| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_ARM_CODEGEN_ARM_H_ |
| #define V8_ARM_CODEGEN_ARM_H_ |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations |
| class CompilationInfo; |
| class DeferredCode; |
| class RegisterAllocator; |
| class RegisterFile; |
| |
| enum InitState { CONST_INIT, NOT_CONST_INIT }; |
| enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Reference support |
| |
| // A reference is a C++ stack-allocated object that puts a |
| // reference on the virtual frame. The reference may be consumed |
| // by GetValue, TakeValue, SetValue, and Codegen::UnloadReference. |
| // When the lifetime (scope) of a valid reference ends, it must have |
| // been consumed, and be in state UNLOADED. |
| class Reference BASE_EMBEDDED { |
| public: |
| // The values of the types is important, see size(). |
| enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; |
| Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get = false); |
| ~Reference(); |
| |
| Expression* expression() const { return expression_; } |
| Type type() const { return type_; } |
| void set_type(Type value) { |
| ASSERT_EQ(ILLEGAL, type_); |
| type_ = value; |
| } |
| |
| void set_unloaded() { |
| ASSERT_NE(ILLEGAL, type_); |
| ASSERT_NE(UNLOADED, type_); |
| type_ = UNLOADED; |
| } |
| // The size the reference takes up on the stack. |
| int size() const { |
| return (type_ < SLOT) ? 0 : type_; |
| } |
| |
| bool is_illegal() const { return type_ == ILLEGAL; } |
| bool is_slot() const { return type_ == SLOT; } |
| bool is_property() const { return type_ == NAMED || type_ == KEYED; } |
| bool is_unloaded() const { return type_ == UNLOADED; } |
| |
| // Return the name. Only valid for named property references. |
| Handle<String> GetName(); |
| |
| // Generate code to push the value of the reference on top of the |
| // expression stack. The reference is expected to be already on top of |
| // the expression stack, and it is consumed by the call unless the |
| // reference is for a compound assignment. |
| // If the reference is not consumed, it is left in place under its value. |
| void GetValue(); |
| |
| // Generate code to pop a reference, push the value of the reference, |
| // and then spill the stack frame. |
| inline void GetValueAndSpill(); |
| |
| // Generate code to store the value on top of the expression stack in the |
| // reference. The reference is expected to be immediately below the value |
| // on the expression stack. The value is stored in the location specified |
| // by the reference, and is left on top of the stack, after the reference |
| // is popped from beneath it (unloaded). |
| void SetValue(InitState init_state); |
| |
| private: |
| CodeGenerator* cgen_; |
| Expression* expression_; |
| Type type_; |
| // Keep the reference on the stack after get, so it can be used by set later. |
| bool persist_after_get_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Code generation state |
| |
| // The state is passed down the AST by the code generator (and back up, in |
| // the form of the state of the label pair). It is threaded through the |
| // call stack. Constructing a state implicitly pushes it on the owning code |
| // generator's stack of states, and destroying one implicitly pops it. |
| |
| class CodeGenState BASE_EMBEDDED { |
| public: |
| // Create an initial code generator state. Destroying the initial state |
| // leaves the code generator with a NULL state. |
| explicit CodeGenState(CodeGenerator* owner); |
| |
| // Create a code generator state based on a code generator's current |
| // state. The new state has its own pair of branch labels. |
| CodeGenState(CodeGenerator* owner, |
| JumpTarget* true_target, |
| JumpTarget* false_target); |
| |
| // Destroy a code generator state and restore the owning code generator's |
| // previous state. |
| ~CodeGenState(); |
| |
| JumpTarget* true_target() const { return true_target_; } |
| JumpTarget* false_target() const { return false_target_; } |
| |
| private: |
| CodeGenerator* owner_; |
| JumpTarget* true_target_; |
| JumpTarget* false_target_; |
| CodeGenState* previous_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator |
| |
| class CodeGenerator: public AstVisitor { |
| public: |
| // Compilation mode. Either the compiler is used as the primary |
| // compiler and needs to setup everything or the compiler is used as |
| // the secondary compiler for split compilation and has to handle |
| // bailouts. |
| enum Mode { |
| PRIMARY, |
| SECONDARY |
| }; |
| |
| // Takes a function literal, generates code for it. This function should only |
| // be called by compiler.cc. |
| static Handle<Code> MakeCode(CompilationInfo* info); |
| |
| // Printing of AST, etc. as requested by flags. |
| static void MakeCodePrologue(CompilationInfo* info); |
| |
| // Allocate and install the code. |
| static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm, |
| Code::Flags flags, |
| CompilationInfo* info); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| static bool ShouldGenerateLog(Expression* type); |
| #endif |
| |
| static void SetFunctionInfo(Handle<JSFunction> fun, |
| FunctionLiteral* lit, |
| bool is_toplevel, |
| Handle<Script> script); |
| |
| static void RecordPositions(MacroAssembler* masm, int pos); |
| |
| // Accessors |
| MacroAssembler* masm() { return masm_; } |
| VirtualFrame* frame() const { return frame_; } |
| inline Handle<Script> script(); |
| |
| bool has_valid_frame() const { return frame_ != NULL; } |
| |
| // Set the virtual frame to be new_frame, with non-frame register |
| // reference counts given by non_frame_registers. The non-frame |
| // register reference counts of the old frame are returned in |
| // non_frame_registers. |
| void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); |
| |
| void DeleteFrame(); |
| |
| RegisterAllocator* allocator() const { return allocator_; } |
| |
| CodeGenState* state() { return state_; } |
| void set_state(CodeGenState* state) { state_ = state; } |
| |
| void AddDeferred(DeferredCode* code) { deferred_.Add(code); } |
| |
| static const int kUnknownIntValue = -1; |
| |
| private: |
| // Construction/Destruction |
| explicit CodeGenerator(MacroAssembler* masm); |
| |
| // Accessors |
| inline bool is_eval(); |
| Scope* scope(); |
| |
| // Generating deferred code. |
| void ProcessDeferred(); |
| |
| // State |
| bool has_cc() const { return cc_reg_ != al; } |
| JumpTarget* true_target() const { return state_->true_target(); } |
| JumpTarget* false_target() const { return state_->false_target(); } |
| |
| // We don't track loop nesting level on ARM yet. |
| int loop_nesting() const { return 0; } |
| |
| // Node visitors. |
| void VisitStatements(ZoneList<Statement*>* statements); |
| |
| #define DEF_VISIT(type) \ |
| void Visit##type(type* node); |
| AST_NODE_LIST(DEF_VISIT) |
| #undef DEF_VISIT |
| |
| // Visit a statement and then spill the virtual frame if control flow can |
| // reach the end of the statement (ie, it does not exit via break, |
| // continue, return, or throw). This function is used temporarily while |
| // the code generator is being transformed. |
| inline void VisitAndSpill(Statement* statement); |
| |
| // Visit a list of statements and then spill the virtual frame if control |
| // flow can reach the end of the list. |
| inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements); |
| |
| // Main code generation function |
| void Generate(CompilationInfo* info, Mode mode); |
| |
| // The following are used by class Reference. |
| void LoadReference(Reference* ref); |
| void UnloadReference(Reference* ref); |
| |
| static MemOperand ContextOperand(Register context, int index) { |
| return MemOperand(context, Context::SlotOffset(index)); |
| } |
| |
| MemOperand SlotOperand(Slot* slot, Register tmp); |
| |
| MemOperand ContextSlotOperandCheckExtensions(Slot* slot, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow); |
| |
| // Expressions |
| static MemOperand GlobalObject() { |
| return ContextOperand(cp, Context::GLOBAL_INDEX); |
| } |
| |
| void LoadCondition(Expression* x, |
| JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool force_cc); |
| void Load(Expression* expr); |
| void LoadGlobal(); |
| void LoadGlobalReceiver(Register scratch); |
| |
| // Generate code to push the value of an expression on top of the frame |
| // and then spill the frame fully to memory. This function is used |
| // temporarily while the code generator is being transformed. |
| inline void LoadAndSpill(Expression* expression); |
| |
| // Call LoadCondition and then spill the virtual frame unless control flow |
| // cannot reach the end of the expression (ie, by emitting only |
| // unconditional jumps to the control targets). |
| inline void LoadConditionAndSpill(Expression* expression, |
| JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool force_control); |
| |
| // Read a value from a slot and leave it on top of the expression stack. |
| void LoadFromSlot(Slot* slot, TypeofState typeof_state); |
| // Store the value on top of the stack to a slot. |
| void StoreToSlot(Slot* slot, InitState init_state); |
| // Load a keyed property, leaving it in r0. The receiver and key are |
| // passed on the stack, and remain there. |
| void EmitKeyedLoad(bool is_global); |
| |
| void LoadFromGlobalSlotCheckExtensions(Slot* slot, |
| TypeofState typeof_state, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow); |
| |
| // Special code for typeof expressions: Unfortunately, we must |
| // be careful when loading the expression in 'typeof' |
| // expressions. We are not allowed to throw reference errors for |
| // non-existing properties of the global object, so we must make it |
| // look like an explicit property access, instead of an access |
| // through the context chain. |
| void LoadTypeofExpression(Expression* x); |
| |
| void ToBoolean(JumpTarget* true_target, JumpTarget* false_target); |
| |
| void GenericBinaryOperation(Token::Value op, |
| OverwriteMode overwrite_mode, |
| int known_rhs = kUnknownIntValue); |
| void Comparison(Condition cc, |
| Expression* left, |
| Expression* right, |
| bool strict = false); |
| |
| void SmiOperation(Token::Value op, |
| Handle<Object> value, |
| bool reversed, |
| OverwriteMode mode); |
| |
| void CallWithArguments(ZoneList<Expression*>* arguments, |
| CallFunctionFlags flags, |
| int position); |
| |
| // Control flow |
| void Branch(bool if_true, JumpTarget* target); |
| void CheckStack(); |
| |
| struct InlineRuntimeLUT { |
| void (CodeGenerator::*method)(ZoneList<Expression*>*); |
| const char* name; |
| }; |
| |
| static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name); |
| bool CheckForInlineRuntimeCall(CallRuntime* node); |
| static bool PatchInlineRuntimeEntry(Handle<String> name, |
| const InlineRuntimeLUT& new_entry, |
| InlineRuntimeLUT* old_entry); |
| |
| static Handle<Code> ComputeLazyCompile(int argc); |
| void ProcessDeclarations(ZoneList<Declaration*>* declarations); |
| |
| static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop); |
| |
| // Declare global variables and functions in the given array of |
| // name/value pairs. |
| void DeclareGlobals(Handle<FixedArray> pairs); |
| |
| // Instantiate the function boilerplate. |
| void InstantiateBoilerplate(Handle<JSFunction> boilerplate); |
| |
| // Support for type checks. |
| void GenerateIsSmi(ZoneList<Expression*>* args); |
| void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); |
| void GenerateIsArray(ZoneList<Expression*>* args); |
| void GenerateIsObject(ZoneList<Expression*>* args); |
| void GenerateIsFunction(ZoneList<Expression*>* args); |
| void GenerateIsUndetectableObject(ZoneList<Expression*>* args); |
| |
| // Support for construct call checks. |
| void GenerateIsConstructCall(ZoneList<Expression*>* args); |
| |
| // Support for arguments.length and arguments[?]. |
| void GenerateArgumentsLength(ZoneList<Expression*>* args); |
| void GenerateArgumentsAccess(ZoneList<Expression*>* args); |
| |
| // Support for accessing the class and value fields of an object. |
| void GenerateClassOf(ZoneList<Expression*>* args); |
| void GenerateValueOf(ZoneList<Expression*>* args); |
| void GenerateSetValueOf(ZoneList<Expression*>* args); |
| |
| // Fast support for charCodeAt(n). |
| void GenerateFastCharCodeAt(ZoneList<Expression*>* args); |
| |
| // Fast support for object equality testing. |
| void GenerateObjectEquals(ZoneList<Expression*>* args); |
| |
| void GenerateLog(ZoneList<Expression*>* args); |
| |
| // Fast support for Math.random(). |
| void GenerateRandomPositiveSmi(ZoneList<Expression*>* args); |
| |
| // Fast support for StringAdd. |
| void GenerateStringAdd(ZoneList<Expression*>* args); |
| |
| // Fast support for SubString. |
| void GenerateSubString(ZoneList<Expression*>* args); |
| |
| // Fast support for StringCompare. |
| void GenerateStringCompare(ZoneList<Expression*>* args); |
| |
| // Support for direct calls from JavaScript to native RegExp code. |
| void GenerateRegExpExec(ZoneList<Expression*>* args); |
| |
| // Simple condition analysis. |
| enum ConditionAnalysis { |
| ALWAYS_TRUE, |
| ALWAYS_FALSE, |
| DONT_KNOW |
| }; |
| ConditionAnalysis AnalyzeCondition(Expression* cond); |
| |
| // Methods used to indicate which source code is generated for. Source |
| // positions are collected by the assembler and emitted with the relocation |
| // information. |
| void CodeForFunctionPosition(FunctionLiteral* fun); |
| void CodeForReturnPosition(FunctionLiteral* fun); |
| void CodeForStatementPosition(Statement* node); |
| void CodeForDoWhileConditionPosition(DoWhileStatement* stmt); |
| void CodeForSourcePosition(int pos); |
| |
| #ifdef DEBUG |
| // True if the registers are valid for entry to a block. |
| bool HasValidEntryRegisters(); |
| #endif |
| |
| List<DeferredCode*> deferred_; |
| |
| // Assembler |
| MacroAssembler* masm_; // to generate code |
| |
| CompilationInfo* info_; |
| |
| // Code generation state |
| VirtualFrame* frame_; |
| RegisterAllocator* allocator_; |
| Condition cc_reg_; |
| CodeGenState* state_; |
| |
| // Jump targets |
| BreakTarget function_return_; |
| |
| // True if the function return is shadowed (ie, jumping to the target |
| // function_return_ does not jump to the true function return, but rather |
| // to some unlinking code). |
| bool function_return_is_shadowed_; |
| |
| static InlineRuntimeLUT kInlineRuntimeLUT[]; |
| |
| friend class VirtualFrame; |
| friend class JumpTarget; |
| friend class Reference; |
| friend class FastCodeGenerator; |
| friend class FullCodeGenerator; |
| friend class FullCodeGenSyntaxChecker; |
| |
| DISALLOW_COPY_AND_ASSIGN(CodeGenerator); |
| }; |
| |
| |
| class GenericBinaryOpStub : public CodeStub { |
| public: |
| GenericBinaryOpStub(Token::Value op, |
| OverwriteMode mode, |
| int constant_rhs = CodeGenerator::kUnknownIntValue) |
| : op_(op), |
| mode_(mode), |
| constant_rhs_(constant_rhs), |
| specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)), |
| name_(NULL) { } |
| |
| private: |
| Token::Value op_; |
| OverwriteMode mode_; |
| int constant_rhs_; |
| bool specialized_on_rhs_; |
| char* name_; |
| |
| static const int kMaxKnownRhs = 0x40000000; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 6> {}; |
| class KnownIntBits: public BitField<int, 8, 8> {}; |
| |
| Major MajorKey() { return GenericBinaryOp; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return OpBits::encode(op_) |
| | ModeBits::encode(mode_) |
| | KnownIntBits::encode(MinorKeyForKnownInt()); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| void HandleNonSmiBitwiseOp(MacroAssembler* masm); |
| |
| static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) { |
| if (constant_rhs == CodeGenerator::kUnknownIntValue) return false; |
| if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3; |
| if (op == Token::MOD) { |
| if (constant_rhs <= 1) return false; |
| if (constant_rhs <= 10) return true; |
| if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true; |
| return false; |
| } |
| return false; |
| } |
| |
| int MinorKeyForKnownInt() { |
| if (!specialized_on_rhs_) return 0; |
| if (constant_rhs_ <= 10) return constant_rhs_ + 1; |
| ASSERT(IsPowerOf2(constant_rhs_)); |
| int key = 12; |
| int d = constant_rhs_; |
| while ((d & 1) == 0) { |
| key++; |
| d >>= 1; |
| } |
| return key; |
| } |
| |
| const char* GetName(); |
| |
| #ifdef DEBUG |
| void Print() { |
| if (!specialized_on_rhs_) { |
| PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); |
| } else { |
| PrintF("GenericBinaryOpStub (%s by %d)\n", |
| Token::String(op_), |
| constant_rhs_); |
| } |
| } |
| #endif |
| }; |
| |
| |
| class StringStubBase: public CodeStub { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersLong adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii); |
| |
| // Generate code for copying a large number of characters. This function |
| // is allowed to spend extra time setting up conditions to make copying |
| // faster. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| void GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags); |
| }; |
| |
| |
| // Flag that indicates how to generate code for the stub StringAddStub. |
| enum StringAddFlags { |
| NO_STRING_ADD_FLAGS = 0, |
| NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub. |
| }; |
| |
| |
| class StringAddStub: public StringStubBase { |
| public: |
| explicit StringAddStub(StringAddFlags flags) { |
| string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0); |
| } |
| |
| private: |
| Major MajorKey() { return StringAdd; } |
| int MinorKey() { return string_check_ ? 0 : 1; } |
| |
| void Generate(MacroAssembler* masm); |
| |
| // Should the stub check whether arguments are strings? |
| bool string_check_; |
| }; |
| |
| |
| class SubStringStub: public StringStubBase { |
| public: |
| SubStringStub() {} |
| |
| private: |
| Major MajorKey() { return SubString; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| |
| class StringCompareStub: public CodeStub { |
| public: |
| StringCompareStub() { } |
| |
| // Compare two flat ASCII strings and returns result in r0. |
| // Does not use the stack. |
| static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4); |
| |
| private: |
| Major MajorKey() { return StringCompare; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ARM_CODEGEN_ARM_H_ |