blob: 8a8b39be7ccb4cd77e511028a9d75b87ed740a49 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "full-codegen.h"
#include "scopes.h"
#include "stub-cache.h"
#include "debug.h"
#include "liveedit.h"
namespace v8 {
namespace internal {
#define BAILOUT(reason) \
do { \
if (FLAG_trace_bailout) { \
PrintF("%s\n", reason); \
} \
has_supported_syntax_ = false; \
return; \
} while (false)
#define CHECK_BAILOUT \
do { \
if (!has_supported_syntax_) return; \
} while (false)
void FullCodeGenSyntaxChecker::Check(FunctionLiteral* fun) {
Scope* scope = fun->scope();
VisitDeclarations(scope->declarations());
CHECK_BAILOUT;
VisitStatements(fun->body());
}
void FullCodeGenSyntaxChecker::VisitDeclarations(
ZoneList<Declaration*>* decls) {
for (int i = 0; i < decls->length(); i++) {
Visit(decls->at(i));
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0, len = stmts->length(); i < len; i++) {
Visit(stmts->at(i));
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitDeclaration(Declaration* decl) {
Property* prop = decl->proxy()->AsProperty();
if (prop != NULL) {
Visit(prop->obj());
Visit(prop->key());
}
if (decl->fun() != NULL) {
Visit(decl->fun());
}
}
void FullCodeGenSyntaxChecker::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FullCodeGenSyntaxChecker::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FullCodeGenSyntaxChecker::VisitEmptyStatement(EmptyStatement* stmt) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitIfStatement(IfStatement* stmt) {
Visit(stmt->condition());
CHECK_BAILOUT;
Visit(stmt->then_statement());
CHECK_BAILOUT;
Visit(stmt->else_statement());
}
void FullCodeGenSyntaxChecker::VisitContinueStatement(ContinueStatement* stmt) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitBreakStatement(BreakStatement* stmt) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitReturnStatement(ReturnStatement* stmt) {
Visit(stmt->expression());
}
void FullCodeGenSyntaxChecker::VisitWithEnterStatement(
WithEnterStatement* stmt) {
Visit(stmt->expression());
}
void FullCodeGenSyntaxChecker::VisitWithExitStatement(WithExitStatement* stmt) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitSwitchStatement(SwitchStatement* stmt) {
BAILOUT("SwitchStatement");
}
void FullCodeGenSyntaxChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
Visit(stmt->cond());
CHECK_BAILOUT;
Visit(stmt->body());
}
void FullCodeGenSyntaxChecker::VisitWhileStatement(WhileStatement* stmt) {
Visit(stmt->cond());
CHECK_BAILOUT;
Visit(stmt->body());
}
void FullCodeGenSyntaxChecker::VisitForStatement(ForStatement* stmt) {
if (!FLAG_always_full_compiler) BAILOUT("ForStatement");
if (stmt->init() != NULL) {
Visit(stmt->init());
CHECK_BAILOUT;
}
if (stmt->cond() != NULL) {
Visit(stmt->cond());
CHECK_BAILOUT;
}
Visit(stmt->body());
if (stmt->next() != NULL) {
CHECK_BAILOUT;
Visit(stmt->next());
}
}
void FullCodeGenSyntaxChecker::VisitForInStatement(ForInStatement* stmt) {
BAILOUT("ForInStatement");
}
void FullCodeGenSyntaxChecker::VisitTryCatchStatement(TryCatchStatement* stmt) {
Visit(stmt->try_block());
CHECK_BAILOUT;
Visit(stmt->catch_block());
}
void FullCodeGenSyntaxChecker::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
Visit(stmt->try_block());
CHECK_BAILOUT;
Visit(stmt->finally_block());
}
void FullCodeGenSyntaxChecker::VisitDebuggerStatement(
DebuggerStatement* stmt) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
BAILOUT("SharedFunctionInfoLiteral");
}
void FullCodeGenSyntaxChecker::VisitConditional(Conditional* expr) {
Visit(expr->condition());
CHECK_BAILOUT;
Visit(expr->then_expression());
CHECK_BAILOUT;
Visit(expr->else_expression());
}
void FullCodeGenSyntaxChecker::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FullCodeGenSyntaxChecker::VisitVariableProxy(VariableProxy* expr) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitLiteral(Literal* expr) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
// Supported.
}
void FullCodeGenSyntaxChecker::VisitObjectLiteral(ObjectLiteral* expr) {
ZoneList<ObjectLiteral::Property*>* properties = expr->properties();
for (int i = 0, len = properties->length(); i < len; i++) {
ObjectLiteral::Property* property = properties->at(i);
if (property->IsCompileTimeValue()) continue;
Visit(property->key());
CHECK_BAILOUT;
Visit(property->value());
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitArrayLiteral(ArrayLiteral* expr) {
ZoneList<Expression*>* subexprs = expr->values();
for (int i = 0, len = subexprs->length(); i < len; i++) {
Expression* subexpr = subexprs->at(i);
if (subexpr->AsLiteral() != NULL) continue;
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
Visit(subexpr);
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
Visit(expr->key());
CHECK_BAILOUT;
Visit(expr->value());
}
void FullCodeGenSyntaxChecker::VisitAssignment(Assignment* expr) {
Token::Value op = expr->op();
if (op == Token::INIT_CONST) BAILOUT("initialize constant");
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
if (var->mode() == Variable::CONST) BAILOUT("Assignment to const");
// All other variables are supported.
} else if (prop != NULL) {
Visit(prop->obj());
CHECK_BAILOUT;
Visit(prop->key());
CHECK_BAILOUT;
} else {
// This is a throw reference error.
BAILOUT("non-variable/non-property assignment");
}
Visit(expr->value());
}
void FullCodeGenSyntaxChecker::VisitThrow(Throw* expr) {
Visit(expr->exception());
}
void FullCodeGenSyntaxChecker::VisitProperty(Property* expr) {
Visit(expr->obj());
CHECK_BAILOUT;
Visit(expr->key());
}
void FullCodeGenSyntaxChecker::VisitCall(Call* expr) {
Expression* fun = expr->expression();
ZoneList<Expression*>* args = expr->arguments();
Variable* var = fun->AsVariableProxy()->AsVariable();
// Check for supported calls
if (var != NULL && var->is_possibly_eval()) {
BAILOUT("call to the identifier 'eval'");
} else if (var != NULL && !var->is_this() && var->is_global()) {
// Calls to global variables are supported.
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
BAILOUT("call to a lookup slot");
} else if (fun->AsProperty() != NULL) {
Property* prop = fun->AsProperty();
Visit(prop->obj());
CHECK_BAILOUT;
Visit(prop->key());
CHECK_BAILOUT;
} else {
// Otherwise the call is supported if the function expression is.
Visit(fun);
}
// Check all arguments to the call.
for (int i = 0; i < args->length(); i++) {
Visit(args->at(i));
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitCallNew(CallNew* expr) {
Visit(expr->expression());
CHECK_BAILOUT;
ZoneList<Expression*>* args = expr->arguments();
// Check all arguments to the call
for (int i = 0; i < args->length(); i++) {
Visit(args->at(i));
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitCallRuntime(CallRuntime* expr) {
// Check for inline runtime call
if (expr->name()->Get(0) == '_' &&
CodeGenerator::FindInlineRuntimeLUT(expr->name()) != NULL) {
BAILOUT("inlined runtime call");
}
// Check all arguments to the call. (Relies on TEMP meaning STACK.)
for (int i = 0; i < expr->arguments()->length(); i++) {
Visit(expr->arguments()->at(i));
CHECK_BAILOUT;
}
}
void FullCodeGenSyntaxChecker::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::ADD:
case Token::BIT_NOT:
case Token::NOT:
case Token::SUB:
case Token::TYPEOF:
case Token::VOID:
Visit(expr->expression());
break;
case Token::DELETE:
BAILOUT("UnaryOperation: DELETE");
default:
UNREACHABLE();
}
}
void FullCodeGenSyntaxChecker::VisitCountOperation(CountOperation* expr) {
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
Property* prop = expr->expression()->AsProperty();
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
// All global variables are supported.
if (!var->is_global()) {
ASSERT(var->slot() != NULL);
Slot::Type type = var->slot()->type();
if (type == Slot::LOOKUP) {
BAILOUT("CountOperation with lookup slot");
}
}
} else if (prop != NULL) {
Visit(prop->obj());
CHECK_BAILOUT;
Visit(prop->key());
CHECK_BAILOUT;
} else {
// This is a throw reference error.
BAILOUT("CountOperation non-variable/non-property expression");
}
}
void FullCodeGenSyntaxChecker::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
CHECK_BAILOUT;
Visit(expr->right());
}
void FullCodeGenSyntaxChecker::VisitCompareOperation(CompareOperation* expr) {
Visit(expr->left());
CHECK_BAILOUT;
Visit(expr->right());
}
void FullCodeGenSyntaxChecker::VisitThisFunction(ThisFunction* expr) {
// Supported.
}
#undef BAILOUT
#undef CHECK_BAILOUT
void BreakableStatementChecker::Check(Statement* stmt) {
Visit(stmt);
}
void BreakableStatementChecker::Check(Expression* expr) {
Visit(expr);
}
void BreakableStatementChecker::VisitDeclaration(Declaration* decl) {
}
void BreakableStatementChecker::VisitBlock(Block* stmt) {
}
void BreakableStatementChecker::VisitExpressionStatement(
ExpressionStatement* stmt) {
// Check if expression is breakable.
Visit(stmt->expression());
}
void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
}
void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
// If the condition is breakable the if statement is breakable.
Visit(stmt->condition());
}
void BreakableStatementChecker::VisitContinueStatement(
ContinueStatement* stmt) {
}
void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
}
void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
// Return is breakable if the expression is.
Visit(stmt->expression());
}
void BreakableStatementChecker::VisitWithEnterStatement(
WithEnterStatement* stmt) {
Visit(stmt->expression());
}
void BreakableStatementChecker::VisitWithExitStatement(
WithExitStatement* stmt) {
}
void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
// Switch statements breakable if the tag expression is.
Visit(stmt->tag());
}
void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
// Mark do while as breakable to avoid adding a break slot in front of it.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
// Mark while statements breakable if the condition expression is.
Visit(stmt->cond());
}
void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
// Mark for statements breakable if the condition expression is.
if (stmt->cond() != NULL) {
Visit(stmt->cond());
}
}
void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
// Mark for in statements breakable if the enumerable expression is.
Visit(stmt->enumerable());
}
void BreakableStatementChecker::VisitTryCatchStatement(
TryCatchStatement* stmt) {
// Mark try catch as breakable to avoid adding a break slot in front of it.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
// Mark try finally as breakable to avoid adding a break slot in front of it.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitDebuggerStatement(
DebuggerStatement* stmt) {
// The debugger statement is breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
}
void BreakableStatementChecker::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
}
void BreakableStatementChecker::VisitConditional(Conditional* expr) {
}
void BreakableStatementChecker::VisitSlot(Slot* expr) {
}
void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
}
void BreakableStatementChecker::VisitLiteral(Literal* expr) {
}
void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
}
void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
}
void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
}
void BreakableStatementChecker::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
}
void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
// If assigning to a property (including a global property) the assignment is
// breakable.
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
if (prop != NULL || (var != NULL && var->is_global())) {
is_breakable_ = true;
return;
}
// Otherwise the assignment is breakable if the assigned value is.
Visit(expr->value());
}
void BreakableStatementChecker::VisitThrow(Throw* expr) {
// Throw is breakable if the expression is.
Visit(expr->exception());
}
void BreakableStatementChecker::VisitProperty(Property* expr) {
// Property load is breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCall(Call* expr) {
// Function calls both through IC and call stub are breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
// Function calls through new are breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
}
void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
Visit(expr->expression());
}
void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
}
void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
Visit(expr->right());
}
void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
Visit(expr->left());
Visit(expr->right());
}
void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
}
#define __ ACCESS_MASM(masm())
Handle<Code> FullCodeGenerator::MakeCode(CompilationInfo* info) {
Handle<Script> script = info->script();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
int len = String::cast(script->source())->length();
Counters::total_full_codegen_source_size.Increment(len);
}
CodeGenerator::MakeCodePrologue(info);
const int kInitialBufferSize = 4 * KB;
MacroAssembler masm(NULL, kInitialBufferSize);
FullCodeGenerator cgen(&masm);
cgen.Generate(info, PRIMARY);
if (cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return Handle<Code>::null();
}
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, NOT_IN_LOOP);
return CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
}
int FullCodeGenerator::SlotOffset(Slot* slot) {
ASSERT(slot != NULL);
// Offset is negative because higher indexes are at lower addresses.
int offset = -slot->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
switch (slot->type()) {
case Slot::PARAMETER:
offset += (scope()->num_parameters() + 1) * kPointerSize;
break;
case Slot::LOCAL:
offset += JavaScriptFrameConstants::kLocal0Offset;
break;
case Slot::CONTEXT:
case Slot::LOOKUP:
UNREACHABLE();
}
return offset;
}
void FullCodeGenerator::VisitDeclarations(
ZoneList<Declaration*>* declarations) {
int length = declarations->length();
int globals = 0;
for (int i = 0; i < length; i++) {
Declaration* decl = declarations->at(i);
Variable* var = decl->proxy()->var();
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile
// time, we need to "declare" it at runtime to make sure it
// actually exists in the local context.
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
VisitDeclaration(decl);
} else {
// Count global variables and functions for later processing
globals++;
}
}
// Compute array of global variable and function declarations.
// Do nothing in case of no declared global functions or variables.
if (globals > 0) {
Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
for (int j = 0, i = 0; i < length; i++) {
Declaration* decl = declarations->at(i);
Variable* var = decl->proxy()->var();
Slot* slot = var->slot();
if ((slot == NULL || slot->type() != Slot::LOOKUP) && var->is_global()) {
array->set(j++, *(var->name()));
if (decl->fun() == NULL) {
if (var->mode() == Variable::CONST) {
// In case this is const property use the hole.
array->set_the_hole(j++);
} else {
array->set_undefined(j++);
}
} else {
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(decl->fun(), script(), this);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
array->set(j++, *function);
}
}
}
// Invoke the platform-dependent code generator to do the actual
// declaration the global variables and functions.
DeclareGlobals(array);
}
}
void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) {
CodeGenerator::RecordPositions(masm_, fun->start_position());
}
}
void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) {
CodeGenerator::RecordPositions(masm_, fun->end_position());
}
}
void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
if (FLAG_debug_info) {
#ifdef ENABLE_DEBUGGER_SUPPORT
if (!Debugger::IsDebuggerActive()) {
CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
} else {
// Check if the statement will be breakable without adding a debug break
// slot.
BreakableStatementChecker checker;
checker.Check(stmt);
// Record the statement position right here if the statement is not
// breakable. For breakable statements the actual recording of the
// position will be postponed to the breakable code (typically an IC).
bool position_recorded = CodeGenerator::RecordPositions(
masm_, stmt->statement_pos(), !checker.is_breakable());
// If the position recording did record a new position generate a debug
// break slot to make the statement breakable.
if (position_recorded) {
Debug::GenerateSlot(masm_);
}
}
#else
CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
#endif
}
}
void FullCodeGenerator::SetExpressionPosition(Expression* expr, int pos) {
if (FLAG_debug_info) {
#ifdef ENABLE_DEBUGGER_SUPPORT
if (!Debugger::IsDebuggerActive()) {
CodeGenerator::RecordPositions(masm_, pos);
} else {
// Check if the expression will be breakable without adding a debug break
// slot.
BreakableStatementChecker checker;
checker.Check(expr);
// Record a statement position right here if the expression is not
// breakable. For breakable expressions the actual recording of the
// position will be postponed to the breakable code (typically an IC).
// NOTE this will record a statement position for something which might
// not be a statement. As stepping in the debugger will only stop at
// statement positions this is used for e.g. the condition expression of
// a do while loop.
bool position_recorded = CodeGenerator::RecordPositions(
masm_, pos, !checker.is_breakable());
// If the position recording did record a new position generate a debug
// break slot to make the statement breakable.
if (position_recorded) {
Debug::GenerateSlot(masm_);
}
}
#else
CodeGenerator::RecordPositions(masm_, pos);
#endif
}
}
void FullCodeGenerator::SetStatementPosition(int pos) {
if (FLAG_debug_info) {
CodeGenerator::RecordPositions(masm_, pos);
}
}
void FullCodeGenerator::SetSourcePosition(int pos) {
if (FLAG_debug_info && pos != RelocInfo::kNoPosition) {
masm_->RecordPosition(pos);
}
}
void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
Handle<String> name = expr->name();
if (strcmp("_IsSmi", *name->ToCString()) == 0) {
EmitIsSmi(expr->arguments());
} else if (strcmp("_IsNonNegativeSmi", *name->ToCString()) == 0) {
EmitIsNonNegativeSmi(expr->arguments());
} else if (strcmp("_IsObject", *name->ToCString()) == 0) {
EmitIsObject(expr->arguments());
} else if (strcmp("_IsSpecObject", *name->ToCString()) == 0) {
EmitIsSpecObject(expr->arguments());
} else if (strcmp("_IsUndetectableObject", *name->ToCString()) == 0) {
EmitIsUndetectableObject(expr->arguments());
} else if (strcmp("_IsFunction", *name->ToCString()) == 0) {
EmitIsFunction(expr->arguments());
} else if (strcmp("_IsArray", *name->ToCString()) == 0) {
EmitIsArray(expr->arguments());
} else if (strcmp("_IsRegExp", *name->ToCString()) == 0) {
EmitIsRegExp(expr->arguments());
} else if (strcmp("_IsConstructCall", *name->ToCString()) == 0) {
EmitIsConstructCall(expr->arguments());
} else if (strcmp("_ObjectEquals", *name->ToCString()) == 0) {
EmitObjectEquals(expr->arguments());
} else if (strcmp("_Arguments", *name->ToCString()) == 0) {
EmitArguments(expr->arguments());
} else if (strcmp("_ArgumentsLength", *name->ToCString()) == 0) {
EmitArgumentsLength(expr->arguments());
} else if (strcmp("_ClassOf", *name->ToCString()) == 0) {
EmitClassOf(expr->arguments());
} else if (strcmp("_Log", *name->ToCString()) == 0) {
EmitLog(expr->arguments());
} else if (strcmp("_RandomHeapNumber", *name->ToCString()) == 0) {
EmitRandomHeapNumber(expr->arguments());
} else if (strcmp("_SubString", *name->ToCString()) == 0) {
EmitSubString(expr->arguments());
} else if (strcmp("_RegExpExec", *name->ToCString()) == 0) {
EmitRegExpExec(expr->arguments());
} else if (strcmp("_ValueOf", *name->ToCString()) == 0) {
EmitValueOf(expr->arguments());
} else if (strcmp("_SetValueOf", *name->ToCString()) == 0) {
EmitSetValueOf(expr->arguments());
} else if (strcmp("_NumberToString", *name->ToCString()) == 0) {
EmitNumberToString(expr->arguments());
} else if (strcmp("_StringCharFromCode", *name->ToCString()) == 0) {
EmitStringCharFromCode(expr->arguments());
} else if (strcmp("_StringCharCodeAt", *name->ToCString()) == 0) {
EmitStringCharCodeAt(expr->arguments());
} else if (strcmp("_StringCharAt", *name->ToCString()) == 0) {
EmitStringCharAt(expr->arguments());
} else if (strcmp("_StringAdd", *name->ToCString()) == 0) {
EmitStringAdd(expr->arguments());
} else if (strcmp("_StringCompare", *name->ToCString()) == 0) {
EmitStringCompare(expr->arguments());
} else if (strcmp("_MathPow", *name->ToCString()) == 0) {
EmitMathPow(expr->arguments());
} else if (strcmp("_MathSin", *name->ToCString()) == 0) {
EmitMathSin(expr->arguments());
} else if (strcmp("_MathCos", *name->ToCString()) == 0) {
EmitMathCos(expr->arguments());
} else if (strcmp("_MathSqrt", *name->ToCString()) == 0) {
EmitMathSqrt(expr->arguments());
} else if (strcmp("_CallFunction", *name->ToCString()) == 0) {
EmitCallFunction(expr->arguments());
} else if (strcmp("_RegExpConstructResult", *name->ToCString()) == 0) {
EmitRegExpConstructResult(expr->arguments());
} else if (strcmp("_SwapElements", *name->ToCString()) == 0) {
EmitSwapElements(expr->arguments());
} else if (strcmp("_GetFromCache", *name->ToCString()) == 0) {
EmitGetFromCache(expr->arguments());
} else {
UNREACHABLE();
}
}
void FullCodeGenerator::EmitLogicalOperation(BinaryOperation* expr) {
Label eval_right, done;
// Set up the appropriate context for the left subexpression based
// on the operation and our own context. Initially assume we can
// inherit both true and false labels from our context.
if (expr->op() == Token::OR) {
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
VisitForControl(expr->left(), &done, &eval_right);
break;
case Expression::kValue:
VisitForValueControl(expr->left(),
location_,
&done,
&eval_right);
break;
case Expression::kTest:
VisitForControl(expr->left(), true_label_, &eval_right);
break;
case Expression::kValueTest:
VisitForValueControl(expr->left(),
location_,
true_label_,
&eval_right);
break;
case Expression::kTestValue:
VisitForControl(expr->left(), true_label_, &eval_right);
break;
}
} else {
ASSERT_EQ(Token::AND, expr->op());
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
VisitForControl(expr->left(), &eval_right, &done);
break;
case Expression::kValue:
VisitForControlValue(expr->left(),
location_,
&eval_right,
&done);
break;
case Expression::kTest:
VisitForControl(expr->left(), &eval_right, false_label_);
break;
case Expression::kValueTest:
VisitForControl(expr->left(), &eval_right, false_label_);
break;
case Expression::kTestValue:
VisitForControlValue(expr->left(),
location_,
&eval_right,
false_label_);
break;
}
}
__ bind(&eval_right);
Visit(expr->right());
__ bind(&done);
}
void FullCodeGenerator::VisitBlock(Block* stmt) {
Comment cmnt(masm_, "[ Block");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
VisitStatements(stmt->statements());
__ bind(nested_statement.break_target());
}
void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
Comment cmnt(masm_, "[ ExpressionStatement");
SetStatementPosition(stmt);
VisitForEffect(stmt->expression());
}
void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
Comment cmnt(masm_, "[ EmptyStatement");
SetStatementPosition(stmt);
}
void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
Comment cmnt(masm_, "[ IfStatement");
SetStatementPosition(stmt);
Label then_part, else_part, done;
// Do not worry about optimizing for empty then or else bodies.
VisitForControl(stmt->condition(), &then_part, &else_part);
__ bind(&then_part);
Visit(stmt->then_statement());
__ jmp(&done);
__ bind(&else_part);
Visit(stmt->else_statement());
__ bind(&done);
}
void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
Comment cmnt(masm_, "[ ContinueStatement");
SetStatementPosition(stmt);
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
while (!current->IsContinueTarget(stmt->target())) {
stack_depth = current->Exit(stack_depth);
current = current->outer();
}
__ Drop(stack_depth);
Iteration* loop = current->AsIteration();
__ jmp(loop->continue_target());
}
void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
Comment cmnt(masm_, "[ BreakStatement");
SetStatementPosition(stmt);
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
while (!current->IsBreakTarget(stmt->target())) {
stack_depth = current->Exit(stack_depth);
current = current->outer();
}
__ Drop(stack_depth);
Breakable* target = current->AsBreakable();
__ jmp(target->break_target());
}
void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
Comment cmnt(masm_, "[ ReturnStatement");
SetStatementPosition(stmt);
Expression* expr = stmt->expression();
VisitForValue(expr, kAccumulator);
// Exit all nested statements.
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
while (current != NULL) {
stack_depth = current->Exit(stack_depth);
current = current->outer();
}
__ Drop(stack_depth);
EmitReturnSequence();
}
void FullCodeGenerator::VisitWithEnterStatement(WithEnterStatement* stmt) {
Comment cmnt(masm_, "[ WithEnterStatement");
SetStatementPosition(stmt);
VisitForValue(stmt->expression(), kStack);
if (stmt->is_catch_block()) {
__ CallRuntime(Runtime::kPushCatchContext, 1);
} else {
__ CallRuntime(Runtime::kPushContext, 1);
}
// Both runtime calls return the new context in both the context and the
// result registers.
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}
void FullCodeGenerator::VisitWithExitStatement(WithExitStatement* stmt) {
Comment cmnt(masm_, "[ WithExitStatement");
SetStatementPosition(stmt);
// Pop context.
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}
void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
Comment cmnt(masm_, "[ DoWhileStatement");
SetStatementPosition(stmt);
Label body, stack_limit_hit, stack_check_success;
Iteration loop_statement(this, stmt);
increment_loop_depth();
__ bind(&body);
Visit(stmt->body());
// Check stack before looping.
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_success);
__ bind(loop_statement.continue_target());
// Record the position of the do while condition and make sure it is possible
// to break on the condition.
SetExpressionPosition(stmt->cond(), stmt->condition_position());
VisitForControl(stmt->cond(), &body, loop_statement.break_target());
__ bind(&stack_limit_hit);
StackCheckStub stack_stub;
__ CallStub(&stack_stub);
__ jmp(&stack_check_success);
__ bind(loop_statement.break_target());
decrement_loop_depth();
}
void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
Comment cmnt(masm_, "[ WhileStatement");
Label body, stack_limit_hit, stack_check_success;
Iteration loop_statement(this, stmt);
increment_loop_depth();
// Emit the test at the bottom of the loop.
__ jmp(loop_statement.continue_target());
__ bind(&body);
Visit(stmt->body());
__ bind(loop_statement.continue_target());
// Emit the statement position here as this is where the while statement code
// starts.
SetStatementPosition(stmt);
// Check stack before looping.
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_success);
VisitForControl(stmt->cond(), &body, loop_statement.break_target());
__ bind(&stack_limit_hit);
StackCheckStub stack_stub;
__ CallStub(&stack_stub);
__ jmp(&stack_check_success);
__ bind(loop_statement.break_target());
decrement_loop_depth();
}
void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
Comment cmnt(masm_, "[ ForStatement");
Label test, body, stack_limit_hit, stack_check_success;
Iteration loop_statement(this, stmt);
if (stmt->init() != NULL) {
Visit(stmt->init());
}
increment_loop_depth();
// Emit the test at the bottom of the loop (even if empty).
__ jmp(&test);
__ bind(&body);
Visit(stmt->body());
__ bind(loop_statement.continue_target());
SetStatementPosition(stmt);
if (stmt->next() != NULL) {
Visit(stmt->next());
}
__ bind(&test);
// Emit the statement position here as this is where the for statement code
// starts.
SetStatementPosition(stmt);
// Check stack before looping.
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_success);
if (stmt->cond() != NULL) {
VisitForControl(stmt->cond(), &body, loop_statement.break_target());
} else {
__ jmp(&body);
}
__ bind(&stack_limit_hit);
StackCheckStub stack_stub;
__ CallStub(&stack_stub);
__ jmp(&stack_check_success);
__ bind(loop_statement.break_target());
decrement_loop_depth();
}
void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
Comment cmnt(masm_, "[ TryCatchStatement");
SetStatementPosition(stmt);
// The try block adds a handler to the exception handler chain
// before entering, and removes it again when exiting normally.
// If an exception is thrown during execution of the try block,
// control is passed to the handler, which also consumes the handler.
// At this point, the exception is in a register, and store it in
// the temporary local variable (prints as ".catch-var") before
// executing the catch block. The catch block has been rewritten
// to introduce a new scope to bind the catch variable and to remove
// that scope again afterwards.
Label try_handler_setup, catch_entry, done;
__ Call(&try_handler_setup);
// Try handler code, exception in result register.
// Store exception in local .catch variable before executing catch block.
{
// The catch variable is *always* a variable proxy for a local variable.
Variable* catch_var = stmt->catch_var()->AsVariableProxy()->AsVariable();
ASSERT_NOT_NULL(catch_var);
Slot* variable_slot = catch_var->slot();
ASSERT_NOT_NULL(variable_slot);
ASSERT_EQ(Slot::LOCAL, variable_slot->type());
StoreToFrameField(SlotOffset(variable_slot), result_register());
}
Visit(stmt->catch_block());
__ jmp(&done);
// Try block code. Sets up the exception handler chain.
__ bind(&try_handler_setup);
{
TryCatch try_block(this, &catch_entry);
__ PushTryHandler(IN_JAVASCRIPT, TRY_CATCH_HANDLER);
Visit(stmt->try_block());
__ PopTryHandler();
}
__ bind(&done);
}
void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
Comment cmnt(masm_, "[ TryFinallyStatement");
SetStatementPosition(stmt);
// Try finally is compiled by setting up a try-handler on the stack while
// executing the try body, and removing it again afterwards.
//
// The try-finally construct can enter the finally block in three ways:
// 1. By exiting the try-block normally. This removes the try-handler and
// calls the finally block code before continuing.
// 2. By exiting the try-block with a function-local control flow transfer
// (break/continue/return). The site of the, e.g., break removes the
// try handler and calls the finally block code before continuing
// its outward control transfer.
// 3. by exiting the try-block with a thrown exception.
// This can happen in nested function calls. It traverses the try-handler
// chain and consumes the try-handler entry before jumping to the
// handler code. The handler code then calls the finally-block before
// rethrowing the exception.
//
// The finally block must assume a return address on top of the stack
// (or in the link register on ARM chips) and a value (return value or
// exception) in the result register (rax/eax/r0), both of which must
// be preserved. The return address isn't GC-safe, so it should be
// cooked before GC.
Label finally_entry;
Label try_handler_setup;
// Setup the try-handler chain. Use a call to
// Jump to try-handler setup and try-block code. Use call to put try-handler
// address on stack.
__ Call(&try_handler_setup);
// Try handler code. Return address of call is pushed on handler stack.
{
// This code is only executed during stack-handler traversal when an
// exception is thrown. The execption is in the result register, which
// is retained by the finally block.
// Call the finally block and then rethrow the exception.
__ Call(&finally_entry);
__ push(result_register());
__ CallRuntime(Runtime::kReThrow, 1);
}
__ bind(&finally_entry);
{
// Finally block implementation.
Finally finally_block(this);
EnterFinallyBlock();
Visit(stmt->finally_block());
ExitFinallyBlock(); // Return to the calling code.
}
__ bind(&try_handler_setup);
{
// Setup try handler (stack pointer registers).
TryFinally try_block(this, &finally_entry);
__ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER);
Visit(stmt->try_block());
__ PopTryHandler();
}
// Execute the finally block on the way out.
__ Call(&finally_entry);
}
void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
#ifdef ENABLE_DEBUGGER_SUPPORT
Comment cmnt(masm_, "[ DebuggerStatement");
SetStatementPosition(stmt);
__ DebugBreak();
// Ignore the return value.
#endif
}
void FullCodeGenerator::VisitConditional(Conditional* expr) {
Comment cmnt(masm_, "[ Conditional");
Label true_case, false_case, done;
VisitForControl(expr->condition(), &true_case, &false_case);
__ bind(&true_case);
SetExpressionPosition(expr->then_expression(),
expr->then_expression_position());
Visit(expr->then_expression());
// If control flow falls through Visit, jump to done.
if (context_ == Expression::kEffect || context_ == Expression::kValue) {
__ jmp(&done);
}
__ bind(&false_case);
SetExpressionPosition(expr->else_expression(),
expr->else_expression_position());
Visit(expr->else_expression());
// If control flow falls through Visit, merge it with true case here.
if (context_ == Expression::kEffect || context_ == Expression::kValue) {
__ bind(&done);
}
}
void FullCodeGenerator::VisitSlot(Slot* expr) {
// Slots do not appear directly in the AST.
UNREACHABLE();
}
void FullCodeGenerator::VisitLiteral(Literal* expr) {
Comment cmnt(masm_, "[ Literal");
Apply(context_, expr);
}
void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<SharedFunctionInfo> function_info =
Compiler::BuildFunctionInfo(expr, script(), this);
if (HasStackOverflow()) return;
EmitNewClosure(function_info);
}
void FullCodeGenerator::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
EmitNewClosure(expr->shared_function_info());
}
void FullCodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* expr) {
// Call runtime routine to allocate the catch extension object and
// assign the exception value to the catch variable.
Comment cmnt(masm_, "[ CatchExtensionObject");
VisitForValue(expr->key(), kStack);
VisitForValue(expr->value(), kStack);
// Create catch extension object.
__ CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
Apply(context_, result_register());
}
void FullCodeGenerator::VisitThrow(Throw* expr) {
Comment cmnt(masm_, "[ Throw");
VisitForValue(expr->exception(), kStack);
__ CallRuntime(Runtime::kThrow, 1);
// Never returns here.
}
int FullCodeGenerator::TryFinally::Exit(int stack_depth) {
// The macros used here must preserve the result register.
__ Drop(stack_depth);
__ PopTryHandler();
__ Call(finally_entry_);
return 0;
}
int FullCodeGenerator::TryCatch::Exit(int stack_depth) {
// The macros used here must preserve the result register.
__ Drop(stack_depth);
__ PopTryHandler();
return 0;
}
#undef __
} } // namespace v8::internal