| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Platform specific code for Solaris 10 goes here. For the POSIX comaptible |
| // parts the implementation is in platform-posix.cc. |
| |
| #ifdef __sparc |
| # error "V8 does not support the SPARC CPU architecture." |
| #endif |
| |
| #include <sys/stack.h> // for stack alignment |
| #include <unistd.h> // getpagesize(), usleep() |
| #include <sys/mman.h> // mmap() |
| #include <ucontext.h> // walkstack(), getcontext() |
| #include <dlfcn.h> // dladdr |
| #include <pthread.h> |
| #include <sched.h> // for sched_yield |
| #include <semaphore.h> |
| #include <time.h> |
| #include <sys/time.h> // gettimeofday(), timeradd() |
| #include <errno.h> |
| #include <ieeefp.h> // finite() |
| #include <signal.h> // sigemptyset(), etc |
| #include <sys/regset.h> |
| |
| |
| #undef MAP_TYPE |
| |
| #include "v8.h" |
| |
| #include "platform-posix.h" |
| #include "platform.h" |
| #include "v8threads.h" |
| #include "vm-state-inl.h" |
| |
| |
| // It seems there is a bug in some Solaris distributions (experienced in |
| // SunOS 5.10 Generic_141445-09) which make it difficult or impossible to |
| // access signbit() despite the availability of other C99 math functions. |
| #ifndef signbit |
| // Test sign - usually defined in math.h |
| int signbit(double x) { |
| // We need to take care of the special case of both positive and negative |
| // versions of zero. |
| if (x == 0) { |
| return fpclass(x) & FP_NZERO; |
| } else { |
| // This won't detect negative NaN but that should be okay since we don't |
| // assume that behavior. |
| return x < 0; |
| } |
| } |
| #endif // signbit |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // 0 is never a valid thread id on Solaris since the main thread is 1 and |
| // subsequent have their ids incremented from there |
| static const pthread_t kNoThread = (pthread_t) 0; |
| |
| |
| double ceiling(double x) { |
| return ceil(x); |
| } |
| |
| |
| static Mutex* limit_mutex = NULL; |
| void OS::SetUp() { |
| // Seed the random number generator. |
| // Convert the current time to a 64-bit integer first, before converting it |
| // to an unsigned. Going directly will cause an overflow and the seed to be |
| // set to all ones. The seed will be identical for different instances that |
| // call this setup code within the same millisecond. |
| uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
| srandom(static_cast<unsigned int>(seed)); |
| limit_mutex = CreateMutex(); |
| } |
| |
| |
| void OS::PostSetUp() { |
| // Math functions depend on CPU features therefore they are initialized after |
| // CPU. |
| MathSetup(); |
| } |
| |
| |
| uint64_t OS::CpuFeaturesImpliedByPlatform() { |
| return 0; // Solaris runs on a lot of things. |
| } |
| |
| |
| int OS::ActivationFrameAlignment() { |
| // GCC generates code that requires 16 byte alignment such as movdqa. |
| return Max(STACK_ALIGN, 16); |
| } |
| |
| |
| void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { |
| __asm__ __volatile__("" : : : "memory"); |
| *ptr = value; |
| } |
| |
| |
| const char* OS::LocalTimezone(double time) { |
| if (isnan(time)) return ""; |
| time_t tv = static_cast<time_t>(floor(time/msPerSecond)); |
| struct tm* t = localtime(&tv); |
| if (NULL == t) return ""; |
| return tzname[0]; // The location of the timezone string on Solaris. |
| } |
| |
| |
| double OS::LocalTimeOffset() { |
| // On Solaris, struct tm does not contain a tm_gmtoff field. |
| time_t utc = time(NULL); |
| ASSERT(utc != -1); |
| struct tm* loc = localtime(&utc); |
| ASSERT(loc != NULL); |
| return static_cast<double>((mktime(loc) - utc) * msPerSecond); |
| } |
| |
| |
| // We keep the lowest and highest addresses mapped as a quick way of |
| // determining that pointers are outside the heap (used mostly in assertions |
| // and verification). The estimate is conservative, i.e., not all addresses in |
| // 'allocated' space are actually allocated to our heap. The range is |
| // [lowest, highest), inclusive on the low and and exclusive on the high end. |
| static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); |
| static void* highest_ever_allocated = reinterpret_cast<void*>(0); |
| |
| |
| static void UpdateAllocatedSpaceLimits(void* address, int size) { |
| ASSERT(limit_mutex != NULL); |
| ScopedLock lock(limit_mutex); |
| |
| lowest_ever_allocated = Min(lowest_ever_allocated, address); |
| highest_ever_allocated = |
| Max(highest_ever_allocated, |
| reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); |
| } |
| |
| |
| bool OS::IsOutsideAllocatedSpace(void* address) { |
| return address < lowest_ever_allocated || address >= highest_ever_allocated; |
| } |
| |
| |
| size_t OS::AllocateAlignment() { |
| return static_cast<size_t>(getpagesize()); |
| } |
| |
| |
| void* OS::Allocate(const size_t requested, |
| size_t* allocated, |
| bool is_executable) { |
| const size_t msize = RoundUp(requested, getpagesize()); |
| int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
| void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); |
| |
| if (mbase == MAP_FAILED) { |
| LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); |
| return NULL; |
| } |
| *allocated = msize; |
| UpdateAllocatedSpaceLimits(mbase, msize); |
| return mbase; |
| } |
| |
| |
| void OS::Free(void* address, const size_t size) { |
| // TODO(1240712): munmap has a return value which is ignored here. |
| int result = munmap(address, size); |
| USE(result); |
| ASSERT(result == 0); |
| } |
| |
| |
| void OS::Sleep(int milliseconds) { |
| useconds_t ms = static_cast<useconds_t>(milliseconds); |
| usleep(1000 * ms); |
| } |
| |
| |
| void OS::Abort() { |
| // Redirect to std abort to signal abnormal program termination. |
| abort(); |
| } |
| |
| |
| void OS::DebugBreak() { |
| asm("int $3"); |
| } |
| |
| |
| class PosixMemoryMappedFile : public OS::MemoryMappedFile { |
| public: |
| PosixMemoryMappedFile(FILE* file, void* memory, int size) |
| : file_(file), memory_(memory), size_(size) { } |
| virtual ~PosixMemoryMappedFile(); |
| virtual void* memory() { return memory_; } |
| virtual int size() { return size_; } |
| private: |
| FILE* file_; |
| void* memory_; |
| int size_; |
| }; |
| |
| |
| OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { |
| FILE* file = fopen(name, "r+"); |
| if (file == NULL) return NULL; |
| |
| fseek(file, 0, SEEK_END); |
| int size = ftell(file); |
| |
| void* memory = |
| mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); |
| return new PosixMemoryMappedFile(file, memory, size); |
| } |
| |
| |
| OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, |
| void* initial) { |
| FILE* file = fopen(name, "w+"); |
| if (file == NULL) return NULL; |
| int result = fwrite(initial, size, 1, file); |
| if (result < 1) { |
| fclose(file); |
| return NULL; |
| } |
| void* memory = |
| mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); |
| return new PosixMemoryMappedFile(file, memory, size); |
| } |
| |
| |
| PosixMemoryMappedFile::~PosixMemoryMappedFile() { |
| if (memory_) munmap(memory_, size_); |
| fclose(file_); |
| } |
| |
| |
| void OS::LogSharedLibraryAddresses() { |
| } |
| |
| |
| void OS::SignalCodeMovingGC() { |
| } |
| |
| |
| struct StackWalker { |
| Vector<OS::StackFrame>& frames; |
| int index; |
| }; |
| |
| |
| static int StackWalkCallback(uintptr_t pc, int signo, void* data) { |
| struct StackWalker* walker = static_cast<struct StackWalker*>(data); |
| Dl_info info; |
| |
| int i = walker->index; |
| |
| walker->frames[i].address = reinterpret_cast<void*>(pc); |
| |
| // Make sure line termination is in place. |
| walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0'; |
| |
| Vector<char> text = MutableCStrVector(walker->frames[i].text, |
| OS::kStackWalkMaxTextLen); |
| |
| if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) { |
| OS::SNPrintF(text, "[0x%p]", pc); |
| } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) { |
| // We have symbol info. |
| OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc); |
| } else { |
| // No local symbol info. |
| OS::SNPrintF(text, |
| "%s'0x%p [0x%p]", |
| info.dli_fname, |
| pc - reinterpret_cast<uintptr_t>(info.dli_fbase), |
| pc); |
| } |
| walker->index++; |
| return 0; |
| } |
| |
| |
| int OS::StackWalk(Vector<OS::StackFrame> frames) { |
| ucontext_t ctx; |
| struct StackWalker walker = { frames, 0 }; |
| |
| if (getcontext(&ctx) < 0) return kStackWalkError; |
| |
| if (!walkcontext(&ctx, StackWalkCallback, &walker)) { |
| return kStackWalkError; |
| } |
| |
| return walker.index; |
| } |
| |
| |
| // Constants used for mmap. |
| static const int kMmapFd = -1; |
| static const int kMmapFdOffset = 0; |
| |
| |
| VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } |
| |
| VirtualMemory::VirtualMemory(size_t size) { |
| address_ = ReserveRegion(size); |
| size_ = size; |
| } |
| |
| |
| VirtualMemory::VirtualMemory(size_t size, size_t alignment) |
| : address_(NULL), size_(0) { |
| ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); |
| size_t request_size = RoundUp(size + alignment, |
| static_cast<intptr_t>(OS::AllocateAlignment())); |
| void* reservation = mmap(OS::GetRandomMmapAddr(), |
| request_size, |
| PROT_NONE, |
| MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, |
| kMmapFd, |
| kMmapFdOffset); |
| if (reservation == MAP_FAILED) return; |
| |
| Address base = static_cast<Address>(reservation); |
| Address aligned_base = RoundUp(base, alignment); |
| ASSERT_LE(base, aligned_base); |
| |
| // Unmap extra memory reserved before and after the desired block. |
| if (aligned_base != base) { |
| size_t prefix_size = static_cast<size_t>(aligned_base - base); |
| OS::Free(base, prefix_size); |
| request_size -= prefix_size; |
| } |
| |
| size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); |
| ASSERT_LE(aligned_size, request_size); |
| |
| if (aligned_size != request_size) { |
| size_t suffix_size = request_size - aligned_size; |
| OS::Free(aligned_base + aligned_size, suffix_size); |
| request_size -= suffix_size; |
| } |
| |
| ASSERT(aligned_size == request_size); |
| |
| address_ = static_cast<void*>(aligned_base); |
| size_ = aligned_size; |
| } |
| |
| |
| VirtualMemory::~VirtualMemory() { |
| if (IsReserved()) { |
| bool result = ReleaseRegion(address(), size()); |
| ASSERT(result); |
| USE(result); |
| } |
| } |
| |
| |
| bool VirtualMemory::IsReserved() { |
| return address_ != NULL; |
| } |
| |
| |
| void VirtualMemory::Reset() { |
| address_ = NULL; |
| size_ = 0; |
| } |
| |
| |
| bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { |
| return CommitRegion(address, size, is_executable); |
| } |
| |
| |
| bool VirtualMemory::Uncommit(void* address, size_t size) { |
| return UncommitRegion(address, size); |
| } |
| |
| |
| bool VirtualMemory::Guard(void* address) { |
| OS::Guard(address, OS::CommitPageSize()); |
| return true; |
| } |
| |
| |
| void* VirtualMemory::ReserveRegion(size_t size) { |
| void* result = mmap(OS::GetRandomMmapAddr(), |
| size, |
| PROT_NONE, |
| MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, |
| kMmapFd, |
| kMmapFdOffset); |
| |
| if (result == MAP_FAILED) return NULL; |
| |
| return result; |
| } |
| |
| |
| bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { |
| int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
| if (MAP_FAILED == mmap(base, |
| size, |
| prot, |
| MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, |
| kMmapFd, |
| kMmapFdOffset)) { |
| return false; |
| } |
| |
| UpdateAllocatedSpaceLimits(base, size); |
| return true; |
| } |
| |
| |
| bool VirtualMemory::UncommitRegion(void* base, size_t size) { |
| return mmap(base, |
| size, |
| PROT_NONE, |
| MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED, |
| kMmapFd, |
| kMmapFdOffset) != MAP_FAILED; |
| } |
| |
| |
| bool VirtualMemory::ReleaseRegion(void* base, size_t size) { |
| return munmap(base, size) == 0; |
| } |
| |
| |
| class Thread::PlatformData : public Malloced { |
| public: |
| PlatformData() : thread_(kNoThread) { } |
| |
| pthread_t thread_; // Thread handle for pthread. |
| }; |
| |
| |
| Thread::Thread(const Options& options) |
| : data_(new PlatformData()), |
| stack_size_(options.stack_size()) { |
| set_name(options.name()); |
| } |
| |
| |
| Thread::~Thread() { |
| delete data_; |
| } |
| |
| |
| static void* ThreadEntry(void* arg) { |
| Thread* thread = reinterpret_cast<Thread*>(arg); |
| // This is also initialized by the first argument to pthread_create() but we |
| // don't know which thread will run first (the original thread or the new |
| // one) so we initialize it here too. |
| thread->data()->thread_ = pthread_self(); |
| ASSERT(thread->data()->thread_ != kNoThread); |
| thread->Run(); |
| return NULL; |
| } |
| |
| |
| void Thread::set_name(const char* name) { |
| strncpy(name_, name, sizeof(name_)); |
| name_[sizeof(name_) - 1] = '\0'; |
| } |
| |
| |
| void Thread::Start() { |
| pthread_attr_t* attr_ptr = NULL; |
| pthread_attr_t attr; |
| if (stack_size_ > 0) { |
| pthread_attr_init(&attr); |
| pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_)); |
| attr_ptr = &attr; |
| } |
| pthread_create(&data_->thread_, NULL, ThreadEntry, this); |
| ASSERT(data_->thread_ != kNoThread); |
| } |
| |
| |
| void Thread::Join() { |
| pthread_join(data_->thread_, NULL); |
| } |
| |
| |
| Thread::LocalStorageKey Thread::CreateThreadLocalKey() { |
| pthread_key_t key; |
| int result = pthread_key_create(&key, NULL); |
| USE(result); |
| ASSERT(result == 0); |
| return static_cast<LocalStorageKey>(key); |
| } |
| |
| |
| void Thread::DeleteThreadLocalKey(LocalStorageKey key) { |
| pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
| int result = pthread_key_delete(pthread_key); |
| USE(result); |
| ASSERT(result == 0); |
| } |
| |
| |
| void* Thread::GetThreadLocal(LocalStorageKey key) { |
| pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
| return pthread_getspecific(pthread_key); |
| } |
| |
| |
| void Thread::SetThreadLocal(LocalStorageKey key, void* value) { |
| pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
| pthread_setspecific(pthread_key, value); |
| } |
| |
| |
| void Thread::YieldCPU() { |
| sched_yield(); |
| } |
| |
| |
| class SolarisMutex : public Mutex { |
| public: |
| SolarisMutex() { |
| pthread_mutexattr_t attr; |
| pthread_mutexattr_init(&attr); |
| pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); |
| pthread_mutex_init(&mutex_, &attr); |
| } |
| |
| ~SolarisMutex() { pthread_mutex_destroy(&mutex_); } |
| |
| int Lock() { return pthread_mutex_lock(&mutex_); } |
| |
| int Unlock() { return pthread_mutex_unlock(&mutex_); } |
| |
| virtual bool TryLock() { |
| int result = pthread_mutex_trylock(&mutex_); |
| // Return false if the lock is busy and locking failed. |
| if (result == EBUSY) { |
| return false; |
| } |
| ASSERT(result == 0); // Verify no other errors. |
| return true; |
| } |
| |
| private: |
| pthread_mutex_t mutex_; |
| }; |
| |
| |
| Mutex* OS::CreateMutex() { |
| return new SolarisMutex(); |
| } |
| |
| |
| class SolarisSemaphore : public Semaphore { |
| public: |
| explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); } |
| virtual ~SolarisSemaphore() { sem_destroy(&sem_); } |
| |
| virtual void Wait(); |
| virtual bool Wait(int timeout); |
| virtual void Signal() { sem_post(&sem_); } |
| private: |
| sem_t sem_; |
| }; |
| |
| |
| void SolarisSemaphore::Wait() { |
| while (true) { |
| int result = sem_wait(&sem_); |
| if (result == 0) return; // Successfully got semaphore. |
| CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. |
| } |
| } |
| |
| |
| #ifndef TIMEVAL_TO_TIMESPEC |
| #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ |
| (ts)->tv_sec = (tv)->tv_sec; \ |
| (ts)->tv_nsec = (tv)->tv_usec * 1000; \ |
| } while (false) |
| #endif |
| |
| |
| #ifndef timeradd |
| #define timeradd(a, b, result) \ |
| do { \ |
| (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \ |
| (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \ |
| if ((result)->tv_usec >= 1000000) { \ |
| ++(result)->tv_sec; \ |
| (result)->tv_usec -= 1000000; \ |
| } \ |
| } while (0) |
| #endif |
| |
| |
| bool SolarisSemaphore::Wait(int timeout) { |
| const long kOneSecondMicros = 1000000; // NOLINT |
| |
| // Split timeout into second and nanosecond parts. |
| struct timeval delta; |
| delta.tv_usec = timeout % kOneSecondMicros; |
| delta.tv_sec = timeout / kOneSecondMicros; |
| |
| struct timeval current_time; |
| // Get the current time. |
| if (gettimeofday(¤t_time, NULL) == -1) { |
| return false; |
| } |
| |
| // Calculate time for end of timeout. |
| struct timeval end_time; |
| timeradd(¤t_time, &delta, &end_time); |
| |
| struct timespec ts; |
| TIMEVAL_TO_TIMESPEC(&end_time, &ts); |
| // Wait for semaphore signalled or timeout. |
| while (true) { |
| int result = sem_timedwait(&sem_, &ts); |
| if (result == 0) return true; // Successfully got semaphore. |
| if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. |
| CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. |
| } |
| } |
| |
| |
| Semaphore* OS::CreateSemaphore(int count) { |
| return new SolarisSemaphore(count); |
| } |
| |
| |
| static pthread_t GetThreadID() { |
| return pthread_self(); |
| } |
| |
| static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { |
| USE(info); |
| if (signal != SIGPROF) return; |
| Isolate* isolate = Isolate::UncheckedCurrent(); |
| if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) { |
| // We require a fully initialized and entered isolate. |
| return; |
| } |
| if (v8::Locker::IsActive() && |
| !isolate->thread_manager()->IsLockedByCurrentThread()) { |
| return; |
| } |
| |
| Sampler* sampler = isolate->logger()->sampler(); |
| if (sampler == NULL || !sampler->IsActive()) return; |
| |
| TickSample sample_obj; |
| TickSample* sample = CpuProfiler::TickSampleEvent(isolate); |
| if (sample == NULL) sample = &sample_obj; |
| |
| // Extracting the sample from the context is extremely machine dependent. |
| ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); |
| mcontext_t& mcontext = ucontext->uc_mcontext; |
| sample->state = isolate->current_vm_state(); |
| |
| sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]); |
| sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]); |
| sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]); |
| |
| sampler->SampleStack(sample); |
| sampler->Tick(sample); |
| } |
| |
| class Sampler::PlatformData : public Malloced { |
| public: |
| PlatformData() : vm_tid_(GetThreadID()) {} |
| |
| pthread_t vm_tid() const { return vm_tid_; } |
| |
| private: |
| pthread_t vm_tid_; |
| }; |
| |
| |
| class SignalSender : public Thread { |
| public: |
| enum SleepInterval { |
| HALF_INTERVAL, |
| FULL_INTERVAL |
| }; |
| |
| static const int kSignalSenderStackSize = 64 * KB; |
| |
| explicit SignalSender(int interval) |
| : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)), |
| interval_(interval) {} |
| |
| static void InstallSignalHandler() { |
| struct sigaction sa; |
| sa.sa_sigaction = ProfilerSignalHandler; |
| sigemptyset(&sa.sa_mask); |
| sa.sa_flags = SA_RESTART | SA_SIGINFO; |
| signal_handler_installed_ = |
| (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0); |
| } |
| |
| static void RestoreSignalHandler() { |
| if (signal_handler_installed_) { |
| sigaction(SIGPROF, &old_signal_handler_, 0); |
| signal_handler_installed_ = false; |
| } |
| } |
| |
| static void AddActiveSampler(Sampler* sampler) { |
| ScopedLock lock(mutex_.Pointer()); |
| SamplerRegistry::AddActiveSampler(sampler); |
| if (instance_ == NULL) { |
| // Start a thread that will send SIGPROF signal to VM threads, |
| // when CPU profiling will be enabled. |
| instance_ = new SignalSender(sampler->interval()); |
| instance_->Start(); |
| } else { |
| ASSERT(instance_->interval_ == sampler->interval()); |
| } |
| } |
| |
| static void RemoveActiveSampler(Sampler* sampler) { |
| ScopedLock lock(mutex_.Pointer()); |
| SamplerRegistry::RemoveActiveSampler(sampler); |
| if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { |
| RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); |
| delete instance_; |
| instance_ = NULL; |
| RestoreSignalHandler(); |
| } |
| } |
| |
| // Implement Thread::Run(). |
| virtual void Run() { |
| SamplerRegistry::State state; |
| while ((state = SamplerRegistry::GetState()) != |
| SamplerRegistry::HAS_NO_SAMPLERS) { |
| bool cpu_profiling_enabled = |
| (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); |
| bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); |
| if (cpu_profiling_enabled && !signal_handler_installed_) { |
| InstallSignalHandler(); |
| } else if (!cpu_profiling_enabled && signal_handler_installed_) { |
| RestoreSignalHandler(); |
| } |
| |
| // When CPU profiling is enabled both JavaScript and C++ code is |
| // profiled. We must not suspend. |
| if (!cpu_profiling_enabled) { |
| if (rate_limiter_.SuspendIfNecessary()) continue; |
| } |
| if (cpu_profiling_enabled && runtime_profiler_enabled) { |
| if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { |
| return; |
| } |
| Sleep(HALF_INTERVAL); |
| if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { |
| return; |
| } |
| Sleep(HALF_INTERVAL); |
| } else { |
| if (cpu_profiling_enabled) { |
| if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, |
| this)) { |
| return; |
| } |
| } |
| if (runtime_profiler_enabled) { |
| if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, |
| NULL)) { |
| return; |
| } |
| } |
| Sleep(FULL_INTERVAL); |
| } |
| } |
| } |
| |
| static void DoCpuProfile(Sampler* sampler, void* raw_sender) { |
| if (!sampler->IsProfiling()) return; |
| SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender); |
| sender->SendProfilingSignal(sampler->platform_data()->vm_tid()); |
| } |
| |
| static void DoRuntimeProfile(Sampler* sampler, void* ignored) { |
| if (!sampler->isolate()->IsInitialized()) return; |
| sampler->isolate()->runtime_profiler()->NotifyTick(); |
| } |
| |
| void SendProfilingSignal(pthread_t tid) { |
| if (!signal_handler_installed_) return; |
| pthread_kill(tid, SIGPROF); |
| } |
| |
| void Sleep(SleepInterval full_or_half) { |
| // Convert ms to us and subtract 100 us to compensate delays |
| // occuring during signal delivery. |
| useconds_t interval = interval_ * 1000 - 100; |
| if (full_or_half == HALF_INTERVAL) interval /= 2; |
| int result = usleep(interval); |
| #ifdef DEBUG |
| if (result != 0 && errno != EINTR) { |
| fprintf(stderr, |
| "SignalSender usleep error; interval = %u, errno = %d\n", |
| interval, |
| errno); |
| ASSERT(result == 0 || errno == EINTR); |
| } |
| #endif |
| USE(result); |
| } |
| |
| const int interval_; |
| RuntimeProfilerRateLimiter rate_limiter_; |
| |
| // Protects the process wide state below. |
| static LazyMutex mutex_; |
| static SignalSender* instance_; |
| static bool signal_handler_installed_; |
| static struct sigaction old_signal_handler_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(SignalSender); |
| }; |
| |
| LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER; |
| SignalSender* SignalSender::instance_ = NULL; |
| struct sigaction SignalSender::old_signal_handler_; |
| bool SignalSender::signal_handler_installed_ = false; |
| |
| |
| Sampler::Sampler(Isolate* isolate, int interval) |
| : isolate_(isolate), |
| interval_(interval), |
| profiling_(false), |
| active_(false), |
| samples_taken_(0) { |
| data_ = new PlatformData; |
| } |
| |
| |
| Sampler::~Sampler() { |
| ASSERT(!IsActive()); |
| delete data_; |
| } |
| |
| |
| void Sampler::Start() { |
| ASSERT(!IsActive()); |
| SetActive(true); |
| SignalSender::AddActiveSampler(this); |
| } |
| |
| |
| void Sampler::Stop() { |
| ASSERT(IsActive()); |
| SignalSender::RemoveActiveSampler(this); |
| SetActive(false); |
| } |
| |
| } } // namespace v8::internal |