| // Copyright 2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "bootstrapper.h" |
| #include "codegen-inl.h" |
| #include "assembler-x64.h" |
| #include "macro-assembler-x64.h" |
| #include "serialize.h" |
| #include "debug.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(void* buffer, int size) |
| : Assembler(buffer, size), |
| unresolved_(0), |
| generating_stub_(false), |
| allow_stub_calls_(true), |
| code_object_(Heap::undefined_value()) { |
| } |
| |
| |
| void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { |
| movq(destination, Operand(r13, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::PushRoot(Heap::RootListIndex index) { |
| push(Operand(r13, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { |
| cmpq(with, Operand(r13, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Operand with, Heap::RootListIndex index) { |
| LoadRoot(kScratchRegister, index); |
| cmpq(with, kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { |
| CompareRoot(rsp, Heap::kStackLimitRootIndex); |
| j(below, on_stack_overflow); |
| } |
| |
| |
| static void RecordWriteHelper(MacroAssembler* masm, |
| Register object, |
| Register addr, |
| Register scratch) { |
| Label fast; |
| |
| // Compute the page start address from the heap object pointer, and reuse |
| // the 'object' register for it. |
| ASSERT(is_int32(~Page::kPageAlignmentMask)); |
| masm->and_(object, |
| Immediate(static_cast<int32_t>(~Page::kPageAlignmentMask))); |
| Register page_start = object; |
| |
| // Compute the bit addr in the remembered set/index of the pointer in the |
| // page. Reuse 'addr' as pointer_offset. |
| masm->subq(addr, page_start); |
| masm->shr(addr, Immediate(kPointerSizeLog2)); |
| Register pointer_offset = addr; |
| |
| // If the bit offset lies beyond the normal remembered set range, it is in |
| // the extra remembered set area of a large object. |
| masm->cmpq(pointer_offset, Immediate(Page::kPageSize / kPointerSize)); |
| masm->j(less, &fast); |
| |
| // Adjust 'page_start' so that addressing using 'pointer_offset' hits the |
| // extra remembered set after the large object. |
| |
| // Load the array length into 'scratch'. |
| masm->movl(scratch, |
| Operand(page_start, |
| Page::kObjectStartOffset + FixedArray::kLengthOffset)); |
| Register array_length = scratch; |
| |
| // Extra remembered set starts right after the large object (a FixedArray), at |
| // page_start + kObjectStartOffset + objectSize |
| // where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length. |
| // Add the delta between the end of the normal RSet and the start of the |
| // extra RSet to 'page_start', so that addressing the bit using |
| // 'pointer_offset' hits the extra RSet words. |
| masm->lea(page_start, |
| Operand(page_start, array_length, times_pointer_size, |
| Page::kObjectStartOffset + FixedArray::kHeaderSize |
| - Page::kRSetEndOffset)); |
| |
| // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction |
| // to limit code size. We should probably evaluate this decision by |
| // measuring the performance of an equivalent implementation using |
| // "simpler" instructions |
| masm->bind(&fast); |
| masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset); |
| } |
| |
| |
| class RecordWriteStub : public CodeStub { |
| public: |
| RecordWriteStub(Register object, Register addr, Register scratch) |
| : object_(object), addr_(addr), scratch_(scratch) { } |
| |
| void Generate(MacroAssembler* masm); |
| |
| private: |
| Register object_; |
| Register addr_; |
| Register scratch_; |
| |
| #ifdef DEBUG |
| void Print() { |
| PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n", |
| object_.code(), addr_.code(), scratch_.code()); |
| } |
| #endif |
| |
| // Minor key encoding in 12 bits of three registers (object, address and |
| // scratch) OOOOAAAASSSS. |
| class ScratchBits : public BitField<uint32_t, 0, 4> {}; |
| class AddressBits : public BitField<uint32_t, 4, 4> {}; |
| class ObjectBits : public BitField<uint32_t, 8, 4> {}; |
| |
| Major MajorKey() { return RecordWrite; } |
| |
| int MinorKey() { |
| // Encode the registers. |
| return ObjectBits::encode(object_.code()) | |
| AddressBits::encode(addr_.code()) | |
| ScratchBits::encode(scratch_.code()); |
| } |
| }; |
| |
| |
| void RecordWriteStub::Generate(MacroAssembler* masm) { |
| RecordWriteHelper(masm, object_, addr_, scratch_); |
| masm->ret(0); |
| } |
| |
| |
| // Set the remembered set bit for [object+offset]. |
| // object is the object being stored into, value is the object being stored. |
| // If offset is zero, then the smi_index register contains the array index into |
| // the elements array represented as a smi. Otherwise it can be used as a |
| // scratch register. |
| // All registers are clobbered by the operation. |
| void MacroAssembler::RecordWrite(Register object, |
| int offset, |
| Register value, |
| Register smi_index) { |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are rsi. |
| ASSERT(!object.is(rsi) && !value.is(rsi) && !smi_index.is(rsi)); |
| |
| // First, check if a remembered set write is even needed. The tests below |
| // catch stores of Smis and stores into young gen (which does not have space |
| // for the remembered set bits. |
| Label done; |
| JumpIfSmi(value, &done); |
| |
| RecordWriteNonSmi(object, offset, value, smi_index); |
| bind(&done); |
| |
| // Clobber all input registers when running with the debug-code flag |
| // turned on to provoke errors. This clobbering repeats the |
| // clobbering done inside RecordWriteNonSmi but it's necessary to |
| // avoid having the fast case for smis leave the registers |
| // unchanged. |
| if (FLAG_debug_code) { |
| movq(object, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(value, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(smi_index, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); |
| } |
| } |
| |
| |
| void MacroAssembler::RecordWriteNonSmi(Register object, |
| int offset, |
| Register scratch, |
| Register smi_index) { |
| Label done; |
| |
| if (FLAG_debug_code) { |
| Label okay; |
| JumpIfNotSmi(object, &okay); |
| Abort("MacroAssembler::RecordWriteNonSmi cannot deal with smis"); |
| bind(&okay); |
| } |
| |
| // Test that the object address is not in the new space. We cannot |
| // set remembered set bits in the new space. |
| movq(scratch, object); |
| ASSERT(is_int32(static_cast<int64_t>(Heap::NewSpaceMask()))); |
| and_(scratch, Immediate(static_cast<int32_t>(Heap::NewSpaceMask()))); |
| movq(kScratchRegister, ExternalReference::new_space_start()); |
| cmpq(scratch, kScratchRegister); |
| j(equal, &done); |
| |
| if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) { |
| // Compute the bit offset in the remembered set, leave it in 'value'. |
| lea(scratch, Operand(object, offset)); |
| ASSERT(is_int32(Page::kPageAlignmentMask)); |
| and_(scratch, Immediate(static_cast<int32_t>(Page::kPageAlignmentMask))); |
| shr(scratch, Immediate(kObjectAlignmentBits)); |
| |
| // Compute the page address from the heap object pointer, leave it in |
| // 'object' (immediate value is sign extended). |
| and_(object, Immediate(~Page::kPageAlignmentMask)); |
| |
| // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction |
| // to limit code size. We should probably evaluate this decision by |
| // measuring the performance of an equivalent implementation using |
| // "simpler" instructions |
| bts(Operand(object, Page::kRSetOffset), scratch); |
| } else { |
| Register dst = smi_index; |
| if (offset != 0) { |
| lea(dst, Operand(object, offset)); |
| } else { |
| // array access: calculate the destination address in the same manner as |
| // KeyedStoreIC::GenerateGeneric. |
| SmiIndex index = SmiToIndex(smi_index, smi_index, kPointerSizeLog2); |
| lea(dst, Operand(object, |
| index.reg, |
| index.scale, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| } |
| // If we are already generating a shared stub, not inlining the |
| // record write code isn't going to save us any memory. |
| if (generating_stub()) { |
| RecordWriteHelper(this, object, dst, scratch); |
| } else { |
| RecordWriteStub stub(object, dst, scratch); |
| CallStub(&stub); |
| } |
| } |
| |
| bind(&done); |
| |
| // Clobber all input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (FLAG_debug_code) { |
| movq(object, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(scratch, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(smi_index, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); |
| } |
| } |
| |
| |
| void MacroAssembler::Assert(Condition cc, const char* msg) { |
| if (FLAG_debug_code) Check(cc, msg); |
| } |
| |
| |
| void MacroAssembler::Check(Condition cc, const char* msg) { |
| Label L; |
| j(cc, &L); |
| Abort(msg); |
| // will not return here |
| bind(&L); |
| } |
| |
| |
| void MacroAssembler::NegativeZeroTest(Register result, |
| Register op, |
| Label* then_label) { |
| Label ok; |
| testl(result, result); |
| j(not_zero, &ok); |
| testl(op, op); |
| j(sign, then_label); |
| bind(&ok); |
| } |
| |
| |
| void MacroAssembler::Abort(const char* msg) { |
| // We want to pass the msg string like a smi to avoid GC |
| // problems, however msg is not guaranteed to be aligned |
| // properly. Instead, we pass an aligned pointer that is |
| // a proper v8 smi, but also pass the alignment difference |
| // from the real pointer as a smi. |
| intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag. |
| ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| #ifdef DEBUG |
| if (msg != NULL) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| #endif |
| // Disable stub call restrictions to always allow calls to abort. |
| set_allow_stub_calls(true); |
| |
| push(rax); |
| movq(kScratchRegister, p0, RelocInfo::NONE); |
| push(kScratchRegister); |
| movq(kScratchRegister, |
| reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))), |
| RelocInfo::NONE); |
| push(kScratchRegister); |
| CallRuntime(Runtime::kAbort, 2); |
| // will not return here |
| int3(); |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub) { |
| ASSERT(allow_stub_calls()); // calls are not allowed in some stubs |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub) { |
| ASSERT(allow_stub_calls()); // calls are not allowed in some stubs |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::StubReturn(int argc) { |
| ASSERT(argc >= 1 && generating_stub()); |
| ret((argc - 1) * kPointerSize); |
| } |
| |
| |
| void MacroAssembler::IllegalOperation(int num_arguments) { |
| if (num_arguments > 0) { |
| addq(rsp, Immediate(num_arguments * kPointerSize)); |
| } |
| LoadRoot(rax, Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { |
| CallRuntime(Runtime::FunctionForId(id), num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| if (f->nargs >= 0 && f->nargs != num_arguments) { |
| IllegalOperation(num_arguments); |
| return; |
| } |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| movq(rax, Immediate(num_arguments)); |
| movq(rbx, ExternalReference(f)); |
| CEntryStub ces(f->result_size); |
| CallStub(&ces); |
| } |
| |
| |
| void MacroAssembler::TailCallRuntime(ExternalReference const& ext, |
| int num_arguments, |
| int result_size) { |
| // ----------- S t a t e ------------- |
| // -- rsp[0] : return address |
| // -- rsp[8] : argument num_arguments - 1 |
| // ... |
| // -- rsp[8 * num_arguments] : argument 0 (receiver) |
| // ----------------------------------- |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| movq(rax, Immediate(num_arguments)); |
| JumpToRuntime(ext, result_size); |
| } |
| |
| |
| void MacroAssembler::JumpToRuntime(const ExternalReference& ext, |
| int result_size) { |
| // Set the entry point and jump to the C entry runtime stub. |
| movq(rbx, ext); |
| CEntryStub ces(result_size); |
| jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| bool resolved; |
| Handle<Code> code = ResolveBuiltin(id, &resolved); |
| |
| const char* name = Builtins::GetName(id); |
| int argc = Builtins::GetArgumentsCount(id); |
| |
| movq(target, code, RelocInfo::EMBEDDED_OBJECT); |
| if (!resolved) { |
| uint32_t flags = |
| Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | |
| Bootstrapper::FixupFlagsUseCodeObject::encode(true); |
| Unresolved entry = { pc_offset() - sizeof(intptr_t), flags, name }; |
| unresolved_.Add(entry); |
| } |
| addq(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, |
| bool* resolved) { |
| // Move the builtin function into the temporary function slot by |
| // reading it from the builtins object. NOTE: We should be able to |
| // reduce this to two instructions by putting the function table in |
| // the global object instead of the "builtins" object and by using a |
| // real register for the function. |
| movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| movq(rdx, FieldOperand(rdx, GlobalObject::kBuiltinsOffset)); |
| int builtins_offset = |
| JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); |
| movq(rdi, FieldOperand(rdx, builtins_offset)); |
| |
| return Builtins::GetCode(id, resolved); |
| } |
| |
| |
| void MacroAssembler::Set(Register dst, int64_t x) { |
| if (x == 0) { |
| xor_(dst, dst); |
| } else if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else if (is_uint32(x)) { |
| movl(dst, Immediate(static_cast<uint32_t>(x))); |
| } else { |
| movq(dst, x, RelocInfo::NONE); |
| } |
| } |
| |
| |
| void MacroAssembler::Set(const Operand& dst, int64_t x) { |
| if (x == 0) { |
| xor_(kScratchRegister, kScratchRegister); |
| movq(dst, kScratchRegister); |
| } else if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else if (is_uint32(x)) { |
| movl(dst, Immediate(static_cast<uint32_t>(x))); |
| } else { |
| movq(kScratchRegister, x, RelocInfo::NONE); |
| movq(dst, kScratchRegister); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Smi tagging, untagging and tag detection. |
| |
| static int kSmiShift = kSmiTagSize + kSmiShiftSize; |
| |
| void MacroAssembler::Integer32ToSmi(Register dst, Register src) { |
| ASSERT_EQ(0, kSmiTag); |
| if (!dst.is(src)) { |
| movl(dst, src); |
| } |
| shl(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::Integer32ToSmi(Register dst, |
| Register src, |
| Label* on_overflow) { |
| ASSERT_EQ(0, kSmiTag); |
| // 32-bit integer always fits in a long smi. |
| if (!dst.is(src)) { |
| movl(dst, src); |
| } |
| shl(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::Integer64PlusConstantToSmi(Register dst, |
| Register src, |
| int constant) { |
| if (dst.is(src)) { |
| addq(dst, Immediate(constant)); |
| } else { |
| lea(dst, Operand(src, constant)); |
| } |
| shl(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::SmiToInteger32(Register dst, Register src) { |
| ASSERT_EQ(0, kSmiTag); |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| shr(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::SmiToInteger64(Register dst, Register src) { |
| ASSERT_EQ(0, kSmiTag); |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| sar(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::SmiTest(Register src) { |
| testq(src, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register dst, Register src) { |
| cmpq(dst, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register dst, Smi* src) { |
| ASSERT(!dst.is(kScratchRegister)); |
| if (src->value() == 0) { |
| testq(dst, dst); |
| } else { |
| Move(kScratchRegister, src); |
| cmpq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiCompare(const Operand& dst, Register src) { |
| cmpq(dst, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) { |
| if (src->value() == 0) { |
| // Only tagged long smi to have 32-bit representation. |
| cmpq(dst, Immediate(0)); |
| } else { |
| Move(kScratchRegister, src); |
| cmpq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst, |
| Register src, |
| int power) { |
| ASSERT(power >= 0); |
| ASSERT(power < 64); |
| if (power == 0) { |
| SmiToInteger64(dst, src); |
| return; |
| } |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| if (power < kSmiShift) { |
| sar(dst, Immediate(kSmiShift - power)); |
| } else if (power > kSmiShift) { |
| shl(dst, Immediate(power - kSmiShift)); |
| } |
| } |
| |
| |
| Condition MacroAssembler::CheckSmi(Register src) { |
| ASSERT_EQ(0, kSmiTag); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckPositiveSmi(Register src) { |
| ASSERT_EQ(0, kSmiTag); |
| movq(kScratchRegister, src); |
| rol(kScratchRegister, Immediate(1)); |
| testl(kScratchRegister, Immediate(0x03)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckBothSmi(Register first, Register second) { |
| if (first.is(second)) { |
| return CheckSmi(first); |
| } |
| movl(kScratchRegister, first); |
| orl(kScratchRegister, second); |
| testb(kScratchRegister, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckBothPositiveSmi(Register first, |
| Register second) { |
| if (first.is(second)) { |
| return CheckPositiveSmi(first); |
| } |
| movl(kScratchRegister, first); |
| orl(kScratchRegister, second); |
| rol(kScratchRegister, Immediate(1)); |
| testl(kScratchRegister, Immediate(0x03)); |
| return zero; |
| } |
| |
| |
| |
| Condition MacroAssembler::CheckEitherSmi(Register first, Register second) { |
| if (first.is(second)) { |
| return CheckSmi(first); |
| } |
| movl(kScratchRegister, first); |
| andl(kScratchRegister, second); |
| testb(kScratchRegister, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckIsMinSmi(Register src) { |
| ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| movq(kScratchRegister, src); |
| rol(kScratchRegister, Immediate(1)); |
| cmpq(kScratchRegister, Immediate(1)); |
| return equal; |
| } |
| |
| |
| Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) { |
| // A 32-bit integer value can always be converted to a smi. |
| return always; |
| } |
| |
| |
| Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) { |
| // An unsigned 32-bit integer value is valid as long as the high bit |
| // is not set. |
| testq(src, Immediate(0x80000000)); |
| return zero; |
| } |
| |
| |
| void MacroAssembler::SmiNeg(Register dst, Register src, Label* on_smi_result) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| movq(kScratchRegister, src); |
| neg(dst); // Low 32 bits are retained as zero by negation. |
| // Test if result is zero or Smi::kMinValue. |
| cmpq(dst, kScratchRegister); |
| j(not_equal, on_smi_result); |
| movq(src, kScratchRegister); |
| } else { |
| movq(dst, src); |
| neg(dst); |
| cmpq(dst, src); |
| // If the result is zero or Smi::kMinValue, negation failed to create a smi. |
| j(not_equal, on_smi_result); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAdd(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!dst.is(src2)); |
| if (dst.is(src1)) { |
| addq(dst, src2); |
| Label smi_result; |
| j(no_overflow, &smi_result); |
| // Restore src1. |
| subq(src1, src2); |
| jmp(on_not_smi_result); |
| bind(&smi_result); |
| } else { |
| movq(dst, src1); |
| addq(dst, src2); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSub(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!dst.is(src2)); |
| if (on_not_smi_result == NULL) { |
| // No overflow checking. Use only when it's known that |
| // overflowing is impossible (e.g., subtracting two positive smis). |
| if (dst.is(src1)) { |
| subq(dst, src2); |
| } else { |
| movq(dst, src1); |
| subq(dst, src2); |
| } |
| Assert(no_overflow, "Smi substraction onverflow"); |
| } else if (dst.is(src1)) { |
| subq(dst, src2); |
| Label smi_result; |
| j(no_overflow, &smi_result); |
| // Restore src1. |
| addq(src1, src2); |
| jmp(on_not_smi_result); |
| bind(&smi_result); |
| } else { |
| movq(dst, src1); |
| subq(dst, src2); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiMul(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!dst.is(src2)); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| |
| if (dst.is(src1)) { |
| Label failure, zero_correct_result; |
| movq(kScratchRegister, src1); // Create backup for later testing. |
| SmiToInteger64(dst, src1); |
| imul(dst, src2); |
| j(overflow, &failure); |
| |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. |
| Label correct_result; |
| testq(dst, dst); |
| j(not_zero, &correct_result); |
| |
| movq(dst, kScratchRegister); |
| xor_(dst, src2); |
| j(positive, &zero_correct_result); // Result was positive zero. |
| |
| bind(&failure); // Reused failure exit, restores src1. |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result); |
| |
| bind(&zero_correct_result); |
| xor_(dst, dst); |
| |
| bind(&correct_result); |
| } else { |
| SmiToInteger64(dst, src1); |
| imul(dst, src2); |
| j(overflow, on_not_smi_result); |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. |
| Label correct_result; |
| testq(dst, dst); |
| j(not_zero, &correct_result); |
| // One of src1 and src2 is zero, the check whether the other is |
| // negative. |
| movq(kScratchRegister, src1); |
| xor_(kScratchRegister, src2); |
| j(negative, on_not_smi_result); |
| bind(&correct_result); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiTryAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| Label* on_not_smi_result) { |
| // Does not assume that src is a smi. |
| ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask)); |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src.is(kScratchRegister)); |
| |
| JumpIfNotSmi(src, on_not_smi_result); |
| Register tmp = (dst.is(src) ? kScratchRegister : dst); |
| Move(tmp, constant); |
| addq(tmp, src); |
| j(overflow, on_not_smi_result); |
| if (dst.is(src)) { |
| movq(dst, tmp); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| |
| Move(kScratchRegister, constant); |
| addq(dst, kScratchRegister); |
| } else { |
| Move(dst, constant); |
| addq(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| Label* on_not_smi_result) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| |
| Move(kScratchRegister, constant); |
| addq(dst, kScratchRegister); |
| Label result_ok; |
| j(no_overflow, &result_ok); |
| subq(dst, kScratchRegister); |
| jmp(on_not_smi_result); |
| bind(&result_ok); |
| } else { |
| Move(dst, constant); |
| addq(dst, src); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| |
| Move(kScratchRegister, constant); |
| subq(dst, kScratchRegister); |
| } else { |
| // Subtract by adding the negative, to do it in two operations. |
| if (constant->value() == Smi::kMinValue) { |
| Move(kScratchRegister, constant); |
| movq(dst, src); |
| subq(dst, kScratchRegister); |
| } else { |
| Move(dst, Smi::FromInt(-constant->value())); |
| addq(dst, src); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSubConstant(Register dst, |
| Register src, |
| Smi* constant, |
| Label* on_not_smi_result) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| |
| Move(kScratchRegister, constant); |
| subq(dst, kScratchRegister); |
| Label sub_success; |
| j(no_overflow, &sub_success); |
| addq(src, kScratchRegister); |
| jmp(on_not_smi_result); |
| bind(&sub_success); |
| } else { |
| if (constant->value() == Smi::kMinValue) { |
| Move(kScratchRegister, constant); |
| movq(dst, src); |
| subq(dst, kScratchRegister); |
| j(overflow, on_not_smi_result); |
| } else { |
| Move(dst, Smi::FromInt(-(constant->value()))); |
| addq(dst, src); |
| j(overflow, on_not_smi_result); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiDiv(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src2.is(rax)); |
| ASSERT(!src2.is(rdx)); |
| ASSERT(!src1.is(rdx)); |
| |
| // Check for 0 divisor (result is +/-Infinity). |
| Label positive_divisor; |
| testq(src2, src2); |
| j(zero, on_not_smi_result); |
| |
| if (src1.is(rax)) { |
| movq(kScratchRegister, src1); |
| } |
| SmiToInteger32(rax, src1); |
| // We need to rule out dividing Smi::kMinValue by -1, since that would |
| // overflow in idiv and raise an exception. |
| // We combine this with negative zero test (negative zero only happens |
| // when dividing zero by a negative number). |
| |
| // We overshoot a little and go to slow case if we divide min-value |
| // by any negative value, not just -1. |
| Label safe_div; |
| testl(rax, Immediate(0x7fffffff)); |
| j(not_zero, &safe_div); |
| testq(src2, src2); |
| if (src1.is(rax)) { |
| j(positive, &safe_div); |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result); |
| } else { |
| j(negative, on_not_smi_result); |
| } |
| bind(&safe_div); |
| |
| SmiToInteger32(src2, src2); |
| // Sign extend src1 into edx:eax. |
| cdq(); |
| idivl(src2); |
| Integer32ToSmi(src2, src2); |
| // Check that the remainder is zero. |
| testl(rdx, rdx); |
| if (src1.is(rax)) { |
| Label smi_result; |
| j(zero, &smi_result); |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result); |
| bind(&smi_result); |
| } else { |
| j(not_zero, on_not_smi_result); |
| } |
| if (!dst.is(src1) && src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| Integer32ToSmi(dst, rax); |
| } |
| |
| |
| void MacroAssembler::SmiMod(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!src2.is(rax)); |
| ASSERT(!src2.is(rdx)); |
| ASSERT(!src1.is(rdx)); |
| ASSERT(!src1.is(src2)); |
| |
| testq(src2, src2); |
| j(zero, on_not_smi_result); |
| |
| if (src1.is(rax)) { |
| movq(kScratchRegister, src1); |
| } |
| SmiToInteger32(rax, src1); |
| SmiToInteger32(src2, src2); |
| |
| // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). |
| Label safe_div; |
| cmpl(rax, Immediate(Smi::kMinValue)); |
| j(not_equal, &safe_div); |
| cmpl(src2, Immediate(-1)); |
| j(not_equal, &safe_div); |
| // Retag inputs and go slow case. |
| Integer32ToSmi(src2, src2); |
| if (src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| jmp(on_not_smi_result); |
| bind(&safe_div); |
| |
| // Sign extend eax into edx:eax. |
| cdq(); |
| idivl(src2); |
| // Restore smi tags on inputs. |
| Integer32ToSmi(src2, src2); |
| if (src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| // Check for a negative zero result. If the result is zero, and the |
| // dividend is negative, go slow to return a floating point negative zero. |
| Label smi_result; |
| testl(rdx, rdx); |
| j(not_zero, &smi_result); |
| testq(src1, src1); |
| j(negative, on_not_smi_result); |
| bind(&smi_result); |
| Integer32ToSmi(dst, rdx); |
| } |
| |
| |
| void MacroAssembler::SmiNot(Register dst, Register src) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src.is(kScratchRegister)); |
| // Set tag and padding bits before negating, so that they are zero afterwards. |
| movl(kScratchRegister, Immediate(~0)); |
| if (dst.is(src)) { |
| xor_(dst, kScratchRegister); |
| } else { |
| lea(dst, Operand(src, kScratchRegister, times_1, 0)); |
| } |
| not_(dst); |
| } |
| |
| |
| void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) { |
| ASSERT(!dst.is(src2)); |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| and_(dst, src2); |
| } |
| |
| |
| void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) { |
| if (constant->value() == 0) { |
| xor_(dst, dst); |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Move(kScratchRegister, constant); |
| and_(dst, kScratchRegister); |
| } else { |
| Move(dst, constant); |
| and_(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) { |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| or_(dst, src2); |
| } |
| |
| |
| void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Move(kScratchRegister, constant); |
| or_(dst, kScratchRegister); |
| } else { |
| Move(dst, constant); |
| or_(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) { |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| xor_(dst, src2); |
| } |
| |
| |
| void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Move(kScratchRegister, constant); |
| xor_(dst, kScratchRegister); |
| } else { |
| Move(dst, constant); |
| xor_(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst, |
| Register src, |
| int shift_value) { |
| ASSERT(is_uint5(shift_value)); |
| if (shift_value > 0) { |
| if (dst.is(src)) { |
| sar(dst, Immediate(shift_value + kSmiShift)); |
| shl(dst, Immediate(kSmiShift)); |
| } else { |
| UNIMPLEMENTED(); // Not used. |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftLogicalRightConstant(Register dst, |
| Register src, |
| int shift_value, |
| Label* on_not_smi_result) { |
| // Logic right shift interprets its result as an *unsigned* number. |
| if (dst.is(src)) { |
| UNIMPLEMENTED(); // Not used. |
| } else { |
| movq(dst, src); |
| if (shift_value == 0) { |
| testq(dst, dst); |
| j(negative, on_not_smi_result); |
| } |
| shr(dst, Immediate(shift_value + kSmiShift)); |
| shl(dst, Immediate(kSmiShift)); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftLeftConstant(Register dst, |
| Register src, |
| int shift_value, |
| Label* on_not_smi_result) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| if (shift_value > 0) { |
| shl(dst, Immediate(shift_value)); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftLeft(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!dst.is(rcx)); |
| Label result_ok; |
| // Untag shift amount. |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| // Shift amount specified by lower 5 bits, not six as the shl opcode. |
| and_(rcx, Immediate(0x1f)); |
| shl_cl(dst); |
| } |
| |
| |
| void MacroAssembler::SmiShiftLogicalRight(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(rcx)); |
| Label result_ok; |
| if (src1.is(rcx) || src2.is(rcx)) { |
| movq(kScratchRegister, rcx); |
| } |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| orl(rcx, Immediate(kSmiShift)); |
| shr_cl(dst); // Shift is rcx modulo 0x1f + 32. |
| shl(dst, Immediate(kSmiShift)); |
| testq(dst, dst); |
| if (src1.is(rcx) || src2.is(rcx)) { |
| Label positive_result; |
| j(positive, &positive_result); |
| if (src1.is(rcx)) { |
| movq(src1, kScratchRegister); |
| } else { |
| movq(src2, kScratchRegister); |
| } |
| jmp(on_not_smi_result); |
| bind(&positive_result); |
| } else { |
| j(negative, on_not_smi_result); // src2 was zero and src1 negative. |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftArithmeticRight(Register dst, |
| Register src1, |
| Register src2) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(rcx)); |
| if (src1.is(rcx)) { |
| movq(kScratchRegister, src1); |
| } else if (src2.is(rcx)) { |
| movq(kScratchRegister, src2); |
| } |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| orl(rcx, Immediate(kSmiShift)); |
| sar_cl(dst); // Shift 32 + original rcx & 0x1f. |
| shl(dst, Immediate(kSmiShift)); |
| if (src1.is(rcx)) { |
| movq(src1, kScratchRegister); |
| } else if (src2.is(rcx)) { |
| movq(src2, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::SelectNonSmi(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smis) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(src1)); |
| ASSERT(!dst.is(src2)); |
| // Both operands must not be smis. |
| #ifdef DEBUG |
| if (allow_stub_calls()) { // Check contains a stub call. |
| Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); |
| Check(not_both_smis, "Both registers were smis in SelectNonSmi."); |
| } |
| #endif |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| movl(kScratchRegister, Immediate(kSmiTagMask)); |
| and_(kScratchRegister, src1); |
| testl(kScratchRegister, src2); |
| // If non-zero then both are smis. |
| j(not_zero, on_not_smis); |
| |
| // Exactly one operand is a smi. |
| ASSERT_EQ(1, static_cast<int>(kSmiTagMask)); |
| // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. |
| subq(kScratchRegister, Immediate(1)); |
| // If src1 is a smi, then scratch register all 1s, else it is all 0s. |
| movq(dst, src1); |
| xor_(dst, src2); |
| and_(dst, kScratchRegister); |
| // If src1 is a smi, dst holds src1 ^ src2, else it is zero. |
| xor_(dst, src1); |
| // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. |
| } |
| |
| SmiIndex MacroAssembler::SmiToIndex(Register dst, |
| Register src, |
| int shift) { |
| ASSERT(is_uint6(shift)); |
| // There is a possible optimization if shift is in the range 60-63, but that |
| // will (and must) never happen. |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| if (shift < kSmiShift) { |
| sar(dst, Immediate(kSmiShift - shift)); |
| } else { |
| shl(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } |
| |
| SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst, |
| Register src, |
| int shift) { |
| // Register src holds a positive smi. |
| ASSERT(is_uint6(shift)); |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| neg(dst); |
| if (shift < kSmiShift) { |
| sar(dst, Immediate(kSmiShift - shift)); |
| } else { |
| shl(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } |
| |
| |
| void MacroAssembler::JumpIfSmi(Register src, Label* on_smi) { |
| ASSERT_EQ(0, kSmiTag); |
| Condition smi = CheckSmi(src); |
| j(smi, on_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotPositiveSmi(Register src, |
| Label* on_not_positive_smi) { |
| Condition positive_smi = CheckPositiveSmi(src); |
| j(NegateCondition(positive_smi), on_not_positive_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfSmiEqualsConstant(Register src, |
| Smi* constant, |
| Label* on_equals) { |
| SmiCompare(src, constant); |
| j(equal, on_equals); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotValidSmiValue(Register src, Label* on_invalid) { |
| Condition is_valid = CheckInteger32ValidSmiValue(src); |
| j(NegateCondition(is_valid), on_invalid); |
| } |
| |
| |
| void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, |
| Label* on_invalid) { |
| Condition is_valid = CheckUInteger32ValidSmiValue(src); |
| j(NegateCondition(is_valid), on_invalid); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSmi(Register src1, Register src2, |
| Label* on_not_both_smi) { |
| Condition both_smi = CheckBothSmi(src1, src2); |
| j(NegateCondition(both_smi), on_not_both_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothPositiveSmi(Register src1, Register src2, |
| Label* on_not_both_smi) { |
| Condition both_smi = CheckBothPositiveSmi(src1, src2); |
| j(NegateCondition(both_smi), on_not_both_smi); |
| } |
| |
| |
| |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object, |
| Register second_object, |
| Register scratch1, |
| Register scratch2, |
| Label* on_fail) { |
| // Check that both objects are not smis. |
| Condition either_smi = CheckEitherSmi(first_object, second_object); |
| j(either_smi, on_fail); |
| |
| // Load instance type for both strings. |
| movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); |
| movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); |
| movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); |
| movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); |
| |
| // Check that both are flat ascii strings. |
| ASSERT(kNotStringTag != 0); |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| |
| andl(scratch1, Immediate(kFlatAsciiStringMask)); |
| andl(scratch2, Immediate(kFlatAsciiStringMask)); |
| // Interleave the bits to check both scratch1 and scratch2 in one test. |
| ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); |
| lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); |
| cmpl(scratch1, |
| Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); |
| j(not_equal, on_fail); |
| } |
| |
| |
| void MacroAssembler::Move(Register dst, Handle<Object> source) { |
| ASSERT(!source->IsFailure()); |
| if (source->IsSmi()) { |
| Move(dst, Smi::cast(*source)); |
| } else { |
| movq(dst, source, RelocInfo::EMBEDDED_OBJECT); |
| } |
| } |
| |
| |
| void MacroAssembler::Move(const Operand& dst, Handle<Object> source) { |
| ASSERT(!source->IsFailure()); |
| if (source->IsSmi()) { |
| Move(dst, Smi::cast(*source)); |
| } else { |
| movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); |
| movq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmp(Register dst, Handle<Object> source) { |
| if (source->IsSmi()) { |
| SmiCompare(dst, Smi::cast(*source)); |
| } else { |
| Move(kScratchRegister, source); |
| cmpq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) { |
| if (source->IsSmi()) { |
| SmiCompare(dst, Smi::cast(*source)); |
| } else { |
| ASSERT(source->IsHeapObject()); |
| movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); |
| cmpq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Push(Handle<Object> source) { |
| if (source->IsSmi()) { |
| Push(Smi::cast(*source)); |
| } else { |
| ASSERT(source->IsHeapObject()); |
| movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); |
| push(kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Push(Smi* source) { |
| intptr_t smi = reinterpret_cast<intptr_t>(source); |
| if (is_int32(smi)) { |
| push(Immediate(static_cast<int32_t>(smi))); |
| } else { |
| Set(kScratchRegister, smi); |
| push(kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| addq(rsp, Immediate(stack_elements * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::Test(const Operand& src, Smi* source) { |
| intptr_t smi = reinterpret_cast<intptr_t>(source); |
| if (is_int32(smi)) { |
| testl(src, Immediate(static_cast<int32_t>(smi))); |
| } else { |
| Move(kScratchRegister, source); |
| testq(src, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Jump(ExternalReference ext) { |
| movq(kScratchRegister, ext); |
| jmp(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { |
| movq(kScratchRegister, destination, rmode); |
| jmp(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| // TODO(X64): Inline this |
| jmp(code_object, rmode); |
| } |
| |
| |
| void MacroAssembler::Call(ExternalReference ext) { |
| movq(kScratchRegister, ext); |
| call(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { |
| movq(kScratchRegister, destination, rmode); |
| call(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| WriteRecordedPositions(); |
| call(code_object, rmode); |
| } |
| |
| |
| void MacroAssembler::PushTryHandler(CodeLocation try_location, |
| HandlerType type) { |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // The pc (return address) is already on TOS. This code pushes state, |
| // frame pointer and current handler. Check that they are expected |
| // next on the stack, in that order. |
| ASSERT_EQ(StackHandlerConstants::kStateOffset, |
| StackHandlerConstants::kPCOffset - kPointerSize); |
| ASSERT_EQ(StackHandlerConstants::kFPOffset, |
| StackHandlerConstants::kStateOffset - kPointerSize); |
| ASSERT_EQ(StackHandlerConstants::kNextOffset, |
| StackHandlerConstants::kFPOffset - kPointerSize); |
| |
| if (try_location == IN_JAVASCRIPT) { |
| if (type == TRY_CATCH_HANDLER) { |
| push(Immediate(StackHandler::TRY_CATCH)); |
| } else { |
| push(Immediate(StackHandler::TRY_FINALLY)); |
| } |
| push(rbp); |
| } else { |
| ASSERT(try_location == IN_JS_ENTRY); |
| // The frame pointer does not point to a JS frame so we save NULL |
| // for rbp. We expect the code throwing an exception to check rbp |
| // before dereferencing it to restore the context. |
| push(Immediate(StackHandler::ENTRY)); |
| push(Immediate(0)); // NULL frame pointer. |
| } |
| // Save the current handler. |
| movq(kScratchRegister, ExternalReference(Top::k_handler_address)); |
| push(Operand(kScratchRegister, 0)); |
| // Link this handler. |
| movq(Operand(kScratchRegister, 0), rsp); |
| } |
| |
| |
| void MacroAssembler::PopTryHandler() { |
| ASSERT_EQ(0, StackHandlerConstants::kNextOffset); |
| // Unlink this handler. |
| movq(kScratchRegister, ExternalReference(Top::k_handler_address)); |
| pop(Operand(kScratchRegister, 0)); |
| // Remove the remaining fields. |
| addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| } |
| |
| |
| void MacroAssembler::Ret() { |
| ret(0); |
| } |
| |
| |
| void MacroAssembler::FCmp() { |
| fucomip(); |
| ffree(0); |
| fincstp(); |
| } |
| |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, |
| InstanceType type, |
| Register map) { |
| movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| CmpInstanceType(map, type); |
| } |
| |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpb(FieldOperand(map, Map::kInstanceTypeOffset), |
| Immediate(static_cast<int8_t>(type))); |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object) { |
| if (!is_heap_object) { |
| JumpIfSmi(obj, fail); |
| } |
| Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); |
| j(not_equal, fail); |
| } |
| |
| |
| Condition MacroAssembler::IsObjectStringType(Register heap_object, |
| Register map, |
| Register instance_type) { |
| movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); |
| ASSERT(kNotStringTag != 0); |
| testb(instance_type, Immediate(kIsNotStringMask)); |
| return zero; |
| } |
| |
| |
| void MacroAssembler::TryGetFunctionPrototype(Register function, |
| Register result, |
| Label* miss) { |
| // Check that the receiver isn't a smi. |
| testl(function, Immediate(kSmiTagMask)); |
| j(zero, miss); |
| |
| // Check that the function really is a function. |
| CmpObjectType(function, JS_FUNCTION_TYPE, result); |
| j(not_equal, miss); |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| testb(FieldOperand(result, Map::kBitFieldOffset), |
| Immediate(1 << Map::kHasNonInstancePrototype)); |
| j(not_zero, &non_instance); |
| |
| // Get the prototype or initial map from the function. |
| movq(result, |
| FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // If the prototype or initial map is the hole, don't return it and |
| // simply miss the cache instead. This will allow us to allocate a |
| // prototype object on-demand in the runtime system. |
| CompareRoot(result, Heap::kTheHoleValueRootIndex); |
| j(equal, miss); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| CmpObjectType(result, MAP_TYPE, kScratchRegister); |
| j(not_equal, &done); |
| |
| // Get the prototype from the initial map. |
| movq(result, FieldOperand(result, Map::kPrototypeOffset)); |
| jmp(&done); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| bind(&non_instance); |
| movq(result, FieldOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::SetCounter(StatsCounter* counter, int value) { |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| movq(kScratchRegister, ExternalReference(counter)); |
| movl(Operand(kScratchRegister, 0), Immediate(value)); |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| movq(kScratchRegister, ExternalReference(counter)); |
| Operand operand(kScratchRegister, 0); |
| if (value == 1) { |
| incl(operand); |
| } else { |
| addl(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| movq(kScratchRegister, ExternalReference(counter)); |
| Operand operand(kScratchRegister, 0); |
| if (value == 1) { |
| decl(operand); |
| } else { |
| subl(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| |
| void MacroAssembler::PushRegistersFromMemory(RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Push the content of the memory location to the stack. |
| for (int i = 0; i < kNumJSCallerSaved; i++) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| ExternalReference reg_addr = |
| ExternalReference(Debug_Address::Register(i)); |
| movq(kScratchRegister, reg_addr); |
| push(Operand(kScratchRegister, 0)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SaveRegistersToMemory(RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of registers to memory location. |
| for (int i = 0; i < kNumJSCallerSaved; i++) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| Register reg = { r }; |
| ExternalReference reg_addr = |
| ExternalReference(Debug_Address::Register(i)); |
| movq(kScratchRegister, reg_addr); |
| movq(Operand(kScratchRegister, 0), reg); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of memory location to registers. |
| for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| Register reg = { r }; |
| ExternalReference reg_addr = |
| ExternalReference(Debug_Address::Register(i)); |
| movq(kScratchRegister, reg_addr); |
| movq(reg, Operand(kScratchRegister, 0)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::PopRegistersToMemory(RegList regs) { |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Pop the content from the stack to the memory location. |
| for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| ExternalReference reg_addr = |
| ExternalReference(Debug_Address::Register(i)); |
| movq(kScratchRegister, reg_addr); |
| pop(Operand(kScratchRegister, 0)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CopyRegistersFromStackToMemory(Register base, |
| Register scratch, |
| RegList regs) { |
| ASSERT(!scratch.is(kScratchRegister)); |
| ASSERT(!base.is(kScratchRegister)); |
| ASSERT(!base.is(scratch)); |
| ASSERT((regs & ~kJSCallerSaved) == 0); |
| // Copy the content of the stack to the memory location and adjust base. |
| for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { |
| int r = JSCallerSavedCode(i); |
| if ((regs & (1 << r)) != 0) { |
| movq(scratch, Operand(base, 0)); |
| ExternalReference reg_addr = |
| ExternalReference(Debug_Address::Register(i)); |
| movq(kScratchRegister, reg_addr); |
| movq(Operand(kScratchRegister, 0), scratch); |
| lea(base, Operand(base, kPointerSize)); |
| } |
| } |
| } |
| |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { |
| bool resolved; |
| Handle<Code> code = ResolveBuiltin(id, &resolved); |
| |
| // Calls are not allowed in some stubs. |
| ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); |
| |
| // Rely on the assertion to check that the number of provided |
| // arguments match the expected number of arguments. Fake a |
| // parameter count to avoid emitting code to do the check. |
| ParameterCount expected(0); |
| InvokeCode(Handle<Code>(code), |
| expected, |
| expected, |
| RelocInfo::CODE_TARGET, |
| flag); |
| |
| const char* name = Builtins::GetName(id); |
| int argc = Builtins::GetArgumentsCount(id); |
| // The target address for the jump is stored as an immediate at offset |
| // kInvokeCodeAddressOffset. |
| if (!resolved) { |
| uint32_t flags = |
| Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | |
| Bootstrapper::FixupFlagsUseCodeObject::encode(false); |
| Unresolved entry = |
| { pc_offset() - kCallTargetAddressOffset, flags, name }; |
| unresolved_.Add(entry); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_register, |
| Label* done, |
| InvokeFlag flag) { |
| bool definitely_matches = false; |
| Label invoke; |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| movq(rax, Immediate(actual.immediate())); |
| if (expected.immediate() == |
| SharedFunctionInfo::kDontAdaptArgumentsSentinel) { |
| // Don't worry about adapting arguments for built-ins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| movq(rbx, Immediate(expected.immediate())); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| // Expected is in register, actual is immediate. This is the |
| // case when we invoke function values without going through the |
| // IC mechanism. |
| cmpq(expected.reg(), Immediate(actual.immediate())); |
| j(equal, &invoke); |
| ASSERT(expected.reg().is(rbx)); |
| movq(rax, Immediate(actual.immediate())); |
| } else if (!expected.reg().is(actual.reg())) { |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmpq(expected.reg(), actual.reg()); |
| j(equal, &invoke); |
| ASSERT(actual.reg().is(rax)); |
| ASSERT(expected.reg().is(rbx)); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = |
| Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| if (!code_constant.is_null()) { |
| movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); |
| addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } else if (!code_register.is(rdx)) { |
| movq(rdx, code_register); |
| } |
| |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| jmp(done); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(&invoke); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| Label done; |
| InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); |
| if (flag == CALL_FUNCTION) { |
| call(code); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| jmp(code); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag) { |
| Label done; |
| Register dummy = rax; |
| InvokePrologue(expected, actual, code, dummy, &done, flag); |
| if (flag == CALL_FUNCTION) { |
| Call(code, rmode); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| Jump(code, rmode); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| ASSERT(function.is(rdi)); |
| movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); |
| movsxlq(rbx, |
| FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); |
| // Advances rdx to the end of the Code object header, to the start of |
| // the executable code. |
| lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); |
| |
| ParameterCount expected(rbx); |
| InvokeCode(rdx, expected, actual, flag); |
| } |
| |
| |
| void MacroAssembler::EnterFrame(StackFrame::Type type) { |
| push(rbp); |
| movq(rbp, rsp); |
| push(rsi); // Context. |
| Push(Smi::FromInt(type)); |
| movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); |
| push(kScratchRegister); |
| if (FLAG_debug_code) { |
| movq(kScratchRegister, |
| Factory::undefined_value(), |
| RelocInfo::EMBEDDED_OBJECT); |
| cmpq(Operand(rsp, 0), kScratchRegister); |
| Check(not_equal, "code object not properly patched"); |
| } |
| } |
| |
| |
| void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
| if (FLAG_debug_code) { |
| Move(kScratchRegister, Smi::FromInt(type)); |
| cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); |
| Check(equal, "stack frame types must match"); |
| } |
| movq(rsp, rbp); |
| pop(rbp); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode, int result_size) { |
| // Setup the frame structure on the stack. |
| // All constants are relative to the frame pointer of the exit frame. |
| ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); |
| ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); |
| ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); |
| push(rbp); |
| movq(rbp, rsp); |
| |
| // Reserve room for entry stack pointer and push the debug marker. |
| ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); |
| push(Immediate(0)); // saved entry sp, patched before call |
| if (mode == ExitFrame::MODE_DEBUG) { |
| push(Immediate(0)); |
| } else { |
| movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); |
| push(kScratchRegister); |
| } |
| |
| // Save the frame pointer and the context in top. |
| ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); |
| ExternalReference context_address(Top::k_context_address); |
| movq(r14, rax); // Backup rax before we use it. |
| |
| movq(rax, rbp); |
| store_rax(c_entry_fp_address); |
| movq(rax, rsi); |
| store_rax(context_address); |
| |
| // Setup argv in callee-saved register r15. It is reused in LeaveExitFrame, |
| // so it must be retained across the C-call. |
| int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| lea(r15, Operand(rbp, r14, times_pointer_size, offset)); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Save the state of all registers to the stack from the memory |
| // location. This is needed to allow nested break points. |
| if (mode == ExitFrame::MODE_DEBUG) { |
| // TODO(1243899): This should be symmetric to |
| // CopyRegistersFromStackToMemory() but it isn't! esp is assumed |
| // correct here, but computed for the other call. Very error |
| // prone! FIX THIS. Actually there are deeper problems with |
| // register saving than this asymmetry (see the bug report |
| // associated with this issue). |
| PushRegistersFromMemory(kJSCallerSaved); |
| } |
| #endif |
| |
| #ifdef _WIN64 |
| // Reserve space on stack for result and argument structures, if necessary. |
| int result_stack_space = (result_size < 2) ? 0 : result_size * kPointerSize; |
| // Reserve space for the Arguments object. The Windows 64-bit ABI |
| // requires us to pass this structure as a pointer to its location on |
| // the stack. The structure contains 2 values. |
| int argument_stack_space = 2 * kPointerSize; |
| // We also need backing space for 4 parameters, even though |
| // we only pass one or two parameter, and it is in a register. |
| int argument_mirror_space = 4 * kPointerSize; |
| int total_stack_space = |
| argument_mirror_space + argument_stack_space + result_stack_space; |
| subq(rsp, Immediate(total_stack_space)); |
| #endif |
| |
| // Get the required frame alignment for the OS. |
| static const int kFrameAlignment = OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| ASSERT(IsPowerOf2(kFrameAlignment)); |
| movq(kScratchRegister, Immediate(-kFrameAlignment)); |
| and_(rsp, kScratchRegister); |
| } |
| |
| // Patch the saved entry sp. |
| movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode, int result_size) { |
| // Registers: |
| // r15 : argv |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Restore the memory copy of the registers by digging them out from |
| // the stack. This is needed to allow nested break points. |
| if (mode == ExitFrame::MODE_DEBUG) { |
| // It's okay to clobber register rbx below because we don't need |
| // the function pointer after this. |
| const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; |
| int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize; |
| lea(rbx, Operand(rbp, kOffset)); |
| CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved); |
| } |
| #endif |
| |
| // Get the return address from the stack and restore the frame pointer. |
| movq(rcx, Operand(rbp, 1 * kPointerSize)); |
| movq(rbp, Operand(rbp, 0 * kPointerSize)); |
| |
| // Pop everything up to and including the arguments and the receiver |
| // from the caller stack. |
| lea(rsp, Operand(r15, 1 * kPointerSize)); |
| |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address(Top::k_context_address); |
| movq(kScratchRegister, context_address); |
| movq(rsi, Operand(kScratchRegister, 0)); |
| #ifdef DEBUG |
| movq(Operand(kScratchRegister, 0), Immediate(0)); |
| #endif |
| |
| // Push the return address to get ready to return. |
| push(rcx); |
| |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); |
| movq(kScratchRegister, c_entry_fp_address); |
| movq(Operand(kScratchRegister, 0), Immediate(0)); |
| } |
| |
| |
| Register MacroAssembler::CheckMaps(JSObject* object, |
| Register object_reg, |
| JSObject* holder, |
| Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| // Make sure there's no overlap between scratch and the other |
| // registers. |
| ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); |
| |
| // Keep track of the current object in register reg. On the first |
| // iteration, reg is an alias for object_reg, on later iterations, |
| // it is an alias for holder_reg. |
| Register reg = object_reg; |
| int depth = 1; |
| |
| // Check the maps in the prototype chain. |
| // Traverse the prototype chain from the object and do map checks. |
| while (object != holder) { |
| depth++; |
| |
| // Only global objects and objects that do not require access |
| // checks are allowed in stubs. |
| ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
| |
| JSObject* prototype = JSObject::cast(object->GetPrototype()); |
| if (Heap::InNewSpace(prototype)) { |
| // Get the map of the current object. |
| movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); |
| Cmp(scratch, Handle<Map>(object->map())); |
| // Branch on the result of the map check. |
| j(not_equal, miss); |
| // Check access rights to the global object. This has to happen |
| // after the map check so that we know that the object is |
| // actually a global object. |
| if (object->IsJSGlobalProxy()) { |
| CheckAccessGlobalProxy(reg, scratch, miss); |
| |
| // Restore scratch register to be the map of the object. |
| // We load the prototype from the map in the scratch register. |
| movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); |
| } |
| // The prototype is in new space; we cannot store a reference |
| // to it in the code. Load it from the map. |
| reg = holder_reg; // from now the object is in holder_reg |
| movq(reg, FieldOperand(scratch, Map::kPrototypeOffset)); |
| |
| } else { |
| // Check the map of the current object. |
| Cmp(FieldOperand(reg, HeapObject::kMapOffset), |
| Handle<Map>(object->map())); |
| // Branch on the result of the map check. |
| j(not_equal, miss); |
| // Check access rights to the global object. This has to happen |
| // after the map check so that we know that the object is |
| // actually a global object. |
| if (object->IsJSGlobalProxy()) { |
| CheckAccessGlobalProxy(reg, scratch, miss); |
| } |
| // The prototype is in old space; load it directly. |
| reg = holder_reg; // from now the object is in holder_reg |
| Move(reg, Handle<JSObject>(prototype)); |
| } |
| |
| // Go to the next object in the prototype chain. |
| object = prototype; |
| } |
| |
| // Check the holder map. |
| Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle<Map>(holder->map())); |
| j(not_equal, miss); |
| |
| // Log the check depth. |
| LOG(IntEvent("check-maps-depth", depth)); |
| |
| // Perform security check for access to the global object and return |
| // the holder register. |
| ASSERT(object == holder); |
| ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
| if (object->IsJSGlobalProxy()) { |
| CheckAccessGlobalProxy(reg, scratch, miss); |
| } |
| return reg; |
| } |
| |
| |
| void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| Label same_contexts; |
| |
| ASSERT(!holder_reg.is(scratch)); |
| ASSERT(!scratch.is(kScratchRegister)); |
| // Load current lexical context from the stack frame. |
| movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset)); |
| |
| // When generating debug code, make sure the lexical context is set. |
| if (FLAG_debug_code) { |
| cmpq(scratch, Immediate(0)); |
| Check(not_equal, "we should not have an empty lexical context"); |
| } |
| // Load the global context of the current context. |
| int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| movq(scratch, FieldOperand(scratch, offset)); |
| movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check the context is a global context. |
| if (FLAG_debug_code) { |
| Cmp(FieldOperand(scratch, HeapObject::kMapOffset), |
| Factory::global_context_map()); |
| Check(equal, "JSGlobalObject::global_context should be a global context."); |
| } |
| |
| // Check if both contexts are the same. |
| cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| j(equal, &same_contexts); |
| |
| // Compare security tokens. |
| // Check that the security token in the calling global object is |
| // compatible with the security token in the receiving global |
| // object. |
| |
| // Check the context is a global context. |
| if (FLAG_debug_code) { |
| // Preserve original value of holder_reg. |
| push(holder_reg); |
| movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| CompareRoot(holder_reg, Heap::kNullValueRootIndex); |
| Check(not_equal, "JSGlobalProxy::context() should not be null."); |
| |
| // Read the first word and compare to global_context_map(), |
| movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); |
| CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex); |
| Check(equal, "JSGlobalObject::global_context should be a global context."); |
| pop(holder_reg); |
| } |
| |
| movq(kScratchRegister, |
| FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| int token_offset = |
| Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| movq(scratch, FieldOperand(scratch, token_offset)); |
| cmpq(scratch, FieldOperand(kScratchRegister, token_offset)); |
| j(not_equal, miss); |
| |
| bind(&same_contexts); |
| } |
| |
| |
| void MacroAssembler::LoadAllocationTopHelper(Register result, |
| Register result_end, |
| Register scratch, |
| AllocationFlags flags) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| |
| // Just return if allocation top is already known. |
| if ((flags & RESULT_CONTAINS_TOP) != 0) { |
| // No use of scratch if allocation top is provided. |
| ASSERT(scratch.is(no_reg)); |
| #ifdef DEBUG |
| // Assert that result actually contains top on entry. |
| movq(kScratchRegister, new_space_allocation_top); |
| cmpq(result, Operand(kScratchRegister, 0)); |
| Check(equal, "Unexpected allocation top"); |
| #endif |
| return; |
| } |
| |
| // Move address of new object to result. Use scratch register if available. |
| if (scratch.is(no_reg)) { |
| movq(kScratchRegister, new_space_allocation_top); |
| movq(result, Operand(kScratchRegister, 0)); |
| } else { |
| ASSERT(!scratch.is(result_end)); |
| movq(scratch, new_space_allocation_top); |
| movq(result, Operand(scratch, 0)); |
| } |
| } |
| |
| |
| void MacroAssembler::UpdateAllocationTopHelper(Register result_end, |
| Register scratch) { |
| if (FLAG_debug_code) { |
| testq(result_end, Immediate(kObjectAlignmentMask)); |
| Check(zero, "Unaligned allocation in new space"); |
| } |
| |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| |
| // Update new top. |
| if (result_end.is(rax)) { |
| // rax can be stored directly to a memory location. |
| store_rax(new_space_allocation_top); |
| } else { |
| // Register required - use scratch provided if available. |
| if (scratch.is(no_reg)) { |
| movq(kScratchRegister, new_space_allocation_top); |
| movq(Operand(kScratchRegister, 0), result_end); |
| } else { |
| movq(Operand(scratch, 0), result_end); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, result_end, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| lea(result_end, Operand(result, object_size)); |
| movq(kScratchRegister, new_space_allocation_limit); |
| cmpq(result_end, Operand(kScratchRegister, 0)); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| |
| // Tag the result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| addq(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int header_size, |
| ScaleFactor element_size, |
| Register element_count, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, result_end, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| lea(result_end, Operand(result, element_count, element_size, header_size)); |
| movq(kScratchRegister, new_space_allocation_limit); |
| cmpq(result_end, Operand(kScratchRegister, 0)); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| |
| // Tag the result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| addq(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(Register object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, result_end, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| if (!object_size.is(result_end)) { |
| movq(result_end, object_size); |
| } |
| addq(result_end, result); |
| movq(kScratchRegister, new_space_allocation_limit); |
| cmpq(result_end, Operand(kScratchRegister, 0)); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| |
| // Tag the result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| addq(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::UndoAllocationInNewSpace(Register object) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| |
| // Make sure the object has no tag before resetting top. |
| and_(object, Immediate(~kHeapObjectTagMask)); |
| movq(kScratchRegister, new_space_allocation_top); |
| #ifdef DEBUG |
| cmpq(object, Operand(kScratchRegister, 0)); |
| Check(below, "Undo allocation of non allocated memory"); |
| #endif |
| movq(Operand(kScratchRegister, 0), object); |
| } |
| |
| |
| void MacroAssembler::AllocateHeapNumber(Register result, |
| Register scratch, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(HeapNumber::kSize, |
| result, |
| scratch, |
| no_reg, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. |
| LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| ASSERT(kShortSize == 2); |
| // scratch1 = length * 2 + kObjectAlignmentMask. |
| lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); |
| and_(scratch1, Immediate(~kObjectAlignmentMask)); |
| |
| // Allocate two byte string in new space. |
| AllocateInNewSpace(SeqTwoByteString::kHeaderSize, |
| times_1, |
| scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| LoadRoot(kScratchRegister, Heap::kStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| movl(FieldOperand(result, String::kLengthOffset), length); |
| movl(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| movl(scratch1, length); |
| ASSERT(kCharSize == 1); |
| addq(scratch1, Immediate(kObjectAlignmentMask)); |
| and_(scratch1, Immediate(~kObjectAlignmentMask)); |
| |
| // Allocate ascii string in new space. |
| AllocateInNewSpace(SeqAsciiString::kHeaderSize, |
| times_1, |
| scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| movl(FieldOperand(result, String::kLengthOffset), length); |
| movl(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| if (context_chain_length > 0) { |
| // Move up the chain of contexts to the context containing the slot. |
| movq(dst, Operand(rsi, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| // Load the function context (which is the incoming, outer context). |
| movq(dst, FieldOperand(dst, JSFunction::kContextOffset)); |
| for (int i = 1; i < context_chain_length; i++) { |
| movq(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| movq(dst, FieldOperand(dst, JSFunction::kContextOffset)); |
| } |
| // The context may be an intermediate context, not a function context. |
| movq(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| } else { // context is the current function context. |
| // The context may be an intermediate context, not a function context. |
| movq(dst, Operand(rsi, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| } |
| } |
| |
| int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { |
| // On Windows stack slots are reserved by the caller for all arguments |
| // including the ones passed in registers. On Linux 6 arguments are passed in |
| // registers and the caller does not reserve stack slots for them. |
| ASSERT(num_arguments >= 0); |
| #ifdef _WIN64 |
| static const int kArgumentsWithoutStackSlot = 0; |
| #else |
| static const int kArgumentsWithoutStackSlot = 6; |
| #endif |
| return num_arguments > kArgumentsWithoutStackSlot ? |
| num_arguments - kArgumentsWithoutStackSlot : 0; |
| } |
| |
| void MacroAssembler::PrepareCallCFunction(int num_arguments) { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| ASSERT(frame_alignment != 0); |
| ASSERT(num_arguments >= 0); |
| // Make stack end at alignment and allocate space for arguments and old rsp. |
| movq(kScratchRegister, rsp); |
| ASSERT(IsPowerOf2(frame_alignment)); |
| int argument_slots_on_stack = |
| ArgumentStackSlotsForCFunctionCall(num_arguments); |
| subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize)); |
| and_(rsp, Immediate(-frame_alignment)); |
| movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| movq(rax, function); |
| CallCFunction(rax, num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(Register function, int num_arguments) { |
| call(function); |
| ASSERT(OS::ActivationFrameAlignment() != 0); |
| ASSERT(num_arguments >= 0); |
| int argument_slots_on_stack = |
| ArgumentStackSlotsForCFunctionCall(num_arguments); |
| movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize)); |
| } |
| |
| |
| CodePatcher::CodePatcher(byte* address, int size) |
| : address_(address), size_(size), masm_(address, size + Assembler::kGap) { |
| // Create a new macro assembler pointing to the address of the code to patch. |
| // The size is adjusted with kGap on order for the assembler to generate size |
| // bytes of instructions without failing with buffer size constraints. |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| CodePatcher::~CodePatcher() { |
| // Indicate that code has changed. |
| CPU::FlushICache(address_, size_); |
| |
| // Check that the code was patched as expected. |
| ASSERT(masm_.pc_ == address_ + size_); |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| } } // namespace v8::internal |