| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ |
| #define V8_X64_MACRO_ASSEMBLER_X64_H_ |
| |
| #include "assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Flags used for the AllocateInNewSpace functions. |
| enum AllocationFlags { |
| // No special flags. |
| NO_ALLOCATION_FLAGS = 0, |
| // Return the pointer to the allocated already tagged as a heap object. |
| TAG_OBJECT = 1 << 0, |
| // The content of the result register already contains the allocation top in |
| // new space. |
| RESULT_CONTAINS_TOP = 1 << 1 |
| }; |
| |
| // Default scratch register used by MacroAssembler (and other code that needs |
| // a spare register). The register isn't callee save, and not used by the |
| // function calling convention. |
| static const Register kScratchRegister = { 10 }; // r10. |
| static const Register kSmiConstantRegister = { 12 }; // r12 (callee save). |
| static const Register kRootRegister = { 13 }; // r13 (callee save). |
| // Value of smi in kSmiConstantRegister. |
| static const int kSmiConstantRegisterValue = 1; |
| // Actual value of root register is offset from the root array's start |
| // to take advantage of negitive 8-bit displacement values. |
| static const int kRootRegisterBias = 128; |
| |
| // Convenience for platform-independent signatures. |
| typedef Operand MemOperand; |
| |
| // Forward declaration. |
| class JumpTarget; |
| class CallWrapper; |
| |
| struct SmiIndex { |
| SmiIndex(Register index_register, ScaleFactor scale) |
| : reg(index_register), |
| scale(scale) {} |
| Register reg; |
| ScaleFactor scale; |
| }; |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler: public Assembler { |
| public: |
| // The isolate parameter can be NULL if the macro assembler should |
| // not use isolate-dependent functionality. In this case, it's the |
| // responsibility of the caller to never invoke such function on the |
| // macro assembler. |
| MacroAssembler(Isolate* isolate, void* buffer, int size); |
| |
| // Prevent the use of the RootArray during the lifetime of this |
| // scope object. |
| class NoRootArrayScope BASE_EMBEDDED { |
| public: |
| explicit NoRootArrayScope(MacroAssembler* assembler) |
| : variable_(&assembler->root_array_available_), |
| old_value_(assembler->root_array_available_) { |
| assembler->root_array_available_ = false; |
| } |
| ~NoRootArrayScope() { |
| *variable_ = old_value_; |
| } |
| private: |
| bool* variable_; |
| bool old_value_; |
| }; |
| |
| // Operand pointing to an external reference. |
| // May emit code to set up the scratch register. The operand is |
| // only guaranteed to be correct as long as the scratch register |
| // isn't changed. |
| // If the operand is used more than once, use a scratch register |
| // that is guaranteed not to be clobbered. |
| Operand ExternalOperand(ExternalReference reference, |
| Register scratch = kScratchRegister); |
| // Loads and stores the value of an external reference. |
| // Special case code for load and store to take advantage of |
| // load_rax/store_rax if possible/necessary. |
| // For other operations, just use: |
| // Operand operand = ExternalOperand(extref); |
| // operation(operand, ..); |
| void Load(Register destination, ExternalReference source); |
| void Store(ExternalReference destination, Register source); |
| // Loads the address of the external reference into the destination |
| // register. |
| void LoadAddress(Register destination, ExternalReference source); |
| // Returns the size of the code generated by LoadAddress. |
| // Used by CallSize(ExternalReference) to find the size of a call. |
| int LoadAddressSize(ExternalReference source); |
| |
| // Operations on roots in the root-array. |
| void LoadRoot(Register destination, Heap::RootListIndex index); |
| void StoreRoot(Register source, Heap::RootListIndex index); |
| // Load a root value where the index (or part of it) is variable. |
| // The variable_offset register is added to the fixed_offset value |
| // to get the index into the root-array. |
| void LoadRootIndexed(Register destination, |
| Register variable_offset, |
| int fixed_offset); |
| void CompareRoot(Register with, Heap::RootListIndex index); |
| void CompareRoot(const Operand& with, Heap::RootListIndex index); |
| void PushRoot(Heap::RootListIndex index); |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| |
| // For page containing |object| mark region covering |addr| dirty. |
| // RecordWriteHelper only works if the object is not in new |
| // space. |
| void RecordWriteHelper(Register object, |
| Register addr, |
| Register scratch); |
| |
| // Check if object is in new space. The condition cc can be equal or |
| // not_equal. If it is equal a jump will be done if the object is on new |
| // space. The register scratch can be object itself, but it will be clobbered. |
| template <typename LabelType> |
| void InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| LabelType* branch); |
| |
| // For page containing |object| mark region covering [object+offset] |
| // dirty. |object| is the object being stored into, |value| is the |
| // object being stored. If |offset| is zero, then the |scratch| |
| // register contains the array index into the elements array |
| // represented as an untagged 32-bit integer. All registers are |
| // clobbered by the operation. RecordWrite filters out smis so it |
| // does not update the write barrier if the value is a smi. |
| void RecordWrite(Register object, |
| int offset, |
| Register value, |
| Register scratch); |
| |
| // For page containing |object| mark region covering [address] |
| // dirty. |object| is the object being stored into, |value| is the |
| // object being stored. All registers are clobbered by the |
| // operation. RecordWrite filters out smis so it does not update |
| // the write barrier if the value is a smi. |
| void RecordWrite(Register object, |
| Register address, |
| Register value); |
| |
| // For page containing |object| mark region covering [object+offset] dirty. |
| // The value is known to not be a smi. |
| // object is the object being stored into, value is the object being stored. |
| // If offset is zero, then the scratch register contains the array index into |
| // the elements array represented as an untagged 32-bit integer. |
| // All registers are clobbered by the operation. |
| void RecordWriteNonSmi(Register object, |
| int offset, |
| Register value, |
| Register scratch); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // --------------------------------------------------------------------------- |
| // Debugger Support |
| |
| void DebugBreak(); |
| #endif |
| |
| // --------------------------------------------------------------------------- |
| // Activation frames |
| |
| void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } |
| void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } |
| |
| void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } |
| void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } |
| |
| // Enter specific kind of exit frame; either in normal or |
| // debug mode. Expects the number of arguments in register rax and |
| // sets up the number of arguments in register rdi and the pointer |
| // to the first argument in register rsi. |
| // |
| // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack |
| // accessible via StackSpaceOperand. |
| void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false); |
| |
| // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize |
| // memory (not GCed) on the stack accessible via StackSpaceOperand. |
| void EnterApiExitFrame(int arg_stack_space); |
| |
| // Leave the current exit frame. Expects/provides the return value in |
| // register rax:rdx (untouched) and the pointer to the first |
| // argument in register rsi. |
| void LeaveExitFrame(bool save_doubles = false); |
| |
| // Leave the current exit frame. Expects/provides the return value in |
| // register rax (untouched). |
| void LeaveApiExitFrame(); |
| |
| // Push and pop the registers that can hold pointers. |
| void PushSafepointRegisters() { Pushad(); } |
| void PopSafepointRegisters() { Popad(); } |
| // Store the value in register src in the safepoint register stack |
| // slot for register dst. |
| void StoreToSafepointRegisterSlot(Register dst, Register src); |
| void LoadFromSafepointRegisterSlot(Register dst, Register src); |
| |
| void InitializeRootRegister() { |
| ExternalReference roots_address = |
| ExternalReference::roots_address(isolate()); |
| movq(kRootRegister, roots_address); |
| addq(kRootRegister, Immediate(kRootRegisterBias)); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // JavaScript invokes |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| void InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| void InvokeFunction(JSFunction* function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| // Invoke specified builtin JavaScript function. Adds an entry to |
| // the unresolved list if the name does not resolve. |
| void InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| // Store the function for the given builtin in the target register. |
| void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
| |
| // Store the code object for the given builtin in the target register. |
| void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Smi tagging, untagging and operations on tagged smis. |
| |
| void InitializeSmiConstantRegister() { |
| movq(kSmiConstantRegister, |
| reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)), |
| RelocInfo::NONE); |
| } |
| |
| // Conversions between tagged smi values and non-tagged integer values. |
| |
| // Tag an integer value. The result must be known to be a valid smi value. |
| // Only uses the low 32 bits of the src register. Sets the N and Z flags |
| // based on the value of the resulting smi. |
| void Integer32ToSmi(Register dst, Register src); |
| |
| // Stores an integer32 value into a memory field that already holds a smi. |
| void Integer32ToSmiField(const Operand& dst, Register src); |
| |
| // Adds constant to src and tags the result as a smi. |
| // Result must be a valid smi. |
| void Integer64PlusConstantToSmi(Register dst, Register src, int constant); |
| |
| // Convert smi to 32-bit integer. I.e., not sign extended into |
| // high 32 bits of destination. |
| void SmiToInteger32(Register dst, Register src); |
| void SmiToInteger32(Register dst, const Operand& src); |
| |
| // Convert smi to 64-bit integer (sign extended if necessary). |
| void SmiToInteger64(Register dst, Register src); |
| void SmiToInteger64(Register dst, const Operand& src); |
| |
| // Multiply a positive smi's integer value by a power of two. |
| // Provides result as 64-bit integer value. |
| void PositiveSmiTimesPowerOfTwoToInteger64(Register dst, |
| Register src, |
| int power); |
| |
| // Divide a positive smi's integer value by a power of two. |
| // Provides result as 32-bit integer value. |
| void PositiveSmiDivPowerOfTwoToInteger32(Register dst, |
| Register src, |
| int power); |
| |
| // Perform the logical or of two smi values and return a smi value. |
| // If either argument is not a smi, jump to on_not_smis and retain |
| // the original values of source registers. The destination register |
| // may be changed if it's not one of the source registers. |
| template <typename LabelType> |
| void SmiOrIfSmis(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smis); |
| |
| |
| // Simple comparison of smis. Both sides must be known smis to use these, |
| // otherwise use Cmp. |
| void SmiCompare(Register smi1, Register smi2); |
| void SmiCompare(Register dst, Smi* src); |
| void SmiCompare(Register dst, const Operand& src); |
| void SmiCompare(const Operand& dst, Register src); |
| void SmiCompare(const Operand& dst, Smi* src); |
| // Compare the int32 in src register to the value of the smi stored at dst. |
| void SmiCompareInteger32(const Operand& dst, Register src); |
| // Sets sign and zero flags depending on value of smi in register. |
| void SmiTest(Register src); |
| |
| // Functions performing a check on a known or potential smi. Returns |
| // a condition that is satisfied if the check is successful. |
| |
| // Is the value a tagged smi. |
| Condition CheckSmi(Register src); |
| Condition CheckSmi(const Operand& src); |
| |
| // Is the value a non-negative tagged smi. |
| Condition CheckNonNegativeSmi(Register src); |
| |
| // Are both values tagged smis. |
| Condition CheckBothSmi(Register first, Register second); |
| |
| // Are both values non-negative tagged smis. |
| Condition CheckBothNonNegativeSmi(Register first, Register second); |
| |
| // Are either value a tagged smi. |
| Condition CheckEitherSmi(Register first, |
| Register second, |
| Register scratch = kScratchRegister); |
| |
| // Is the value the minimum smi value (since we are using |
| // two's complement numbers, negating the value is known to yield |
| // a non-smi value). |
| Condition CheckIsMinSmi(Register src); |
| |
| // Checks whether an 32-bit integer value is a valid for conversion |
| // to a smi. |
| Condition CheckInteger32ValidSmiValue(Register src); |
| |
| // Checks whether an 32-bit unsigned integer value is a valid for |
| // conversion to a smi. |
| Condition CheckUInteger32ValidSmiValue(Register src); |
| |
| // Check whether src is a Smi, and set dst to zero if it is a smi, |
| // and to one if it isn't. |
| void CheckSmiToIndicator(Register dst, Register src); |
| void CheckSmiToIndicator(Register dst, const Operand& src); |
| |
| // Test-and-jump functions. Typically combines a check function |
| // above with a conditional jump. |
| |
| // Jump if the value cannot be represented by a smi. |
| template <typename LabelType> |
| void JumpIfNotValidSmiValue(Register src, LabelType* on_invalid); |
| |
| // Jump if the unsigned integer value cannot be represented by a smi. |
| template <typename LabelType> |
| void JumpIfUIntNotValidSmiValue(Register src, LabelType* on_invalid); |
| |
| // Jump to label if the value is a tagged smi. |
| template <typename LabelType> |
| void JumpIfSmi(Register src, LabelType* on_smi); |
| |
| // Jump to label if the value is not a tagged smi. |
| template <typename LabelType> |
| void JumpIfNotSmi(Register src, LabelType* on_not_smi); |
| |
| // Jump to label if the value is not a non-negative tagged smi. |
| template <typename LabelType> |
| void JumpUnlessNonNegativeSmi(Register src, LabelType* on_not_smi); |
| |
| // Jump to label if the value, which must be a tagged smi, has value equal |
| // to the constant. |
| template <typename LabelType> |
| void JumpIfSmiEqualsConstant(Register src, |
| Smi* constant, |
| LabelType* on_equals); |
| |
| // Jump if either or both register are not smi values. |
| template <typename LabelType> |
| void JumpIfNotBothSmi(Register src1, |
| Register src2, |
| LabelType* on_not_both_smi); |
| |
| // Jump if either or both register are not non-negative smi values. |
| template <typename LabelType> |
| void JumpUnlessBothNonNegativeSmi(Register src1, Register src2, |
| LabelType* on_not_both_smi); |
| |
| // Operations on tagged smi values. |
| |
| // Smis represent a subset of integers. The subset is always equivalent to |
| // a two's complement interpretation of a fixed number of bits. |
| |
| // Optimistically adds an integer constant to a supposed smi. |
| // If the src is not a smi, or the result is not a smi, jump to |
| // the label. |
| template <typename LabelType> |
| void SmiTryAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| LabelType* on_not_smi_result); |
| |
| // Add an integer constant to a tagged smi, giving a tagged smi as result. |
| // No overflow testing on the result is done. |
| void SmiAddConstant(Register dst, Register src, Smi* constant); |
| |
| // Add an integer constant to a tagged smi, giving a tagged smi as result. |
| // No overflow testing on the result is done. |
| void SmiAddConstant(const Operand& dst, Smi* constant); |
| |
| // Add an integer constant to a tagged smi, giving a tagged smi as result, |
| // or jumping to a label if the result cannot be represented by a smi. |
| template <typename LabelType> |
| void SmiAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| LabelType* on_not_smi_result); |
| |
| // Subtract an integer constant from a tagged smi, giving a tagged smi as |
| // result. No testing on the result is done. Sets the N and Z flags |
| // based on the value of the resulting integer. |
| void SmiSubConstant(Register dst, Register src, Smi* constant); |
| |
| // Subtract an integer constant from a tagged smi, giving a tagged smi as |
| // result, or jumping to a label if the result cannot be represented by a smi. |
| template <typename LabelType> |
| void SmiSubConstant(Register dst, |
| Register src, |
| Smi* constant, |
| LabelType* on_not_smi_result); |
| |
| // Negating a smi can give a negative zero or too large positive value. |
| // NOTICE: This operation jumps on success, not failure! |
| template <typename LabelType> |
| void SmiNeg(Register dst, |
| Register src, |
| LabelType* on_smi_result); |
| |
| // Adds smi values and return the result as a smi. |
| // If dst is src1, then src1 will be destroyed, even if |
| // the operation is unsuccessful. |
| template <typename LabelType> |
| void SmiAdd(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result); |
| template <typename LabelType> |
| void SmiAdd(Register dst, |
| Register src1, |
| const Operand& src2, |
| LabelType* on_not_smi_result); |
| |
| void SmiAdd(Register dst, |
| Register src1, |
| Register src2); |
| |
| // Subtracts smi values and return the result as a smi. |
| // If dst is src1, then src1 will be destroyed, even if |
| // the operation is unsuccessful. |
| template <typename LabelType> |
| void SmiSub(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result); |
| |
| void SmiSub(Register dst, |
| Register src1, |
| Register src2); |
| |
| template <typename LabelType> |
| void SmiSub(Register dst, |
| Register src1, |
| const Operand& src2, |
| LabelType* on_not_smi_result); |
| |
| void SmiSub(Register dst, |
| Register src1, |
| const Operand& src2); |
| |
| // Multiplies smi values and return the result as a smi, |
| // if possible. |
| // If dst is src1, then src1 will be destroyed, even if |
| // the operation is unsuccessful. |
| template <typename LabelType> |
| void SmiMul(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result); |
| |
| // Divides one smi by another and returns the quotient. |
| // Clobbers rax and rdx registers. |
| template <typename LabelType> |
| void SmiDiv(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result); |
| |
| // Divides one smi by another and returns the remainder. |
| // Clobbers rax and rdx registers. |
| template <typename LabelType> |
| void SmiMod(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result); |
| |
| // Bitwise operations. |
| void SmiNot(Register dst, Register src); |
| void SmiAnd(Register dst, Register src1, Register src2); |
| void SmiOr(Register dst, Register src1, Register src2); |
| void SmiXor(Register dst, Register src1, Register src2); |
| void SmiAndConstant(Register dst, Register src1, Smi* constant); |
| void SmiOrConstant(Register dst, Register src1, Smi* constant); |
| void SmiXorConstant(Register dst, Register src1, Smi* constant); |
| |
| void SmiShiftLeftConstant(Register dst, |
| Register src, |
| int shift_value); |
| template <typename LabelType> |
| void SmiShiftLogicalRightConstant(Register dst, |
| Register src, |
| int shift_value, |
| LabelType* on_not_smi_result); |
| void SmiShiftArithmeticRightConstant(Register dst, |
| Register src, |
| int shift_value); |
| |
| // Shifts a smi value to the left, and returns the result if that is a smi. |
| // Uses and clobbers rcx, so dst may not be rcx. |
| void SmiShiftLeft(Register dst, |
| Register src1, |
| Register src2); |
| // Shifts a smi value to the right, shifting in zero bits at the top, and |
| // returns the unsigned intepretation of the result if that is a smi. |
| // Uses and clobbers rcx, so dst may not be rcx. |
| template <typename LabelType> |
| void SmiShiftLogicalRight(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result); |
| // Shifts a smi value to the right, sign extending the top, and |
| // returns the signed intepretation of the result. That will always |
| // be a valid smi value, since it's numerically smaller than the |
| // original. |
| // Uses and clobbers rcx, so dst may not be rcx. |
| void SmiShiftArithmeticRight(Register dst, |
| Register src1, |
| Register src2); |
| |
| // Specialized operations |
| |
| // Select the non-smi register of two registers where exactly one is a |
| // smi. If neither are smis, jump to the failure label. |
| template <typename LabelType> |
| void SelectNonSmi(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smis); |
| |
| // Converts, if necessary, a smi to a combination of number and |
| // multiplier to be used as a scaled index. |
| // The src register contains a *positive* smi value. The shift is the |
| // power of two to multiply the index value by (e.g. |
| // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2). |
| // The returned index register may be either src or dst, depending |
| // on what is most efficient. If src and dst are different registers, |
| // src is always unchanged. |
| SmiIndex SmiToIndex(Register dst, Register src, int shift); |
| |
| // Converts a positive smi to a negative index. |
| SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift); |
| |
| // Add the value of a smi in memory to an int32 register. |
| // Sets flags as a normal add. |
| void AddSmiField(Register dst, const Operand& src); |
| |
| // Basic Smi operations. |
| void Move(Register dst, Smi* source) { |
| LoadSmiConstant(dst, source); |
| } |
| |
| void Move(const Operand& dst, Smi* source) { |
| Register constant = GetSmiConstant(source); |
| movq(dst, constant); |
| } |
| |
| void Push(Smi* smi); |
| void Test(const Operand& dst, Smi* source); |
| |
| // --------------------------------------------------------------------------- |
| // String macros. |
| |
| // If object is a string, its map is loaded into object_map. |
| template <typename LabelType> |
| void JumpIfNotString(Register object, |
| Register object_map, |
| LabelType* not_string); |
| |
| |
| template <typename LabelType> |
| void JumpIfNotBothSequentialAsciiStrings(Register first_object, |
| Register second_object, |
| Register scratch1, |
| Register scratch2, |
| LabelType* on_not_both_flat_ascii); |
| |
| // Check whether the instance type represents a flat ascii string. Jump to the |
| // label if not. If the instance type can be scratched specify same register |
| // for both instance type and scratch. |
| template <typename LabelType> |
| void JumpIfInstanceTypeIsNotSequentialAscii( |
| Register instance_type, |
| Register scratch, |
| LabelType *on_not_flat_ascii_string); |
| |
| template <typename LabelType> |
| void JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first_object_instance_type, |
| Register second_object_instance_type, |
| Register scratch1, |
| Register scratch2, |
| LabelType* on_fail); |
| |
| // --------------------------------------------------------------------------- |
| // Macro instructions. |
| |
| // Load a register with a long value as efficiently as possible. |
| void Set(Register dst, int64_t x); |
| void Set(const Operand& dst, int64_t x); |
| |
| // Move if the registers are not identical. |
| void Move(Register target, Register source); |
| |
| // Handle support |
| void Move(Register dst, Handle<Object> source); |
| void Move(const Operand& dst, Handle<Object> source); |
| void Cmp(Register dst, Handle<Object> source); |
| void Cmp(const Operand& dst, Handle<Object> source); |
| void Cmp(Register dst, Smi* src); |
| void Cmp(const Operand& dst, Smi* src); |
| void Push(Handle<Object> source); |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the rsp register. |
| void Drop(int stack_elements); |
| |
| void Call(Label* target) { call(target); } |
| |
| // Control Flow |
| void Jump(Address destination, RelocInfo::Mode rmode); |
| void Jump(ExternalReference ext); |
| void Jump(Handle<Code> code_object, RelocInfo::Mode rmode); |
| |
| void Call(Address destination, RelocInfo::Mode rmode); |
| void Call(ExternalReference ext); |
| void Call(Handle<Code> code_object, RelocInfo::Mode rmode); |
| |
| // The size of the code generated for different call instructions. |
| int CallSize(Address destination, RelocInfo::Mode rmode) { |
| return kCallInstructionLength; |
| } |
| int CallSize(ExternalReference ext); |
| int CallSize(Handle<Code> code_object) { |
| // Code calls use 32-bit relative addressing. |
| return kShortCallInstructionLength; |
| } |
| int CallSize(Register target) { |
| // Opcode: REX_opt FF /2 m64 |
| return (target.high_bit() != 0) ? 3 : 2; |
| } |
| int CallSize(const Operand& target) { |
| // Opcode: REX_opt FF /2 m64 |
| return (target.requires_rex() ? 2 : 1) + target.operand_size(); |
| } |
| |
| // Emit call to the code we are currently generating. |
| void CallSelf() { |
| Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location())); |
| Call(self, RelocInfo::CODE_TARGET); |
| } |
| |
| // Non-x64 instructions. |
| // Push/pop all general purpose registers. |
| // Does not push rsp/rbp nor any of the assembler's special purpose registers |
| // (kScratchRegister, kSmiConstantRegister, kRootRegister). |
| void Pushad(); |
| void Popad(); |
| // Sets the stack as after performing Popad, without actually loading the |
| // registers. |
| void Dropad(); |
| |
| // Compare object type for heap object. |
| // Always use unsigned comparisons: above and below, not less and greater. |
| // Incoming register is heap_object and outgoing register is map. |
| // They may be the same register, and may be kScratchRegister. |
| void CmpObjectType(Register heap_object, InstanceType type, Register map); |
| |
| // Compare instance type for map. |
| // Always use unsigned comparisons: above and below, not less and greater. |
| void CmpInstanceType(Register map, InstanceType type); |
| |
| // Check if the map of an object is equal to a specified map and |
| // branch to label if not. Skip the smi check if not required |
| // (object is known to be a heap object) |
| void CheckMap(Register obj, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object); |
| |
| // Check if the object in register heap_object is a string. Afterwards the |
| // register map contains the object map and the register instance_type |
| // contains the instance_type. The registers map and instance_type can be the |
| // same in which case it contains the instance type afterwards. Either of the |
| // registers map and instance_type can be the same as heap_object. |
| Condition IsObjectStringType(Register heap_object, |
| Register map, |
| Register instance_type); |
| |
| // FCmp compares and pops the two values on top of the FPU stack. |
| // The flag results are similar to integer cmp, but requires unsigned |
| // jcc instructions (je, ja, jae, jb, jbe, je, and jz). |
| void FCmp(); |
| |
| // Abort execution if argument is not a number. Used in debug code. |
| void AbortIfNotNumber(Register object); |
| |
| // Abort execution if argument is a smi. Used in debug code. |
| void AbortIfSmi(Register object); |
| |
| // Abort execution if argument is not a smi. Used in debug code. |
| void AbortIfNotSmi(Register object); |
| void AbortIfNotSmi(const Operand& object); |
| |
| // Abort execution if argument is a string. Used in debug code. |
| void AbortIfNotString(Register object); |
| |
| // Abort execution if argument is not the root value with the given index. |
| void AbortIfNotRootValue(Register src, |
| Heap::RootListIndex root_value_index, |
| const char* message); |
| |
| // --------------------------------------------------------------------------- |
| // Exception handling |
| |
| // Push a new try handler and link into try handler chain. The return |
| // address must be pushed before calling this helper. |
| void PushTryHandler(CodeLocation try_location, HandlerType type); |
| |
| // Unlink the stack handler on top of the stack from the try handler chain. |
| void PopTryHandler(); |
| |
| // Activate the top handler in the try hander chain and pass the |
| // thrown value. |
| void Throw(Register value); |
| |
| // Propagate an uncatchable exception out of the current JS stack. |
| void ThrowUncatchable(UncatchableExceptionType type, Register value); |
| |
| // --------------------------------------------------------------------------- |
| // Inline caching support |
| |
| // Generate code for checking access rights - used for security checks |
| // on access to global objects across environments. The holder register |
| // is left untouched, but the scratch register and kScratchRegister, |
| // which must be different, are clobbered. |
| void CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Allocation support |
| |
| // Allocate an object in new space. If the new space is exhausted control |
| // continues at the gc_required label. The allocated object is returned in |
| // result and end of the new object is returned in result_end. The register |
| // scratch can be passed as no_reg in which case an additional object |
| // reference will be added to the reloc info. The returned pointers in result |
| // and result_end have not yet been tagged as heap objects. If |
| // result_contains_top_on_entry is true the content of result is known to be |
| // the allocation top on entry (could be result_end from a previous call to |
| // AllocateInNewSpace). If result_contains_top_on_entry is true scratch |
| // should be no_reg as it is never used. |
| void AllocateInNewSpace(int object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| void AllocateInNewSpace(int header_size, |
| ScaleFactor element_size, |
| Register element_count, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| void AllocateInNewSpace(Register object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| // Undo allocation in new space. The object passed and objects allocated after |
| // it will no longer be allocated. Make sure that no pointers are left to the |
| // object(s) no longer allocated as they would be invalid when allocation is |
| // un-done. |
| void UndoAllocationInNewSpace(Register object); |
| |
| // Allocate a heap number in new space with undefined value. Returns |
| // tagged pointer in result register, or jumps to gc_required if new |
| // space is full. |
| void AllocateHeapNumber(Register result, |
| Register scratch, |
| Label* gc_required); |
| |
| // Allocate a sequential string. All the header fields of the string object |
| // are initialized. |
| void AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| |
| // Allocate a raw cons string object. Only the map field of the result is |
| // initialized. |
| void AllocateConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // --------------------------------------------------------------------------- |
| // Support functions. |
| |
| // Check if result is zero and op is negative. |
| void NegativeZeroTest(Register result, Register op, Label* then_label); |
| |
| // Check if result is zero and op is negative in code using jump targets. |
| void NegativeZeroTest(CodeGenerator* cgen, |
| Register result, |
| Register op, |
| JumpTarget* then_target); |
| |
| // Check if result is zero and any of op1 and op2 are negative. |
| // Register scratch is destroyed, and it must be different from op2. |
| void NegativeZeroTest(Register result, Register op1, Register op2, |
| Register scratch, Label* then_label); |
| |
| // Try to get function prototype of a function and puts the value in |
| // the result register. Checks that the function really is a |
| // function and jumps to the miss label if the fast checks fail. The |
| // function register will be untouched; the other register may be |
| // clobbered. |
| void TryGetFunctionPrototype(Register function, |
| Register result, |
| Label* miss); |
| |
| // Generates code for reporting that an illegal operation has |
| // occurred. |
| void IllegalOperation(int num_arguments); |
| |
| // Picks out an array index from the hash field. |
| // Register use: |
| // hash - holds the index's hash. Clobbered. |
| // index - holds the overwritten index on exit. |
| void IndexFromHash(Register hash, Register index); |
| |
| // Find the function context up the context chain. |
| void LoadContext(Register dst, int context_chain_length); |
| |
| // Load the global function with the given index. |
| void LoadGlobalFunction(int index, Register function); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same. |
| void LoadGlobalFunctionInitialMap(Register function, Register map); |
| |
| // --------------------------------------------------------------------------- |
| // Runtime calls |
| |
| // Call a code stub. |
| void CallStub(CodeStub* stub); |
| |
| // Call a code stub and return the code object called. Try to generate |
| // the code if necessary. Do not perform a GC but instead return a retry |
| // after GC failure. |
| MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub); |
| |
| // Tail call a code stub (jump). |
| void TailCallStub(CodeStub* stub); |
| |
| // Tail call a code stub (jump) and return the code object called. Try to |
| // generate the code if necessary. Do not perform a GC but instead return |
| // a retry after GC failure. |
| MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub); |
| |
| // Return from a code stub after popping its arguments. |
| void StubReturn(int argc); |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments); |
| |
| // Call a runtime function and save the value of XMM registers. |
| void CallRuntimeSaveDoubles(Runtime::FunctionId id); |
| |
| // Call a runtime function, returning the CodeStub object called. |
| // Try to generate the stub code if necessary. Do not perform a GC |
| // but instead return a retry after GC failure. |
| MUST_USE_RESULT MaybeObject* TryCallRuntime(const Runtime::Function* f, |
| int num_arguments); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId id, int num_arguments); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id, |
| int num_arguments); |
| |
| // Convenience function: call an external reference. |
| void CallExternalReference(const ExternalReference& ext, |
| int num_arguments); |
| |
| // Tail call of a runtime routine (jump). |
| // Like JumpToExternalReference, but also takes care of passing the number |
| // of parameters. |
| void TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size); |
| |
| MUST_USE_RESULT MaybeObject* TryTailCallExternalReference( |
| const ExternalReference& ext, int num_arguments, int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| // Jump to a runtime routine. |
| void JumpToExternalReference(const ExternalReference& ext, int result_size); |
| |
| // Jump to a runtime routine. |
| MaybeObject* TryJumpToExternalReference(const ExternalReference& ext, |
| int result_size); |
| |
| // Prepares stack to put arguments (aligns and so on). |
| // WIN64 calling convention requires to put the pointer to the return value |
| // slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn). |
| // Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize |
| // inside the exit frame (not GCed) accessible via StackSpaceOperand. |
| void PrepareCallApiFunction(int arg_stack_space); |
| |
| // Calls an API function. Allocates HandleScope, extracts |
| // returned value from handle and propagates exceptions. |
| // Clobbers r14, r15, rbx and caller-save registers. Restores context. |
| // On return removes stack_space * kPointerSize (GCed). |
| MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn( |
| ApiFunction* function, int stack_space); |
| |
| // Before calling a C-function from generated code, align arguments on stack. |
| // After aligning the frame, arguments must be stored in esp[0], esp[4], |
| // etc., not pushed. The argument count assumes all arguments are word sized. |
| // The number of slots reserved for arguments depends on platform. On Windows |
| // stack slots are reserved for the arguments passed in registers. On other |
| // platforms stack slots are only reserved for the arguments actually passed |
| // on the stack. |
| void PrepareCallCFunction(int num_arguments); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| |
| // Calculate the number of stack slots to reserve for arguments when calling a |
| // C function. |
| int ArgumentStackSlotsForCFunctionCall(int num_arguments); |
| |
| // --------------------------------------------------------------------------- |
| // Utilities |
| |
| void Ret(); |
| |
| // Return and drop arguments from stack, where the number of arguments |
| // may be bigger than 2^16 - 1. Requires a scratch register. |
| void Ret(int bytes_dropped, Register scratch); |
| |
| Handle<Object> CodeObject() { |
| ASSERT(!code_object_.is_null()); |
| return code_object_; |
| } |
| |
| // Copy length bytes from source to destination. |
| // Uses scratch register internally (if you have a low-eight register |
| // free, do use it, otherwise kScratchRegister will be used). |
| // The min_length is a minimum limit on the value that length will have. |
| // The algorithm has some special cases that might be omitted if the string |
| // is known to always be long. |
| void CopyBytes(Register destination, |
| Register source, |
| Register length, |
| int min_length = 0, |
| Register scratch = kScratchRegister); |
| |
| |
| // --------------------------------------------------------------------------- |
| // StatsCounter support |
| |
| void SetCounter(StatsCounter* counter, int value); |
| void IncrementCounter(StatsCounter* counter, int value); |
| void DecrementCounter(StatsCounter* counter, int value); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Debugging |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, const char* msg); |
| |
| void AssertFastElements(Register elements); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, const char* msg); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(const char* msg); |
| |
| // Check that the stack is aligned. |
| void CheckStackAlignment(); |
| |
| // Verify restrictions about code generated in stubs. |
| void set_generating_stub(bool value) { generating_stub_ = value; } |
| bool generating_stub() { return generating_stub_; } |
| void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } |
| bool allow_stub_calls() { return allow_stub_calls_; } |
| |
| static int SafepointRegisterStackIndex(Register reg) { |
| return SafepointRegisterStackIndex(reg.code()); |
| } |
| |
| private: |
| // Order general registers are pushed by Pushad. |
| // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15. |
| static int kSafepointPushRegisterIndices[Register::kNumRegisters]; |
| static const int kNumSafepointSavedRegisters = 11; |
| |
| bool generating_stub_; |
| bool allow_stub_calls_; |
| bool root_array_available_; |
| |
| // Returns a register holding the smi value. The register MUST NOT be |
| // modified. It may be the "smi 1 constant" register. |
| Register GetSmiConstant(Smi* value); |
| |
| // Moves the smi value to the destination register. |
| void LoadSmiConstant(Register dst, Smi* value); |
| |
| // This handle will be patched with the code object on installation. |
| Handle<Object> code_object_; |
| |
| // Helper functions for generating invokes. |
| template <typename LabelType> |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_register, |
| LabelType* done, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper); |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void LeaveFrame(StackFrame::Type type); |
| |
| void EnterExitFramePrologue(bool save_rax); |
| |
| // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack |
| // accessible via StackSpaceOperand. |
| void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles); |
| |
| void LeaveExitFrameEpilogue(); |
| |
| // Allocation support helpers. |
| // Loads the top of new-space into the result register. |
| // Otherwise the address of the new-space top is loaded into scratch (if |
| // scratch is valid), and the new-space top is loaded into result. |
| void LoadAllocationTopHelper(Register result, |
| Register scratch, |
| AllocationFlags flags); |
| // Update allocation top with value in result_end register. |
| // If scratch is valid, it contains the address of the allocation top. |
| void UpdateAllocationTopHelper(Register result_end, Register scratch); |
| |
| // Helper for PopHandleScope. Allowed to perform a GC and returns |
| // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and |
| // possibly returns a failure object indicating an allocation failure. |
| Object* PopHandleScopeHelper(Register saved, |
| Register scratch, |
| bool gc_allowed); |
| |
| |
| // Compute memory operands for safepoint stack slots. |
| Operand SafepointRegisterSlot(Register reg); |
| static int SafepointRegisterStackIndex(int reg_code) { |
| return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1; |
| } |
| |
| // Needs access to SafepointRegisterStackIndex for optimized frame |
| // traversal. |
| friend class OptimizedFrame; |
| }; |
| |
| |
| // The code patcher is used to patch (typically) small parts of code e.g. for |
| // debugging and other types of instrumentation. When using the code patcher |
| // the exact number of bytes specified must be emitted. Is not legal to emit |
| // relocation information. If any of these constraints are violated it causes |
| // an assertion. |
| class CodePatcher { |
| public: |
| CodePatcher(byte* address, int size); |
| virtual ~CodePatcher(); |
| |
| // Macro assembler to emit code. |
| MacroAssembler* masm() { return &masm_; } |
| |
| private: |
| byte* address_; // The address of the code being patched. |
| int size_; // Number of bytes of the expected patch size. |
| MacroAssembler masm_; // Macro assembler used to generate the code. |
| }; |
| |
| |
| // Helper class for generating code or data associated with the code |
| // right before or after a call instruction. As an example this can be used to |
| // generate safepoint data after calls for crankshaft. |
| class CallWrapper { |
| public: |
| CallWrapper() { } |
| virtual ~CallWrapper() { } |
| // Called just before emitting a call. Argument is the size of the generated |
| // call code. |
| virtual void BeforeCall(int call_size) = 0; |
| // Called just after emitting a call, i.e., at the return site for the call. |
| virtual void AfterCall() = 0; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| // Generate an Operand for loading a field from an object. |
| static inline Operand FieldOperand(Register object, int offset) { |
| return Operand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| // Generate an Operand for loading an indexed field from an object. |
| static inline Operand FieldOperand(Register object, |
| Register index, |
| ScaleFactor scale, |
| int offset) { |
| return Operand(object, index, scale, offset - kHeapObjectTag); |
| } |
| |
| |
| static inline Operand ContextOperand(Register context, int index) { |
| return Operand(context, Context::SlotOffset(index)); |
| } |
| |
| |
| static inline Operand GlobalObjectOperand() { |
| return ContextOperand(rsi, Context::GLOBAL_INDEX); |
| } |
| |
| |
| // Provides access to exit frame stack space (not GCed). |
| static inline Operand StackSpaceOperand(int index) { |
| #ifdef _WIN64 |
| const int kShaddowSpace = 4; |
| return Operand(rsp, (index + kShaddowSpace) * kPointerSize); |
| #else |
| return Operand(rsp, index * kPointerSize); |
| #endif |
| } |
| |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| extern void LogGeneratedCodeCoverage(const char* file_line); |
| #define CODE_COVERAGE_STRINGIFY(x) #x |
| #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
| #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
| #define ACCESS_MASM(masm) { \ |
| byte* x64_coverage_function = \ |
| reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ |
| masm->pushfd(); \ |
| masm->pushad(); \ |
| masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \ |
| masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \ |
| masm->pop(rax); \ |
| masm->popad(); \ |
| masm->popfd(); \ |
| } \ |
| masm-> |
| #else |
| #define ACCESS_MASM(masm) masm-> |
| #endif |
| |
| // ----------------------------------------------------------------------------- |
| // Template implementations. |
| |
| static int kSmiShift = kSmiTagSize + kSmiShiftSize; |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiNeg(Register dst, |
| Register src, |
| LabelType* on_smi_result) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| movq(kScratchRegister, src); |
| neg(dst); // Low 32 bits are retained as zero by negation. |
| // Test if result is zero or Smi::kMinValue. |
| cmpq(dst, kScratchRegister); |
| j(not_equal, on_smi_result); |
| movq(src, kScratchRegister); |
| } else { |
| movq(dst, src); |
| neg(dst); |
| cmpq(dst, src); |
| // If the result is zero or Smi::kMinValue, negation failed to create a smi. |
| j(not_equal, on_smi_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiAdd(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| ASSERT(!dst.is(src2)); |
| if (dst.is(src1)) { |
| movq(kScratchRegister, src1); |
| addq(kScratchRegister, src2); |
| j(overflow, on_not_smi_result); |
| movq(dst, kScratchRegister); |
| } else { |
| movq(dst, src1); |
| addq(dst, src2); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiAdd(Register dst, |
| Register src1, |
| const Operand& src2, |
| LabelType* on_not_smi_result) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| if (dst.is(src1)) { |
| movq(kScratchRegister, src1); |
| addq(kScratchRegister, src2); |
| j(overflow, on_not_smi_result); |
| movq(dst, kScratchRegister); |
| } else { |
| ASSERT(!src2.AddressUsesRegister(dst)); |
| movq(dst, src1); |
| addq(dst, src2); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiSub(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| ASSERT(!dst.is(src2)); |
| if (dst.is(src1)) { |
| cmpq(dst, src2); |
| j(overflow, on_not_smi_result); |
| subq(dst, src2); |
| } else { |
| movq(dst, src1); |
| subq(dst, src2); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiSub(Register dst, |
| Register src1, |
| const Operand& src2, |
| LabelType* on_not_smi_result) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| if (dst.is(src1)) { |
| movq(kScratchRegister, src2); |
| cmpq(src1, kScratchRegister); |
| j(overflow, on_not_smi_result); |
| subq(src1, kScratchRegister); |
| } else { |
| movq(dst, src1); |
| subq(dst, src2); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiMul(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result) { |
| ASSERT(!dst.is(src2)); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| |
| if (dst.is(src1)) { |
| NearLabel failure, zero_correct_result; |
| movq(kScratchRegister, src1); // Create backup for later testing. |
| SmiToInteger64(dst, src1); |
| imul(dst, src2); |
| j(overflow, &failure); |
| |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. |
| NearLabel correct_result; |
| testq(dst, dst); |
| j(not_zero, &correct_result); |
| |
| movq(dst, kScratchRegister); |
| xor_(dst, src2); |
| j(positive, &zero_correct_result); // Result was positive zero. |
| |
| bind(&failure); // Reused failure exit, restores src1. |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result); |
| |
| bind(&zero_correct_result); |
| Set(dst, 0); |
| |
| bind(&correct_result); |
| } else { |
| SmiToInteger64(dst, src1); |
| imul(dst, src2); |
| j(overflow, on_not_smi_result); |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. |
| NearLabel correct_result; |
| testq(dst, dst); |
| j(not_zero, &correct_result); |
| // One of src1 and src2 is zero, the check whether the other is |
| // negative. |
| movq(kScratchRegister, src1); |
| xor_(kScratchRegister, src2); |
| j(negative, on_not_smi_result); |
| bind(&correct_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiTryAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| LabelType* on_not_smi_result) { |
| // Does not assume that src is a smi. |
| ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask)); |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src.is(kScratchRegister)); |
| |
| JumpIfNotSmi(src, on_not_smi_result); |
| Register tmp = (dst.is(src) ? kScratchRegister : dst); |
| LoadSmiConstant(tmp, constant); |
| addq(tmp, src); |
| j(overflow, on_not_smi_result); |
| if (dst.is(src)) { |
| movq(dst, tmp); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| LabelType* on_not_smi_result) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| |
| LoadSmiConstant(kScratchRegister, constant); |
| addq(kScratchRegister, src); |
| j(overflow, on_not_smi_result); |
| movq(dst, kScratchRegister); |
| } else { |
| LoadSmiConstant(dst, constant); |
| addq(dst, src); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiSubConstant(Register dst, |
| Register src, |
| Smi* constant, |
| LabelType* on_not_smi_result) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| if (constant->value() == Smi::kMinValue) { |
| // Subtracting min-value from any non-negative value will overflow. |
| // We test the non-negativeness before doing the subtraction. |
| testq(src, src); |
| j(not_sign, on_not_smi_result); |
| LoadSmiConstant(kScratchRegister, constant); |
| subq(dst, kScratchRegister); |
| } else { |
| // Subtract by adding the negation. |
| LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value())); |
| addq(kScratchRegister, dst); |
| j(overflow, on_not_smi_result); |
| movq(dst, kScratchRegister); |
| } |
| } else { |
| if (constant->value() == Smi::kMinValue) { |
| // Subtracting min-value from any non-negative value will overflow. |
| // We test the non-negativeness before doing the subtraction. |
| testq(src, src); |
| j(not_sign, on_not_smi_result); |
| LoadSmiConstant(dst, constant); |
| // Adding and subtracting the min-value gives the same result, it only |
| // differs on the overflow bit, which we don't check here. |
| addq(dst, src); |
| } else { |
| // Subtract by adding the negation. |
| LoadSmiConstant(dst, Smi::FromInt(-(constant->value()))); |
| addq(dst, src); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiDiv(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result) { |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src2.is(rax)); |
| ASSERT(!src2.is(rdx)); |
| ASSERT(!src1.is(rdx)); |
| |
| // Check for 0 divisor (result is +/-Infinity). |
| NearLabel positive_divisor; |
| testq(src2, src2); |
| j(zero, on_not_smi_result); |
| |
| if (src1.is(rax)) { |
| movq(kScratchRegister, src1); |
| } |
| SmiToInteger32(rax, src1); |
| // We need to rule out dividing Smi::kMinValue by -1, since that would |
| // overflow in idiv and raise an exception. |
| // We combine this with negative zero test (negative zero only happens |
| // when dividing zero by a negative number). |
| |
| // We overshoot a little and go to slow case if we divide min-value |
| // by any negative value, not just -1. |
| NearLabel safe_div; |
| testl(rax, Immediate(0x7fffffff)); |
| j(not_zero, &safe_div); |
| testq(src2, src2); |
| if (src1.is(rax)) { |
| j(positive, &safe_div); |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result); |
| } else { |
| j(negative, on_not_smi_result); |
| } |
| bind(&safe_div); |
| |
| SmiToInteger32(src2, src2); |
| // Sign extend src1 into edx:eax. |
| cdq(); |
| idivl(src2); |
| Integer32ToSmi(src2, src2); |
| // Check that the remainder is zero. |
| testl(rdx, rdx); |
| if (src1.is(rax)) { |
| NearLabel smi_result; |
| j(zero, &smi_result); |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result); |
| bind(&smi_result); |
| } else { |
| j(not_zero, on_not_smi_result); |
| } |
| if (!dst.is(src1) && src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| Integer32ToSmi(dst, rax); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiMod(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!src2.is(rax)); |
| ASSERT(!src2.is(rdx)); |
| ASSERT(!src1.is(rdx)); |
| ASSERT(!src1.is(src2)); |
| |
| testq(src2, src2); |
| j(zero, on_not_smi_result); |
| |
| if (src1.is(rax)) { |
| movq(kScratchRegister, src1); |
| } |
| SmiToInteger32(rax, src1); |
| SmiToInteger32(src2, src2); |
| |
| // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). |
| NearLabel safe_div; |
| cmpl(rax, Immediate(Smi::kMinValue)); |
| j(not_equal, &safe_div); |
| cmpl(src2, Immediate(-1)); |
| j(not_equal, &safe_div); |
| // Retag inputs and go slow case. |
| Integer32ToSmi(src2, src2); |
| if (src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| jmp(on_not_smi_result); |
| bind(&safe_div); |
| |
| // Sign extend eax into edx:eax. |
| cdq(); |
| idivl(src2); |
| // Restore smi tags on inputs. |
| Integer32ToSmi(src2, src2); |
| if (src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| // Check for a negative zero result. If the result is zero, and the |
| // dividend is negative, go slow to return a floating point negative zero. |
| NearLabel smi_result; |
| testl(rdx, rdx); |
| j(not_zero, &smi_result); |
| testq(src1, src1); |
| j(negative, on_not_smi_result); |
| bind(&smi_result); |
| Integer32ToSmi(dst, rdx); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiShiftLogicalRightConstant( |
| Register dst, Register src, int shift_value, LabelType* on_not_smi_result) { |
| // Logic right shift interprets its result as an *unsigned* number. |
| if (dst.is(src)) { |
| UNIMPLEMENTED(); // Not used. |
| } else { |
| movq(dst, src); |
| if (shift_value == 0) { |
| testq(dst, dst); |
| j(negative, on_not_smi_result); |
| } |
| shr(dst, Immediate(shift_value + kSmiShift)); |
| shl(dst, Immediate(kSmiShift)); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiShiftLogicalRight(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smi_result) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(rcx)); |
| // dst and src1 can be the same, because the one case that bails out |
| // is a shift by 0, which leaves dst, and therefore src1, unchanged. |
| NearLabel result_ok; |
| if (src1.is(rcx) || src2.is(rcx)) { |
| movq(kScratchRegister, rcx); |
| } |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| orl(rcx, Immediate(kSmiShift)); |
| shr_cl(dst); // Shift is rcx modulo 0x1f + 32. |
| shl(dst, Immediate(kSmiShift)); |
| testq(dst, dst); |
| if (src1.is(rcx) || src2.is(rcx)) { |
| NearLabel positive_result; |
| j(positive, &positive_result); |
| if (src1.is(rcx)) { |
| movq(src1, kScratchRegister); |
| } else { |
| movq(src2, kScratchRegister); |
| } |
| jmp(on_not_smi_result); |
| bind(&positive_result); |
| } else { |
| j(negative, on_not_smi_result); // src2 was zero and src1 negative. |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SelectNonSmi(Register dst, |
| Register src1, |
| Register src2, |
| LabelType* on_not_smis) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(src1)); |
| ASSERT(!dst.is(src2)); |
| // Both operands must not be smis. |
| #ifdef DEBUG |
| if (allow_stub_calls()) { // Check contains a stub call. |
| Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); |
| Check(not_both_smis, "Both registers were smis in SelectNonSmi."); |
| } |
| #endif |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| movl(kScratchRegister, Immediate(kSmiTagMask)); |
| and_(kScratchRegister, src1); |
| testl(kScratchRegister, src2); |
| // If non-zero then both are smis. |
| j(not_zero, on_not_smis); |
| |
| // Exactly one operand is a smi. |
| ASSERT_EQ(1, static_cast<int>(kSmiTagMask)); |
| // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. |
| subq(kScratchRegister, Immediate(1)); |
| // If src1 is a smi, then scratch register all 1s, else it is all 0s. |
| movq(dst, src1); |
| xor_(dst, src2); |
| and_(dst, kScratchRegister); |
| // If src1 is a smi, dst holds src1 ^ src2, else it is zero. |
| xor_(dst, src1); |
| // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfSmi(Register src, LabelType* on_smi) { |
| ASSERT_EQ(0, kSmiTag); |
| Condition smi = CheckSmi(src); |
| j(smi, on_smi); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfNotSmi(Register src, LabelType* on_not_smi) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpUnlessNonNegativeSmi( |
| Register src, LabelType* on_not_smi_or_negative) { |
| Condition non_negative_smi = CheckNonNegativeSmi(src); |
| j(NegateCondition(non_negative_smi), on_not_smi_or_negative); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfSmiEqualsConstant(Register src, |
| Smi* constant, |
| LabelType* on_equals) { |
| SmiCompare(src, constant); |
| j(equal, on_equals); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfNotValidSmiValue(Register src, |
| LabelType* on_invalid) { |
| Condition is_valid = CheckInteger32ValidSmiValue(src); |
| j(NegateCondition(is_valid), on_invalid); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, |
| LabelType* on_invalid) { |
| Condition is_valid = CheckUInteger32ValidSmiValue(src); |
| j(NegateCondition(is_valid), on_invalid); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfNotBothSmi(Register src1, |
| Register src2, |
| LabelType* on_not_both_smi) { |
| Condition both_smi = CheckBothSmi(src1, src2); |
| j(NegateCondition(both_smi), on_not_both_smi); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1, |
| Register src2, |
| LabelType* on_not_both_smi) { |
| Condition both_smi = CheckBothNonNegativeSmi(src1, src2); |
| j(NegateCondition(both_smi), on_not_both_smi); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2, |
| LabelType* on_not_smis) { |
| if (dst.is(src1) || dst.is(src2)) { |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| movq(kScratchRegister, src1); |
| or_(kScratchRegister, src2); |
| JumpIfNotSmi(kScratchRegister, on_not_smis); |
| movq(dst, kScratchRegister); |
| } else { |
| movq(dst, src1); |
| or_(dst, src2); |
| JumpIfNotSmi(dst, on_not_smis); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfNotString(Register object, |
| Register object_map, |
| LabelType* not_string) { |
| Condition is_smi = CheckSmi(object); |
| j(is_smi, not_string); |
| CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map); |
| j(above_equal, not_string); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object, |
| Register second_object, |
| Register scratch1, |
| Register scratch2, |
| LabelType* on_fail) { |
| // Check that both objects are not smis. |
| Condition either_smi = CheckEitherSmi(first_object, second_object); |
| j(either_smi, on_fail); |
| |
| // Load instance type for both strings. |
| movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); |
| movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); |
| movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); |
| movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); |
| |
| // Check that both are flat ascii strings. |
| ASSERT(kNotStringTag != 0); |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| |
| andl(scratch1, Immediate(kFlatAsciiStringMask)); |
| andl(scratch2, Immediate(kFlatAsciiStringMask)); |
| // Interleave the bits to check both scratch1 and scratch2 in one test. |
| ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); |
| lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); |
| cmpl(scratch1, |
| Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); |
| j(not_equal, on_fail); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( |
| Register instance_type, |
| Register scratch, |
| LabelType *failure) { |
| if (!scratch.is(instance_type)) { |
| movl(scratch, instance_type); |
| } |
| |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| |
| andl(scratch, Immediate(kFlatAsciiStringMask)); |
| cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); |
| j(not_equal, failure); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first_object_instance_type, |
| Register second_object_instance_type, |
| Register scratch1, |
| Register scratch2, |
| LabelType* on_fail) { |
| // Load instance type for both strings. |
| movq(scratch1, first_object_instance_type); |
| movq(scratch2, second_object_instance_type); |
| |
| // Check that both are flat ascii strings. |
| ASSERT(kNotStringTag != 0); |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| |
| andl(scratch1, Immediate(kFlatAsciiStringMask)); |
| andl(scratch2, Immediate(kFlatAsciiStringMask)); |
| // Interleave the bits to check both scratch1 and scratch2 in one test. |
| ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); |
| lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); |
| cmpl(scratch1, |
| Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); |
| j(not_equal, on_fail); |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| LabelType* branch) { |
| if (Serializer::enabled()) { |
| // Can't do arithmetic on external references if it might get serialized. |
| // The mask isn't really an address. We load it as an external reference in |
| // case the size of the new space is different between the snapshot maker |
| // and the running system. |
| if (scratch.is(object)) { |
| movq(kScratchRegister, ExternalReference::new_space_mask(isolate())); |
| and_(scratch, kScratchRegister); |
| } else { |
| movq(scratch, ExternalReference::new_space_mask(isolate())); |
| and_(scratch, object); |
| } |
| movq(kScratchRegister, ExternalReference::new_space_start(isolate())); |
| cmpq(scratch, kScratchRegister); |
| j(cc, branch); |
| } else { |
| ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask()))); |
| intptr_t new_space_start = |
| reinterpret_cast<intptr_t>(HEAP->NewSpaceStart()); |
| movq(kScratchRegister, -new_space_start, RelocInfo::NONE); |
| if (scratch.is(object)) { |
| addq(scratch, kScratchRegister); |
| } else { |
| lea(scratch, Operand(object, kScratchRegister, times_1, 0)); |
| } |
| and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask()))); |
| j(cc, branch); |
| } |
| } |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_register, |
| LabelType* done, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper) { |
| bool definitely_matches = false; |
| NearLabel invoke; |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| Set(rax, actual.immediate()); |
| if (expected.immediate() == |
| SharedFunctionInfo::kDontAdaptArgumentsSentinel) { |
| // Don't worry about adapting arguments for built-ins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| Set(rbx, expected.immediate()); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| // Expected is in register, actual is immediate. This is the |
| // case when we invoke function values without going through the |
| // IC mechanism. |
| cmpq(expected.reg(), Immediate(actual.immediate())); |
| j(equal, &invoke); |
| ASSERT(expected.reg().is(rbx)); |
| Set(rax, actual.immediate()); |
| } else if (!expected.reg().is(actual.reg())) { |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmpq(expected.reg(), actual.reg()); |
| j(equal, &invoke); |
| ASSERT(actual.reg().is(rax)); |
| ASSERT(expected.reg().is(rbx)); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| if (!code_constant.is_null()) { |
| movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); |
| addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } else if (!code_register.is(rdx)) { |
| movq(rdx, code_register); |
| } |
| |
| if (flag == CALL_FUNCTION) { |
| if (call_wrapper != NULL) call_wrapper->BeforeCall(CallSize(adaptor)); |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| if (call_wrapper != NULL) call_wrapper->AfterCall(); |
| jmp(done); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(&invoke); |
| } |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_X64_MACRO_ASSEMBLER_X64_H_ |