| // Copyright 2007-2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <signal.h> |
| |
| #include "sys/stat.h" |
| #include "v8.h" |
| |
| #include "debug.h" |
| #include "ic-inl.h" |
| #include "runtime.h" |
| #include "serialize.h" |
| #include "scopeinfo.h" |
| #include "snapshot.h" |
| #include "cctest.h" |
| #include "spaces.h" |
| #include "objects.h" |
| #include "natives.h" |
| #include "bootstrapper.h" |
| |
| using namespace v8::internal; |
| |
| static const unsigned kCounters = 256; |
| static int local_counters[kCounters]; |
| static const char* local_counter_names[kCounters]; |
| |
| |
| static unsigned CounterHash(const char* s) { |
| unsigned hash = 0; |
| while (*++s) { |
| hash |= hash << 5; |
| hash += *s; |
| } |
| return hash; |
| } |
| |
| |
| // Callback receiver to track counters in test. |
| static int* counter_function(const char* name) { |
| unsigned hash = CounterHash(name) % kCounters; |
| unsigned original_hash = hash; |
| USE(original_hash); |
| while (true) { |
| if (local_counter_names[hash] == name) { |
| return &local_counters[hash]; |
| } |
| if (local_counter_names[hash] == 0) { |
| local_counter_names[hash] = name; |
| return &local_counters[hash]; |
| } |
| if (strcmp(local_counter_names[hash], name) == 0) { |
| return &local_counters[hash]; |
| } |
| hash = (hash + 1) % kCounters; |
| ASSERT(hash != original_hash); // Hash table has been filled up. |
| } |
| } |
| |
| |
| template <class T> |
| static Address AddressOf(T id) { |
| return ExternalReference(id, i::Isolate::Current()).address(); |
| } |
| |
| |
| template <class T> |
| static uint32_t Encode(const ExternalReferenceEncoder& encoder, T id) { |
| return encoder.Encode(AddressOf(id)); |
| } |
| |
| |
| static int make_code(TypeCode type, int id) { |
| return static_cast<uint32_t>(type) << kReferenceTypeShift | id; |
| } |
| |
| |
| TEST(ExternalReferenceEncoder) { |
| OS::Setup(); |
| Isolate* isolate = i::Isolate::Current(); |
| isolate->stats_table()->SetCounterFunction(counter_function); |
| HEAP->Setup(false); |
| ExternalReferenceEncoder encoder; |
| CHECK_EQ(make_code(BUILTIN, Builtins::kArrayCode), |
| Encode(encoder, Builtins::kArrayCode)); |
| CHECK_EQ(make_code(v8::internal::RUNTIME_FUNCTION, Runtime::kAbort), |
| Encode(encoder, Runtime::kAbort)); |
| CHECK_EQ(make_code(IC_UTILITY, IC::kLoadCallbackProperty), |
| Encode(encoder, IC_Utility(IC::kLoadCallbackProperty))); |
| ExternalReference keyed_load_function_prototype = |
| ExternalReference(isolate->counters()->keyed_load_function_prototype()); |
| CHECK_EQ(make_code(STATS_COUNTER, Counters::k_keyed_load_function_prototype), |
| encoder.Encode(keyed_load_function_prototype.address())); |
| ExternalReference the_hole_value_location = |
| ExternalReference::the_hole_value_location(isolate); |
| CHECK_EQ(make_code(UNCLASSIFIED, 2), |
| encoder.Encode(the_hole_value_location.address())); |
| ExternalReference stack_limit_address = |
| ExternalReference::address_of_stack_limit(isolate); |
| CHECK_EQ(make_code(UNCLASSIFIED, 4), |
| encoder.Encode(stack_limit_address.address())); |
| ExternalReference real_stack_limit_address = |
| ExternalReference::address_of_real_stack_limit(isolate); |
| CHECK_EQ(make_code(UNCLASSIFIED, 5), |
| encoder.Encode(real_stack_limit_address.address())); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| CHECK_EQ(make_code(UNCLASSIFIED, 15), |
| encoder.Encode(ExternalReference::debug_break(isolate).address())); |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| CHECK_EQ(make_code(UNCLASSIFIED, 10), |
| encoder.Encode( |
| ExternalReference::new_space_start(isolate).address())); |
| CHECK_EQ(make_code(UNCLASSIFIED, 3), |
| encoder.Encode(ExternalReference::roots_address(isolate).address())); |
| } |
| |
| |
| TEST(ExternalReferenceDecoder) { |
| OS::Setup(); |
| Isolate* isolate = i::Isolate::Current(); |
| isolate->stats_table()->SetCounterFunction(counter_function); |
| HEAP->Setup(false); |
| ExternalReferenceDecoder decoder; |
| CHECK_EQ(AddressOf(Builtins::kArrayCode), |
| decoder.Decode(make_code(BUILTIN, Builtins::kArrayCode))); |
| CHECK_EQ(AddressOf(Runtime::kAbort), |
| decoder.Decode(make_code(v8::internal::RUNTIME_FUNCTION, |
| Runtime::kAbort))); |
| CHECK_EQ(AddressOf(IC_Utility(IC::kLoadCallbackProperty)), |
| decoder.Decode(make_code(IC_UTILITY, IC::kLoadCallbackProperty))); |
| ExternalReference keyed_load_function = |
| ExternalReference(isolate->counters()->keyed_load_function_prototype()); |
| CHECK_EQ(keyed_load_function.address(), |
| decoder.Decode( |
| make_code(STATS_COUNTER, |
| Counters::k_keyed_load_function_prototype))); |
| CHECK_EQ(ExternalReference::the_hole_value_location(isolate).address(), |
| decoder.Decode(make_code(UNCLASSIFIED, 2))); |
| CHECK_EQ(ExternalReference::address_of_stack_limit(isolate).address(), |
| decoder.Decode(make_code(UNCLASSIFIED, 4))); |
| CHECK_EQ(ExternalReference::address_of_real_stack_limit(isolate).address(), |
| decoder.Decode(make_code(UNCLASSIFIED, 5))); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| CHECK_EQ(ExternalReference::debug_break(isolate).address(), |
| decoder.Decode(make_code(UNCLASSIFIED, 15))); |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| CHECK_EQ(ExternalReference::new_space_start(isolate).address(), |
| decoder.Decode(make_code(UNCLASSIFIED, 10))); |
| } |
| |
| |
| class FileByteSink : public SnapshotByteSink { |
| public: |
| explicit FileByteSink(const char* snapshot_file) { |
| fp_ = OS::FOpen(snapshot_file, "wb"); |
| file_name_ = snapshot_file; |
| if (fp_ == NULL) { |
| PrintF("Unable to write to snapshot file \"%s\"\n", snapshot_file); |
| exit(1); |
| } |
| } |
| virtual ~FileByteSink() { |
| if (fp_ != NULL) { |
| fclose(fp_); |
| } |
| } |
| virtual void Put(int byte, const char* description) { |
| if (fp_ != NULL) { |
| fputc(byte, fp_); |
| } |
| } |
| virtual int Position() { |
| return ftell(fp_); |
| } |
| void WriteSpaceUsed( |
| int new_space_used, |
| int pointer_space_used, |
| int data_space_used, |
| int code_space_used, |
| int map_space_used, |
| int cell_space_used, |
| int large_space_used); |
| |
| private: |
| FILE* fp_; |
| const char* file_name_; |
| }; |
| |
| |
| void FileByteSink::WriteSpaceUsed( |
| int new_space_used, |
| int pointer_space_used, |
| int data_space_used, |
| int code_space_used, |
| int map_space_used, |
| int cell_space_used, |
| int large_space_used) { |
| int file_name_length = StrLength(file_name_) + 10; |
| Vector<char> name = Vector<char>::New(file_name_length + 1); |
| OS::SNPrintF(name, "%s.size", file_name_); |
| FILE* fp = OS::FOpen(name.start(), "w"); |
| name.Dispose(); |
| fprintf(fp, "new %d\n", new_space_used); |
| fprintf(fp, "pointer %d\n", pointer_space_used); |
| fprintf(fp, "data %d\n", data_space_used); |
| fprintf(fp, "code %d\n", code_space_used); |
| fprintf(fp, "map %d\n", map_space_used); |
| fprintf(fp, "cell %d\n", cell_space_used); |
| fprintf(fp, "large %d\n", large_space_used); |
| fclose(fp); |
| } |
| |
| |
| static bool WriteToFile(const char* snapshot_file) { |
| FileByteSink file(snapshot_file); |
| StartupSerializer ser(&file); |
| ser.Serialize(); |
| return true; |
| } |
| |
| |
| static void Serialize() { |
| // We have to create one context. One reason for this is so that the builtins |
| // can be loaded from v8natives.js and their addresses can be processed. This |
| // will clear the pending fixups array, which would otherwise contain GC roots |
| // that would confuse the serialization/deserialization process. |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| env.Dispose(); |
| WriteToFile(FLAG_testing_serialization_file); |
| } |
| |
| |
| // Test that the whole heap can be serialized. |
| TEST(Serialize) { |
| Serializer::Enable(); |
| v8::V8::Initialize(); |
| Serialize(); |
| } |
| |
| |
| // Test that heap serialization is non-destructive. |
| TEST(SerializeTwice) { |
| Serializer::Enable(); |
| v8::V8::Initialize(); |
| Serialize(); |
| Serialize(); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Tests that the heap can be deserialized. |
| |
| static void Deserialize() { |
| CHECK(Snapshot::Initialize(FLAG_testing_serialization_file)); |
| } |
| |
| |
| static void SanityCheck() { |
| v8::HandleScope scope; |
| #ifdef DEBUG |
| HEAP->Verify(); |
| #endif |
| CHECK(Isolate::Current()->global()->IsJSObject()); |
| CHECK(Isolate::Current()->global_context()->IsContext()); |
| CHECK(HEAP->symbol_table()->IsSymbolTable()); |
| CHECK(!FACTORY->LookupAsciiSymbol("Empty")->IsFailure()); |
| } |
| |
| |
| DEPENDENT_TEST(Deserialize, Serialize) { |
| // The serialize-deserialize tests only work if the VM is built without |
| // serialization. That doesn't matter. We don't need to be able to |
| // serialize a snapshot in a VM that is booted from a snapshot. |
| if (!Snapshot::IsEnabled()) { |
| v8::HandleScope scope; |
| Deserialize(); |
| |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| env->Enter(); |
| |
| SanityCheck(); |
| } |
| } |
| |
| |
| DEPENDENT_TEST(DeserializeFromSecondSerialization, SerializeTwice) { |
| if (!Snapshot::IsEnabled()) { |
| v8::HandleScope scope; |
| Deserialize(); |
| |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| env->Enter(); |
| |
| SanityCheck(); |
| } |
| } |
| |
| |
| DEPENDENT_TEST(DeserializeAndRunScript2, Serialize) { |
| if (!Snapshot::IsEnabled()) { |
| v8::HandleScope scope; |
| Deserialize(); |
| |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| env->Enter(); |
| |
| const char* c_source = "\"1234\".length"; |
| v8::Local<v8::String> source = v8::String::New(c_source); |
| v8::Local<v8::Script> script = v8::Script::Compile(source); |
| CHECK_EQ(4, script->Run()->Int32Value()); |
| } |
| } |
| |
| |
| DEPENDENT_TEST(DeserializeFromSecondSerializationAndRunScript2, |
| SerializeTwice) { |
| if (!Snapshot::IsEnabled()) { |
| v8::HandleScope scope; |
| Deserialize(); |
| |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| env->Enter(); |
| |
| const char* c_source = "\"1234\".length"; |
| v8::Local<v8::String> source = v8::String::New(c_source); |
| v8::Local<v8::Script> script = v8::Script::Compile(source); |
| CHECK_EQ(4, script->Run()->Int32Value()); |
| } |
| } |
| |
| |
| TEST(PartialSerialization) { |
| Serializer::Enable(); |
| v8::V8::Initialize(); |
| |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| ASSERT(!env.IsEmpty()); |
| env->Enter(); |
| // Make sure all builtin scripts are cached. |
| { HandleScope scope; |
| for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { |
| Isolate::Current()->bootstrapper()->NativesSourceLookup(i); |
| } |
| } |
| HEAP->CollectAllGarbage(true); |
| HEAP->CollectAllGarbage(true); |
| |
| Object* raw_foo; |
| { |
| v8::HandleScope handle_scope; |
| v8::Local<v8::String> foo = v8::String::New("foo"); |
| ASSERT(!foo.IsEmpty()); |
| raw_foo = *(v8::Utils::OpenHandle(*foo)); |
| } |
| |
| int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; |
| Vector<char> startup_name = Vector<char>::New(file_name_length + 1); |
| OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); |
| |
| env->Exit(); |
| env.Dispose(); |
| |
| FileByteSink startup_sink(startup_name.start()); |
| startup_name.Dispose(); |
| StartupSerializer startup_serializer(&startup_sink); |
| startup_serializer.SerializeStrongReferences(); |
| |
| FileByteSink partial_sink(FLAG_testing_serialization_file); |
| PartialSerializer p_ser(&startup_serializer, &partial_sink); |
| p_ser.Serialize(&raw_foo); |
| startup_serializer.SerializeWeakReferences(); |
| partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE), |
| p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE), |
| p_ser.CurrentAllocationAddress(OLD_DATA_SPACE), |
| p_ser.CurrentAllocationAddress(CODE_SPACE), |
| p_ser.CurrentAllocationAddress(MAP_SPACE), |
| p_ser.CurrentAllocationAddress(CELL_SPACE), |
| p_ser.CurrentAllocationAddress(LO_SPACE)); |
| } |
| |
| |
| static void ReserveSpaceForPartialSnapshot(const char* file_name) { |
| int file_name_length = StrLength(file_name) + 10; |
| Vector<char> name = Vector<char>::New(file_name_length + 1); |
| OS::SNPrintF(name, "%s.size", file_name); |
| FILE* fp = OS::FOpen(name.start(), "r"); |
| name.Dispose(); |
| int new_size, pointer_size, data_size, code_size, map_size, cell_size; |
| int large_size; |
| #ifdef _MSC_VER |
| // Avoid warning about unsafe fscanf from MSVC. |
| // Please note that this is only fine if %c and %s are not being used. |
| #define fscanf fscanf_s |
| #endif |
| CHECK_EQ(1, fscanf(fp, "new %d\n", &new_size)); |
| CHECK_EQ(1, fscanf(fp, "pointer %d\n", &pointer_size)); |
| CHECK_EQ(1, fscanf(fp, "data %d\n", &data_size)); |
| CHECK_EQ(1, fscanf(fp, "code %d\n", &code_size)); |
| CHECK_EQ(1, fscanf(fp, "map %d\n", &map_size)); |
| CHECK_EQ(1, fscanf(fp, "cell %d\n", &cell_size)); |
| CHECK_EQ(1, fscanf(fp, "large %d\n", &large_size)); |
| #ifdef _MSC_VER |
| #undef fscanf |
| #endif |
| fclose(fp); |
| HEAP->ReserveSpace(new_size, |
| pointer_size, |
| data_size, |
| code_size, |
| map_size, |
| cell_size, |
| large_size); |
| } |
| |
| |
| DEPENDENT_TEST(PartialDeserialization, PartialSerialization) { |
| if (!Snapshot::IsEnabled()) { |
| int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; |
| Vector<char> startup_name = Vector<char>::New(file_name_length + 1); |
| OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); |
| |
| CHECK(Snapshot::Initialize(startup_name.start())); |
| startup_name.Dispose(); |
| |
| const char* file_name = FLAG_testing_serialization_file; |
| ReserveSpaceForPartialSnapshot(file_name); |
| |
| int snapshot_size = 0; |
| byte* snapshot = ReadBytes(file_name, &snapshot_size); |
| |
| Object* root; |
| { |
| SnapshotByteSource source(snapshot, snapshot_size); |
| Deserializer deserializer(&source); |
| deserializer.DeserializePartial(&root); |
| CHECK(root->IsString()); |
| } |
| v8::HandleScope handle_scope; |
| Handle<Object>root_handle(root); |
| |
| Object* root2; |
| { |
| SnapshotByteSource source(snapshot, snapshot_size); |
| Deserializer deserializer(&source); |
| deserializer.DeserializePartial(&root2); |
| CHECK(root2->IsString()); |
| CHECK(*root_handle == root2); |
| } |
| } |
| } |
| |
| |
| TEST(ContextSerialization) { |
| Serializer::Enable(); |
| v8::V8::Initialize(); |
| |
| v8::Persistent<v8::Context> env = v8::Context::New(); |
| ASSERT(!env.IsEmpty()); |
| env->Enter(); |
| // Make sure all builtin scripts are cached. |
| { HandleScope scope; |
| for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { |
| Isolate::Current()->bootstrapper()->NativesSourceLookup(i); |
| } |
| } |
| // If we don't do this then we end up with a stray root pointing at the |
| // context even after we have disposed of env. |
| HEAP->CollectAllGarbage(true); |
| |
| int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; |
| Vector<char> startup_name = Vector<char>::New(file_name_length + 1); |
| OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); |
| |
| env->Exit(); |
| |
| Object* raw_context = *(v8::Utils::OpenHandle(*env)); |
| |
| env.Dispose(); |
| |
| FileByteSink startup_sink(startup_name.start()); |
| startup_name.Dispose(); |
| StartupSerializer startup_serializer(&startup_sink); |
| startup_serializer.SerializeStrongReferences(); |
| |
| FileByteSink partial_sink(FLAG_testing_serialization_file); |
| PartialSerializer p_ser(&startup_serializer, &partial_sink); |
| p_ser.Serialize(&raw_context); |
| startup_serializer.SerializeWeakReferences(); |
| partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE), |
| p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE), |
| p_ser.CurrentAllocationAddress(OLD_DATA_SPACE), |
| p_ser.CurrentAllocationAddress(CODE_SPACE), |
| p_ser.CurrentAllocationAddress(MAP_SPACE), |
| p_ser.CurrentAllocationAddress(CELL_SPACE), |
| p_ser.CurrentAllocationAddress(LO_SPACE)); |
| } |
| |
| |
| DEPENDENT_TEST(ContextDeserialization, ContextSerialization) { |
| if (!Snapshot::IsEnabled()) { |
| int file_name_length = StrLength(FLAG_testing_serialization_file) + 10; |
| Vector<char> startup_name = Vector<char>::New(file_name_length + 1); |
| OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file); |
| |
| CHECK(Snapshot::Initialize(startup_name.start())); |
| startup_name.Dispose(); |
| |
| const char* file_name = FLAG_testing_serialization_file; |
| ReserveSpaceForPartialSnapshot(file_name); |
| |
| int snapshot_size = 0; |
| byte* snapshot = ReadBytes(file_name, &snapshot_size); |
| |
| Object* root; |
| { |
| SnapshotByteSource source(snapshot, snapshot_size); |
| Deserializer deserializer(&source); |
| deserializer.DeserializePartial(&root); |
| CHECK(root->IsContext()); |
| } |
| v8::HandleScope handle_scope; |
| Handle<Object>root_handle(root); |
| |
| Object* root2; |
| { |
| SnapshotByteSource source(snapshot, snapshot_size); |
| Deserializer deserializer(&source); |
| deserializer.DeserializePartial(&root2); |
| CHECK(root2->IsContext()); |
| CHECK(*root_handle != root2); |
| } |
| } |
| } |
| |
| |
| TEST(LinearAllocation) { |
| v8::V8::Initialize(); |
| int new_space_max = 512 * KB; |
| |
| for (int size = 1000; size < 5 * MB; size += size >> 1) { |
| int new_space_size = (size < new_space_max) ? size : new_space_max; |
| HEAP->ReserveSpace( |
| new_space_size, |
| size, // Old pointer space. |
| size, // Old data space. |
| size, // Code space. |
| size, // Map space. |
| size, // Cell space. |
| size); // Large object space. |
| LinearAllocationScope linear_allocation_scope; |
| const int kSmallFixedArrayLength = 4; |
| const int kSmallFixedArraySize = |
| FixedArray::kHeaderSize + kSmallFixedArrayLength * kPointerSize; |
| const int kSmallStringLength = 16; |
| const int kSmallStringSize = |
| (SeqAsciiString::kHeaderSize + kSmallStringLength + |
| kObjectAlignmentMask) & ~kObjectAlignmentMask; |
| const int kMapSize = Map::kSize; |
| |
| Object* new_last = NULL; |
| for (int i = 0; |
| i + kSmallFixedArraySize <= new_space_size; |
| i += kSmallFixedArraySize) { |
| Object* obj = |
| HEAP->AllocateFixedArray(kSmallFixedArrayLength)->ToObjectChecked(); |
| if (new_last != NULL) { |
| CHECK(reinterpret_cast<char*>(obj) == |
| reinterpret_cast<char*>(new_last) + kSmallFixedArraySize); |
| } |
| new_last = obj; |
| } |
| |
| Object* pointer_last = NULL; |
| for (int i = 0; |
| i + kSmallFixedArraySize <= size; |
| i += kSmallFixedArraySize) { |
| Object* obj = HEAP->AllocateFixedArray(kSmallFixedArrayLength, |
| TENURED)->ToObjectChecked(); |
| int old_page_fullness = i % Page::kPageSize; |
| int page_fullness = (i + kSmallFixedArraySize) % Page::kPageSize; |
| if (page_fullness < old_page_fullness || |
| page_fullness > Page::kObjectAreaSize) { |
| i = RoundUp(i, Page::kPageSize); |
| pointer_last = NULL; |
| } |
| if (pointer_last != NULL) { |
| CHECK(reinterpret_cast<char*>(obj) == |
| reinterpret_cast<char*>(pointer_last) + kSmallFixedArraySize); |
| } |
| pointer_last = obj; |
| } |
| |
| Object* data_last = NULL; |
| for (int i = 0; i + kSmallStringSize <= size; i += kSmallStringSize) { |
| Object* obj = HEAP->AllocateRawAsciiString(kSmallStringLength, |
| TENURED)->ToObjectChecked(); |
| int old_page_fullness = i % Page::kPageSize; |
| int page_fullness = (i + kSmallStringSize) % Page::kPageSize; |
| if (page_fullness < old_page_fullness || |
| page_fullness > Page::kObjectAreaSize) { |
| i = RoundUp(i, Page::kPageSize); |
| data_last = NULL; |
| } |
| if (data_last != NULL) { |
| CHECK(reinterpret_cast<char*>(obj) == |
| reinterpret_cast<char*>(data_last) + kSmallStringSize); |
| } |
| data_last = obj; |
| } |
| |
| Object* map_last = NULL; |
| for (int i = 0; i + kMapSize <= size; i += kMapSize) { |
| Object* obj = HEAP->AllocateMap(JS_OBJECT_TYPE, |
| 42 * kPointerSize)->ToObjectChecked(); |
| int old_page_fullness = i % Page::kPageSize; |
| int page_fullness = (i + kMapSize) % Page::kPageSize; |
| if (page_fullness < old_page_fullness || |
| page_fullness > Page::kObjectAreaSize) { |
| i = RoundUp(i, Page::kPageSize); |
| map_last = NULL; |
| } |
| if (map_last != NULL) { |
| CHECK(reinterpret_cast<char*>(obj) == |
| reinterpret_cast<char*>(map_last) + kMapSize); |
| } |
| map_last = obj; |
| } |
| |
| if (size > Page::kObjectAreaSize) { |
| // Support for reserving space in large object space is not there yet, |
| // but using an always-allocate scope is fine for now. |
| AlwaysAllocateScope always; |
| int large_object_array_length = |
| (size - FixedArray::kHeaderSize) / kPointerSize; |
| Object* obj = HEAP->AllocateFixedArray(large_object_array_length, |
| TENURED)->ToObjectChecked(); |
| CHECK(!obj->IsFailure()); |
| } |
| } |
| } |
| |
| |
| TEST(TestThatAlwaysSucceeds) { |
| } |
| |
| |
| TEST(TestThatAlwaysFails) { |
| bool ArtificialFailure = false; |
| CHECK(ArtificialFailure); |
| } |
| |
| |
| DEPENDENT_TEST(DependentTestThatAlwaysFails, TestThatAlwaysSucceeds) { |
| bool ArtificialFailure2 = false; |
| CHECK(ArtificialFailure2); |
| } |