { |
| ASSERT(is_uintn(power + HeapNumber::kExponentBias, |
| HeapNumber::kExponentBits)); |
| mov(scratch, Immediate(power + HeapNumber::kExponentBias)); |
| movd(dst, scratch); |
| psllq(dst, HeapNumber::kMantissaBits); |
| } |
| |
| |
| void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( |
| Register instance_type, |
| Register scratch, |
| Label* failure) { |
| if (!scratch.is(instance_type)) { |
| mov(scratch, instance_type); |
| } |
| and_(scratch, |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); |
| cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag); |
| j(not_equal, failure); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1, |
| Register object2, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Check that both objects are not smis. |
| STATIC_ASSERT(kSmiTag == 0); |
| mov(scratch1, object1); |
| and_(scratch1, object2); |
| JumpIfSmi(scratch1, failure); |
| |
| // Load instance type for both strings. |
| mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); |
| mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); |
| movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); |
| movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); |
| |
| // Check that both are flat ASCII strings. |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| // Interleave bits from both instance types and compare them in one check. |
| ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); |
| and_(scratch1, kFlatAsciiStringMask); |
| and_(scratch2, kFlatAsciiStringMask); |
| lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); |
| cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3)); |
| j(not_equal, failure); |
| } |
| |
| |
| void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| if (frame_alignment != 0) { |
| // Make stack end at alignment and make room for num_arguments words |
| // and the original value of esp. |
| mov(scratch, esp); |
| sub(esp, Immediate((num_arguments + 1) * kPointerSize)); |
| ASSERT(IsPowerOf2(frame_alignment)); |
| and_(esp, -frame_alignment); |
| mov(Operand(esp, num_arguments * kPointerSize), scratch); |
| } else { |
| sub(esp, Immediate(num_arguments * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| // Trashing eax is ok as it will be the return value. |
| mov(eax, Immediate(function)); |
| CallCFunction(eax, num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(Register function, |
| int num_arguments) { |
| ASSERT(has_frame()); |
| // Check stack alignment. |
| if (emit_debug_code()) { |
| CheckStackAlignment(); |
| } |
| |
| call(function); |
| if (OS::ActivationFrameAlignment() != 0) { |
| mov(esp, Operand(esp, num_arguments * kPointerSize)); |
| } else { |
| add(esp, Immediate(num_arguments * kPointerSize)); |
| } |
| } |
| |
| |
| bool AreAliased(Register r1, Register r2, Register r3, Register r4) { |
| if (r1.is(r2)) return true; |
| if (r1.is(r3)) return true; |
| if (r1.is(r4)) return true; |
| if (r2.is(r3)) return true; |
| if (r2.is(r4)) return true; |
| if (r3.is(r4)) return true; |
| return false; |
| } |
| |
| |
| CodePatcher::CodePatcher(byte* address, int size) |
| : address_(address), |
| size_(size), |
| masm_(Isolate::Current(), address, size + Assembler::kGap) { |
| // Create a new macro assembler pointing to the address of the code to patch. |
| // The size is adjusted with kGap on order for the assembler to generate size |
| // bytes of instructions without failing with buffer size constraints. |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| CodePatcher::~CodePatcher() { |
| // Indicate that code has changed. |
| CPU::FlushICache(address_, size_); |
| |
| // Check that the code was patched as expected. |
| ASSERT(masm_.pc_ == address_ + size_); |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| void MacroAssembler::CheckPageFlag( |
| Register object, |
| Register scratch, |
| int mask, |
| Condition cc, |
| Label* condition_met, |
| Label::Distance condition_met_distance) { |
| ASSERT(cc == zero || cc == not_zero); |
| if (scratch.is(object)) { |
| and_(scratch, Immediate(~Page::kPageAlignmentMask)); |
| } else { |
| mov(scratch, Immediate(~Page::kPageAlignmentMask)); |
| and_(scratch, object); |
| } |
| if (mask < (1 << kBitsPerByte)) { |
| test_b(Operand(scratch, MemoryChunk::kFlagsOffset), |
| static_cast<uint8_t>(mask)); |
| } else { |
| test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); |
| } |
| j(cc, condition_met, condition_met_distance); |
| } |
| |
| |
| void MacroAssembler::JumpIfBlack(Register object, |
| Register scratch0, |
| Register scratch1, |
| Label* on_black, |
| Label::Distance on_black_near) { |
| HasColor(object, scratch0, scratch1, |
| on_black, on_black_near, |
| 1, 0); // kBlackBitPattern. |
| ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| } |
| |
| |
| void MacroAssembler::HasColor(Register object, |
| Register bitmap_scratch, |
| Register mask_scratch, |
| Label* has_color, |
| Label::Distance has_color_distance, |
| int first_bit, |
| int second_bit) { |
| ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, ecx)); |
| |
| GetMarkBits(object, bitmap_scratch, mask_scratch); |
| |
| Label other_color, word_boundary; |
| test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear); |
| add(mask_scratch, mask_scratch); // Shift left 1 by adding. |
| j(zero, &word_boundary, Label::kNear); |
| test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); |
| jmp(&other_color, Label::kNear); |
| |
| bind(&word_boundary); |
| test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1); |
| |
| j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); |
| bind(&other_color); |
| } |
| |
| |
| void MacroAssembler::GetMarkBits(Register addr_reg, |
| Register bitmap_reg, |
| Register mask_reg) { |
| ASSERT(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx)); |
| mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask)); |
| and_(bitmap_reg, addr_reg); |
| mov(ecx, addr_reg); |
| int shift = |
| Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2; |
| shr(ecx, shift); |
| and_(ecx, |
| (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1)); |
| |
| add(bitmap_reg, ecx); |
| mov(ecx, addr_reg); |
| shr(ecx, kPointerSizeLog2); |
| and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1); |
| mov(mask_reg, Immediate(1)); |
| shl_cl(mask_reg); |
| } |
| |
| |
| void MacroAssembler::EnsureNotWhite( |
| Register value, |
| Register bitmap_scratch, |
| Register mask_scratch, |
| Label* value_is_white_and_not_data, |
| Label::Distance distance) { |
| ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ecx)); |
| GetMarkBits(value, bitmap_scratch, mask_scratch); |
| |
| // If the value is black or grey we don't need to do anything. |
| ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
| ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
| ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); |
| |
| Label done; |
| |
| // Since both black and grey have a 1 in the first position and white does |
| // not have a 1 there we only need to check one bit. |
| test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| j(not_zero, &done, Label::kNear); |
| |
| if (FLAG_debug_code) { |
| // Check for impossible bit pattern. |
| Label ok; |
| push(mask_scratch); |
| // shl. May overflow making the check conservative. |
| add(mask_scratch, mask_scratch); |
| test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| pop(mask_scratch); |
| } |
| |
| // Value is white. We check whether it is data that doesn't need scanning. |
| // Currently only checks for HeapNumber and non-cons strings. |
| Register map = ecx; // Holds map while checking type. |
| Register length = ecx; // Holds length of object after checking type. |
| Label not_heap_number; |
| Label is_data_object; |
| |
| // Check for heap-number |
| mov(map, FieldOperand(value, HeapObject::kMapOffset)); |
| cmp(map, FACTORY->heap_number_map()); |
| j(not_equal, ¬_heap_number, Label::kNear); |
| mov(length, Immediate(HeapNumber::kSize)); |
| jmp(&is_data_object, Label::kNear); |
| |
| bind(¬_heap_number); |
| // Check for strings. |
| ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| // If it's a string and it's not a cons string then it's an object containing |
| // no GC pointers. |
| Register instance_type = ecx; |
| movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); |
| test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask); |
| j(not_zero, value_is_white_and_not_data); |
| // It's a non-indirect (non-cons and non-slice) string. |
| // If it's external, the length is just ExternalString::kSize. |
| // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). |
| Label not_external; |
| // External strings are the only ones with the kExternalStringTag bit |
| // set. |
| ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); |
| ASSERT_EQ(0, kConsStringTag & kExternalStringTag); |
| test_b(instance_type, kExternalStringTag); |
| j(zero, ¬_external, Label::kNear); |
| mov(length, Immediate(ExternalString::kSize)); |
| jmp(&is_data_object, Label::kNear); |
| |
| bind(¬_external); |
| // Sequential string, either ASCII or UC16. |
| ASSERT(kAsciiStringTag == 0x04); |
| and_(length, Immediate(kStringEncodingMask)); |
| xor_(length, Immediate(kStringEncodingMask)); |
| add(length, Immediate(0x04)); |
| // Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted |
| // by 2. If we multiply the string length as smi by this, it still |
| // won't overflow a 32-bit value. |
| ASSERT_EQ(SeqAsciiString::kMaxSize, SeqTwoByteString::kMaxSize); |
| ASSERT(SeqAsciiString::kMaxSize <= |
| static_cast<int>(0xffffffffu >> (2 + kSmiTagSize))); |
| imul(length, FieldOperand(value, String::kLengthOffset)); |
| shr(length, 2 + kSmiTagSize + kSmiShiftSize); |
| add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask)); |
| and_(length, Immediate(~kObjectAlignmentMask)); |
| |
| bind(&is_data_object); |
| // Value is a data object, and it is white. Mark it black. Since we know |
| // that the object is white we can make it black by flipping one bit. |
| or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); |
| |
| and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask)); |
| add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), |
| length); |
| if (FLAG_debug_code) { |
| mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
| cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset)); |
| Check(less_equal, "Live Bytes Count overflow chunk size"); |
| } |
| |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CheckEnumCache(Label* call_runtime) { |
| Label next; |
| mov(ecx, eax); |
| bind(&next); |
| |
| // Check that there are no elements. Register ecx contains the |
| // current JS object we've reached through the prototype chain. |
| cmp(FieldOperand(ecx, JSObject::kElementsOffset), |
| isolate()->factory()->empty_fixed_array()); |
| j(not_equal, call_runtime); |
| |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in ebx for the subsequent |
| // prototype load. |
| mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); |
| mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOrBitField3Offset)); |
| JumpIfSmi(edx, call_runtime); |
| |
| // Check that there is an enum cache in the non-empty instance |
| // descriptors (edx). This is the case if the next enumeration |
| // index field does not contain a smi. |
| mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); |
| JumpIfSmi(edx, call_runtime); |
| |
| // For all objects but the receiver, check that the cache is empty. |
| Label check_prototype; |
| cmp(ecx, eax); |
| j(equal, &check_prototype, Label::kNear); |
| mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| cmp(edx, isolate()->factory()->empty_fixed_array()); |
| j(not_equal, call_runtime); |
| |
| // Load the prototype from the map and loop if non-null. |
| bind(&check_prototype); |
| mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); |
| cmp(ecx, isolate()->factory()->null_value()); |
| j(not_equal, &next); |
| } |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |