| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_X64_CODEGEN_X64_H_ |
| #define V8_X64_CODEGEN_X64_H_ |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations |
| class CompilationInfo; |
| class DeferredCode; |
| class RegisterAllocator; |
| class RegisterFile; |
| |
| enum InitState { CONST_INIT, NOT_CONST_INIT }; |
| enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Reference support |
| |
| // A reference is a C++ stack-allocated object that puts a |
| // reference on the virtual frame. The reference may be consumed |
| // by GetValue, TakeValue, SetValue, and Codegen::UnloadReference. |
| // When the lifetime (scope) of a valid reference ends, it must have |
| // been consumed, and be in state UNLOADED. |
| class Reference BASE_EMBEDDED { |
| public: |
| // The values of the types is important, see size(). |
| enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; |
| |
| Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get = false); |
| ~Reference(); |
| |
| Expression* expression() const { return expression_; } |
| Type type() const { return type_; } |
| void set_type(Type value) { |
| ASSERT_EQ(ILLEGAL, type_); |
| type_ = value; |
| } |
| |
| void set_unloaded() { |
| ASSERT_NE(ILLEGAL, type_); |
| ASSERT_NE(UNLOADED, type_); |
| type_ = UNLOADED; |
| } |
| // The size the reference takes up on the stack. |
| int size() const { |
| return (type_ < SLOT) ? 0 : type_; |
| } |
| |
| bool is_illegal() const { return type_ == ILLEGAL; } |
| bool is_slot() const { return type_ == SLOT; } |
| bool is_property() const { return type_ == NAMED || type_ == KEYED; } |
| bool is_unloaded() const { return type_ == UNLOADED; } |
| |
| // Return the name. Only valid for named property references. |
| Handle<String> GetName(); |
| |
| // Generate code to push the value of the reference on top of the |
| // expression stack. The reference is expected to be already on top of |
| // the expression stack, and it is consumed by the call unless the |
| // reference is for a compound assignment. |
| // If the reference is not consumed, it is left in place under its value. |
| void GetValue(); |
| |
| // Like GetValue except that the slot is expected to be written to before |
| // being read from again. The value of the reference may be invalidated, |
| // causing subsequent attempts to read it to fail. |
| void TakeValue(); |
| |
| // Generate code to store the value on top of the expression stack in the |
| // reference. The reference is expected to be immediately below the value |
| // on the expression stack. The value is stored in the location specified |
| // by the reference, and is left on top of the stack, after the reference |
| // is popped from beneath it (unloaded). |
| void SetValue(InitState init_state); |
| |
| private: |
| CodeGenerator* cgen_; |
| Expression* expression_; |
| Type type_; |
| bool persist_after_get_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Control destinations. |
| |
| // A control destination encapsulates a pair of jump targets and a |
| // flag indicating which one is the preferred fall-through. The |
| // preferred fall-through must be unbound, the other may be already |
| // bound (ie, a backward target). |
| // |
| // The true and false targets may be jumped to unconditionally or |
| // control may split conditionally. Unconditional jumping and |
| // splitting should be emitted in tail position (as the last thing |
| // when compiling an expression) because they can cause either label |
| // to be bound or the non-fall through to be jumped to leaving an |
| // invalid virtual frame. |
| // |
| // The labels in the control destination can be extracted and |
| // manipulated normally without affecting the state of the |
| // destination. |
| |
| class ControlDestination BASE_EMBEDDED { |
| public: |
| ControlDestination(JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool true_is_fall_through) |
| : true_target_(true_target), |
| false_target_(false_target), |
| true_is_fall_through_(true_is_fall_through), |
| is_used_(false) { |
| ASSERT(true_is_fall_through ? !true_target->is_bound() |
| : !false_target->is_bound()); |
| } |
| |
| // Accessors for the jump targets. Directly jumping or branching to |
| // or binding the targets will not update the destination's state. |
| JumpTarget* true_target() const { return true_target_; } |
| JumpTarget* false_target() const { return false_target_; } |
| |
| // True if the the destination has been jumped to unconditionally or |
| // control has been split to both targets. This predicate does not |
| // test whether the targets have been extracted and manipulated as |
| // raw jump targets. |
| bool is_used() const { return is_used_; } |
| |
| // True if the destination is used and the true target (respectively |
| // false target) was the fall through. If the target is backward, |
| // "fall through" included jumping unconditionally to it. |
| bool true_was_fall_through() const { |
| return is_used_ && true_is_fall_through_; |
| } |
| |
| bool false_was_fall_through() const { |
| return is_used_ && !true_is_fall_through_; |
| } |
| |
| // Emit a branch to one of the true or false targets, and bind the |
| // other target. Because this binds the fall-through target, it |
| // should be emitted in tail position (as the last thing when |
| // compiling an expression). |
| void Split(Condition cc) { |
| ASSERT(!is_used_); |
| if (true_is_fall_through_) { |
| false_target_->Branch(NegateCondition(cc)); |
| true_target_->Bind(); |
| } else { |
| true_target_->Branch(cc); |
| false_target_->Bind(); |
| } |
| is_used_ = true; |
| } |
| |
| // Emit an unconditional jump in tail position, to the true target |
| // (if the argument is true) or the false target. The "jump" will |
| // actually bind the jump target if it is forward, jump to it if it |
| // is backward. |
| void Goto(bool where) { |
| ASSERT(!is_used_); |
| JumpTarget* target = where ? true_target_ : false_target_; |
| if (target->is_bound()) { |
| target->Jump(); |
| } else { |
| target->Bind(); |
| } |
| is_used_ = true; |
| true_is_fall_through_ = where; |
| } |
| |
| // Mark this jump target as used as if Goto had been called, but |
| // without generating a jump or binding a label (the control effect |
| // should have already happened). This is used when the left |
| // subexpression of the short-circuit boolean operators are |
| // compiled. |
| void Use(bool where) { |
| ASSERT(!is_used_); |
| ASSERT((where ? true_target_ : false_target_)->is_bound()); |
| is_used_ = true; |
| true_is_fall_through_ = where; |
| } |
| |
| // Swap the true and false targets but keep the same actual label as |
| // the fall through. This is used when compiling negated |
| // expressions, where we want to swap the targets but preserve the |
| // state. |
| void Invert() { |
| JumpTarget* temp_target = true_target_; |
| true_target_ = false_target_; |
| false_target_ = temp_target; |
| |
| true_is_fall_through_ = !true_is_fall_through_; |
| } |
| |
| private: |
| // True and false jump targets. |
| JumpTarget* true_target_; |
| JumpTarget* false_target_; |
| |
| // Before using the destination: true if the true target is the |
| // preferred fall through, false if the false target is. After |
| // using the destination: true if the true target was actually used |
| // as the fall through, false if the false target was. |
| bool true_is_fall_through_; |
| |
| // True if the Split or Goto functions have been called. |
| bool is_used_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Code generation state |
| |
| // The state is passed down the AST by the code generator (and back up, in |
| // the form of the state of the jump target pair). It is threaded through |
| // the call stack. Constructing a state implicitly pushes it on the owning |
| // code generator's stack of states, and destroying one implicitly pops it. |
| // |
| // The code generator state is only used for expressions, so statements have |
| // the initial state. |
| |
| class CodeGenState BASE_EMBEDDED { |
| public: |
| // Create an initial code generator state. Destroying the initial state |
| // leaves the code generator with a NULL state. |
| explicit CodeGenState(CodeGenerator* owner); |
| |
| // Create a code generator state based on a code generator's current |
| // state. The new state has its own control destination. |
| CodeGenState(CodeGenerator* owner, ControlDestination* destination); |
| |
| // Destroy a code generator state and restore the owning code generator's |
| // previous state. |
| ~CodeGenState(); |
| |
| // Accessors for the state. |
| ControlDestination* destination() const { return destination_; } |
| |
| private: |
| // The owning code generator. |
| CodeGenerator* owner_; |
| |
| // A control destination in case the expression has a control-flow |
| // effect. |
| ControlDestination* destination_; |
| |
| // The previous state of the owning code generator, restored when |
| // this state is destroyed. |
| CodeGenState* previous_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Arguments allocation mode |
| |
| enum ArgumentsAllocationMode { |
| NO_ARGUMENTS_ALLOCATION, |
| EAGER_ARGUMENTS_ALLOCATION, |
| LAZY_ARGUMENTS_ALLOCATION |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator |
| |
| class CodeGenerator: public AstVisitor { |
| public: |
| // Compilation mode. Either the compiler is used as the primary |
| // compiler and needs to setup everything or the compiler is used as |
| // the secondary compiler for split compilation and has to handle |
| // bailouts. |
| enum Mode { |
| PRIMARY, |
| SECONDARY |
| }; |
| |
| // Takes a function literal, generates code for it. This function should only |
| // be called by compiler.cc. |
| static Handle<Code> MakeCode(CompilationInfo* info); |
| |
| // Printing of AST, etc. as requested by flags. |
| static void MakeCodePrologue(CompilationInfo* info); |
| |
| // Allocate and install the code. |
| static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm, |
| Code::Flags flags, |
| CompilationInfo* info); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| static bool ShouldGenerateLog(Expression* type); |
| #endif |
| |
| static void RecordPositions(MacroAssembler* masm, int pos); |
| |
| // Accessors |
| MacroAssembler* masm() { return masm_; } |
| VirtualFrame* frame() const { return frame_; } |
| inline Handle<Script> script(); |
| |
| bool has_valid_frame() const { return frame_ != NULL; } |
| |
| // Set the virtual frame to be new_frame, with non-frame register |
| // reference counts given by non_frame_registers. The non-frame |
| // register reference counts of the old frame are returned in |
| // non_frame_registers. |
| void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); |
| |
| void DeleteFrame(); |
| |
| RegisterAllocator* allocator() const { return allocator_; } |
| |
| CodeGenState* state() { return state_; } |
| void set_state(CodeGenState* state) { state_ = state; } |
| |
| void AddDeferred(DeferredCode* code) { deferred_.Add(code); } |
| |
| bool in_spilled_code() const { return in_spilled_code_; } |
| void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; } |
| |
| private: |
| // Construction/Destruction |
| explicit CodeGenerator(MacroAssembler* masm); |
| |
| // Accessors |
| inline bool is_eval(); |
| Scope* scope(); |
| |
| // Generating deferred code. |
| void ProcessDeferred(); |
| |
| // State |
| ControlDestination* destination() const { return state_->destination(); } |
| |
| // Track loop nesting level. |
| int loop_nesting() const { return loop_nesting_; } |
| void IncrementLoopNesting() { loop_nesting_++; } |
| void DecrementLoopNesting() { loop_nesting_--; } |
| |
| |
| // Node visitors. |
| void VisitStatements(ZoneList<Statement*>* statements); |
| |
| #define DEF_VISIT(type) \ |
| void Visit##type(type* node); |
| AST_NODE_LIST(DEF_VISIT) |
| #undef DEF_VISIT |
| |
| // Visit a statement and then spill the virtual frame if control flow can |
| // reach the end of the statement (ie, it does not exit via break, |
| // continue, return, or throw). This function is used temporarily while |
| // the code generator is being transformed. |
| void VisitAndSpill(Statement* statement); |
| |
| // Visit a list of statements and then spill the virtual frame if control |
| // flow can reach the end of the list. |
| void VisitStatementsAndSpill(ZoneList<Statement*>* statements); |
| |
| // Main code generation function |
| void Generate(CompilationInfo* info, Mode mode); |
| |
| // Generate the return sequence code. Should be called no more than |
| // once per compiled function, immediately after binding the return |
| // target (which can not be done more than once). |
| void GenerateReturnSequence(Result* return_value); |
| |
| // Returns the arguments allocation mode. |
| ArgumentsAllocationMode ArgumentsMode(); |
| |
| // Store the arguments object and allocate it if necessary. |
| Result StoreArgumentsObject(bool initial); |
| |
| // The following are used by class Reference. |
| void LoadReference(Reference* ref); |
| void UnloadReference(Reference* ref); |
| |
| static Operand ContextOperand(Register context, int index) { |
| return Operand(context, Context::SlotOffset(index)); |
| } |
| |
| Operand SlotOperand(Slot* slot, Register tmp); |
| |
| Operand ContextSlotOperandCheckExtensions(Slot* slot, |
| Result tmp, |
| JumpTarget* slow); |
| |
| // Expressions |
| static Operand GlobalObject() { |
| return ContextOperand(rsi, Context::GLOBAL_INDEX); |
| } |
| |
| void LoadCondition(Expression* x, |
| ControlDestination* destination, |
| bool force_control); |
| void Load(Expression* expr); |
| void LoadGlobal(); |
| void LoadGlobalReceiver(); |
| |
| // Generate code to push the value of an expression on top of the frame |
| // and then spill the frame fully to memory. This function is used |
| // temporarily while the code generator is being transformed. |
| void LoadAndSpill(Expression* expression); |
| |
| // Read a value from a slot and leave it on top of the expression stack. |
| void LoadFromSlot(Slot* slot, TypeofState typeof_state); |
| void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state); |
| Result LoadFromGlobalSlotCheckExtensions(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow); |
| |
| // Store the value on top of the expression stack into a slot, leaving the |
| // value in place. |
| void StoreToSlot(Slot* slot, InitState init_state); |
| |
| // Load a property of an object, returning it in a Result. |
| // The object and the property name are passed on the stack, and |
| // not changed. |
| Result EmitKeyedLoad(bool is_global); |
| |
| // Special code for typeof expressions: Unfortunately, we must |
| // be careful when loading the expression in 'typeof' |
| // expressions. We are not allowed to throw reference errors for |
| // non-existing properties of the global object, so we must make it |
| // look like an explicit property access, instead of an access |
| // through the context chain. |
| void LoadTypeofExpression(Expression* x); |
| |
| // Translate the value on top of the frame into control flow to the |
| // control destination. |
| void ToBoolean(ControlDestination* destination); |
| |
| void GenericBinaryOperation( |
| Token::Value op, |
| StaticType* type, |
| OverwriteMode overwrite_mode); |
| |
| // If possible, combine two constant smi values using op to produce |
| // a smi result, and push it on the virtual frame, all at compile time. |
| // Returns true if it succeeds. Otherwise it has no effect. |
| bool FoldConstantSmis(Token::Value op, int left, int right); |
| |
| // Emit code to perform a binary operation on a constant |
| // smi and a likely smi. Consumes the Result *operand. |
| Result ConstantSmiBinaryOperation(Token::Value op, |
| Result* operand, |
| Handle<Object> constant_operand, |
| StaticType* type, |
| bool reversed, |
| OverwriteMode overwrite_mode); |
| |
| // Emit code to perform a binary operation on two likely smis. |
| // The code to handle smi arguments is produced inline. |
| // Consumes the Results *left and *right. |
| Result LikelySmiBinaryOperation(Token::Value op, |
| Result* left, |
| Result* right, |
| OverwriteMode overwrite_mode); |
| |
| void Comparison(Condition cc, |
| bool strict, |
| ControlDestination* destination); |
| |
| // To prevent long attacker-controlled byte sequences, integer constants |
| // from the JavaScript source are loaded in two parts if they are larger |
| // than 16 bits. |
| static const int kMaxSmiInlinedBits = 16; |
| bool IsUnsafeSmi(Handle<Object> value); |
| // Load an integer constant x into a register target using |
| // at most 16 bits of user-controlled data per assembly operation. |
| void LoadUnsafeSmi(Register target, Handle<Object> value); |
| |
| void CallWithArguments(ZoneList<Expression*>* arguments, |
| CallFunctionFlags flags, |
| int position); |
| |
| // An optimized implementation of expressions of the form |
| // x.apply(y, arguments). We call x the applicand and y the receiver. |
| // The optimization avoids allocating an arguments object if possible. |
| void CallApplyLazy(Expression* applicand, |
| Expression* receiver, |
| VariableProxy* arguments, |
| int position); |
| |
| void CheckStack(); |
| |
| struct InlineRuntimeLUT { |
| void (CodeGenerator::*method)(ZoneList<Expression*>*); |
| const char* name; |
| }; |
| static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name); |
| bool CheckForInlineRuntimeCall(CallRuntime* node); |
| static bool PatchInlineRuntimeEntry(Handle<String> name, |
| const InlineRuntimeLUT& new_entry, |
| InlineRuntimeLUT* old_entry); |
| void ProcessDeclarations(ZoneList<Declaration*>* declarations); |
| |
| static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop); |
| |
| // Declare global variables and functions in the given array of |
| // name/value pairs. |
| void DeclareGlobals(Handle<FixedArray> pairs); |
| |
| // Instantiate the function boilerplate. |
| void InstantiateBoilerplate(Handle<JSFunction> boilerplate); |
| |
| // Support for type checks. |
| void GenerateIsSmi(ZoneList<Expression*>* args); |
| void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); |
| void GenerateIsArray(ZoneList<Expression*>* args); |
| void GenerateIsObject(ZoneList<Expression*>* args); |
| void GenerateIsFunction(ZoneList<Expression*>* args); |
| void GenerateIsUndetectableObject(ZoneList<Expression*>* args); |
| |
| // Support for construct call checks. |
| void GenerateIsConstructCall(ZoneList<Expression*>* args); |
| |
| // Support for arguments.length and arguments[?]. |
| void GenerateArgumentsLength(ZoneList<Expression*>* args); |
| void GenerateArgumentsAccess(ZoneList<Expression*>* args); |
| |
| // Support for accessing the class and value fields of an object. |
| void GenerateClassOf(ZoneList<Expression*>* args); |
| void GenerateValueOf(ZoneList<Expression*>* args); |
| void GenerateSetValueOf(ZoneList<Expression*>* args); |
| |
| // Fast support for charCodeAt(n). |
| void GenerateFastCharCodeAt(ZoneList<Expression*>* args); |
| |
| // Fast support for object equality testing. |
| void GenerateObjectEquals(ZoneList<Expression*>* args); |
| |
| void GenerateLog(ZoneList<Expression*>* args); |
| |
| void GenerateGetFramePointer(ZoneList<Expression*>* args); |
| |
| // Fast support for Math.random(). |
| void GenerateRandomPositiveSmi(ZoneList<Expression*>* args); |
| |
| // Fast support for StringAdd. |
| void GenerateStringAdd(ZoneList<Expression*>* args); |
| |
| // Fast support for SubString. |
| void GenerateSubString(ZoneList<Expression*>* args); |
| |
| // Fast support for StringCompare. |
| void GenerateStringCompare(ZoneList<Expression*>* args); |
| |
| // Support for direct calls from JavaScript to native RegExp code. |
| void GenerateRegExpExec(ZoneList<Expression*>* args); |
| |
| // Simple condition analysis. |
| enum ConditionAnalysis { |
| ALWAYS_TRUE, |
| ALWAYS_FALSE, |
| DONT_KNOW |
| }; |
| ConditionAnalysis AnalyzeCondition(Expression* cond); |
| |
| // Methods used to indicate which source code is generated for. Source |
| // positions are collected by the assembler and emitted with the relocation |
| // information. |
| void CodeForFunctionPosition(FunctionLiteral* fun); |
| void CodeForReturnPosition(FunctionLiteral* fun); |
| void CodeForStatementPosition(Statement* node); |
| void CodeForDoWhileConditionPosition(DoWhileStatement* stmt); |
| void CodeForSourcePosition(int pos); |
| |
| #ifdef DEBUG |
| // True if the registers are valid for entry to a block. There should |
| // be no frame-external references to (non-reserved) registers. |
| bool HasValidEntryRegisters(); |
| #endif |
| |
| ZoneList<DeferredCode*> deferred_; |
| |
| // Assembler |
| MacroAssembler* masm_; // to generate code |
| |
| CompilationInfo* info_; |
| |
| // Code generation state |
| VirtualFrame* frame_; |
| RegisterAllocator* allocator_; |
| CodeGenState* state_; |
| int loop_nesting_; |
| |
| // Jump targets. |
| // The target of the return from the function. |
| BreakTarget function_return_; |
| |
| // True if the function return is shadowed (ie, jumping to the target |
| // function_return_ does not jump to the true function return, but rather |
| // to some unlinking code). |
| bool function_return_is_shadowed_; |
| |
| // True when we are in code that expects the virtual frame to be fully |
| // spilled. Some virtual frame function are disabled in DEBUG builds when |
| // called from spilled code, because they do not leave the virtual frame |
| // in a spilled state. |
| bool in_spilled_code_; |
| |
| static InlineRuntimeLUT kInlineRuntimeLUT[]; |
| |
| friend class VirtualFrame; |
| friend class JumpTarget; |
| friend class Reference; |
| friend class Result; |
| friend class FastCodeGenerator; |
| friend class FullCodeGenerator; |
| friend class FullCodeGenSyntaxChecker; |
| |
| friend class CodeGeneratorPatcher; // Used in test-log-stack-tracer.cc |
| |
| DISALLOW_COPY_AND_ASSIGN(CodeGenerator); |
| }; |
| |
| |
| // Flag that indicates how to generate code for the stub GenericBinaryOpStub. |
| enum GenericBinaryFlags { |
| NO_GENERIC_BINARY_FLAGS = 0, |
| NO_SMI_CODE_IN_STUB = 1 << 0 // Omit smi code in stub. |
| }; |
| |
| |
| class GenericBinaryOpStub: public CodeStub { |
| public: |
| GenericBinaryOpStub(Token::Value op, |
| OverwriteMode mode, |
| GenericBinaryFlags flags) |
| : op_(op), |
| mode_(mode), |
| flags_(flags), |
| args_in_registers_(false), |
| args_reversed_(false), |
| name_(NULL) { |
| use_sse3_ = CpuFeatures::IsSupported(SSE3); |
| ASSERT(OpBits::is_valid(Token::NUM_TOKENS)); |
| } |
| |
| // Generate code to call the stub with the supplied arguments. This will add |
| // code at the call site to prepare arguments either in registers or on the |
| // stack together with the actual call. |
| void GenerateCall(MacroAssembler* masm, Register left, Register right); |
| void GenerateCall(MacroAssembler* masm, Register left, Smi* right); |
| void GenerateCall(MacroAssembler* masm, Smi* left, Register right); |
| |
| Result GenerateCall(MacroAssembler* masm, |
| VirtualFrame* frame, |
| Result* left, |
| Result* right); |
| |
| private: |
| Token::Value op_; |
| OverwriteMode mode_; |
| GenericBinaryFlags flags_; |
| bool args_in_registers_; // Arguments passed in registers not on the stack. |
| bool args_reversed_; // Left and right argument are swapped. |
| bool use_sse3_; |
| char* name_; |
| |
| const char* GetName(); |
| |
| #ifdef DEBUG |
| void Print() { |
| PrintF("GenericBinaryOpStub (op %s), " |
| "(mode %d, flags %d, registers %d, reversed %d)\n", |
| Token::String(op_), |
| static_cast<int>(mode_), |
| static_cast<int>(flags_), |
| static_cast<int>(args_in_registers_), |
| static_cast<int>(args_reversed_)); |
| } |
| #endif |
| |
| // Minor key encoding in 16 bits FRASOOOOOOOOOOMM. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 10> {}; |
| class SSE3Bits: public BitField<bool, 12, 1> {}; |
| class ArgsInRegistersBits: public BitField<bool, 13, 1> {}; |
| class ArgsReversedBits: public BitField<bool, 14, 1> {}; |
| class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {}; |
| |
| Major MajorKey() { return GenericBinaryOp; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return OpBits::encode(op_) |
| | ModeBits::encode(mode_) |
| | FlagBits::encode(flags_) |
| | SSE3Bits::encode(use_sse3_) |
| | ArgsInRegistersBits::encode(args_in_registers_) |
| | ArgsReversedBits::encode(args_reversed_); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| void GenerateSmiCode(MacroAssembler* masm, Label* slow); |
| void GenerateLoadArguments(MacroAssembler* masm); |
| void GenerateReturn(MacroAssembler* masm); |
| |
| bool ArgsInRegistersSupported() { |
| return (op_ == Token::ADD) || (op_ == Token::SUB) |
| || (op_ == Token::MUL) || (op_ == Token::DIV); |
| } |
| bool IsOperationCommutative() { |
| return (op_ == Token::ADD) || (op_ == Token::MUL); |
| } |
| |
| void SetArgsInRegisters() { args_in_registers_ = true; } |
| void SetArgsReversed() { args_reversed_ = true; } |
| bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; } |
| bool HasArgsInRegisters() { return args_in_registers_; } |
| bool HasArgsReversed() { return args_reversed_; } |
| }; |
| |
| |
| class StringStubBase: public CodeStub { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersREP adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| bool ascii); |
| |
| // Generate code for copying characters using the rep movs instruction. |
| // Copies rcx characters from rsi to rdi. Copying of overlapping regions is |
| // not supported. |
| void GenerateCopyCharactersREP(MacroAssembler* masm, |
| Register dest, // Must be rdi. |
| Register src, // Must be rsi. |
| Register count, // Must be rcx. |
| bool ascii); |
| }; |
| |
| |
| // Flag that indicates how to generate code for the stub StringAddStub. |
| enum StringAddFlags { |
| NO_STRING_ADD_FLAGS = 0, |
| NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub. |
| }; |
| |
| |
| class StringAddStub: public StringStubBase { |
| public: |
| explicit StringAddStub(StringAddFlags flags) { |
| string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0); |
| } |
| |
| private: |
| Major MajorKey() { return StringAdd; } |
| int MinorKey() { return string_check_ ? 0 : 1; } |
| |
| void Generate(MacroAssembler* masm); |
| |
| // Should the stub check whether arguments are strings? |
| bool string_check_; |
| }; |
| |
| |
| class SubStringStub: public StringStubBase { |
| public: |
| SubStringStub() {} |
| |
| private: |
| Major MajorKey() { return SubString; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| class StringCompareStub: public CodeStub { |
| public: |
| explicit StringCompareStub() {} |
| |
| // Compare two flat ascii strings and returns result in rax after popping two |
| // arguments from the stack. |
| static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4); |
| |
| private: |
| Major MajorKey() { return StringCompare; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_X64_CODEGEN_X64_H_ |