| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| // OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2010 the V8 project authors. All rights reserved. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "arm/assembler-arm-inl.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Safe default is no features. |
| unsigned CpuFeatures::supported_ = 0; |
| unsigned CpuFeatures::enabled_ = 0; |
| unsigned CpuFeatures::found_by_runtime_probing_ = 0; |
| |
| |
| #ifdef __arm__ |
| static uint64_t CpuFeaturesImpliedByCompiler() { |
| uint64_t answer = 0; |
| #ifdef CAN_USE_ARMV7_INSTRUCTIONS |
| answer |= 1u << ARMv7; |
| #endif // def CAN_USE_ARMV7_INSTRUCTIONS |
| // If the compiler is allowed to use VFP then we can use VFP too in our code |
| // generation even when generating snapshots. This won't work for cross |
| // compilation. |
| #if defined(__VFP_FP__) && !defined(__SOFTFP__) |
| answer |= 1u << VFP3; |
| #endif // defined(__VFP_FP__) && !defined(__SOFTFP__) |
| #ifdef CAN_USE_VFP_INSTRUCTIONS |
| answer |= 1u << VFP3; |
| #endif // def CAN_USE_VFP_INSTRUCTIONS |
| return answer; |
| } |
| #endif // def __arm__ |
| |
| |
| void CpuFeatures::Probe() { |
| #ifndef __arm__ |
| // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled. |
| if (FLAG_enable_vfp3) { |
| supported_ |= 1u << VFP3; |
| } |
| // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled |
| if (FLAG_enable_armv7) { |
| supported_ |= 1u << ARMv7; |
| } |
| #else // def __arm__ |
| if (Serializer::enabled()) { |
| supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
| supported_ |= CpuFeaturesImpliedByCompiler(); |
| return; // No features if we might serialize. |
| } |
| |
| if (OS::ArmCpuHasFeature(VFP3)) { |
| // This implementation also sets the VFP flags if |
| // runtime detection of VFP returns true. |
| supported_ |= 1u << VFP3; |
| found_by_runtime_probing_ |= 1u << VFP3; |
| } |
| |
| if (OS::ArmCpuHasFeature(ARMv7)) { |
| supported_ |= 1u << ARMv7; |
| found_by_runtime_probing_ |= 1u << ARMv7; |
| } |
| #endif |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| const int RelocInfo::kApplyMask = 0; |
| |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on ARM means that it is a movw/movt instruction. We don't |
| // generate those yet. |
| return false; |
| } |
| |
| |
| |
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| // Patch the code at the current address with the supplied instructions. |
| Instr* pc = reinterpret_cast<Instr*>(pc_); |
| Instr* instr = reinterpret_cast<Instr*>(instructions); |
| for (int i = 0; i < instruction_count; i++) { |
| *(pc + i) = *(instr + i); |
| } |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); |
| } |
| |
| |
| // Patch the code at the current PC with a call to the target address. |
| // Additional guard instructions can be added if required. |
| void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| // Patch the code at the current address with a call to the target. |
| UNIMPLEMENTED(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand |
| // See assembler-arm-inl.h for inlined constructors |
| |
| Operand::Operand(Handle<Object> handle) { |
| rm_ = no_reg; |
| // Verify all Objects referred by code are NOT in new space. |
| Object* obj = *handle; |
| ASSERT(!Heap::InNewSpace(obj)); |
| if (obj->IsHeapObject()) { |
| imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
| rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| } else { |
| // no relocation needed |
| imm32_ = reinterpret_cast<intptr_t>(obj); |
| rmode_ = RelocInfo::NONE; |
| } |
| } |
| |
| |
| Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { |
| ASSERT(is_uint5(shift_imm)); |
| ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it |
| rm_ = rm; |
| rs_ = no_reg; |
| shift_op_ = shift_op; |
| shift_imm_ = shift_imm & 31; |
| if (shift_op == RRX) { |
| // encoded as ROR with shift_imm == 0 |
| ASSERT(shift_imm == 0); |
| shift_op_ = ROR; |
| shift_imm_ = 0; |
| } |
| } |
| |
| |
| Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { |
| ASSERT(shift_op != RRX); |
| rm_ = rm; |
| rs_ = no_reg; |
| shift_op_ = shift_op; |
| rs_ = rs; |
| } |
| |
| |
| MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { |
| rn_ = rn; |
| rm_ = no_reg; |
| offset_ = offset; |
| am_ = am; |
| } |
| |
| MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { |
| rn_ = rn; |
| rm_ = rm; |
| shift_op_ = LSL; |
| shift_imm_ = 0; |
| am_ = am; |
| } |
| |
| |
| MemOperand::MemOperand(Register rn, Register rm, |
| ShiftOp shift_op, int shift_imm, AddrMode am) { |
| ASSERT(is_uint5(shift_imm)); |
| rn_ = rn; |
| rm_ = rm; |
| shift_op_ = shift_op; |
| shift_imm_ = shift_imm & 31; |
| am_ = am; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Assembler. |
| |
| // Instruction encoding bits. |
| enum { |
| H = 1 << 5, // halfword (or byte) |
| S6 = 1 << 6, // signed (or unsigned) |
| L = 1 << 20, // load (or store) |
| S = 1 << 20, // set condition code (or leave unchanged) |
| W = 1 << 21, // writeback base register (or leave unchanged) |
| A = 1 << 21, // accumulate in multiply instruction (or not) |
| B = 1 << 22, // unsigned byte (or word) |
| N = 1 << 22, // long (or short) |
| U = 1 << 23, // positive (or negative) offset/index |
| P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing) |
| I = 1 << 25, // immediate shifter operand (or not) |
| |
| B4 = 1 << 4, |
| B5 = 1 << 5, |
| B6 = 1 << 6, |
| B7 = 1 << 7, |
| B8 = 1 << 8, |
| B9 = 1 << 9, |
| B12 = 1 << 12, |
| B16 = 1 << 16, |
| B18 = 1 << 18, |
| B19 = 1 << 19, |
| B20 = 1 << 20, |
| B21 = 1 << 21, |
| B22 = 1 << 22, |
| B23 = 1 << 23, |
| B24 = 1 << 24, |
| B25 = 1 << 25, |
| B26 = 1 << 26, |
| B27 = 1 << 27, |
| |
| // Instruction bit masks. |
| RdMask = 15 << 12, // in str instruction |
| CondMask = 15 << 28, |
| CoprocessorMask = 15 << 8, |
| OpCodeMask = 15 << 21, // in data-processing instructions |
| Imm24Mask = (1 << 24) - 1, |
| Off12Mask = (1 << 12) - 1, |
| // Reserved condition. |
| nv = 15 << 28 |
| }; |
| |
| |
| // add(sp, sp, 4) instruction (aka Pop()) |
| static const Instr kPopInstruction = |
| al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; |
| // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) |
| // register r is not encoded. |
| static const Instr kPushRegPattern = |
| al | B26 | 4 | NegPreIndex | sp.code() * B16; |
| // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) |
| // register r is not encoded. |
| static const Instr kPopRegPattern = |
| al | B26 | L | 4 | PostIndex | sp.code() * B16; |
| // mov lr, pc |
| const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; |
| // ldr rd, [pc, #offset] |
| const Instr kLdrPCMask = CondMask | 15 * B24 | 7 * B20 | 15 * B16; |
| const Instr kLdrPCPattern = al | 5 * B24 | L | pc.code() * B16; |
| // blxcc rm |
| const Instr kBlxRegMask = |
| 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4; |
| const Instr kBlxRegPattern = |
| B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | 3 * B4; |
| const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16; |
| const Instr kMovMvnPattern = 0xd * B21; |
| const Instr kMovMvnFlip = B22; |
| const Instr kMovLeaveCCMask = 0xdff * B16; |
| const Instr kMovLeaveCCPattern = 0x1a0 * B16; |
| const Instr kMovwMask = 0xff * B20; |
| const Instr kMovwPattern = 0x30 * B20; |
| const Instr kMovwLeaveCCFlip = 0x5 * B21; |
| const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12; |
| const Instr kCmpCmnPattern = 0x15 * B20; |
| const Instr kCmpCmnFlip = B21; |
| const Instr kALUMask = 0x6f * B21; |
| const Instr kAddPattern = 0x4 * B21; |
| const Instr kSubPattern = 0x2 * B21; |
| const Instr kBicPattern = 0xe * B21; |
| const Instr kAndPattern = 0x0 * B21; |
| const Instr kAddSubFlip = 0x6 * B21; |
| const Instr kAndBicFlip = 0xe * B21; |
| |
| // A mask for the Rd register for push, pop, ldr, str instructions. |
| const Instr kRdMask = 0x0000f000; |
| static const int kRdShift = 12; |
| static const Instr kLdrRegFpOffsetPattern = |
| al | B26 | L | Offset | fp.code() * B16; |
| static const Instr kStrRegFpOffsetPattern = |
| al | B26 | Offset | fp.code() * B16; |
| static const Instr kLdrRegFpNegOffsetPattern = |
| al | B26 | L | NegOffset | fp.code() * B16; |
| static const Instr kStrRegFpNegOffsetPattern = |
| al | B26 | NegOffset | fp.code() * B16; |
| static const Instr kLdrStrInstrTypeMask = 0xffff0000; |
| static const Instr kLdrStrInstrArgumentMask = 0x0000ffff; |
| static const Instr kLdrStrOffsetMask = 0x00000fff; |
| |
| // Spare buffer. |
| static const int kMinimalBufferSize = 4*KB; |
| static byte* spare_buffer_ = NULL; |
| |
| Assembler::Assembler(void* buffer, int buffer_size) { |
| if (buffer == NULL) { |
| // Do our own buffer management. |
| if (buffer_size <= kMinimalBufferSize) { |
| buffer_size = kMinimalBufferSize; |
| |
| if (spare_buffer_ != NULL) { |
| buffer = spare_buffer_; |
| spare_buffer_ = NULL; |
| } |
| } |
| if (buffer == NULL) { |
| buffer_ = NewArray<byte>(buffer_size); |
| } else { |
| buffer_ = static_cast<byte*>(buffer); |
| } |
| buffer_size_ = buffer_size; |
| own_buffer_ = true; |
| |
| } else { |
| // Use externally provided buffer instead. |
| ASSERT(buffer_size > 0); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| own_buffer_ = false; |
| } |
| |
| // Setup buffer pointers. |
| ASSERT(buffer_ != NULL); |
| pc_ = buffer_; |
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| num_prinfo_ = 0; |
| next_buffer_check_ = 0; |
| const_pool_blocked_nesting_ = 0; |
| no_const_pool_before_ = 0; |
| last_const_pool_end_ = 0; |
| last_bound_pos_ = 0; |
| current_statement_position_ = RelocInfo::kNoPosition; |
| current_position_ = RelocInfo::kNoPosition; |
| written_statement_position_ = current_statement_position_; |
| written_position_ = current_position_; |
| } |
| |
| |
| Assembler::~Assembler() { |
| ASSERT(const_pool_blocked_nesting_ == 0); |
| if (own_buffer_) { |
| if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| spare_buffer_ = buffer_; |
| } else { |
| DeleteArray(buffer_); |
| } |
| } |
| } |
| |
| |
| void Assembler::GetCode(CodeDesc* desc) { |
| // Emit constant pool if necessary. |
| CheckConstPool(true, false); |
| ASSERT(num_prinfo_ == 0); |
| |
| // Setup code descriptor. |
| desc->buffer = buffer_; |
| desc->buffer_size = buffer_size_; |
| desc->instr_size = pc_offset(); |
| desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| } |
| |
| |
| void Assembler::Align(int m) { |
| ASSERT(m >= 4 && IsPowerOf2(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| |
| void Assembler::CodeTargetAlign() { |
| // Preferred alignment of jump targets on some ARM chips. |
| Align(8); |
| } |
| |
| |
| bool Assembler::IsNop(Instr instr, int type) { |
| // Check for mov rx, rx. |
| ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop. |
| return instr == (al | 13*B21 | type*B12 | type); |
| } |
| |
| |
| bool Assembler::IsBranch(Instr instr) { |
| return (instr & (B27 | B25)) == (B27 | B25); |
| } |
| |
| |
| int Assembler::GetBranchOffset(Instr instr) { |
| ASSERT(IsBranch(instr)); |
| // Take the jump offset in the lower 24 bits, sign extend it and multiply it |
| // with 4 to get the offset in bytes. |
| return ((instr & Imm24Mask) << 8) >> 6; |
| } |
| |
| |
| bool Assembler::IsLdrRegisterImmediate(Instr instr) { |
| return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20); |
| } |
| |
| |
| int Assembler::GetLdrRegisterImmediateOffset(Instr instr) { |
| ASSERT(IsLdrRegisterImmediate(instr)); |
| bool positive = (instr & B23) == B23; |
| int offset = instr & Off12Mask; // Zero extended offset. |
| return positive ? offset : -offset; |
| } |
| |
| |
| Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) { |
| ASSERT(IsLdrRegisterImmediate(instr)); |
| bool positive = offset >= 0; |
| if (!positive) offset = -offset; |
| ASSERT(is_uint12(offset)); |
| // Set bit indicating whether the offset should be added. |
| instr = (instr & ~B23) | (positive ? B23 : 0); |
| // Set the actual offset. |
| return (instr & ~Off12Mask) | offset; |
| } |
| |
| |
| Register Assembler::GetRd(Instr instr) { |
| Register reg; |
| reg.code_ = ((instr & kRdMask) >> kRdShift); |
| return reg; |
| } |
| |
| |
| bool Assembler::IsPush(Instr instr) { |
| return ((instr & ~kRdMask) == kPushRegPattern); |
| } |
| |
| |
| bool Assembler::IsPop(Instr instr) { |
| return ((instr & ~kRdMask) == kPopRegPattern); |
| } |
| |
| |
| bool Assembler::IsStrRegFpOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsLdrRegFpOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsStrRegFpNegOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsLdrRegFpNegOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern); |
| } |
| |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| |
| |
| // The link chain is terminated by a negative code position (must be aligned) |
| const int kEndOfChain = -4; |
| |
| |
| int Assembler::target_at(int pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~Imm24Mask) == 0) { |
| // Emitted label constant, not part of a branch. |
| return instr - (Code::kHeaderSize - kHeapObjectTag); |
| } |
| ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 |
| int imm26 = ((instr & Imm24Mask) << 8) >> 6; |
| if ((instr & CondMask) == nv && (instr & B24) != 0) { |
| // blx uses bit 24 to encode bit 2 of imm26 |
| imm26 += 2; |
| } |
| return pos + kPcLoadDelta + imm26; |
| } |
| |
| |
| void Assembler::target_at_put(int pos, int target_pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~Imm24Mask) == 0) { |
| ASSERT(target_pos == kEndOfChain || target_pos >= 0); |
| // Emitted label constant, not part of a branch. |
| // Make label relative to Code* of generated Code object. |
| instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| return; |
| } |
| int imm26 = target_pos - (pos + kPcLoadDelta); |
| ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 |
| if ((instr & CondMask) == nv) { |
| // blx uses bit 24 to encode bit 2 of imm26 |
| ASSERT((imm26 & 1) == 0); |
| instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24; |
| } else { |
| ASSERT((imm26 & 3) == 0); |
| instr &= ~Imm24Mask; |
| } |
| int imm24 = imm26 >> 2; |
| ASSERT(is_int24(imm24)); |
| instr_at_put(pos, instr | (imm24 & Imm24Mask)); |
| } |
| |
| |
| void Assembler::print(Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l = *L; |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~Imm24Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx |
| int cond = instr & CondMask; |
| const char* b; |
| const char* c; |
| if (cond == nv) { |
| b = "blx"; |
| c = ""; |
| } else { |
| if ((instr & B24) != 0) |
| b = "bl"; |
| else |
| b = "b"; |
| |
| switch (cond) { |
| case eq: c = "eq"; break; |
| case ne: c = "ne"; break; |
| case hs: c = "hs"; break; |
| case lo: c = "lo"; break; |
| case mi: c = "mi"; break; |
| case pl: c = "pl"; break; |
| case vs: c = "vs"; break; |
| case vc: c = "vc"; break; |
| case hi: c = "hi"; break; |
| case ls: c = "ls"; break; |
| case ge: c = "ge"; break; |
| case lt: c = "lt"; break; |
| case gt: c = "gt"; break; |
| case le: c = "le"; break; |
| case al: c = ""; break; |
| default: |
| c = ""; |
| UNREACHABLE(); |
| } |
| } |
| PrintF("%s%s\n", b, c); |
| } |
| next(&l); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
| while (L->is_linked()) { |
| int fixup_pos = L->pos(); |
| next(L); // call next before overwriting link with target at fixup_pos |
| target_at_put(fixup_pos, pos); |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) |
| last_bound_pos_ = pos; |
| } |
| |
| |
| void Assembler::link_to(Label* L, Label* appendix) { |
| if (appendix->is_linked()) { |
| if (L->is_linked()) { |
| // Append appendix to L's list. |
| int fixup_pos; |
| int link = L->pos(); |
| do { |
| fixup_pos = link; |
| link = target_at(fixup_pos); |
| } while (link > 0); |
| ASSERT(link == kEndOfChain); |
| target_at_put(fixup_pos, appendix->pos()); |
| } else { |
| // L is empty, simply use appendix. |
| *L = *appendix; |
| } |
| } |
| appendix->Unuse(); // appendix should not be used anymore |
| } |
| |
| |
| void Assembler::bind(Label* L) { |
| ASSERT(!L->is_bound()); // label can only be bound once |
| bind_to(L, pc_offset()); |
| } |
| |
| |
| void Assembler::next(Label* L) { |
| ASSERT(L->is_linked()); |
| int link = target_at(L->pos()); |
| if (link > 0) { |
| L->link_to(link); |
| } else { |
| ASSERT(link == kEndOfChain); |
| L->Unuse(); |
| } |
| } |
| |
| |
| static Instr EncodeMovwImmediate(uint32_t immediate) { |
| ASSERT(immediate < 0x10000); |
| return ((immediate & 0xf000) << 4) | (immediate & 0xfff); |
| } |
| |
| |
| // Low-level code emission routines depending on the addressing mode. |
| // If this returns true then you have to use the rotate_imm and immed_8 |
| // that it returns, because it may have already changed the instruction |
| // to match them! |
| static bool fits_shifter(uint32_t imm32, |
| uint32_t* rotate_imm, |
| uint32_t* immed_8, |
| Instr* instr) { |
| // imm32 must be unsigned. |
| for (int rot = 0; rot < 16; rot++) { |
| uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); |
| if ((imm8 <= 0xff)) { |
| *rotate_imm = rot; |
| *immed_8 = imm8; |
| return true; |
| } |
| } |
| // If the opcode is one with a complementary version and the complementary |
| // immediate fits, change the opcode. |
| if (instr != NULL) { |
| if ((*instr & kMovMvnMask) == kMovMvnPattern) { |
| if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { |
| *instr ^= kMovMvnFlip; |
| return true; |
| } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| if (imm32 < 0x10000) { |
| *instr ^= kMovwLeaveCCFlip; |
| *instr |= EncodeMovwImmediate(imm32); |
| *rotate_imm = *immed_8 = 0; // Not used for movw. |
| return true; |
| } |
| } |
| } |
| } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) { |
| if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) { |
| *instr ^= kCmpCmnFlip; |
| return true; |
| } |
| } else { |
| Instr alu_insn = (*instr & kALUMask); |
| if (alu_insn == kAddPattern || |
| alu_insn == kSubPattern) { |
| if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) { |
| *instr ^= kAddSubFlip; |
| return true; |
| } |
| } else if (alu_insn == kAndPattern || |
| alu_insn == kBicPattern) { |
| if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { |
| *instr ^= kAndBicFlip; |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| |
| // We have to use the temporary register for things that can be relocated even |
| // if they can be encoded in the ARM's 12 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| static bool MustUseConstantPool(RelocInfo::Mode rmode) { |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| #ifdef DEBUG |
| if (!Serializer::enabled()) { |
| Serializer::TooLateToEnableNow(); |
| } |
| #endif // def DEBUG |
| return Serializer::enabled(); |
| } else if (rmode == RelocInfo::NONE) { |
| return false; |
| } |
| return true; |
| } |
| |
| |
| bool Operand::is_single_instruction() const { |
| if (rm_.is_valid()) return true; |
| if (MustUseConstantPool(rmode_)) return false; |
| uint32_t dummy1, dummy2; |
| return fits_shifter(imm32_, &dummy1, &dummy2, NULL); |
| } |
| |
| |
| void Assembler::addrmod1(Instr instr, |
| Register rn, |
| Register rd, |
| const Operand& x) { |
| CheckBuffer(); |
| ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); |
| if (!x.rm_.is_valid()) { |
| // Immediate. |
| uint32_t rotate_imm; |
| uint32_t immed_8; |
| if (MustUseConstantPool(x.rmode_) || |
| !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { |
| // The immediate operand cannot be encoded as a shifter operand, so load |
| // it first to register ip and change the original instruction to use ip. |
| // However, if the original instruction is a 'mov rd, x' (not setting the |
| // condition code), then replace it with a 'ldr rd, [pc]'. |
| CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed |
| Condition cond = static_cast<Condition>(instr & CondMask); |
| if ((instr & ~CondMask) == 13*B21) { // mov, S not set |
| if (MustUseConstantPool(x.rmode_) || |
| !CpuFeatures::IsSupported(ARMv7)) { |
| RecordRelocInfo(x.rmode_, x.imm32_); |
| ldr(rd, MemOperand(pc, 0), cond); |
| } else { |
| // Will probably use movw, will certainly not use constant pool. |
| mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond); |
| movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond); |
| } |
| } else { |
| // If this is not a mov or mvn instruction we may still be able to avoid |
| // a constant pool entry by using mvn or movw. |
| if (!MustUseConstantPool(x.rmode_) && |
| (instr & kMovMvnMask) != kMovMvnPattern) { |
| mov(ip, x, LeaveCC, cond); |
| } else { |
| RecordRelocInfo(x.rmode_, x.imm32_); |
| ldr(ip, MemOperand(pc, 0), cond); |
| } |
| addrmod1(instr, rn, rd, Operand(ip)); |
| } |
| return; |
| } |
| instr |= I | rotate_imm*B8 | immed_8; |
| } else if (!x.rs_.is_valid()) { |
| // Immediate shift. |
| instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
| } else { |
| // Register shift. |
| ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); |
| instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); |
| } |
| emit(instr | rn.code()*B16 | rd.code()*B12); |
| if (rn.is(pc) || x.rm_.is(pc)) |
| // Block constant pool emission for one instruction after reading pc. |
| BlockConstPoolBefore(pc_offset() + kInstrSize); |
| } |
| |
| |
| void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { |
| ASSERT((instr & ~(CondMask | B | L)) == B26); |
| int am = x.am_; |
| if (!x.rm_.is_valid()) { |
| // Immediate offset. |
| int offset_12 = x.offset_; |
| if (offset_12 < 0) { |
| offset_12 = -offset_12; |
| am ^= U; |
| } |
| if (!is_uint12(offset_12)) { |
| // Immediate offset cannot be encoded, load it first to register ip |
| // rn (and rd in a load) should never be ip, or will be trashed. |
| ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| mov(ip, Operand(x.offset_), LeaveCC, |
| static_cast<Condition>(instr & CondMask)); |
| addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| return; |
| } |
| ASSERT(offset_12 >= 0); // no masking needed |
| instr |= offset_12; |
| } else { |
| // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
| // register offset the constructors make sure than both shift_imm_ |
| // and shift_op_ are initialized. |
| ASSERT(!x.rm_.is(pc)); |
| instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
| } |
| ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
| } |
| |
| |
| void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { |
| ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); |
| ASSERT(x.rn_.is_valid()); |
| int am = x.am_; |
| if (!x.rm_.is_valid()) { |
| // Immediate offset. |
| int offset_8 = x.offset_; |
| if (offset_8 < 0) { |
| offset_8 = -offset_8; |
| am ^= U; |
| } |
| if (!is_uint8(offset_8)) { |
| // Immediate offset cannot be encoded, load it first to register ip |
| // rn (and rd in a load) should never be ip, or will be trashed. |
| ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| mov(ip, Operand(x.offset_), LeaveCC, |
| static_cast<Condition>(instr & CondMask)); |
| addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| return; |
| } |
| ASSERT(offset_8 >= 0); // no masking needed |
| instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); |
| } else if (x.shift_imm_ != 0) { |
| // Scaled register offset not supported, load index first |
| // rn (and rd in a load) should never be ip, or will be trashed. |
| ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, |
| static_cast<Condition>(instr & CondMask)); |
| addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| return; |
| } else { |
| // Register offset. |
| ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback |
| instr |= x.rm_.code(); |
| } |
| ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
| } |
| |
| |
| void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { |
| ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); |
| ASSERT(rl != 0); |
| ASSERT(!rn.is(pc)); |
| emit(instr | rn.code()*B16 | rl); |
| } |
| |
| |
| void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { |
| // Unindexed addressing is not encoded by this function. |
| ASSERT_EQ((B27 | B26), |
| (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); |
| ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); |
| int am = x.am_; |
| int offset_8 = x.offset_; |
| ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset |
| offset_8 >>= 2; |
| if (offset_8 < 0) { |
| offset_8 = -offset_8; |
| am ^= U; |
| } |
| ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte |
| ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| |
| // Post-indexed addressing requires W == 1; different than in addrmod2/3. |
| if ((am & P) == 0) |
| am |= W; |
| |
| ASSERT(offset_8 >= 0); // no masking needed |
| emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); |
| } |
| |
| |
| int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link |
| } else { |
| target_pos = kEndOfChain; |
| } |
| L->link_to(pc_offset()); |
| } |
| |
| // Block the emission of the constant pool, since the branch instruction must |
| // be emitted at the pc offset recorded by the label. |
| BlockConstPoolBefore(pc_offset() + kInstrSize); |
| return target_pos - (pc_offset() + kPcLoadDelta); |
| } |
| |
| |
| void Assembler::label_at_put(Label* L, int at_offset) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link |
| } else { |
| target_pos = kEndOfChain; |
| } |
| L->link_to(at_offset); |
| instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } |
| |
| |
| // Branch instructions. |
| void Assembler::b(int branch_offset, Condition cond) { |
| ASSERT((branch_offset & 3) == 0); |
| int imm24 = branch_offset >> 2; |
| ASSERT(is_int24(imm24)); |
| emit(cond | B27 | B25 | (imm24 & Imm24Mask)); |
| |
| if (cond == al) { |
| // Dead code is a good location to emit the constant pool. |
| CheckConstPool(false, false); |
| } |
| } |
| |
| |
| void Assembler::bl(int branch_offset, Condition cond) { |
| ASSERT((branch_offset & 3) == 0); |
| int imm24 = branch_offset >> 2; |
| ASSERT(is_int24(imm24)); |
| emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); |
| } |
| |
| |
| void Assembler::blx(int branch_offset) { // v5 and above |
| WriteRecordedPositions(); |
| ASSERT((branch_offset & 1) == 0); |
| int h = ((branch_offset & 2) >> 1)*B24; |
| int imm24 = branch_offset >> 2; |
| ASSERT(is_int24(imm24)); |
| emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask)); |
| } |
| |
| |
| void Assembler::blx(Register target, Condition cond) { // v5 and above |
| WriteRecordedPositions(); |
| ASSERT(!target.is(pc)); |
| emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code()); |
| } |
| |
| |
| void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t |
| WriteRecordedPositions(); |
| ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged |
| emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); |
| } |
| |
| |
| // Data-processing instructions. |
| |
| void Assembler::and_(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 0*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::eor(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 1*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::sub(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 2*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::rsb(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 3*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::add(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 4*B21 | s, src1, dst, src2); |
| |
| // Eliminate pattern: push(r), pop() |
| // str(src, MemOperand(sp, 4, NegPreIndex), al); |
| // add(sp, sp, Operand(kPointerSize)); |
| // Both instructions can be eliminated. |
| if (can_peephole_optimize(2) && |
| // Pattern. |
| instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && |
| (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { |
| pc_ -= 2 * kInstrSize; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); |
| } |
| } |
| } |
| |
| |
| void Assembler::adc(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 5*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::sbc(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 6*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::rsc(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 7*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::tst(Register src1, const Operand& src2, Condition cond) { |
| addrmod1(cond | 8*B21 | S, src1, r0, src2); |
| } |
| |
| |
| void Assembler::teq(Register src1, const Operand& src2, Condition cond) { |
| addrmod1(cond | 9*B21 | S, src1, r0, src2); |
| } |
| |
| |
| void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { |
| addrmod1(cond | 10*B21 | S, src1, r0, src2); |
| } |
| |
| |
| void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { |
| addrmod1(cond | 11*B21 | S, src1, r0, src2); |
| } |
| |
| |
| void Assembler::orr(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 12*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { |
| if (dst.is(pc)) { |
| WriteRecordedPositions(); |
| } |
| // Don't allow nop instructions in the form mov rn, rn to be generated using |
| // the mov instruction. They must be generated using nop(int) |
| // pseudo instructions. |
| ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al)); |
| addrmod1(cond | 13*B21 | s, r0, dst, src); |
| } |
| |
| |
| void Assembler::movw(Register reg, uint32_t immediate, Condition cond) { |
| ASSERT(immediate < 0x10000); |
| mov(reg, Operand(immediate), LeaveCC, cond); |
| } |
| |
| |
| void Assembler::movt(Register reg, uint32_t immediate, Condition cond) { |
| emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate)); |
| } |
| |
| |
| void Assembler::bic(Register dst, Register src1, const Operand& src2, |
| SBit s, Condition cond) { |
| addrmod1(cond | 14*B21 | s, src1, dst, src2); |
| } |
| |
| |
| void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { |
| addrmod1(cond | 15*B21 | s, r0, dst, src); |
| } |
| |
| |
| // Multiply instructions. |
| void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, |
| SBit s, Condition cond) { |
| ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); |
| emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | |
| src2.code()*B8 | B7 | B4 | src1.code()); |
| } |
| |
| |
| void Assembler::mul(Register dst, Register src1, Register src2, |
| SBit s, Condition cond) { |
| ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| // dst goes in bits 16-19 for this instruction! |
| emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); |
| } |
| |
| |
| void Assembler::smlal(Register dstL, |
| Register dstH, |
| Register src1, |
| Register src2, |
| SBit s, |
| Condition cond) { |
| ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| ASSERT(!dstL.is(dstH)); |
| emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | |
| src2.code()*B8 | B7 | B4 | src1.code()); |
| } |
| |
| |
| void Assembler::smull(Register dstL, |
| Register dstH, |
| Register src1, |
| Register src2, |
| SBit s, |
| Condition cond) { |
| ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| ASSERT(!dstL.is(dstH)); |
| emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | |
| src2.code()*B8 | B7 | B4 | src1.code()); |
| } |
| |
| |
| void Assembler::umlal(Register dstL, |
| Register dstH, |
| Register src1, |
| Register src2, |
| SBit s, |
| Condition cond) { |
| ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| ASSERT(!dstL.is(dstH)); |
| emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | |
| src2.code()*B8 | B7 | B4 | src1.code()); |
| } |
| |
| |
| void Assembler::umull(Register dstL, |
| Register dstH, |
| Register src1, |
| Register src2, |
| SBit s, |
| Condition cond) { |
| ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| ASSERT(!dstL.is(dstH)); |
| emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | |
| src2.code()*B8 | B7 | B4 | src1.code()); |
| } |
| |
| |
| // Miscellaneous arithmetic instructions. |
| void Assembler::clz(Register dst, Register src, Condition cond) { |
| // v5 and above. |
| ASSERT(!dst.is(pc) && !src.is(pc)); |
| emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | |
| 15*B8 | B4 | src.code()); |
| } |
| |
| |
| // Bitfield manipulation instructions. |
| |
| // Unsigned bit field extract. |
| // Extracts #width adjacent bits from position #lsb in a register, and |
| // writes them to the low bits of a destination register. |
| // ubfx dst, src, #lsb, #width |
| void Assembler::ubfx(Register dst, |
| Register src, |
| int lsb, |
| int width, |
| Condition cond) { |
| // v7 and above. |
| ASSERT(CpuFeatures::IsSupported(ARMv7)); |
| ASSERT(!dst.is(pc) && !src.is(pc)); |
| ASSERT((lsb >= 0) && (lsb <= 31)); |
| ASSERT((width >= 1) && (width <= (32 - lsb))); |
| emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 | |
| lsb*B7 | B6 | B4 | src.code()); |
| } |
| |
| |
| // Signed bit field extract. |
| // Extracts #width adjacent bits from position #lsb in a register, and |
| // writes them to the low bits of a destination register. The extracted |
| // value is sign extended to fill the destination register. |
| // sbfx dst, src, #lsb, #width |
| void Assembler::sbfx(Register dst, |
| Register src, |
| int lsb, |
| int width, |
| Condition cond) { |
| // v7 and above. |
| ASSERT(CpuFeatures::IsSupported(ARMv7)); |
| ASSERT(!dst.is(pc) && !src.is(pc)); |
| ASSERT((lsb >= 0) && (lsb <= 31)); |
| ASSERT((width >= 1) && (width <= (32 - lsb))); |
| emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 | |
| lsb*B7 | B6 | B4 | src.code()); |
| } |
| |
| |
| // Bit field clear. |
| // Sets #width adjacent bits at position #lsb in the destination register |
| // to zero, preserving the value of the other bits. |
| // bfc dst, #lsb, #width |
| void Assembler::bfc(Register dst, int lsb, int width, Condition cond) { |
| // v7 and above. |
| ASSERT(CpuFeatures::IsSupported(ARMv7)); |
| ASSERT(!dst.is(pc)); |
| ASSERT((lsb >= 0) && (lsb <= 31)); |
| ASSERT((width >= 1) && (width <= (32 - lsb))); |
| int msb = lsb + width - 1; |
| emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf); |
| } |
| |
| |
| // Bit field insert. |
| // Inserts #width adjacent bits from the low bits of the source register |
| // into position #lsb of the destination register. |
| // bfi dst, src, #lsb, #width |
| void Assembler::bfi(Register dst, |
| Register src, |
| int lsb, |
| int width, |
| Condition cond) { |
| // v7 and above. |
| ASSERT(CpuFeatures::IsSupported(ARMv7)); |
| ASSERT(!dst.is(pc) && !src.is(pc)); |
| ASSERT((lsb >= 0) && (lsb <= 31)); |
| ASSERT((width >= 1) && (width <= (32 - lsb))); |
| int msb = lsb + width - 1; |
| emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | |
| src.code()); |
| } |
| |
| |
| // Status register access instructions. |
| void Assembler::mrs(Register dst, SRegister s, Condition cond) { |
| ASSERT(!dst.is(pc)); |
| emit(cond | B24 | s | 15*B16 | dst.code()*B12); |
| } |
| |
| |
| void Assembler::msr(SRegisterFieldMask fields, const Operand& src, |
| Condition cond) { |
| ASSERT(fields >= B16 && fields < B20); // at least one field set |
| Instr instr; |
| if (!src.rm_.is_valid()) { |
| // Immediate. |
| uint32_t rotate_imm; |
| uint32_t immed_8; |
| if (MustUseConstantPool(src.rmode_) || |
| !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { |
| // Immediate operand cannot be encoded, load it first to register ip. |
| RecordRelocInfo(src.rmode_, src.imm32_); |
| ldr(ip, MemOperand(pc, 0), cond); |
| msr(fields, Operand(ip), cond); |
| return; |
| } |
| instr = I | rotate_imm*B8 | immed_8; |
| } else { |
| ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed |
| instr = src.rm_.code(); |
| } |
| emit(cond | instr | B24 | B21 | fields | 15*B12); |
| } |
| |
| |
| // Load/Store instructions. |
| void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { |
| if (dst.is(pc)) { |
| WriteRecordedPositions(); |
| } |
| addrmod2(cond | B26 | L, dst, src); |
| |
| // Eliminate pattern: push(ry), pop(rx) |
| // str(ry, MemOperand(sp, 4, NegPreIndex), al) |
| // ldr(rx, MemOperand(sp, 4, PostIndex), al) |
| // Both instructions can be eliminated if ry = rx. |
| // If ry != rx, a register copy from ry to rx is inserted |
| // after eliminating the push and the pop instructions. |
| if (can_peephole_optimize(2)) { |
| Instr push_instr = instr_at(pc_ - 2 * kInstrSize); |
| Instr pop_instr = instr_at(pc_ - 1 * kInstrSize); |
| |
| if (IsPush(push_instr) && IsPop(pop_instr)) { |
| if ((pop_instr & kRdMask) != (push_instr & kRdMask)) { |
| // For consecutive push and pop on different registers, |
| // we delete both the push & pop and insert a register move. |
| // push ry, pop rx --> mov rx, ry |
| Register reg_pushed, reg_popped; |
| reg_pushed = GetRd(push_instr); |
| reg_popped = GetRd(pop_instr); |
| pc_ -= 2 * kInstrSize; |
| // Insert a mov instruction, which is better than a pair of push & pop |
| mov(reg_popped, reg_pushed); |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop (diff reg) replaced by a reg move\n", |
| pc_offset()); |
| } |
| } else { |
| // For consecutive push and pop on the same register, |
| // both the push and the pop can be deleted. |
| pc_ -= 2 * kInstrSize; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); |
| } |
| } |
| } |
| } |
| |
| if (can_peephole_optimize(2)) { |
| Instr str_instr = instr_at(pc_ - 2 * kInstrSize); |
| Instr ldr_instr = instr_at(pc_ - 1 * kInstrSize); |
| |
| if ((IsStrRegFpOffset(str_instr) && |
| IsLdrRegFpOffset(ldr_instr)) || |
| (IsStrRegFpNegOffset(str_instr) && |
| IsLdrRegFpNegOffset(ldr_instr))) { |
| if ((ldr_instr & kLdrStrInstrArgumentMask) == |
| (str_instr & kLdrStrInstrArgumentMask)) { |
| // Pattern: Ldr/str same fp+offset, same register. |
| // |
| // The following: |
| // str rx, [fp, #-12] |
| // ldr rx, [fp, #-12] |
| // |
| // Becomes: |
| // str rx, [fp, #-12] |
| |
| pc_ -= 1 * kInstrSize; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x str/ldr (fp + same offset), same reg\n", pc_offset()); |
| } |
| } else if ((ldr_instr & kLdrStrOffsetMask) == |
| (str_instr & kLdrStrOffsetMask)) { |
| // Pattern: Ldr/str same fp+offset, different register. |
| // |
| // The following: |
| // str rx, [fp, #-12] |
| // ldr ry, [fp, #-12] |
| // |
| // Becomes: |
| // str rx, [fp, #-12] |
| // mov ry, rx |
| |
| Register reg_stored, reg_loaded; |
| reg_stored = GetRd(str_instr); |
| reg_loaded = GetRd(ldr_instr); |
| pc_ -= 1 * kInstrSize; |
| // Insert a mov instruction, which is better than ldr. |
| mov(reg_loaded, reg_stored); |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x str/ldr (fp + same offset), diff reg \n", pc_offset()); |
| } |
| } |
| } |
| } |
| |
| if (can_peephole_optimize(3)) { |
| Instr mem_write_instr = instr_at(pc_ - 3 * kInstrSize); |
| Instr ldr_instr = instr_at(pc_ - 2 * kInstrSize); |
| Instr mem_read_instr = instr_at(pc_ - 1 * kInstrSize); |
| if (IsPush(mem_write_instr) && |
| IsPop(mem_read_instr)) { |
| if ((IsLdrRegFpOffset(ldr_instr) || |
| IsLdrRegFpNegOffset(ldr_instr))) { |
| if ((mem_write_instr & kRdMask) == |
| (mem_read_instr & kRdMask)) { |
| // Pattern: push & pop from/to same register, |
| // with a fp+offset ldr in between |
| // |
| // The following: |
| // str rx, [sp, #-4]! |
| // ldr rz, [fp, #-24] |
| // ldr rx, [sp], #+4 |
| // |
| // Becomes: |
| // if(rx == rz) |
| // delete all |
| // else |
| // ldr rz, [fp, #-24] |
| |
| if ((mem_write_instr & kRdMask) == (ldr_instr & kRdMask)) { |
| pc_ -= 3 * kInstrSize; |
| } else { |
| pc_ -= 3 * kInstrSize; |
| // Reinsert back the ldr rz. |
| emit(ldr_instr); |
| } |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset()); |
| } |
| } else { |
| // Pattern: push & pop from/to different registers |
| // with a fp+offset ldr in between |
| // |
| // The following: |
| // str rx, [sp, #-4]! |
| // ldr rz, [fp, #-24] |
| // ldr ry, [sp], #+4 |
| // |
| // Becomes: |
| // if(ry == rz) |
| // mov ry, rx; |
| // else if(rx != rz) |
| // ldr rz, [fp, #-24] |
| // mov ry, rx |
| // else if((ry != rz) || (rx == rz)) becomes: |
| // mov ry, rx |
| // ldr rz, [fp, #-24] |
| |
| Register reg_pushed, reg_popped; |
| if ((mem_read_instr & kRdMask) == (ldr_instr & kRdMask)) { |
| reg_pushed = GetRd(mem_write_instr); |
| reg_popped = GetRd(mem_read_instr); |
| pc_ -= 3 * kInstrSize; |
| mov(reg_popped, reg_pushed); |
| } else if ((mem_write_instr & kRdMask) |
| != (ldr_instr & kRdMask)) { |
| reg_pushed = GetRd(mem_write_instr); |
| reg_popped = GetRd(mem_read_instr); |
| pc_ -= 3 * kInstrSize; |
| emit(ldr_instr); |
| mov(reg_popped, reg_pushed); |
| } else if (((mem_read_instr & kRdMask) |
| != (ldr_instr & kRdMask)) || |
| ((mem_write_instr & kRdMask) |
| == (ldr_instr & kRdMask)) ) { |
| reg_pushed = GetRd(mem_write_instr); |
| reg_popped = GetRd(mem_read_instr); |
| pc_ -= 3 * kInstrSize; |
| mov(reg_popped, reg_pushed); |
| emit(ldr_instr); |
| } |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset()); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void Assembler::str(Register src, const MemOperand& dst, Condition cond) { |
| addrmod2(cond | B26, src, dst); |
| |
| // Eliminate pattern: pop(), push(r) |
| // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al |
| // -> str r, [sp, 0], al |
| if (can_peephole_optimize(2) && |
| // Pattern. |
| instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && |
| instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { |
| pc_ -= 2 * kInstrSize; |
| emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); |
| } |
| } |
| } |
| |
| |
| void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { |
| addrmod2(cond | B26 | B | L, dst, src); |
| } |
| |
| |
| void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { |
| addrmod2(cond | B26 | B, src, dst); |
| } |
| |
| |
| void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { |
| addrmod3(cond | L | B7 | H | B4, dst, src); |
| } |
| |
| |
| void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { |
| addrmod3(cond | B7 | H | B4, src, dst); |
| } |
| |
| |
| void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { |
| addrmod3(cond | L | B7 | S6 | B4, dst, src); |
| } |
| |
| |
| void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { |
| addrmod3(cond | L | B7 | S6 | H | B4, dst, src); |
| } |
| |
| |
| void Assembler::ldrd(Register dst1, Register dst2, |
| const MemOperand& src, Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(ARMv7)); |
| ASSERT(src.rm().is(no_reg)); |
| ASSERT(!dst1.is(lr)); // r14. |
| ASSERT_EQ(0, dst1.code() % 2); |
| ASSERT_EQ(dst1.code() + 1, dst2.code()); |
| addrmod3(cond | B7 | B6 | B4, dst1, src); |
| } |
| |
| |
| void Assembler::strd(Register src1, Register src2, |
| const MemOperand& dst, Condition cond) { |
| ASSERT(dst.rm().is(no_reg)); |
| ASSERT(!src1.is(lr)); // r14. |
| ASSERT_EQ(0, src1.code() % 2); |
| ASSERT_EQ(src1.code() + 1, src2.code()); |
| ASSERT(CpuFeatures::IsEnabled(ARMv7)); |
| addrmod3(cond | B7 | B6 | B5 | B4, src1, dst); |
| } |
| |
| // Load/Store multiple instructions. |
| void Assembler::ldm(BlockAddrMode am, |
| Register base, |
| RegList dst, |
| Condition cond) { |
| // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. |
| ASSERT(base.is(sp) || (dst & sp.bit()) == 0); |
| |
| addrmod4(cond | B27 | am | L, base, dst); |
| |
| // Emit the constant pool after a function return implemented by ldm ..{..pc}. |
| if (cond == al && (dst & pc.bit()) != 0) { |
| // There is a slight chance that the ldm instruction was actually a call, |
| // in which case it would be wrong to return into the constant pool; we |
| // recognize this case by checking if the emission of the pool was blocked |
| // at the pc of the ldm instruction by a mov lr, pc instruction; if this is |
| // the case, we emit a jump over the pool. |
| CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); |
| } |
| } |
| |
| |
| void Assembler::stm(BlockAddrMode am, |
| Register base, |
| RegList src, |
| Condition cond) { |
| addrmod4(cond | B27 | am, base, src); |
| } |
| |
| |
| // Exception-generating instructions and debugging support. |
| void Assembler::stop(const char* msg) { |
| #ifndef __arm__ |
| // The simulator handles these special instructions and stops execution. |
| emit(15 << 28 | ((intptr_t) msg)); |
| #else // def __arm__ |
| #ifdef CAN_USE_ARMV5_INSTRUCTIONS |
| bkpt(0); |
| #else // ndef CAN_USE_ARMV5_INSTRUCTIONS |
| swi(0x9f0001); |
| #endif // ndef CAN_USE_ARMV5_INSTRUCTIONS |
| #endif // def __arm__ |
| } |
| |
| |
| void Assembler::bkpt(uint32_t imm16) { // v5 and above |
| ASSERT(is_uint16(imm16)); |
| emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); |
| } |
| |
| |
| void Assembler::swi(uint32_t imm24, Condition cond) { |
| ASSERT(is_uint24(imm24)); |
| emit(cond | 15*B24 | imm24); |
| } |
| |
| |
| // Coprocessor instructions. |
| void Assembler::cdp(Coprocessor coproc, |
| int opcode_1, |
| CRegister crd, |
| CRegister crn, |
| CRegister crm, |
| int opcode_2, |
| Condition cond) { |
| ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); |
| emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | |
| crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); |
| } |
| |
| |
| void Assembler::cdp2(Coprocessor coproc, |
| int opcode_1, |
| CRegister crd, |
| CRegister crn, |
| CRegister crm, |
| int opcode_2) { // v5 and above |
| cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv)); |
| } |
| |
| |
| void Assembler::mcr(Coprocessor coproc, |
| int opcode_1, |
| Register rd, |
| CRegister crn, |
| CRegister crm, |
| int opcode_2, |
| Condition cond) { |
| ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); |
| emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | |
| rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); |
| } |
| |
| |
| void Assembler::mcr2(Coprocessor coproc, |
| int opcode_1, |
| Register rd, |
| CRegister crn, |
| CRegister crm, |
| int opcode_2) { // v5 and above |
| mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); |
| } |
| |
| |
| void Assembler::mrc(Coprocessor coproc, |
| int opcode_1, |
| Register rd, |
| CRegister crn, |
| CRegister crm, |
| int opcode_2, |
| Condition cond) { |
| ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); |
| emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | |
| rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); |
| } |
| |
| |
| void Assembler::mrc2(Coprocessor coproc, |
| int opcode_1, |
| Register rd, |
| CRegister crn, |
| CRegister crm, |
| int opcode_2) { // v5 and above |
| mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); |
| } |
| |
| |
| void Assembler::ldc(Coprocessor coproc, |
| CRegister crd, |
| const MemOperand& src, |
| LFlag l, |
| Condition cond) { |
| addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); |
| } |
| |
| |
| void Assembler::ldc(Coprocessor coproc, |
| CRegister crd, |
| Register rn, |
| int option, |
| LFlag l, |
| Condition cond) { |
| // Unindexed addressing. |
| ASSERT(is_uint8(option)); |
| emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | |
| coproc*B8 | (option & 255)); |
| } |
| |
| |
| void Assembler::ldc2(Coprocessor coproc, |
| CRegister crd, |
| const MemOperand& src, |
| LFlag l) { // v5 and above |
| ldc(coproc, crd, src, l, static_cast<Condition>(nv)); |
| } |
| |
| |
| void Assembler::ldc2(Coprocessor coproc, |
| CRegister crd, |
| Register rn, |
| int option, |
| LFlag l) { // v5 and above |
| ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); |
| } |
| |
| |
| void Assembler::stc(Coprocessor coproc, |
| CRegister crd, |
| const MemOperand& dst, |
| LFlag l, |
| Condition cond) { |
| addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); |
| } |
| |
| |
| void Assembler::stc(Coprocessor coproc, |
| CRegister crd, |
| Register rn, |
| int option, |
| LFlag l, |
| Condition cond) { |
| // Unindexed addressing. |
| ASSERT(is_uint8(option)); |
| emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | |
| coproc*B8 | (option & 255)); |
| } |
| |
| |
| void Assembler::stc2(Coprocessor |
| coproc, CRegister crd, |
| const MemOperand& dst, |
| LFlag l) { // v5 and above |
| stc(coproc, crd, dst, l, static_cast<Condition>(nv)); |
| } |
| |
| |
| void Assembler::stc2(Coprocessor coproc, |
| CRegister crd, |
| Register rn, |
| int option, |
| LFlag l) { // v5 and above |
| stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); |
| } |
| |
| |
| // Support for VFP. |
| void Assembler::vldr(const DwVfpRegister dst, |
| const Register base, |
| int offset, |
| const Condition cond) { |
| // Ddst = MEM(Rbase + offset). |
| // Instruction details available in ARM DDI 0406A, A8-628. |
| // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) | |
| // Vdst(15-12) | 1011(11-8) | offset |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(offset % 4 == 0); |
| ASSERT((offset / 4) < 256); |
| emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 | |
| 0xB*B8 | ((offset / 4) & 255)); |
| } |
| |
| |
| void Assembler::vldr(const SwVfpRegister dst, |
| const Register base, |
| int offset, |
| const Condition cond) { |
| // Sdst = MEM(Rbase + offset). |
| // Instruction details available in ARM DDI 0406A, A8-628. |
| // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) | |
| // Vdst(15-12) | 1010(11-8) | offset |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(offset % 4 == 0); |
| ASSERT((offset / 4) < 256); |
| emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 | |
| 0xA*B8 | ((offset / 4) & 255)); |
| } |
| |
| |
| void Assembler::vstr(const DwVfpRegister src, |
| const Register base, |
| int offset, |
| const Condition cond) { |
| // MEM(Rbase + offset) = Dsrc. |
| // Instruction details available in ARM DDI 0406A, A8-786. |
| // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) | |
| // Vsrc(15-12) | 1011(11-8) | (offset/4) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(offset % 4 == 0); |
| ASSERT((offset / 4) < 256); |
| emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 | |
| 0xB*B8 | ((offset / 4) & 255)); |
| } |
| |
| |
| static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) { |
| uint64_t i; |
| memcpy(&i, &d, 8); |
| |
| *lo = i & 0xffffffff; |
| *hi = i >> 32; |
| } |
| |
| // Only works for little endian floating point formats. |
| // We don't support VFP on the mixed endian floating point platform. |
| static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| |
| // VMOV can accept an immediate of the form: |
| // |
| // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7 |
| // |
| // The immediate is encoded using an 8-bit quantity, comprised of two |
| // 4-bit fields. For an 8-bit immediate of the form: |
| // |
| // [abcdefgh] |
| // |
| // where a is the MSB and h is the LSB, an immediate 64-bit double can be |
| // created of the form: |
| // |
| // [aBbbbbbb,bbcdefgh,00000000,00000000, |
| // 00000000,00000000,00000000,00000000] |
| // |
| // where B = ~b. |
| // |
| |
| uint32_t lo, hi; |
| DoubleAsTwoUInt32(d, &lo, &hi); |
| |
| // The most obvious constraint is the long block of zeroes. |
| if ((lo != 0) || ((hi & 0xffff) != 0)) { |
| return false; |
| } |
| |
| // Bits 62:55 must be all clear or all set. |
| if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) { |
| return false; |
| } |
| |
| // Bit 63 must be NOT bit 62. |
| if (((hi ^ (hi << 1)) & (0x40000000)) == 0) { |
| return false; |
| } |
| |
| // Create the encoded immediate in the form: |
| // [00000000,0000abcd,00000000,0000efgh] |
| *encoding = (hi >> 16) & 0xf; // Low nybble. |
| *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble. |
| *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble. |
| |
| return true; |
| } |
| |
| |
| void Assembler::vmov(const DwVfpRegister dst, |
| double imm, |
| const Condition cond) { |
| // Dd = immediate |
| // Instruction details available in ARM DDI 0406B, A8-640. |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| |
| uint32_t enc; |
| if (FitsVMOVDoubleImmediate(imm, &enc)) { |
| // The double can be encoded in the instruction. |
| emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc); |
| } else { |
| // Synthesise the double from ARM immediates. This could be implemented |
| // using vldr from a constant pool. |
| uint32_t lo, hi; |
| DoubleAsTwoUInt32(imm, &lo, &hi); |
| |
| if (lo == hi) { |
| // If the lo and hi parts of the double are equal, the literal is easier |
| // to create. This is the case with 0.0. |
| mov(ip, Operand(lo)); |
| vmov(dst, ip, ip); |
| } else { |
| // Move the low part of the double into the lower of the corresponsing S |
| // registers of D register dst. |
| mov(ip, Operand(lo)); |
| vmov(dst.low(), ip, cond); |
| |
| // Move the high part of the double into the higher of the corresponsing S |
| // registers of D register dst. |
| mov(ip, Operand(hi)); |
| vmov(dst.high(), ip, cond); |
| } |
| } |
| } |
| |
| |
| void Assembler::vmov(const SwVfpRegister dst, |
| const SwVfpRegister src, |
| const Condition cond) { |
| // Sd = Sm |
| // Instruction details available in ARM DDI 0406B, A8-642. |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | 0xB*B20 | |
| dst.code()*B12 | 0x5*B9 | B6 | src.code()); |
| } |
| |
| |
| void Assembler::vmov(const DwVfpRegister dst, |
| const DwVfpRegister src, |
| const Condition cond) { |
| // Dd = Dm |
| // Instruction details available in ARM DDI 0406B, A8-642. |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | 0xB*B20 | |
| dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code()); |
| } |
| |
| |
| void Assembler::vmov(const DwVfpRegister dst, |
| const Register src1, |
| const Register src2, |
| const Condition cond) { |
| // Dm = <Rt,Rt2>. |
| // Instruction details available in ARM DDI 0406A, A8-646. |
| // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | |
| // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(!src1.is(pc) && !src2.is(pc)); |
| emit(cond | 0xC*B24 | B22 | src2.code()*B16 | |
| src1.code()*B12 | 0xB*B8 | B4 | dst.code()); |
| } |
| |
| |
| void Assembler::vmov(const Register dst1, |
| const Register dst2, |
| const DwVfpRegister src, |
| const Condition cond) { |
| // <Rt,Rt2> = Dm. |
| // Instruction details available in ARM DDI 0406A, A8-646. |
| // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | |
| // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(!dst1.is(pc) && !dst2.is(pc)); |
| emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 | |
| dst1.code()*B12 | 0xB*B8 | B4 | src.code()); |
| } |
| |
| |
| void Assembler::vmov(const SwVfpRegister dst, |
| const Register src, |
| const Condition cond) { |
| // Sn = Rt. |
| // Instruction details available in ARM DDI 0406A, A8-642. |
| // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | |
| // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(!src.is(pc)); |
| emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 | |
| src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4); |
| } |
| |
| |
| void Assembler::vmov(const Register dst, |
| const SwVfpRegister src, |
| const Condition cond) { |
| // Rt = Sn. |
| // Instruction details available in ARM DDI 0406A, A8-642. |
| // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | |
| // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| ASSERT(!dst.is(pc)); |
| emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | |
| dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); |
| } |
| |
| |
| // Type of data to read from or write to VFP register. |
| // Used as specifier in generic vcvt instruction. |
| enum VFPType { S32, U32, F32, F64 }; |
| |
| |
| static bool IsSignedVFPType(VFPType type) { |
| switch (type) { |
| case S32: |
| return true; |
| case U32: |
| return false; |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| |
| static bool IsIntegerVFPType(VFPType type) { |
| switch (type) { |
| case S32: |
| case U32: |
| return true; |
| case F32: |
| case F64: |
| return false; |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| |
| static bool IsDoubleVFPType(VFPType type) { |
| switch (type) { |
| case F32: |
| return false; |
| case F64: |
| return true; |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| |
| // Depending on split_last_bit split binary representation of reg_code into Vm:M |
| // or M:Vm form (where M is single bit). |
| static void SplitRegCode(bool split_last_bit, |
| int reg_code, |
| int* vm, |
| int* m) { |
| if (split_last_bit) { |
| *m = reg_code & 0x1; |
| *vm = reg_code >> 1; |
| } else { |
| *m = (reg_code & 0x10) >> 4; |
| *vm = reg_code & 0x0F; |
| } |
| } |
| |
| |
| // Encode vcvt.src_type.dst_type instruction. |
| static Instr EncodeVCVT(const VFPType dst_type, |
| const int dst_code, |
| const VFPType src_type, |
| const int src_code, |
| const Condition cond) { |
| if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) { |
| // Conversion between IEEE floating point and 32-bit integer. |
| // Instruction details available in ARM DDI 0406B, A8.6.295. |
| // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) | |
| // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0) |
| ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type)); |
| |
| int sz, opc2, D, Vd, M, Vm, op; |
| |
| if (IsIntegerVFPType(dst_type)) { |
| opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4; |
| sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; |
| op = 1; // round towards zero |
| SplitRegCode(!IsDoubleVFPType(src_type), src_code, &Vm, &M); |
| SplitRegCode(true, dst_code, &Vd, &D); |
| } else { |
| ASSERT(IsIntegerVFPType(src_type)); |
| |
| opc2 = 0x0; |
| sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0; |
| op = IsSignedVFPType(src_type) ? 0x1 : 0x0; |
| SplitRegCode(true, src_code, &Vm, &M); |
| SplitRegCode(!IsDoubleVFPType(dst_type), dst_code, &Vd, &D); |
| } |
| |
| return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 | |
| Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm); |
| } else { |
| // Conversion between IEEE double and single precision. |
| // Instruction details available in ARM DDI 0406B, A8.6.298. |
| // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) |
| int sz, D, Vd, M, Vm; |
| |
| ASSERT(IsDoubleVFPType(dst_type) != IsDoubleVFPType(src_type)); |
| sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; |
| SplitRegCode(IsDoubleVFPType(src_type), dst_code, &Vd, &D); |
| SplitRegCode(!IsDoubleVFPType(src_type), src_code, &Vm, &M); |
| |
| return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 | |
| Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm); |
| } |
| } |
| |
| |
| void Assembler::vcvt_f64_s32(const DwVfpRegister dst, |
| const SwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(F64, dst.code(), S32, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vcvt_f32_s32(const SwVfpRegister dst, |
| const SwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(F32, dst.code(), S32, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vcvt_f64_u32(const DwVfpRegister dst, |
| const SwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(F64, dst.code(), U32, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vcvt_s32_f64(const SwVfpRegister dst, |
| const DwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(S32, dst.code(), F64, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vcvt_u32_f64(const SwVfpRegister dst, |
| const DwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(U32, dst.code(), F64, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vcvt_f64_f32(const DwVfpRegister dst, |
| const SwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(F64, dst.code(), F32, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vcvt_f32_f64(const SwVfpRegister dst, |
| const DwVfpRegister src, |
| const Condition cond) { |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(EncodeVCVT(F32, dst.code(), F64, src.code(), cond)); |
| } |
| |
| |
| void Assembler::vadd(const DwVfpRegister dst, |
| const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Condition cond) { |
| // Dd = vadd(Dn, Dm) double precision floating point addition. |
| // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| // Instruction details available in ARM DDI 0406A, A8-536. |
| // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | |
| dst.code()*B12 | 0x5*B9 | B8 | src2.code()); |
| } |
| |
| |
| void Assembler::vsub(const DwVfpRegister dst, |
| const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Condition cond) { |
| // Dd = vsub(Dn, Dm) double precision floating point subtraction. |
| // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| // Instruction details available in ARM DDI 0406A, A8-784. |
| // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | |
| dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); |
| } |
| |
| |
| void Assembler::vmul(const DwVfpRegister dst, |
| const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Condition cond) { |
| // Dd = vmul(Dn, Dm) double precision floating point multiplication. |
| // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| // Instruction details available in ARM DDI 0406A, A8-784. |
| // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 | |
| dst.code()*B12 | 0x5*B9 | B8 | src2.code()); |
| } |
| |
| |
| void Assembler::vdiv(const DwVfpRegister dst, |
| const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Condition cond) { |
| // Dd = vdiv(Dn, Dm) double precision floating point division. |
| // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| // Instruction details available in ARM DDI 0406A, A8-584. |
| // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | B23 | src1.code()*B16 | |
| dst.code()*B12 | 0x5*B9 | B8 | src2.code()); |
| } |
| |
| |
| void Assembler::vcmp(const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const SBit s, |
| const Condition cond) { |
| // vcmp(Dd, Dm) double precision floating point comparison. |
| // Instruction details available in ARM DDI 0406A, A8-570. |
| // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | |
| src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); |
| } |
| |
| |
| void Assembler::vmrs(Register dst, Condition cond) { |
| // Instruction details available in ARM DDI 0406A, A8-652. |
| // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | |
| // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | 0xF*B20 | B16 | |
| dst.code()*B12 | 0xA*B8 | B4); |
| } |
| |
| |
| |
| void Assembler::vsqrt(const DwVfpRegister dst, |
| const DwVfpRegister src, |
| const Condition cond) { |
| // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) | |
| // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0) |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 | |
| dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code()); |
| } |
| |
| |
| // Pseudo instructions. |
| void Assembler::nop(int type) { |
| // This is mov rx, rx. |
| ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop. |
| emit(al | 13*B21 | type*B12 | type); |
| } |
| |
| |
| bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { |
| uint32_t dummy1; |
| uint32_t dummy2; |
| return fits_shifter(imm32, &dummy1, &dummy2, NULL); |
| } |
| |
| |
| void Assembler::BlockConstPoolFor(int instructions) { |
| BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); |
| } |
| |
| |
| // Debugging. |
| void Assembler::RecordJSReturn() { |
| WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::JS_RETURN); |
| } |
| |
| |
| void Assembler::RecordDebugBreakSlot() { |
| WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
| } |
| |
| |
| void Assembler::RecordComment(const char* msg) { |
| if (FLAG_debug_code) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| |
| void Assembler::RecordPosition(int pos) { |
| if (pos == RelocInfo::kNoPosition) return; |
| ASSERT(pos >= 0); |
| current_position_ = pos; |
| } |
| |
| |
| void Assembler::RecordStatementPosition(int pos) { |
| if (pos == RelocInfo::kNoPosition) return; |
| ASSERT(pos >= 0); |
| current_statement_position_ = pos; |
| } |
| |
| |
| bool Assembler::WriteRecordedPositions() { |
| bool written = false; |
| |
| // Write the statement position if it is different from what was written last |
| // time. |
| if (current_statement_position_ != written_statement_position_) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); |
| written_statement_position_ = current_statement_position_; |
| written = true; |
| } |
| |
| // Write the position if it is different from what was written last time and |
| // also different from the written statement position. |
| if (current_position_ != written_position_ && |
| current_position_ != written_statement_position_) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::POSITION, current_position_); |
| written_position_ = current_position_; |
| written = true; |
| } |
| |
| // Return whether something was written. |
| return written; |
| } |
| |
| |
| void Assembler::GrowBuffer() { |
| if (!own_buffer_) FATAL("external code buffer is too small"); |
| |
| // Compute new buffer size. |
| CodeDesc desc; // the new buffer |
| if (buffer_size_ < 4*KB) { |
| desc.buffer_size = 4*KB; |
| } else if (buffer_size_ < 1*MB) { |
| desc.buffer_size = 2*buffer_size_; |
| } else { |
| desc.buffer_size = buffer_size_ + 1*MB; |
| } |
| CHECK_GT(desc.buffer_size, 0); // no overflow |
| |
| // Setup new buffer. |
| desc.buffer = NewArray<byte>(desc.buffer_size); |
| |
| desc.instr_size = pc_offset(); |
| desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| |
| // Copy the data. |
| int pc_delta = desc.buffer - buffer_; |
| int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| memmove(desc.buffer, buffer_, desc.instr_size); |
| memmove(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.pos(), desc.reloc_size); |
| |
| // Switch buffers. |
| DeleteArray(buffer_); |
| buffer_ = desc.buffer; |
| buffer_size_ = desc.buffer_size; |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // None of our relocation types are pc relative pointing outside the code |
| // buffer nor pc absolute pointing inside the code buffer, so there is no need |
| // to relocate any emitted relocation entries. |
| |
| // Relocate pending relocation entries. |
| for (int i = 0; i < num_prinfo_; i++) { |
| RelocInfo& rinfo = prinfo_[i]; |
| ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| rinfo.rmode() != RelocInfo::POSITION); |
| if (rinfo.rmode() != RelocInfo::JS_RETURN) { |
| rinfo.set_pc(rinfo.pc() + pc_delta); |
| } |
| } |
| } |
| |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
| if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { |
| // Adjust code for new modes. |
| ASSERT(RelocInfo::IsDebugBreakSlot(rmode) |
| || RelocInfo::IsJSReturn(rmode) |
| || RelocInfo::IsComment(rmode) |
| || RelocInfo::IsPosition(rmode)); |
| // These modes do not need an entry in the constant pool. |
| } else { |
| ASSERT(num_prinfo_ < kMaxNumPRInfo); |
| prinfo_[num_prinfo_++] = rinfo; |
| // Make sure the constant pool is not emitted in place of the next |
| // instruction for which we just recorded relocation info. |
| BlockConstPoolBefore(pc_offset() + kInstrSize); |
| } |
| if (rinfo.rmode() != RelocInfo::NONE) { |
| // Don't record external references unless the heap will be serialized. |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| #ifdef DEBUG |
| if (!Serializer::enabled()) { |
| Serializer::TooLateToEnableNow(); |
| } |
| #endif |
| if (!Serializer::enabled() && !FLAG_debug_code) { |
| return; |
| } |
| } |
| ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
| reloc_info_writer.Write(&rinfo); |
| } |
| } |
| |
| |
| void Assembler::CheckConstPool(bool force_emit, bool require_jump) { |
| // Calculate the offset of the next check. It will be overwritten |
| // when a const pool is generated or when const pools are being |
| // blocked for a specific range. |
| next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| |
| // There is nothing to do if there are no pending relocation info entries. |
| if (num_prinfo_ == 0) return; |
| |
| // We emit a constant pool at regular intervals of about kDistBetweenPools |
| // or when requested by parameter force_emit (e.g. after each function). |
| // We prefer not to emit a jump unless the max distance is reached or if we |
| // are running low on slots, which can happen if a lot of constants are being |
| // emitted (e.g. --debug-code and many static references). |
| int dist = pc_offset() - last_const_pool_end_; |
| if (!force_emit && dist < kMaxDistBetweenPools && |
| (require_jump || dist < kDistBetweenPools) && |
| // TODO(1236125): Cleanup the "magic" number below. We know that |
| // the code generation will test every kCheckConstIntervalInst. |
| // Thus we are safe as long as we generate less than 7 constant |
| // entries per instruction. |
| (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { |
| return; |
| } |
| |
| // If we did not return by now, we need to emit the constant pool soon. |
| |
| // However, some small sequences of instructions must not be broken up by the |
| // insertion of a constant pool; such sequences are protected by setting |
| // either const_pool_blocked_nesting_ or no_const_pool_before_, which are |
| // both checked here. Also, recursive calls to CheckConstPool are blocked by |
| // no_const_pool_before_. |
| if (const_pool_blocked_nesting_ > 0 || pc_offset() < no_const_pool_before_) { |
| // Emission is currently blocked; make sure we try again as soon as |
| // possible. |
| if (const_pool_blocked_nesting_ > 0) { |
| next_buffer_check_ = pc_offset() + kInstrSize; |
| } else { |
| next_buffer_check_ = no_const_pool_before_; |
| } |
| |
| // Something is wrong if emission is forced and blocked at the same time. |
| ASSERT(!force_emit); |
| return; |
| } |
| |
| int jump_instr = require_jump ? kInstrSize : 0; |
| |
| // Check that the code buffer is large enough before emitting the constant |
| // pool and relocation information (include the jump over the pool and the |
| // constant pool marker). |
| int max_needed_space = |
| jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); |
| while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); |
| |
| // Block recursive calls to CheckConstPool. |
| BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + |
| num_prinfo_*kInstrSize); |
| // Don't bother to check for the emit calls below. |
| next_buffer_check_ = no_const_pool_before_; |
| |
| // Emit jump over constant pool if necessary. |
| Label after_pool; |
| if (require_jump) b(&after_pool); |
| |
| RecordComment("[ Constant Pool"); |
| |
| // Put down constant pool marker "Undefined instruction" as specified by |
| // A3.1 Instruction set encoding. |
| emit(0x03000000 | num_prinfo_); |
| |
| // Emit constant pool entries. |
| for (int i = 0; i < num_prinfo_; i++) { |
| RelocInfo& rinfo = prinfo_[i]; |
| ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| rinfo.rmode() != RelocInfo::POSITION && |
| rinfo.rmode() != RelocInfo::STATEMENT_POSITION); |
| Instr instr = instr_at(rinfo.pc()); |
| |
| // Instruction to patch must be a ldr/str [pc, #offset]. |
| // P and U set, B and W clear, Rn == pc, offset12 still 0. |
| ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == |
| (2*B25 | P | U | pc.code()*B16)); |
| int delta = pc_ - rinfo.pc() - 8; |
| ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 |
| if (delta < 0) { |
| instr &= ~U; |
| delta = -delta; |
| } |
| ASSERT(is_uint12(delta)); |
| instr_at_put(rinfo.pc(), instr + delta); |
| emit(rinfo.data()); |
| } |
| num_prinfo_ = 0; |
| last_const_pool_end_ = pc_offset(); |
| |
| RecordComment("]"); |
| |
| if (after_pool.is_linked()) { |
| bind(&after_pool); |
| } |
| |
| // Since a constant pool was just emitted, move the check offset forward by |
| // the standard interval. |
| next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |