| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| |
| #include "v8.h" |
| |
| #include "ast.h" |
| #include "bootstrapper.h" |
| #include "codegen.h" |
| #include "compilation-cache.h" |
| #include "debug.h" |
| #include "deoptimizer.h" |
| #include "heap-profiler.h" |
| #include "hydrogen.h" |
| #include "isolate.h" |
| #include "lithium-allocator.h" |
| #include "log.h" |
| #include "messages.h" |
| #include "platform.h" |
| #include "regexp-stack.h" |
| #include "runtime-profiler.h" |
| #include "scopeinfo.h" |
| #include "serialize.h" |
| #include "simulator.h" |
| #include "spaces.h" |
| #include "stub-cache.h" |
| #include "version.h" |
| #include "vm-state-inl.h" |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| Atomic32 ThreadId::highest_thread_id_ = 0; |
| |
| int ThreadId::AllocateThreadId() { |
| int new_id = NoBarrier_AtomicIncrement(&highest_thread_id_, 1); |
| return new_id; |
| } |
| |
| |
| int ThreadId::GetCurrentThreadId() { |
| int thread_id = Thread::GetThreadLocalInt(Isolate::thread_id_key_); |
| if (thread_id == 0) { |
| thread_id = AllocateThreadId(); |
| Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id); |
| } |
| return thread_id; |
| } |
| |
| |
| ThreadLocalTop::ThreadLocalTop() { |
| InitializeInternal(); |
| // This flag may be set using v8::V8::IgnoreOutOfMemoryException() |
| // before an isolate is initialized. The initialize methods below do |
| // not touch it to preserve its value. |
| ignore_out_of_memory_ = false; |
| } |
| |
| |
| void ThreadLocalTop::InitializeInternal() { |
| c_entry_fp_ = 0; |
| handler_ = 0; |
| #ifdef USE_SIMULATOR |
| simulator_ = NULL; |
| #endif |
| js_entry_sp_ = NULL; |
| external_callback_ = NULL; |
| current_vm_state_ = EXTERNAL; |
| try_catch_handler_address_ = NULL; |
| context_ = NULL; |
| thread_id_ = ThreadId::Invalid(); |
| external_caught_exception_ = false; |
| failed_access_check_callback_ = NULL; |
| save_context_ = NULL; |
| catcher_ = NULL; |
| top_lookup_result_ = NULL; |
| |
| // These members are re-initialized later after deserialization |
| // is complete. |
| pending_exception_ = NULL; |
| has_pending_message_ = false; |
| pending_message_obj_ = NULL; |
| pending_message_script_ = NULL; |
| scheduled_exception_ = NULL; |
| } |
| |
| |
| void ThreadLocalTop::Initialize() { |
| InitializeInternal(); |
| #ifdef USE_SIMULATOR |
| #ifdef V8_TARGET_ARCH_ARM |
| simulator_ = Simulator::current(isolate_); |
| #elif V8_TARGET_ARCH_MIPS |
| simulator_ = Simulator::current(isolate_); |
| #endif |
| #endif |
| thread_id_ = ThreadId::Current(); |
| } |
| |
| |
| v8::TryCatch* ThreadLocalTop::TryCatchHandler() { |
| return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address()); |
| } |
| |
| |
| // Create a dummy thread that will wait forever on a semaphore. The only |
| // purpose for this thread is to have some stack area to save essential data |
| // into for use by a stacks only core dump (aka minidump). |
| class PreallocatedMemoryThread: public Thread { |
| public: |
| char* data() { |
| if (data_ready_semaphore_ != NULL) { |
| // Initial access is guarded until the data has been published. |
| data_ready_semaphore_->Wait(); |
| delete data_ready_semaphore_; |
| data_ready_semaphore_ = NULL; |
| } |
| return data_; |
| } |
| |
| unsigned length() { |
| if (data_ready_semaphore_ != NULL) { |
| // Initial access is guarded until the data has been published. |
| data_ready_semaphore_->Wait(); |
| delete data_ready_semaphore_; |
| data_ready_semaphore_ = NULL; |
| } |
| return length_; |
| } |
| |
| // Stop the PreallocatedMemoryThread and release its resources. |
| void StopThread() { |
| keep_running_ = false; |
| wait_for_ever_semaphore_->Signal(); |
| |
| // Wait for the thread to terminate. |
| Join(); |
| |
| if (data_ready_semaphore_ != NULL) { |
| delete data_ready_semaphore_; |
| data_ready_semaphore_ = NULL; |
| } |
| |
| delete wait_for_ever_semaphore_; |
| wait_for_ever_semaphore_ = NULL; |
| } |
| |
| protected: |
| // When the thread starts running it will allocate a fixed number of bytes |
| // on the stack and publish the location of this memory for others to use. |
| void Run() { |
| EmbeddedVector<char, 15 * 1024> local_buffer; |
| |
| // Initialize the buffer with a known good value. |
| OS::StrNCpy(local_buffer, "Trace data was not generated.\n", |
| local_buffer.length()); |
| |
| // Publish the local buffer and signal its availability. |
| data_ = local_buffer.start(); |
| length_ = local_buffer.length(); |
| data_ready_semaphore_->Signal(); |
| |
| while (keep_running_) { |
| // This thread will wait here until the end of time. |
| wait_for_ever_semaphore_->Wait(); |
| } |
| |
| // Make sure we access the buffer after the wait to remove all possibility |
| // of it being optimized away. |
| OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n", |
| local_buffer.length()); |
| } |
| |
| |
| private: |
| PreallocatedMemoryThread() |
| : Thread("v8:PreallocMem"), |
| keep_running_(true), |
| wait_for_ever_semaphore_(OS::CreateSemaphore(0)), |
| data_ready_semaphore_(OS::CreateSemaphore(0)), |
| data_(NULL), |
| length_(0) { |
| } |
| |
| // Used to make sure that the thread keeps looping even for spurious wakeups. |
| bool keep_running_; |
| |
| // This semaphore is used by the PreallocatedMemoryThread to wait for ever. |
| Semaphore* wait_for_ever_semaphore_; |
| // Semaphore to signal that the data has been initialized. |
| Semaphore* data_ready_semaphore_; |
| |
| // Location and size of the preallocated memory block. |
| char* data_; |
| unsigned length_; |
| |
| friend class Isolate; |
| |
| DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread); |
| }; |
| |
| |
| void Isolate::PreallocatedMemoryThreadStart() { |
| if (preallocated_memory_thread_ != NULL) return; |
| preallocated_memory_thread_ = new PreallocatedMemoryThread(); |
| preallocated_memory_thread_->Start(); |
| } |
| |
| |
| void Isolate::PreallocatedMemoryThreadStop() { |
| if (preallocated_memory_thread_ == NULL) return; |
| preallocated_memory_thread_->StopThread(); |
| // Done with the thread entirely. |
| delete preallocated_memory_thread_; |
| preallocated_memory_thread_ = NULL; |
| } |
| |
| |
| void Isolate::PreallocatedStorageInit(size_t size) { |
| ASSERT(free_list_.next_ == &free_list_); |
| ASSERT(free_list_.previous_ == &free_list_); |
| PreallocatedStorage* free_chunk = |
| reinterpret_cast<PreallocatedStorage*>(new char[size]); |
| free_list_.next_ = free_list_.previous_ = free_chunk; |
| free_chunk->next_ = free_chunk->previous_ = &free_list_; |
| free_chunk->size_ = size - sizeof(PreallocatedStorage); |
| preallocated_storage_preallocated_ = true; |
| } |
| |
| |
| void* Isolate::PreallocatedStorageNew(size_t size) { |
| if (!preallocated_storage_preallocated_) { |
| return FreeStoreAllocationPolicy::New(size); |
| } |
| ASSERT(free_list_.next_ != &free_list_); |
| ASSERT(free_list_.previous_ != &free_list_); |
| |
| size = (size + kPointerSize - 1) & ~(kPointerSize - 1); |
| // Search for exact fit. |
| for (PreallocatedStorage* storage = free_list_.next_; |
| storage != &free_list_; |
| storage = storage->next_) { |
| if (storage->size_ == size) { |
| storage->Unlink(); |
| storage->LinkTo(&in_use_list_); |
| return reinterpret_cast<void*>(storage + 1); |
| } |
| } |
| // Search for first fit. |
| for (PreallocatedStorage* storage = free_list_.next_; |
| storage != &free_list_; |
| storage = storage->next_) { |
| if (storage->size_ >= size + sizeof(PreallocatedStorage)) { |
| storage->Unlink(); |
| storage->LinkTo(&in_use_list_); |
| PreallocatedStorage* left_over = |
| reinterpret_cast<PreallocatedStorage*>( |
| reinterpret_cast<char*>(storage + 1) + size); |
| left_over->size_ = storage->size_ - size - sizeof(PreallocatedStorage); |
| ASSERT(size + left_over->size_ + sizeof(PreallocatedStorage) == |
| storage->size_); |
| storage->size_ = size; |
| left_over->LinkTo(&free_list_); |
| return reinterpret_cast<void*>(storage + 1); |
| } |
| } |
| // Allocation failure. |
| ASSERT(false); |
| return NULL; |
| } |
| |
| |
| // We don't attempt to coalesce. |
| void Isolate::PreallocatedStorageDelete(void* p) { |
| if (p == NULL) { |
| return; |
| } |
| if (!preallocated_storage_preallocated_) { |
| FreeStoreAllocationPolicy::Delete(p); |
| return; |
| } |
| PreallocatedStorage* storage = reinterpret_cast<PreallocatedStorage*>(p) - 1; |
| ASSERT(storage->next_->previous_ == storage); |
| ASSERT(storage->previous_->next_ == storage); |
| storage->Unlink(); |
| storage->LinkTo(&free_list_); |
| } |
| |
| Isolate* Isolate::default_isolate_ = NULL; |
| Thread::LocalStorageKey Isolate::isolate_key_; |
| Thread::LocalStorageKey Isolate::thread_id_key_; |
| Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_; |
| Mutex* Isolate::process_wide_mutex_ = OS::CreateMutex(); |
| Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL; |
| |
| |
| Isolate::PerIsolateThreadData* Isolate::AllocatePerIsolateThreadData( |
| ThreadId thread_id) { |
| ASSERT(!thread_id.Equals(ThreadId::Invalid())); |
| PerIsolateThreadData* per_thread = new PerIsolateThreadData(this, thread_id); |
| { |
| ScopedLock lock(process_wide_mutex_); |
| ASSERT(thread_data_table_->Lookup(this, thread_id) == NULL); |
| thread_data_table_->Insert(per_thread); |
| ASSERT(thread_data_table_->Lookup(this, thread_id) == per_thread); |
| } |
| return per_thread; |
| } |
| |
| |
| Isolate::PerIsolateThreadData* |
| Isolate::FindOrAllocatePerThreadDataForThisThread() { |
| ThreadId thread_id = ThreadId::Current(); |
| PerIsolateThreadData* per_thread = NULL; |
| { |
| ScopedLock lock(process_wide_mutex_); |
| per_thread = thread_data_table_->Lookup(this, thread_id); |
| if (per_thread == NULL) { |
| per_thread = AllocatePerIsolateThreadData(thread_id); |
| } |
| } |
| return per_thread; |
| } |
| |
| |
| Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() { |
| ThreadId thread_id = ThreadId::Current(); |
| PerIsolateThreadData* per_thread = NULL; |
| { |
| ScopedLock lock(process_wide_mutex_); |
| per_thread = thread_data_table_->Lookup(this, thread_id); |
| } |
| return per_thread; |
| } |
| |
| |
| void Isolate::EnsureDefaultIsolate() { |
| ScopedLock lock(process_wide_mutex_); |
| if (default_isolate_ == NULL) { |
| isolate_key_ = Thread::CreateThreadLocalKey(); |
| thread_id_key_ = Thread::CreateThreadLocalKey(); |
| per_isolate_thread_data_key_ = Thread::CreateThreadLocalKey(); |
| thread_data_table_ = new Isolate::ThreadDataTable(); |
| default_isolate_ = new Isolate(); |
| } |
| // Can't use SetIsolateThreadLocals(default_isolate_, NULL) here |
| // because a non-null thread data may be already set. |
| if (Thread::GetThreadLocal(isolate_key_) == NULL) { |
| Thread::SetThreadLocal(isolate_key_, default_isolate_); |
| } |
| } |
| |
| struct StaticInitializer { |
| StaticInitializer() { |
| Isolate::EnsureDefaultIsolate(); |
| } |
| } static_initializer; |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Debugger* Isolate::GetDefaultIsolateDebugger() { |
| EnsureDefaultIsolate(); |
| return default_isolate_->debugger(); |
| } |
| #endif |
| |
| |
| StackGuard* Isolate::GetDefaultIsolateStackGuard() { |
| EnsureDefaultIsolate(); |
| return default_isolate_->stack_guard(); |
| } |
| |
| |
| void Isolate::EnterDefaultIsolate() { |
| EnsureDefaultIsolate(); |
| ASSERT(default_isolate_ != NULL); |
| |
| PerIsolateThreadData* data = CurrentPerIsolateThreadData(); |
| // If not yet in default isolate - enter it. |
| if (data == NULL || data->isolate() != default_isolate_) { |
| default_isolate_->Enter(); |
| } |
| } |
| |
| |
| Isolate* Isolate::GetDefaultIsolateForLocking() { |
| EnsureDefaultIsolate(); |
| return default_isolate_; |
| } |
| |
| |
| Address Isolate::get_address_from_id(Isolate::AddressId id) { |
| return isolate_addresses_[id]; |
| } |
| |
| |
| char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) { |
| ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage); |
| Iterate(v, thread); |
| return thread_storage + sizeof(ThreadLocalTop); |
| } |
| |
| |
| void Isolate::IterateThread(ThreadVisitor* v) { |
| v->VisitThread(this, thread_local_top()); |
| } |
| |
| |
| void Isolate::IterateThread(ThreadVisitor* v, char* t) { |
| ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t); |
| v->VisitThread(this, thread); |
| } |
| |
| |
| void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) { |
| // Visit the roots from the top for a given thread. |
| Object* pending; |
| // The pending exception can sometimes be a failure. We can't show |
| // that to the GC, which only understands objects. |
| if (thread->pending_exception_->ToObject(&pending)) { |
| v->VisitPointer(&pending); |
| thread->pending_exception_ = pending; // In case GC updated it. |
| } |
| v->VisitPointer(&(thread->pending_message_obj_)); |
| v->VisitPointer(BitCast<Object**>(&(thread->pending_message_script_))); |
| v->VisitPointer(BitCast<Object**>(&(thread->context_))); |
| Object* scheduled; |
| if (thread->scheduled_exception_->ToObject(&scheduled)) { |
| v->VisitPointer(&scheduled); |
| thread->scheduled_exception_ = scheduled; |
| } |
| |
| for (v8::TryCatch* block = thread->TryCatchHandler(); |
| block != NULL; |
| block = TRY_CATCH_FROM_ADDRESS(block->next_)) { |
| v->VisitPointer(BitCast<Object**>(&(block->exception_))); |
| v->VisitPointer(BitCast<Object**>(&(block->message_))); |
| } |
| |
| // Iterate over pointers on native execution stack. |
| for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) { |
| it.frame()->Iterate(v); |
| } |
| |
| // Iterate pointers in live lookup results. |
| thread->top_lookup_result_->Iterate(v); |
| } |
| |
| |
| void Isolate::Iterate(ObjectVisitor* v) { |
| ThreadLocalTop* current_t = thread_local_top(); |
| Iterate(v, current_t); |
| } |
| |
| |
| void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) { |
| // The ARM simulator has a separate JS stack. We therefore register |
| // the C++ try catch handler with the simulator and get back an |
| // address that can be used for comparisons with addresses into the |
| // JS stack. When running without the simulator, the address |
| // returned will be the address of the C++ try catch handler itself. |
| Address address = reinterpret_cast<Address>( |
| SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that))); |
| thread_local_top()->set_try_catch_handler_address(address); |
| } |
| |
| |
| void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) { |
| ASSERT(thread_local_top()->TryCatchHandler() == that); |
| thread_local_top()->set_try_catch_handler_address( |
| reinterpret_cast<Address>(that->next_)); |
| thread_local_top()->catcher_ = NULL; |
| SimulatorStack::UnregisterCTryCatch(); |
| } |
| |
| |
| Handle<String> Isolate::StackTraceString() { |
| if (stack_trace_nesting_level_ == 0) { |
| stack_trace_nesting_level_++; |
| HeapStringAllocator allocator; |
| StringStream::ClearMentionedObjectCache(); |
| StringStream accumulator(&allocator); |
| incomplete_message_ = &accumulator; |
| PrintStack(&accumulator); |
| Handle<String> stack_trace = accumulator.ToString(); |
| incomplete_message_ = NULL; |
| stack_trace_nesting_level_ = 0; |
| return stack_trace; |
| } else if (stack_trace_nesting_level_ == 1) { |
| stack_trace_nesting_level_++; |
| OS::PrintError( |
| "\n\nAttempt to print stack while printing stack (double fault)\n"); |
| OS::PrintError( |
| "If you are lucky you may find a partial stack dump on stdout.\n\n"); |
| incomplete_message_->OutputToStdOut(); |
| return factory()->empty_symbol(); |
| } else { |
| OS::Abort(); |
| // Unreachable |
| return factory()->empty_symbol(); |
| } |
| } |
| |
| |
| void Isolate::CaptureAndSetCurrentStackTraceFor(Handle<JSObject> error_object) { |
| if (capture_stack_trace_for_uncaught_exceptions_) { |
| // Capture stack trace for a detailed exception message. |
| Handle<String> key = factory()->hidden_stack_trace_symbol(); |
| Handle<JSArray> stack_trace = CaptureCurrentStackTrace( |
| stack_trace_for_uncaught_exceptions_frame_limit_, |
| stack_trace_for_uncaught_exceptions_options_); |
| JSObject::SetHiddenProperty(error_object, key, stack_trace); |
| } |
| } |
| |
| |
| Handle<JSArray> Isolate::CaptureCurrentStackTrace( |
| int frame_limit, StackTrace::StackTraceOptions options) { |
| // Ensure no negative values. |
| int limit = Max(frame_limit, 0); |
| Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit); |
| |
| Handle<String> column_key = factory()->LookupAsciiSymbol("column"); |
| Handle<String> line_key = factory()->LookupAsciiSymbol("lineNumber"); |
| Handle<String> script_key = factory()->LookupAsciiSymbol("scriptName"); |
| Handle<String> name_or_source_url_key = |
| factory()->LookupAsciiSymbol("nameOrSourceURL"); |
| Handle<String> script_name_or_source_url_key = |
| factory()->LookupAsciiSymbol("scriptNameOrSourceURL"); |
| Handle<String> function_key = factory()->LookupAsciiSymbol("functionName"); |
| Handle<String> eval_key = factory()->LookupAsciiSymbol("isEval"); |
| Handle<String> constructor_key = |
| factory()->LookupAsciiSymbol("isConstructor"); |
| |
| StackTraceFrameIterator it(this); |
| int frames_seen = 0; |
| while (!it.done() && (frames_seen < limit)) { |
| JavaScriptFrame* frame = it.frame(); |
| // Set initial size to the maximum inlining level + 1 for the outermost |
| // function. |
| List<FrameSummary> frames(Compiler::kMaxInliningLevels + 1); |
| frame->Summarize(&frames); |
| for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) { |
| // Create a JSObject to hold the information for the StackFrame. |
| Handle<JSObject> stack_frame = factory()->NewJSObject(object_function()); |
| |
| Handle<JSFunction> fun = frames[i].function(); |
| Handle<Script> script(Script::cast(fun->shared()->script())); |
| |
| if (options & StackTrace::kLineNumber) { |
| int script_line_offset = script->line_offset()->value(); |
| int position = frames[i].code()->SourcePosition(frames[i].pc()); |
| int line_number = GetScriptLineNumber(script, position); |
| // line_number is already shifted by the script_line_offset. |
| int relative_line_number = line_number - script_line_offset; |
| if (options & StackTrace::kColumnOffset && relative_line_number >= 0) { |
| Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends())); |
| int start = (relative_line_number == 0) ? 0 : |
| Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1; |
| int column_offset = position - start; |
| if (relative_line_number == 0) { |
| // For the case where the code is on the same line as the script |
| // tag. |
| column_offset += script->column_offset()->value(); |
| } |
| CHECK_NOT_EMPTY_HANDLE( |
| this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, column_key, |
| Handle<Smi>(Smi::FromInt(column_offset + 1)), NONE)); |
| } |
| CHECK_NOT_EMPTY_HANDLE( |
| this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, line_key, |
| Handle<Smi>(Smi::FromInt(line_number + 1)), NONE)); |
| } |
| |
| if (options & StackTrace::kScriptName) { |
| Handle<Object> script_name(script->name(), this); |
| CHECK_NOT_EMPTY_HANDLE(this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, script_key, script_name, NONE)); |
| } |
| |
| if (options & StackTrace::kScriptNameOrSourceURL) { |
| Handle<Object> script_name(script->name(), this); |
| Handle<JSValue> script_wrapper = GetScriptWrapper(script); |
| Handle<Object> property = GetProperty(script_wrapper, |
| name_or_source_url_key); |
| ASSERT(property->IsJSFunction()); |
| Handle<JSFunction> method = Handle<JSFunction>::cast(property); |
| bool caught_exception; |
| Handle<Object> result = Execution::TryCall(method, script_wrapper, 0, |
| NULL, &caught_exception); |
| if (caught_exception) { |
| result = factory()->undefined_value(); |
| } |
| CHECK_NOT_EMPTY_HANDLE(this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, script_name_or_source_url_key, |
| result, NONE)); |
| } |
| |
| if (options & StackTrace::kFunctionName) { |
| Handle<Object> fun_name(fun->shared()->name(), this); |
| if (fun_name->ToBoolean()->IsFalse()) { |
| fun_name = Handle<Object>(fun->shared()->inferred_name(), this); |
| } |
| CHECK_NOT_EMPTY_HANDLE(this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, function_key, fun_name, NONE)); |
| } |
| |
| if (options & StackTrace::kIsEval) { |
| int type = Smi::cast(script->compilation_type())->value(); |
| Handle<Object> is_eval = (type == Script::COMPILATION_TYPE_EVAL) ? |
| factory()->true_value() : factory()->false_value(); |
| CHECK_NOT_EMPTY_HANDLE(this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, eval_key, is_eval, NONE)); |
| } |
| |
| if (options & StackTrace::kIsConstructor) { |
| Handle<Object> is_constructor = (frames[i].is_constructor()) ? |
| factory()->true_value() : factory()->false_value(); |
| CHECK_NOT_EMPTY_HANDLE(this, |
| JSObject::SetLocalPropertyIgnoreAttributes( |
| stack_frame, constructor_key, |
| is_constructor, NONE)); |
| } |
| |
| FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame); |
| frames_seen++; |
| } |
| it.Advance(); |
| } |
| |
| stack_trace->set_length(Smi::FromInt(frames_seen)); |
| return stack_trace; |
| } |
| |
| |
| void Isolate::PrintStack() { |
| if (stack_trace_nesting_level_ == 0) { |
| stack_trace_nesting_level_++; |
| |
| StringAllocator* allocator; |
| if (preallocated_message_space_ == NULL) { |
| allocator = new HeapStringAllocator(); |
| } else { |
| allocator = preallocated_message_space_; |
| } |
| |
| StringStream::ClearMentionedObjectCache(); |
| StringStream accumulator(allocator); |
| incomplete_message_ = &accumulator; |
| PrintStack(&accumulator); |
| accumulator.OutputToStdOut(); |
| InitializeLoggingAndCounters(); |
| accumulator.Log(); |
| incomplete_message_ = NULL; |
| stack_trace_nesting_level_ = 0; |
| if (preallocated_message_space_ == NULL) { |
| // Remove the HeapStringAllocator created above. |
| delete allocator; |
| } |
| } else if (stack_trace_nesting_level_ == 1) { |
| stack_trace_nesting_level_++; |
| OS::PrintError( |
| "\n\nAttempt to print stack while printing stack (double fault)\n"); |
| OS::PrintError( |
| "If you are lucky you may find a partial stack dump on stdout.\n\n"); |
| incomplete_message_->OutputToStdOut(); |
| } |
| } |
| |
| |
| static void PrintFrames(StringStream* accumulator, |
| StackFrame::PrintMode mode) { |
| StackFrameIterator it; |
| for (int i = 0; !it.done(); it.Advance()) { |
| it.frame()->Print(accumulator, mode, i++); |
| } |
| } |
| |
| |
| void Isolate::PrintStack(StringStream* accumulator) { |
| if (!IsInitialized()) { |
| accumulator->Add( |
| "\n==== Stack trace is not available ==========================\n\n"); |
| accumulator->Add( |
| "\n==== Isolate for the thread is not initialized =============\n\n"); |
| return; |
| } |
| // The MentionedObjectCache is not GC-proof at the moment. |
| AssertNoAllocation nogc; |
| ASSERT(StringStream::IsMentionedObjectCacheClear()); |
| |
| // Avoid printing anything if there are no frames. |
| if (c_entry_fp(thread_local_top()) == 0) return; |
| |
| accumulator->Add( |
| "\n==== Stack trace ============================================\n\n"); |
| PrintFrames(accumulator, StackFrame::OVERVIEW); |
| |
| accumulator->Add( |
| "\n==== Details ================================================\n\n"); |
| PrintFrames(accumulator, StackFrame::DETAILS); |
| |
| accumulator->PrintMentionedObjectCache(); |
| accumulator->Add("=====================\n\n"); |
| } |
| |
| |
| void Isolate::SetFailedAccessCheckCallback( |
| v8::FailedAccessCheckCallback callback) { |
| thread_local_top()->failed_access_check_callback_ = callback; |
| } |
| |
| |
| void Isolate::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) { |
| if (!thread_local_top()->failed_access_check_callback_) return; |
| |
| ASSERT(receiver->IsAccessCheckNeeded()); |
| ASSERT(context()); |
| |
| // Get the data object from access check info. |
| JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); |
| if (!constructor->shared()->IsApiFunction()) return; |
| Object* data_obj = |
| constructor->shared()->get_api_func_data()->access_check_info(); |
| if (data_obj == heap_.undefined_value()) return; |
| |
| HandleScope scope; |
| Handle<JSObject> receiver_handle(receiver); |
| Handle<Object> data(AccessCheckInfo::cast(data_obj)->data()); |
| { VMState state(this, EXTERNAL); |
| thread_local_top()->failed_access_check_callback_( |
| v8::Utils::ToLocal(receiver_handle), |
| type, |
| v8::Utils::ToLocal(data)); |
| } |
| } |
| |
| |
| enum MayAccessDecision { |
| YES, NO, UNKNOWN |
| }; |
| |
| |
| static MayAccessDecision MayAccessPreCheck(Isolate* isolate, |
| JSObject* receiver, |
| v8::AccessType type) { |
| // During bootstrapping, callback functions are not enabled yet. |
| if (isolate->bootstrapper()->IsActive()) return YES; |
| |
| if (receiver->IsJSGlobalProxy()) { |
| Object* receiver_context = JSGlobalProxy::cast(receiver)->context(); |
| if (!receiver_context->IsContext()) return NO; |
| |
| // Get the global context of current top context. |
| // avoid using Isolate::global_context() because it uses Handle. |
| Context* global_context = isolate->context()->global()->global_context(); |
| if (receiver_context == global_context) return YES; |
| |
| if (Context::cast(receiver_context)->security_token() == |
| global_context->security_token()) |
| return YES; |
| } |
| |
| return UNKNOWN; |
| } |
| |
| |
| bool Isolate::MayNamedAccess(JSObject* receiver, Object* key, |
| v8::AccessType type) { |
| ASSERT(receiver->IsAccessCheckNeeded()); |
| |
| // The callers of this method are not expecting a GC. |
| AssertNoAllocation no_gc; |
| |
| // Skip checks for hidden properties access. Note, we do not |
| // require existence of a context in this case. |
| if (key == heap_.hidden_symbol()) return true; |
| |
| // Check for compatibility between the security tokens in the |
| // current lexical context and the accessed object. |
| ASSERT(context()); |
| |
| MayAccessDecision decision = MayAccessPreCheck(this, receiver, type); |
| if (decision != UNKNOWN) return decision == YES; |
| |
| // Get named access check callback |
| JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); |
| if (!constructor->shared()->IsApiFunction()) return false; |
| |
| Object* data_obj = |
| constructor->shared()->get_api_func_data()->access_check_info(); |
| if (data_obj == heap_.undefined_value()) return false; |
| |
| Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback(); |
| v8::NamedSecurityCallback callback = |
| v8::ToCData<v8::NamedSecurityCallback>(fun_obj); |
| |
| if (!callback) return false; |
| |
| HandleScope scope(this); |
| Handle<JSObject> receiver_handle(receiver, this); |
| Handle<Object> key_handle(key, this); |
| Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); |
| LOG(this, ApiNamedSecurityCheck(key)); |
| bool result = false; |
| { |
| // Leaving JavaScript. |
| VMState state(this, EXTERNAL); |
| result = callback(v8::Utils::ToLocal(receiver_handle), |
| v8::Utils::ToLocal(key_handle), |
| type, |
| v8::Utils::ToLocal(data)); |
| } |
| return result; |
| } |
| |
| |
| bool Isolate::MayIndexedAccess(JSObject* receiver, |
| uint32_t index, |
| v8::AccessType type) { |
| ASSERT(receiver->IsAccessCheckNeeded()); |
| // Check for compatibility between the security tokens in the |
| // current lexical context and the accessed object. |
| ASSERT(context()); |
| |
| MayAccessDecision decision = MayAccessPreCheck(this, receiver, type); |
| if (decision != UNKNOWN) return decision == YES; |
| |
| // Get indexed access check callback |
| JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); |
| if (!constructor->shared()->IsApiFunction()) return false; |
| |
| Object* data_obj = |
| constructor->shared()->get_api_func_data()->access_check_info(); |
| if (data_obj == heap_.undefined_value()) return false; |
| |
| Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback(); |
| v8::IndexedSecurityCallback callback = |
| v8::ToCData<v8::IndexedSecurityCallback>(fun_obj); |
| |
| if (!callback) return false; |
| |
| HandleScope scope(this); |
| Handle<JSObject> receiver_handle(receiver, this); |
| Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this); |
| LOG(this, ApiIndexedSecurityCheck(index)); |
| bool result = false; |
| { |
| // Leaving JavaScript. |
| VMState state(this, EXTERNAL); |
| result = callback(v8::Utils::ToLocal(receiver_handle), |
| index, |
| type, |
| v8::Utils::ToLocal(data)); |
| } |
| return result; |
| } |
| |
| |
| const char* const Isolate::kStackOverflowMessage = |
| "Uncaught RangeError: Maximum call stack size exceeded"; |
| |
| |
| Failure* Isolate::StackOverflow() { |
| HandleScope scope; |
| Handle<String> key = factory()->stack_overflow_symbol(); |
| Handle<JSObject> boilerplate = |
| Handle<JSObject>::cast(GetProperty(js_builtins_object(), key)); |
| Handle<Object> exception = Copy(boilerplate); |
| // TODO(1240995): To avoid having to call JavaScript code to compute |
| // the message for stack overflow exceptions which is very likely to |
| // double fault with another stack overflow exception, we use a |
| // precomputed message. |
| DoThrow(*exception, NULL); |
| return Failure::Exception(); |
| } |
| |
| |
| Failure* Isolate::TerminateExecution() { |
| DoThrow(heap_.termination_exception(), NULL); |
| return Failure::Exception(); |
| } |
| |
| |
| Failure* Isolate::Throw(Object* exception, MessageLocation* location) { |
| DoThrow(exception, location); |
| return Failure::Exception(); |
| } |
| |
| |
| Failure* Isolate::ReThrow(MaybeObject* exception, MessageLocation* location) { |
| bool can_be_caught_externally = false; |
| bool catchable_by_javascript = is_catchable_by_javascript(exception); |
| ShouldReportException(&can_be_caught_externally, catchable_by_javascript); |
| |
| thread_local_top()->catcher_ = can_be_caught_externally ? |
| try_catch_handler() : NULL; |
| |
| // Set the exception being re-thrown. |
| set_pending_exception(exception); |
| if (exception->IsFailure()) return exception->ToFailureUnchecked(); |
| return Failure::Exception(); |
| } |
| |
| |
| Failure* Isolate::ThrowIllegalOperation() { |
| return Throw(heap_.illegal_access_symbol()); |
| } |
| |
| |
| void Isolate::ScheduleThrow(Object* exception) { |
| // When scheduling a throw we first throw the exception to get the |
| // error reporting if it is uncaught before rescheduling it. |
| Throw(exception); |
| thread_local_top()->scheduled_exception_ = pending_exception(); |
| thread_local_top()->external_caught_exception_ = false; |
| clear_pending_exception(); |
| } |
| |
| |
| Failure* Isolate::PromoteScheduledException() { |
| MaybeObject* thrown = scheduled_exception(); |
| clear_scheduled_exception(); |
| // Re-throw the exception to avoid getting repeated error reporting. |
| return ReThrow(thrown); |
| } |
| |
| |
| void Isolate::PrintCurrentStackTrace(FILE* out) { |
| StackTraceFrameIterator it(this); |
| while (!it.done()) { |
| HandleScope scope; |
| // Find code position if recorded in relocation info. |
| JavaScriptFrame* frame = it.frame(); |
| int pos = frame->LookupCode()->SourcePosition(frame->pc()); |
| Handle<Object> pos_obj(Smi::FromInt(pos)); |
| // Fetch function and receiver. |
| Handle<JSFunction> fun(JSFunction::cast(frame->function())); |
| Handle<Object> recv(frame->receiver()); |
| // Advance to the next JavaScript frame and determine if the |
| // current frame is the top-level frame. |
| it.Advance(); |
| Handle<Object> is_top_level = it.done() |
| ? factory()->true_value() |
| : factory()->false_value(); |
| // Generate and print stack trace line. |
| Handle<String> line = |
| Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level); |
| if (line->length() > 0) { |
| line->PrintOn(out); |
| fprintf(out, "\n"); |
| } |
| } |
| } |
| |
| |
| void Isolate::ComputeLocation(MessageLocation* target) { |
| *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1); |
| StackTraceFrameIterator it(this); |
| if (!it.done()) { |
| JavaScriptFrame* frame = it.frame(); |
| JSFunction* fun = JSFunction::cast(frame->function()); |
| Object* script = fun->shared()->script(); |
| if (script->IsScript() && |
| !(Script::cast(script)->source()->IsUndefined())) { |
| int pos = frame->LookupCode()->SourcePosition(frame->pc()); |
| // Compute the location from the function and the reloc info. |
| Handle<Script> casted_script(Script::cast(script)); |
| *target = MessageLocation(casted_script, pos, pos + 1); |
| } |
| } |
| } |
| |
| |
| bool Isolate::ShouldReportException(bool* can_be_caught_externally, |
| bool catchable_by_javascript) { |
| // Find the top-most try-catch handler. |
| StackHandler* handler = |
| StackHandler::FromAddress(Isolate::handler(thread_local_top())); |
| while (handler != NULL && !handler->is_catch()) { |
| handler = handler->next(); |
| } |
| |
| // Get the address of the external handler so we can compare the address to |
| // determine which one is closer to the top of the stack. |
| Address external_handler_address = |
| thread_local_top()->try_catch_handler_address(); |
| |
| // The exception has been externally caught if and only if there is |
| // an external handler which is on top of the top-most try-catch |
| // handler. |
| *can_be_caught_externally = external_handler_address != NULL && |
| (handler == NULL || handler->address() > external_handler_address || |
| !catchable_by_javascript); |
| |
| if (*can_be_caught_externally) { |
| // Only report the exception if the external handler is verbose. |
| return try_catch_handler()->is_verbose_; |
| } else { |
| // Report the exception if it isn't caught by JavaScript code. |
| return handler == NULL; |
| } |
| } |
| |
| |
| bool Isolate::IsErrorObject(Handle<Object> obj) { |
| if (!obj->IsJSObject()) return false; |
| |
| String* error_key = *(factory()->LookupAsciiSymbol("$Error")); |
| Object* error_constructor = |
| js_builtins_object()->GetPropertyNoExceptionThrown(error_key); |
| |
| for (Object* prototype = *obj; !prototype->IsNull(); |
| prototype = prototype->GetPrototype()) { |
| if (!prototype->IsJSObject()) return false; |
| if (JSObject::cast(prototype)->map()->constructor() == error_constructor) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| void Isolate::DoThrow(Object* exception, MessageLocation* location) { |
| ASSERT(!has_pending_exception()); |
| |
| HandleScope scope; |
| Handle<Object> exception_handle(exception); |
| |
| // Determine reporting and whether the exception is caught externally. |
| bool catchable_by_javascript = is_catchable_by_javascript(exception); |
| bool can_be_caught_externally = false; |
| bool should_report_exception = |
| ShouldReportException(&can_be_caught_externally, catchable_by_javascript); |
| bool report_exception = catchable_by_javascript && should_report_exception; |
| bool try_catch_needs_message = |
| can_be_caught_externally && try_catch_handler()->capture_message_; |
| bool bootstrapping = bootstrapper()->IsActive(); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Notify debugger of exception. |
| if (catchable_by_javascript) { |
| debugger_->OnException(exception_handle, report_exception); |
| } |
| #endif |
| |
| // Generate the message if required. |
| if (report_exception || try_catch_needs_message) { |
| MessageLocation potential_computed_location; |
| if (location == NULL) { |
| // If no location was specified we use a computed one instead. |
| ComputeLocation(&potential_computed_location); |
| location = &potential_computed_location; |
| } |
| // It's not safe to try to make message objects or collect stack traces |
| // while the bootstrapper is active since the infrastructure may not have |
| // been properly initialized. |
| if (!bootstrapping) { |
| Handle<String> stack_trace; |
| if (FLAG_trace_exception) stack_trace = StackTraceString(); |
| Handle<JSArray> stack_trace_object; |
| if (capture_stack_trace_for_uncaught_exceptions_) { |
| if (IsErrorObject(exception_handle)) { |
| // We fetch the stack trace that corresponds to this error object. |
| String* key = heap()->hidden_stack_trace_symbol(); |
| Object* stack_property = |
| JSObject::cast(*exception_handle)->GetHiddenProperty(key); |
| // Property lookup may have failed. In this case it's probably not |
| // a valid Error object. |
| if (stack_property->IsJSArray()) { |
| stack_trace_object = Handle<JSArray>(JSArray::cast(stack_property)); |
| } |
| } |
| if (stack_trace_object.is_null()) { |
| // Not an error object, we capture at throw site. |
| stack_trace_object = CaptureCurrentStackTrace( |
| stack_trace_for_uncaught_exceptions_frame_limit_, |
| stack_trace_for_uncaught_exceptions_options_); |
| } |
| } |
| Handle<Object> message_obj = MessageHandler::MakeMessageObject( |
| "uncaught_exception", |
| location, |
| HandleVector<Object>(&exception_handle, 1), |
| stack_trace, |
| stack_trace_object); |
| thread_local_top()->pending_message_obj_ = *message_obj; |
| if (location != NULL) { |
| thread_local_top()->pending_message_script_ = *location->script(); |
| thread_local_top()->pending_message_start_pos_ = location->start_pos(); |
| thread_local_top()->pending_message_end_pos_ = location->end_pos(); |
| } |
| } else if (location != NULL && !location->script().is_null()) { |
| // We are bootstrapping and caught an error where the location is set |
| // and we have a script for the location. |
| // In this case we could have an extension (or an internal error |
| // somewhere) and we print out the line number at which the error occured |
| // to the console for easier debugging. |
| int line_number = GetScriptLineNumberSafe(location->script(), |
| location->start_pos()); |
| OS::PrintError("Extension or internal compilation error at line %d.\n", |
| line_number); |
| } |
| } |
| |
| // Save the message for reporting if the the exception remains uncaught. |
| thread_local_top()->has_pending_message_ = report_exception; |
| |
| // Do not forget to clean catcher_ if currently thrown exception cannot |
| // be caught. If necessary, ReThrow will update the catcher. |
| thread_local_top()->catcher_ = can_be_caught_externally ? |
| try_catch_handler() : NULL; |
| |
| set_pending_exception(*exception_handle); |
| } |
| |
| |
| bool Isolate::IsExternallyCaught() { |
| ASSERT(has_pending_exception()); |
| |
| if ((thread_local_top()->catcher_ == NULL) || |
| (try_catch_handler() != thread_local_top()->catcher_)) { |
| // When throwing the exception, we found no v8::TryCatch |
| // which should care about this exception. |
| return false; |
| } |
| |
| if (!is_catchable_by_javascript(pending_exception())) { |
| return true; |
| } |
| |
| // Get the address of the external handler so we can compare the address to |
| // determine which one is closer to the top of the stack. |
| Address external_handler_address = |
| thread_local_top()->try_catch_handler_address(); |
| ASSERT(external_handler_address != NULL); |
| |
| // The exception has been externally caught if and only if there is |
| // an external handler which is on top of the top-most try-finally |
| // handler. |
| // There should be no try-catch blocks as they would prohibit us from |
| // finding external catcher in the first place (see catcher_ check above). |
| // |
| // Note, that finally clause would rethrow an exception unless it's |
| // aborted by jumps in control flow like return, break, etc. and we'll |
| // have another chances to set proper v8::TryCatch. |
| StackHandler* handler = |
| StackHandler::FromAddress(Isolate::handler(thread_local_top())); |
| while (handler != NULL && handler->address() < external_handler_address) { |
| ASSERT(!handler->is_catch()); |
| if (handler->is_finally()) return false; |
| |
| handler = handler->next(); |
| } |
| |
| return true; |
| } |
| |
| |
| void Isolate::ReportPendingMessages() { |
| ASSERT(has_pending_exception()); |
| PropagatePendingExceptionToExternalTryCatch(); |
| |
| // If the pending exception is OutOfMemoryException set out_of_memory in |
| // the global context. Note: We have to mark the global context here |
| // since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to |
| // set it. |
| HandleScope scope; |
| if (thread_local_top_.pending_exception_ == Failure::OutOfMemoryException()) { |
| context()->mark_out_of_memory(); |
| } else if (thread_local_top_.pending_exception_ == |
| heap()->termination_exception()) { |
| // Do nothing: if needed, the exception has been already propagated to |
| // v8::TryCatch. |
| } else { |
| if (thread_local_top_.has_pending_message_) { |
| thread_local_top_.has_pending_message_ = false; |
| if (!thread_local_top_.pending_message_obj_->IsTheHole()) { |
| HandleScope scope; |
| Handle<Object> message_obj(thread_local_top_.pending_message_obj_); |
| if (thread_local_top_.pending_message_script_ != NULL) { |
| Handle<Script> script(thread_local_top_.pending_message_script_); |
| int start_pos = thread_local_top_.pending_message_start_pos_; |
| int end_pos = thread_local_top_.pending_message_end_pos_; |
| MessageLocation location(script, start_pos, end_pos); |
| MessageHandler::ReportMessage(this, &location, message_obj); |
| } else { |
| MessageHandler::ReportMessage(this, NULL, message_obj); |
| } |
| } |
| } |
| } |
| clear_pending_message(); |
| } |
| |
| |
| void Isolate::TraceException(bool flag) { |
| FLAG_trace_exception = flag; // TODO(isolates): This is an unfortunate use. |
| } |
| |
| |
| bool Isolate::OptionalRescheduleException(bool is_bottom_call) { |
| ASSERT(has_pending_exception()); |
| PropagatePendingExceptionToExternalTryCatch(); |
| |
| // Always reschedule out of memory exceptions. |
| if (!is_out_of_memory()) { |
| bool is_termination_exception = |
| pending_exception() == heap_.termination_exception(); |
| |
| // Do not reschedule the exception if this is the bottom call. |
| bool clear_exception = is_bottom_call; |
| |
| if (is_termination_exception) { |
| if (is_bottom_call) { |
| thread_local_top()->external_caught_exception_ = false; |
| clear_pending_exception(); |
| return false; |
| } |
| } else if (thread_local_top()->external_caught_exception_) { |
| // If the exception is externally caught, clear it if there are no |
| // JavaScript frames on the way to the C++ frame that has the |
| // external handler. |
| ASSERT(thread_local_top()->try_catch_handler_address() != NULL); |
| Address external_handler_address = |
| thread_local_top()->try_catch_handler_address(); |
| JavaScriptFrameIterator it; |
| if (it.done() || (it.frame()->sp() > external_handler_address)) { |
| clear_exception = true; |
| } |
| } |
| |
| // Clear the exception if needed. |
| if (clear_exception) { |
| thread_local_top()->external_caught_exception_ = false; |
| clear_pending_exception(); |
| return false; |
| } |
| } |
| |
| // Reschedule the exception. |
| thread_local_top()->scheduled_exception_ = pending_exception(); |
| clear_pending_exception(); |
| return true; |
| } |
| |
| |
| void Isolate::SetCaptureStackTraceForUncaughtExceptions( |
| bool capture, |
| int frame_limit, |
| StackTrace::StackTraceOptions options) { |
| capture_stack_trace_for_uncaught_exceptions_ = capture; |
| stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit; |
| stack_trace_for_uncaught_exceptions_options_ = options; |
| } |
| |
| |
| bool Isolate::is_out_of_memory() { |
| if (has_pending_exception()) { |
| MaybeObject* e = pending_exception(); |
| if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { |
| return true; |
| } |
| } |
| if (has_scheduled_exception()) { |
| MaybeObject* e = scheduled_exception(); |
| if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| Handle<Context> Isolate::global_context() { |
| GlobalObject* global = thread_local_top()->context_->global(); |
| return Handle<Context>(global->global_context()); |
| } |
| |
| |
| Handle<Context> Isolate::GetCallingGlobalContext() { |
| JavaScriptFrameIterator it; |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| if (debug_->InDebugger()) { |
| while (!it.done()) { |
| JavaScriptFrame* frame = it.frame(); |
| Context* context = Context::cast(frame->context()); |
| if (context->global_context() == *debug_->debug_context()) { |
| it.Advance(); |
| } else { |
| break; |
| } |
| } |
| } |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| if (it.done()) return Handle<Context>::null(); |
| JavaScriptFrame* frame = it.frame(); |
| Context* context = Context::cast(frame->context()); |
| return Handle<Context>(context->global_context()); |
| } |
| |
| |
| char* Isolate::ArchiveThread(char* to) { |
| if (RuntimeProfiler::IsEnabled() && current_vm_state() == JS) { |
| RuntimeProfiler::IsolateExitedJS(this); |
| } |
| memcpy(to, reinterpret_cast<char*>(thread_local_top()), |
| sizeof(ThreadLocalTop)); |
| InitializeThreadLocal(); |
| clear_pending_exception(); |
| clear_pending_message(); |
| clear_scheduled_exception(); |
| return to + sizeof(ThreadLocalTop); |
| } |
| |
| |
| char* Isolate::RestoreThread(char* from) { |
| memcpy(reinterpret_cast<char*>(thread_local_top()), from, |
| sizeof(ThreadLocalTop)); |
| // This might be just paranoia, but it seems to be needed in case a |
| // thread_local_top_ is restored on a separate OS thread. |
| #ifdef USE_SIMULATOR |
| #ifdef V8_TARGET_ARCH_ARM |
| thread_local_top()->simulator_ = Simulator::current(this); |
| #elif V8_TARGET_ARCH_MIPS |
| thread_local_top()->simulator_ = Simulator::current(this); |
| #endif |
| #endif |
| if (RuntimeProfiler::IsEnabled() && current_vm_state() == JS) { |
| RuntimeProfiler::IsolateEnteredJS(this); |
| } |
| ASSERT(context() == NULL || context()->IsContext()); |
| return from + sizeof(ThreadLocalTop); |
| } |
| |
| |
| Isolate::ThreadDataTable::ThreadDataTable() |
| : list_(NULL) { |
| } |
| |
| |
| Isolate::PerIsolateThreadData* |
| Isolate::ThreadDataTable::Lookup(Isolate* isolate, |
| ThreadId thread_id) { |
| for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) { |
| if (data->Matches(isolate, thread_id)) return data; |
| } |
| return NULL; |
| } |
| |
| |
| void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) { |
| if (list_ != NULL) list_->prev_ = data; |
| data->next_ = list_; |
| list_ = data; |
| } |
| |
| |
| void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) { |
| if (list_ == data) list_ = data->next_; |
| if (data->next_ != NULL) data->next_->prev_ = data->prev_; |
| if (data->prev_ != NULL) data->prev_->next_ = data->next_; |
| delete data; |
| } |
| |
| |
| void Isolate::ThreadDataTable::Remove(Isolate* isolate, |
| ThreadId thread_id) { |
| PerIsolateThreadData* data = Lookup(isolate, thread_id); |
| if (data != NULL) { |
| Remove(data); |
| } |
| } |
| |
| |
| void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) { |
| PerIsolateThreadData* data = list_; |
| while (data != NULL) { |
| PerIsolateThreadData* next = data->next_; |
| if (data->isolate() == isolate) Remove(data); |
| data = next; |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| #define TRACE_ISOLATE(tag) \ |
| do { \ |
| if (FLAG_trace_isolates) { \ |
| PrintF("Isolate %p " #tag "\n", reinterpret_cast<void*>(this)); \ |
| } \ |
| } while (false) |
| #else |
| #define TRACE_ISOLATE(tag) |
| #endif |
| |
| |
| Isolate::Isolate() |
| : state_(UNINITIALIZED), |
| entry_stack_(NULL), |
| stack_trace_nesting_level_(0), |
| incomplete_message_(NULL), |
| preallocated_memory_thread_(NULL), |
| preallocated_message_space_(NULL), |
| bootstrapper_(NULL), |
| runtime_profiler_(NULL), |
| compilation_cache_(NULL), |
| counters_(NULL), |
| code_range_(NULL), |
| // Must be initialized early to allow v8::SetResourceConstraints calls. |
| break_access_(OS::CreateMutex()), |
| debugger_initialized_(false), |
| // Must be initialized early to allow v8::Debug calls. |
| debugger_access_(OS::CreateMutex()), |
| logger_(NULL), |
| stats_table_(NULL), |
| stub_cache_(NULL), |
| deoptimizer_data_(NULL), |
| capture_stack_trace_for_uncaught_exceptions_(false), |
| stack_trace_for_uncaught_exceptions_frame_limit_(0), |
| stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview), |
| transcendental_cache_(NULL), |
| memory_allocator_(NULL), |
| keyed_lookup_cache_(NULL), |
| context_slot_cache_(NULL), |
| descriptor_lookup_cache_(NULL), |
| handle_scope_implementer_(NULL), |
| unicode_cache_(NULL), |
| in_use_list_(0), |
| free_list_(0), |
| preallocated_storage_preallocated_(false), |
| inner_pointer_to_code_cache_(NULL), |
| write_input_buffer_(NULL), |
| global_handles_(NULL), |
| context_switcher_(NULL), |
| thread_manager_(NULL), |
| fp_stubs_generated_(false), |
| has_installed_extensions_(false), |
| string_tracker_(NULL), |
| regexp_stack_(NULL), |
| date_cache_(NULL), |
| embedder_data_(NULL), |
| context_exit_happened_(false) { |
| TRACE_ISOLATE(constructor); |
| |
| memset(isolate_addresses_, 0, |
| sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1)); |
| |
| heap_.isolate_ = this; |
| zone_.isolate_ = this; |
| stack_guard_.isolate_ = this; |
| |
| // ThreadManager is initialized early to support locking an isolate |
| // before it is entered. |
| thread_manager_ = new ThreadManager(); |
| thread_manager_->isolate_ = this; |
| |
| #if defined(V8_TARGET_ARCH_ARM) && !defined(__arm__) || \ |
| defined(V8_TARGET_ARCH_MIPS) && !defined(__mips__) |
| simulator_initialized_ = false; |
| simulator_i_cache_ = NULL; |
| simulator_redirection_ = NULL; |
| #endif |
| |
| #ifdef DEBUG |
| // heap_histograms_ initializes itself. |
| memset(&js_spill_information_, 0, sizeof(js_spill_information_)); |
| memset(code_kind_statistics_, 0, |
| sizeof(code_kind_statistics_[0]) * Code::NUMBER_OF_KINDS); |
| #endif |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| debug_ = NULL; |
| debugger_ = NULL; |
| #endif |
| |
| handle_scope_data_.Initialize(); |
| |
| #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \ |
| name##_ = (initial_value); |
| ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE) |
| #undef ISOLATE_INIT_EXECUTE |
| |
| #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \ |
| memset(name##_, 0, sizeof(type) * length); |
| ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE) |
| #undef ISOLATE_INIT_ARRAY_EXECUTE |
| } |
| |
| void Isolate::TearDown() { |
| TRACE_ISOLATE(tear_down); |
| |
| // Temporarily set this isolate as current so that various parts of |
| // the isolate can access it in their destructors without having a |
| // direct pointer. We don't use Enter/Exit here to avoid |
| // initializing the thread data. |
| PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData(); |
| Isolate* saved_isolate = UncheckedCurrent(); |
| SetIsolateThreadLocals(this, NULL); |
| |
| Deinit(); |
| |
| { ScopedLock lock(process_wide_mutex_); |
| thread_data_table_->RemoveAllThreads(this); |
| } |
| |
| if (!IsDefaultIsolate()) { |
| delete this; |
| } |
| |
| // Restore the previous current isolate. |
| SetIsolateThreadLocals(saved_isolate, saved_data); |
| } |
| |
| |
| void Isolate::Deinit() { |
| if (state_ == INITIALIZED) { |
| TRACE_ISOLATE(deinit); |
| |
| if (FLAG_hydrogen_stats) HStatistics::Instance()->Print(); |
| |
| // We must stop the logger before we tear down other components. |
| logger_->EnsureTickerStopped(); |
| |
| delete deoptimizer_data_; |
| deoptimizer_data_ = NULL; |
| if (FLAG_preemption) { |
| v8::Locker locker; |
| v8::Locker::StopPreemption(); |
| } |
| builtins_.TearDown(); |
| bootstrapper_->TearDown(); |
| |
| // Remove the external reference to the preallocated stack memory. |
| delete preallocated_message_space_; |
| preallocated_message_space_ = NULL; |
| PreallocatedMemoryThreadStop(); |
| |
| HeapProfiler::TearDown(); |
| CpuProfiler::TearDown(); |
| if (runtime_profiler_ != NULL) { |
| runtime_profiler_->TearDown(); |
| delete runtime_profiler_; |
| runtime_profiler_ = NULL; |
| } |
| heap_.TearDown(); |
| logger_->TearDown(); |
| |
| // The default isolate is re-initializable due to legacy API. |
| state_ = UNINITIALIZED; |
| } |
| } |
| |
| |
| void Isolate::SetIsolateThreadLocals(Isolate* isolate, |
| PerIsolateThreadData* data) { |
| Thread::SetThreadLocal(isolate_key_, isolate); |
| Thread::SetThreadLocal(per_isolate_thread_data_key_, data); |
| } |
| |
| |
| Isolate::~Isolate() { |
| TRACE_ISOLATE(destructor); |
| |
| // Has to be called while counters_ are still alive. |
| zone_.DeleteKeptSegment(); |
| |
| delete[] assembler_spare_buffer_; |
| assembler_spare_buffer_ = NULL; |
| |
| delete unicode_cache_; |
| unicode_cache_ = NULL; |
| |
| delete date_cache_; |
| date_cache_ = NULL; |
| |
| delete regexp_stack_; |
| regexp_stack_ = NULL; |
| |
| delete descriptor_lookup_cache_; |
| descriptor_lookup_cache_ = NULL; |
| delete context_slot_cache_; |
| context_slot_cache_ = NULL; |
| delete keyed_lookup_cache_; |
| keyed_lookup_cache_ = NULL; |
| |
| delete transcendental_cache_; |
| transcendental_cache_ = NULL; |
| delete stub_cache_; |
| stub_cache_ = NULL; |
| delete stats_table_; |
| stats_table_ = NULL; |
| |
| delete logger_; |
| logger_ = NULL; |
| |
| delete counters_; |
| counters_ = NULL; |
| |
| delete handle_scope_implementer_; |
| handle_scope_implementer_ = NULL; |
| delete break_access_; |
| break_access_ = NULL; |
| delete debugger_access_; |
| debugger_access_ = NULL; |
| |
| delete compilation_cache_; |
| compilation_cache_ = NULL; |
| delete bootstrapper_; |
| bootstrapper_ = NULL; |
| delete inner_pointer_to_code_cache_; |
| inner_pointer_to_code_cache_ = NULL; |
| delete write_input_buffer_; |
| write_input_buffer_ = NULL; |
| |
| delete context_switcher_; |
| context_switcher_ = NULL; |
| delete thread_manager_; |
| thread_manager_ = NULL; |
| |
| delete string_tracker_; |
| string_tracker_ = NULL; |
| |
| delete memory_allocator_; |
| memory_allocator_ = NULL; |
| delete code_range_; |
| code_range_ = NULL; |
| delete global_handles_; |
| global_handles_ = NULL; |
| |
| delete external_reference_table_; |
| external_reference_table_ = NULL; |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| delete debugger_; |
| debugger_ = NULL; |
| delete debug_; |
| debug_ = NULL; |
| #endif |
| } |
| |
| |
| void Isolate::InitializeThreadLocal() { |
| thread_local_top_.isolate_ = this; |
| thread_local_top_.Initialize(); |
| } |
| |
| |
| void Isolate::PropagatePendingExceptionToExternalTryCatch() { |
| ASSERT(has_pending_exception()); |
| |
| bool external_caught = IsExternallyCaught(); |
| thread_local_top_.external_caught_exception_ = external_caught; |
| |
| if (!external_caught) return; |
| |
| if (thread_local_top_.pending_exception_ == Failure::OutOfMemoryException()) { |
| // Do not propagate OOM exception: we should kill VM asap. |
| } else if (thread_local_top_.pending_exception_ == |
| heap()->termination_exception()) { |
| try_catch_handler()->can_continue_ = false; |
| try_catch_handler()->exception_ = heap()->null_value(); |
| } else { |
| // At this point all non-object (failure) exceptions have |
| // been dealt with so this shouldn't fail. |
| ASSERT(!pending_exception()->IsFailure()); |
| try_catch_handler()->can_continue_ = true; |
| try_catch_handler()->exception_ = pending_exception(); |
| if (!thread_local_top_.pending_message_obj_->IsTheHole()) { |
| try_catch_handler()->message_ = thread_local_top_.pending_message_obj_; |
| } |
| } |
| } |
| |
| |
| void Isolate::InitializeLoggingAndCounters() { |
| if (logger_ == NULL) { |
| logger_ = new Logger; |
| } |
| if (counters_ == NULL) { |
| counters_ = new Counters; |
| } |
| } |
| |
| |
| void Isolate::InitializeDebugger() { |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ScopedLock lock(debugger_access_); |
| if (NoBarrier_Load(&debugger_initialized_)) return; |
| InitializeLoggingAndCounters(); |
| debug_ = new Debug(this); |
| debugger_ = new Debugger(this); |
| Release_Store(&debugger_initialized_, true); |
| #endif |
| } |
| |
| |
| bool Isolate::Init(Deserializer* des) { |
| ASSERT(state_ != INITIALIZED); |
| ASSERT(Isolate::Current() == this); |
| TRACE_ISOLATE(init); |
| |
| #ifdef DEBUG |
| // The initialization process does not handle memory exhaustion. |
| DisallowAllocationFailure disallow_allocation_failure; |
| #endif |
| |
| InitializeLoggingAndCounters(); |
| |
| InitializeDebugger(); |
| |
| memory_allocator_ = new MemoryAllocator(this); |
| code_range_ = new CodeRange(this); |
| |
| // Safe after setting Heap::isolate_, initializing StackGuard and |
| // ensuring that Isolate::Current() == this. |
| heap_.SetStackLimits(); |
| |
| #define ASSIGN_ELEMENT(CamelName, hacker_name) \ |
| isolate_addresses_[Isolate::k##CamelName##Address] = \ |
| reinterpret_cast<Address>(hacker_name##_address()); |
| FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT) |
| #undef C |
| |
| string_tracker_ = new StringTracker(); |
| string_tracker_->isolate_ = this; |
| compilation_cache_ = new CompilationCache(this); |
| transcendental_cache_ = new TranscendentalCache(); |
| keyed_lookup_cache_ = new KeyedLookupCache(); |
| context_slot_cache_ = new ContextSlotCache(); |
| descriptor_lookup_cache_ = new DescriptorLookupCache(); |
| unicode_cache_ = new UnicodeCache(); |
| inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this); |
| write_input_buffer_ = new StringInputBuffer(); |
| global_handles_ = new GlobalHandles(this); |
| bootstrapper_ = new Bootstrapper(); |
| handle_scope_implementer_ = new HandleScopeImplementer(this); |
| stub_cache_ = new StubCache(this); |
| regexp_stack_ = new RegExpStack(); |
| regexp_stack_->isolate_ = this; |
| date_cache_ = new DateCache(); |
| |
| // Enable logging before setting up the heap |
| logger_->SetUp(); |
| |
| CpuProfiler::SetUp(); |
| HeapProfiler::SetUp(); |
| |
| // Initialize other runtime facilities |
| #if defined(USE_SIMULATOR) |
| #if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_MIPS) |
| Simulator::Initialize(this); |
| #endif |
| #endif |
| |
| { // NOLINT |
| // Ensure that the thread has a valid stack guard. The v8::Locker object |
| // will ensure this too, but we don't have to use lockers if we are only |
| // using one thread. |
| ExecutionAccess lock(this); |
| stack_guard_.InitThread(lock); |
| } |
| |
| // SetUp the object heap. |
| const bool create_heap_objects = (des == NULL); |
| ASSERT(!heap_.HasBeenSetUp()); |
| if (!heap_.SetUp(create_heap_objects)) { |
| V8::SetFatalError(); |
| return false; |
| } |
| |
| InitializeThreadLocal(); |
| |
| bootstrapper_->Initialize(create_heap_objects); |
| builtins_.SetUp(create_heap_objects); |
| |
| // Only preallocate on the first initialization. |
| if (FLAG_preallocate_message_memory && preallocated_message_space_ == NULL) { |
| // Start the thread which will set aside some memory. |
| PreallocatedMemoryThreadStart(); |
| preallocated_message_space_ = |
| new NoAllocationStringAllocator( |
| preallocated_memory_thread_->data(), |
| preallocated_memory_thread_->length()); |
| PreallocatedStorageInit(preallocated_memory_thread_->length() / 4); |
| } |
| |
| if (FLAG_preemption) { |
| v8::Locker locker; |
| v8::Locker::StartPreemption(100); |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| debug_->SetUp(create_heap_objects); |
| #endif |
| |
| // If we are deserializing, read the state into the now-empty heap. |
| if (des != NULL) { |
| des->Deserialize(); |
| } |
| stub_cache_->Initialize(); |
| |
| // Finish initialization of ThreadLocal after deserialization is done. |
| clear_pending_exception(); |
| clear_pending_message(); |
| clear_scheduled_exception(); |
| |
| // Deserializing may put strange things in the root array's copy of the |
| // stack guard. |
| heap_.SetStackLimits(); |
| |
| // Quiet the heap NaN if needed on target platform. |
| if (des != NULL) Assembler::QuietNaN(heap_.nan_value()); |
| |
| deoptimizer_data_ = new DeoptimizerData; |
| runtime_profiler_ = new RuntimeProfiler(this); |
| runtime_profiler_->SetUp(); |
| |
| // If we are deserializing, log non-function code objects and compiled |
| // functions found in the snapshot. |
| if (des != NULL && (FLAG_log_code || FLAG_ll_prof)) { |
| HandleScope scope; |
| LOG(this, LogCodeObjects()); |
| LOG(this, LogCompiledFunctions()); |
| } |
| |
| state_ = INITIALIZED; |
| time_millis_at_init_ = OS::TimeCurrentMillis(); |
| return true; |
| } |
| |
| |
| // Initialized lazily to allow early |
| // v8::V8::SetAddHistogramSampleFunction calls. |
| StatsTable* Isolate::stats_table() { |
| if (stats_table_ == NULL) { |
| stats_table_ = new StatsTable; |
| } |
| return stats_table_; |
| } |
| |
| |
| void Isolate::Enter() { |
| Isolate* current_isolate = NULL; |
| PerIsolateThreadData* current_data = CurrentPerIsolateThreadData(); |
| if (current_data != NULL) { |
| current_isolate = current_data->isolate_; |
| ASSERT(current_isolate != NULL); |
| if (current_isolate == this) { |
| ASSERT(Current() == this); |
| ASSERT(entry_stack_ != NULL); |
| ASSERT(entry_stack_->previous_thread_data == NULL || |
| entry_stack_->previous_thread_data->thread_id().Equals( |
| ThreadId::Current())); |
| // Same thread re-enters the isolate, no need to re-init anything. |
| entry_stack_->entry_count++; |
| return; |
| } |
| } |
| |
| // Threads can have default isolate set into TLS as Current but not yet have |
| // PerIsolateThreadData for it, as it requires more advanced phase of the |
| // initialization. For example, a thread might be the one that system used for |
| // static initializers - in this case the default isolate is set in TLS but |
| // the thread did not yet Enter the isolate. If PerisolateThreadData is not |
| // there, use the isolate set in TLS. |
| if (current_isolate == NULL) { |
| current_isolate = Isolate::UncheckedCurrent(); |
| } |
| |
| PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread(); |
| ASSERT(data != NULL); |
| ASSERT(data->isolate_ == this); |
| |
| EntryStackItem* item = new EntryStackItem(current_data, |
| current_isolate, |
| entry_stack_); |
| entry_stack_ = item; |
| |
| SetIsolateThreadLocals(this, data); |
| |
| // In case it's the first time some thread enters the isolate. |
| set_thread_id(data->thread_id()); |
| } |
| |
| |
| void Isolate::Exit() { |
| ASSERT(entry_stack_ != NULL); |
| ASSERT(entry_stack_->previous_thread_data == NULL || |
| entry_stack_->previous_thread_data->thread_id().Equals( |
| ThreadId::Current())); |
| |
| if (--entry_stack_->entry_count > 0) return; |
| |
| ASSERT(CurrentPerIsolateThreadData() != NULL); |
| ASSERT(CurrentPerIsolateThreadData()->isolate_ == this); |
| |
| // Pop the stack. |
| EntryStackItem* item = entry_stack_; |
| entry_stack_ = item->previous_item; |
| |
| PerIsolateThreadData* previous_thread_data = item->previous_thread_data; |
| Isolate* previous_isolate = item->previous_isolate; |
| |
| delete item; |
| |
| // Reinit the current thread for the isolate it was running before this one. |
| SetIsolateThreadLocals(previous_isolate, previous_thread_data); |
| } |
| |
| |
| #ifdef DEBUG |
| #define ISOLATE_FIELD_OFFSET(type, name, ignored) \ |
| const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_); |
| ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET) |
| ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET) |
| #undef ISOLATE_FIELD_OFFSET |
| #endif |
| |
| } } // namespace v8::internal |