| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // A Disassembler object is used to disassemble a block of code instruction by |
| // instruction. The default implementation of the NameConverter object can be |
| // overriden to modify register names or to do symbol lookup on addresses. |
| // |
| // The example below will disassemble a block of code and print it to stdout. |
| // |
| // NameConverter converter; |
| // Disassembler d(converter); |
| // for (byte* pc = begin; pc < end;) { |
| // v8::internal::EmbeddedVector<char, 256> buffer; |
| // byte* prev_pc = pc; |
| // pc += d.InstructionDecode(buffer, pc); |
| // printf("%p %08x %s\n", |
| // prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer); |
| // } |
| // |
| // The Disassembler class also has a convenience method to disassemble a block |
| // of code into a FILE*, meaning that the above functionality could also be |
| // achieved by just calling Disassembler::Disassemble(stdout, begin, end); |
| |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #ifndef WIN32 |
| #include <stdint.h> |
| #endif |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "constants-arm.h" |
| #include "disasm.h" |
| #include "macro-assembler.h" |
| #include "platform.h" |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| //------------------------------------------------------------------------------ |
| |
| // Decoder decodes and disassembles instructions into an output buffer. |
| // It uses the converter to convert register names and call destinations into |
| // more informative description. |
| class Decoder { |
| public: |
| Decoder(const disasm::NameConverter& converter, |
| Vector<char> out_buffer) |
| : converter_(converter), |
| out_buffer_(out_buffer), |
| out_buffer_pos_(0) { |
| out_buffer_[out_buffer_pos_] = '\0'; |
| } |
| |
| ~Decoder() {} |
| |
| // Writes one disassembled instruction into 'buffer' (0-terminated). |
| // Returns the length of the disassembled machine instruction in bytes. |
| int InstructionDecode(byte* instruction); |
| |
| static bool IsConstantPoolAt(byte* instr_ptr); |
| static int ConstantPoolSizeAt(byte* instr_ptr); |
| |
| private: |
| // Bottleneck functions to print into the out_buffer. |
| void PrintChar(const char ch); |
| void Print(const char* str); |
| |
| // Printing of common values. |
| void PrintRegister(int reg); |
| void PrintSRegister(int reg); |
| void PrintDRegister(int reg); |
| int FormatVFPRegister(Instruction* instr, const char* format); |
| void PrintMovwMovt(Instruction* instr); |
| int FormatVFPinstruction(Instruction* instr, const char* format); |
| void PrintCondition(Instruction* instr); |
| void PrintShiftRm(Instruction* instr); |
| void PrintShiftImm(Instruction* instr); |
| void PrintShiftSat(Instruction* instr); |
| void PrintPU(Instruction* instr); |
| void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); |
| |
| // Handle formatting of instructions and their options. |
| int FormatRegister(Instruction* instr, const char* option); |
| int FormatOption(Instruction* instr, const char* option); |
| void Format(Instruction* instr, const char* format); |
| void Unknown(Instruction* instr); |
| |
| // Each of these functions decodes one particular instruction type, a 3-bit |
| // field in the instruction encoding. |
| // Types 0 and 1 are combined as they are largely the same except for the way |
| // they interpret the shifter operand. |
| void DecodeType01(Instruction* instr); |
| void DecodeType2(Instruction* instr); |
| void DecodeType3(Instruction* instr); |
| void DecodeType4(Instruction* instr); |
| void DecodeType5(Instruction* instr); |
| void DecodeType6(Instruction* instr); |
| // Type 7 includes special Debugger instructions. |
| int DecodeType7(Instruction* instr); |
| // For VFP support. |
| void DecodeTypeVFP(Instruction* instr); |
| void DecodeType6CoprocessorIns(Instruction* instr); |
| |
| void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); |
| void DecodeVCMP(Instruction* instr); |
| void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); |
| void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); |
| |
| const disasm::NameConverter& converter_; |
| Vector<char> out_buffer_; |
| int out_buffer_pos_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Decoder); |
| }; |
| |
| |
| // Support for assertions in the Decoder formatting functions. |
| #define STRING_STARTS_WITH(string, compare_string) \ |
| (strncmp(string, compare_string, strlen(compare_string)) == 0) |
| |
| |
| // Append the ch to the output buffer. |
| void Decoder::PrintChar(const char ch) { |
| out_buffer_[out_buffer_pos_++] = ch; |
| } |
| |
| |
| // Append the str to the output buffer. |
| void Decoder::Print(const char* str) { |
| char cur = *str++; |
| while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
| PrintChar(cur); |
| cur = *str++; |
| } |
| out_buffer_[out_buffer_pos_] = 0; |
| } |
| |
| |
| // These condition names are defined in a way to match the native disassembler |
| // formatting. See for example the command "objdump -d <binary file>". |
| static const char* cond_names[kNumberOfConditions] = { |
| "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" , |
| "hi", "ls", "ge", "lt", "gt", "le", "", "invalid", |
| }; |
| |
| |
| // Print the condition guarding the instruction. |
| void Decoder::PrintCondition(Instruction* instr) { |
| Print(cond_names[instr->ConditionValue()]); |
| } |
| |
| |
| // Print the register name according to the active name converter. |
| void Decoder::PrintRegister(int reg) { |
| Print(converter_.NameOfCPURegister(reg)); |
| } |
| |
| // Print the VFP S register name according to the active name converter. |
| void Decoder::PrintSRegister(int reg) { |
| Print(VFPRegisters::Name(reg, false)); |
| } |
| |
| // Print the VFP D register name according to the active name converter. |
| void Decoder::PrintDRegister(int reg) { |
| Print(VFPRegisters::Name(reg, true)); |
| } |
| |
| |
| // These shift names are defined in a way to match the native disassembler |
| // formatting. See for example the command "objdump -d <binary file>". |
| static const char* shift_names[kNumberOfShifts] = { |
| "lsl", "lsr", "asr", "ror" |
| }; |
| |
| |
| // Print the register shift operands for the instruction. Generally used for |
| // data processing instructions. |
| void Decoder::PrintShiftRm(Instruction* instr) { |
| ShiftOp shift = instr->ShiftField(); |
| int shift_index = instr->ShiftValue(); |
| int shift_amount = instr->ShiftAmountValue(); |
| int rm = instr->RmValue(); |
| |
| PrintRegister(rm); |
| |
| if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) { |
| // Special case for using rm only. |
| return; |
| } |
| if (instr->RegShiftValue() == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| Print(", RRX"); |
| return; |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", %s #%d", |
| shift_names[shift_index], |
| shift_amount); |
| } else { |
| // by register |
| int rs = instr->RsValue(); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", %s ", shift_names[shift_index]); |
| PrintRegister(rs); |
| } |
| } |
| |
| |
| // Print the immediate operand for the instruction. Generally used for data |
| // processing instructions. |
| void Decoder::PrintShiftImm(Instruction* instr) { |
| int rotate = instr->RotateValue() * 2; |
| int immed8 = instr->Immed8Value(); |
| int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "#%d", imm); |
| } |
| |
| |
| // Print the optional shift and immediate used by saturating instructions. |
| void Decoder::PrintShiftSat(Instruction* instr) { |
| int shift = instr->Bits(11, 7); |
| if (shift > 0) { |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", %s #%d", |
| shift_names[instr->Bit(6) * 2], |
| instr->Bits(11, 7)); |
| } |
| } |
| |
| |
| // Print PU formatting to reduce complexity of FormatOption. |
| void Decoder::PrintPU(Instruction* instr) { |
| switch (instr->PUField()) { |
| case da_x: { |
| Print("da"); |
| break; |
| } |
| case ia_x: { |
| Print("ia"); |
| break; |
| } |
| case db_x: { |
| Print("db"); |
| break; |
| } |
| case ib_x: { |
| Print("ib"); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of |
| // the FormatOption method. |
| void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { |
| switch (svc) { |
| case kCallRtRedirected: |
| Print("call rt redirected"); |
| return; |
| case kBreakpoint: |
| Print("breakpoint"); |
| return; |
| default: |
| if (svc >= kStopCode) { |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d - 0x%x", |
| svc & kStopCodeMask, |
| svc & kStopCodeMask); |
| } else { |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", |
| svc); |
| } |
| return; |
| } |
| } |
| |
| |
| // Handle all register based formatting in this function to reduce the |
| // complexity of FormatOption. |
| int Decoder::FormatRegister(Instruction* instr, const char* format) { |
| ASSERT(format[0] == 'r'); |
| if (format[1] == 'n') { // 'rn: Rn register |
| int reg = instr->RnValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'd') { // 'rd: Rd register |
| int reg = instr->RdValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 's') { // 'rs: Rs register |
| int reg = instr->RsValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'm') { // 'rm: Rm register |
| int reg = instr->RmValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 't') { // 'rt: Rt register |
| int reg = instr->RtValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'l') { |
| // 'rlist: register list for load and store multiple instructions |
| ASSERT(STRING_STARTS_WITH(format, "rlist")); |
| int rlist = instr->RlistValue(); |
| int reg = 0; |
| Print("{"); |
| // Print register list in ascending order, by scanning the bit mask. |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| PrintRegister(reg); |
| if ((rlist >> 1) != 0) { |
| Print(", "); |
| } |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| Print("}"); |
| return 5; |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| // Handle all VFP register based formatting in this function to reduce the |
| // complexity of FormatOption. |
| int Decoder::FormatVFPRegister(Instruction* instr, const char* format) { |
| ASSERT((format[0] == 'S') || (format[0] == 'D')); |
| |
| VFPRegPrecision precision = |
| format[0] == 'D' ? kDoublePrecision : kSinglePrecision; |
| |
| int retval = 2; |
| int reg = -1; |
| if (format[1] == 'n') { |
| reg = instr->VFPNRegValue(precision); |
| } else if (format[1] == 'm') { |
| reg = instr->VFPMRegValue(precision); |
| } else if (format[1] == 'd') { |
| reg = instr->VFPDRegValue(precision); |
| if (format[2] == '+') { |
| int immed8 = instr->Immed8Value(); |
| if (format[0] == 'S') reg += immed8 - 1; |
| if (format[0] == 'D') reg += (immed8 / 2 - 1); |
| } |
| if (format[2] == '+') retval = 3; |
| } else { |
| UNREACHABLE(); |
| } |
| |
| if (precision == kSinglePrecision) { |
| PrintSRegister(reg); |
| } else { |
| PrintDRegister(reg); |
| } |
| |
| return retval; |
| } |
| |
| |
| int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) { |
| Print(format); |
| return 0; |
| } |
| |
| |
| // Print the movw or movt instruction. |
| void Decoder::PrintMovwMovt(Instruction* instr) { |
| int imm = instr->ImmedMovwMovtValue(); |
| int rd = instr->RdValue(); |
| PrintRegister(rd); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", #%d", imm); |
| } |
| |
| |
| // FormatOption takes a formatting string and interprets it based on |
| // the current instructions. The format string points to the first |
| // character of the option string (the option escape has already been |
| // consumed by the caller.) FormatOption returns the number of |
| // characters that were consumed from the formatting string. |
| int Decoder::FormatOption(Instruction* instr, const char* format) { |
| switch (format[0]) { |
| case 'a': { // 'a: accumulate multiplies |
| if (instr->Bit(21) == 0) { |
| Print("ul"); |
| } else { |
| Print("la"); |
| } |
| return 1; |
| } |
| case 'b': { // 'b: byte loads or stores |
| if (instr->HasB()) { |
| Print("b"); |
| } |
| return 1; |
| } |
| case 'c': { // 'cond: conditional execution |
| ASSERT(STRING_STARTS_WITH(format, "cond")); |
| PrintCondition(instr); |
| return 4; |
| } |
| case 'd': { // 'd: vmov double immediate. |
| double d = instr->DoubleImmedVmov(); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "#%g", d); |
| return 1; |
| } |
| case 'f': { // 'f: bitfield instructions - v7 and above. |
| uint32_t lsbit = instr->Bits(11, 7); |
| uint32_t width = instr->Bits(20, 16) + 1; |
| if (instr->Bit(21) == 0) { |
| // BFC/BFI: |
| // Bits 20-16 represent most-significant bit. Covert to width. |
| width -= lsbit; |
| ASSERT(width > 0); |
| } |
| ASSERT((width + lsbit) <= 32); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "#%d, #%d", lsbit, width); |
| return 1; |
| } |
| case 'h': { // 'h: halfword operation for extra loads and stores |
| if (instr->HasH()) { |
| Print("h"); |
| } else { |
| Print("b"); |
| } |
| return 1; |
| } |
| case 'i': { // 'i: immediate value from adjacent bits. |
| // Expects tokens in the form imm%02d@%02d, ie. imm05@07, imm10@16 |
| int width = (format[3] - '0') * 10 + (format[4] - '0'); |
| int lsb = (format[6] - '0') * 10 + (format[7] - '0'); |
| |
| ASSERT((width >= 1) && (width <= 32)); |
| ASSERT((lsb >= 0) && (lsb <= 31)); |
| ASSERT((width + lsb) <= 32); |
| |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", |
| instr->Bits(width + lsb - 1, lsb)); |
| return 8; |
| } |
| case 'l': { // 'l: branch and link |
| if (instr->HasLink()) { |
| Print("l"); |
| } |
| return 1; |
| } |
| case 'm': { |
| if (format[1] == 'w') { |
| // 'mw: movt/movw instructions. |
| PrintMovwMovt(instr); |
| return 2; |
| } |
| if (format[1] == 'e') { // 'memop: load/store instructions. |
| ASSERT(STRING_STARTS_WITH(format, "memop")); |
| if (instr->HasL()) { |
| Print("ldr"); |
| } else { |
| if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) && |
| (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) { |
| if (instr->Bit(5) == 1) { |
| Print("strd"); |
| } else { |
| Print("ldrd"); |
| } |
| return 5; |
| } |
| Print("str"); |
| } |
| return 5; |
| } |
| // 'msg: for simulator break instructions |
| ASSERT(STRING_STARTS_WITH(format, "msg")); |
| byte* str = |
| reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s", converter_.NameInCode(str)); |
| return 3; |
| } |
| case 'o': { |
| if ((format[3] == '1') && (format[4] == '2')) { |
| // 'off12: 12-bit offset for load and store instructions |
| ASSERT(STRING_STARTS_WITH(format, "off12")); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", instr->Offset12Value()); |
| return 5; |
| } else if (format[3] == '0') { |
| // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0. |
| ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19")); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", |
| (instr->Bits(19, 8) << 4) + |
| instr->Bits(3, 0)); |
| return 15; |
| } |
| // 'off8: 8-bit offset for extra load and store instructions |
| ASSERT(STRING_STARTS_WITH(format, "off8")); |
| int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", offs8); |
| return 4; |
| } |
| case 'p': { // 'pu: P and U bits for load and store instructions |
| ASSERT(STRING_STARTS_WITH(format, "pu")); |
| PrintPU(instr); |
| return 2; |
| } |
| case 'r': { |
| return FormatRegister(instr, format); |
| } |
| case 's': { |
| if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat. |
| if (format[6] == 'o') { // 'shift_op |
| ASSERT(STRING_STARTS_WITH(format, "shift_op")); |
| if (instr->TypeValue() == 0) { |
| PrintShiftRm(instr); |
| } else { |
| ASSERT(instr->TypeValue() == 1); |
| PrintShiftImm(instr); |
| } |
| return 8; |
| } else if (format[6] == 's') { // 'shift_sat. |
| ASSERT(STRING_STARTS_WITH(format, "shift_sat")); |
| PrintShiftSat(instr); |
| return 9; |
| } else { // 'shift_rm |
| ASSERT(STRING_STARTS_WITH(format, "shift_rm")); |
| PrintShiftRm(instr); |
| return 8; |
| } |
| } else if (format[1] == 'v') { // 'svc |
| ASSERT(STRING_STARTS_WITH(format, "svc")); |
| PrintSoftwareInterrupt(instr->SvcValue()); |
| return 3; |
| } else if (format[1] == 'i') { // 'sign: signed extra loads and stores |
| ASSERT(STRING_STARTS_WITH(format, "sign")); |
| if (instr->HasSign()) { |
| Print("s"); |
| } |
| return 4; |
| } |
| // 's: S field of data processing instructions |
| if (instr->HasS()) { |
| Print("s"); |
| } |
| return 1; |
| } |
| case 't': { // 'target: target of branch instructions |
| ASSERT(STRING_STARTS_WITH(format, "target")); |
| int off = (instr->SImmed24Value() << 2) + 8; |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%+d -> %s", |
| off, |
| converter_.NameOfAddress( |
| reinterpret_cast<byte*>(instr) + off)); |
| return 6; |
| } |
| case 'u': { // 'u: signed or unsigned multiplies |
| // The manual gets the meaning of bit 22 backwards in the multiply |
| // instruction overview on page A3.16.2. The instructions that |
| // exist in u and s variants are the following: |
| // smull A4.1.87 |
| // umull A4.1.129 |
| // umlal A4.1.128 |
| // smlal A4.1.76 |
| // For these 0 means u and 1 means s. As can be seen on their individual |
| // pages. The other 18 mul instructions have the bit set or unset in |
| // arbitrary ways that are unrelated to the signedness of the instruction. |
| // None of these 18 instructions exist in both a 'u' and an 's' variant. |
| |
| if (instr->Bit(22) == 0) { |
| Print("u"); |
| } else { |
| Print("s"); |
| } |
| return 1; |
| } |
| case 'v': { |
| return FormatVFPinstruction(instr, format); |
| } |
| case 'S': |
| case 'D': { |
| return FormatVFPRegister(instr, format); |
| } |
| case 'w': { // 'w: W field of load and store instructions |
| if (instr->HasW()) { |
| Print("!"); |
| } |
| return 1; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| // Format takes a formatting string for a whole instruction and prints it into |
| // the output buffer. All escaped options are handed to FormatOption to be |
| // parsed further. |
| void Decoder::Format(Instruction* instr, const char* format) { |
| char cur = *format++; |
| while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
| if (cur == '\'') { // Single quote is used as the formatting escape. |
| format += FormatOption(instr, format); |
| } else { |
| out_buffer_[out_buffer_pos_++] = cur; |
| } |
| cur = *format++; |
| } |
| out_buffer_[out_buffer_pos_] = '\0'; |
| } |
| |
| |
| // For currently unimplemented decodings the disassembler calls Unknown(instr) |
| // which will just print "unknown" of the instruction bits. |
| void Decoder::Unknown(Instruction* instr) { |
| Format(instr, "unknown"); |
| } |
| |
| |
| void Decoder::DecodeType01(Instruction* instr) { |
| int type = instr->TypeValue(); |
| if ((type == 0) && instr->IsSpecialType0()) { |
| // multiply instruction or extra loads and stores |
| if (instr->Bits(7, 4) == 9) { |
| if (instr->Bit(24) == 0) { |
| // multiply instructions |
| if (instr->Bit(23) == 0) { |
| if (instr->Bit(21) == 0) { |
| // The MUL instruction description (A 4.1.33) refers to Rd as being |
| // the destination for the operation, but it confusingly uses the |
| // Rn field to encode it. |
| Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| } else { |
| // The MLA instruction description (A 4.1.28) refers to the order |
| // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the |
| // Rn field to encode the Rd register and the Rd field to encode |
| // the Rn register. |
| Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| } |
| } else { |
| // The signed/long multiply instructions use the terms RdHi and RdLo |
| // when referring to the target registers. They are mapped to the Rn |
| // and Rd fields as follows: |
| // RdLo == Rd field |
| // RdHi == Rn field |
| // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs> |
| Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs"); |
| } |
| } else { |
| Unknown(instr); // not used by V8 |
| } |
| } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) { |
| // ldrd, strd |
| switch (instr->PUField()) { |
| case da_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn], -'rm"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn], #-'off8"); |
| } |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn], +'rm"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn], #+'off8"); |
| } |
| break; |
| } |
| case db_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w"); |
| } |
| break; |
| } |
| case ib_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // extra load/store instructions |
| switch (instr->PUField()) { |
| case da_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); |
| } |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); |
| } |
| break; |
| } |
| case db_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); |
| } |
| break; |
| } |
| case ib_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| return; |
| } |
| } else if ((type == 0) && instr->IsMiscType0()) { |
| if (instr->Bits(22, 21) == 1) { |
| switch (instr->BitField(7, 4)) { |
| case BX: |
| Format(instr, "bx'cond 'rm"); |
| break; |
| case BLX: |
| Format(instr, "blx'cond 'rm"); |
| break; |
| case BKPT: |
| Format(instr, "bkpt 'off0to3and8to19"); |
| break; |
| default: |
| Unknown(instr); // not used by V8 |
| break; |
| } |
| } else if (instr->Bits(22, 21) == 3) { |
| switch (instr->BitField(7, 4)) { |
| case CLZ: |
| Format(instr, "clz'cond 'rd, 'rm"); |
| break; |
| default: |
| Unknown(instr); // not used by V8 |
| break; |
| } |
| } else { |
| Unknown(instr); // not used by V8 |
| } |
| } else { |
| switch (instr->OpcodeField()) { |
| case AND: { |
| Format(instr, "and'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case EOR: { |
| Format(instr, "eor'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case SUB: { |
| Format(instr, "sub'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case RSB: { |
| Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case ADD: { |
| Format(instr, "add'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case ADC: { |
| Format(instr, "adc'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case SBC: { |
| Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case RSC: { |
| Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case TST: { |
| if (instr->HasS()) { |
| Format(instr, "tst'cond 'rn, 'shift_op"); |
| } else { |
| Format(instr, "movw'cond 'mw"); |
| } |
| break; |
| } |
| case TEQ: { |
| if (instr->HasS()) { |
| Format(instr, "teq'cond 'rn, 'shift_op"); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| case CMP: { |
| if (instr->HasS()) { |
| Format(instr, "cmp'cond 'rn, 'shift_op"); |
| } else { |
| Format(instr, "movt'cond 'mw"); |
| } |
| break; |
| } |
| case CMN: { |
| if (instr->HasS()) { |
| Format(instr, "cmn'cond 'rn, 'shift_op"); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| case ORR: { |
| Format(instr, "orr'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case MOV: { |
| Format(instr, "mov'cond's 'rd, 'shift_op"); |
| break; |
| } |
| case BIC: { |
| Format(instr, "bic'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case MVN: { |
| Format(instr, "mvn'cond's 'rd, 'shift_op"); |
| break; |
| } |
| default: { |
| // The Opcode field is a 4-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType2(Instruction* instr) { |
| switch (instr->PUField()) { |
| case da_x: { |
| if (instr->HasW()) { |
| Unknown(instr); // not used in V8 |
| return; |
| } |
| Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| break; |
| } |
| case ia_x: { |
| if (instr->HasW()) { |
| Unknown(instr); // not used in V8 |
| return; |
| } |
| Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| break; |
| } |
| case db_x: { |
| Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| break; |
| } |
| case ib_x: { |
| Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType3(Instruction* instr) { |
| switch (instr->PUField()) { |
| case da_x: { |
| ASSERT(!instr->HasW()); |
| Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| break; |
| } |
| case ia_x: { |
| if (instr->HasW()) { |
| ASSERT(instr->Bits(5, 4) == 0x1); |
| if (instr->Bit(22) == 0x1) { |
| Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat"); |
| } else { |
| UNREACHABLE(); // SSAT. |
| } |
| } else { |
| Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
| } |
| break; |
| } |
| case db_x: { |
| Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| break; |
| } |
| case ib_x: { |
| if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { |
| uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = widthminus1 + lsbit; |
| if (msbit <= 31) { |
| if (instr->Bit(22)) { |
| Format(instr, "ubfx'cond 'rd, 'rm, 'f"); |
| } else { |
| Format(instr, "sbfx'cond 'rd, 'rm, 'f"); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); |
| if (msbit >= lsbit) { |
| if (instr->RmValue() == 15) { |
| Format(instr, "bfc'cond 'rd, 'f"); |
| } else { |
| Format(instr, "bfi'cond 'rd, 'rm, 'f"); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType4(Instruction* instr) { |
| if (instr->Bit(22) != 0) { |
| // Privileged mode currently not supported. |
| Unknown(instr); |
| } else { |
| if (instr->HasL()) { |
| Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| } else { |
| Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType5(Instruction* instr) { |
| Format(instr, "b'l'cond 'target"); |
| } |
| |
| |
| void Decoder::DecodeType6(Instruction* instr) { |
| DecodeType6CoprocessorIns(instr); |
| } |
| |
| |
| int Decoder::DecodeType7(Instruction* instr) { |
| if (instr->Bit(24) == 1) { |
| if (instr->SvcValue() >= kStopCode) { |
| Format(instr, "stop'cond 'svc"); |
| // Also print the stop message. Its address is encoded |
| // in the following 4 bytes. |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "\n %p %08x stop message: %s", |
| reinterpret_cast<int32_t*>(instr |
| + Instruction::kInstrSize), |
| *reinterpret_cast<char**>(instr |
| + Instruction::kInstrSize), |
| *reinterpret_cast<char**>(instr |
| + Instruction::kInstrSize)); |
| // We have decoded 2 * Instruction::kInstrSize bytes. |
| return 2 * Instruction::kInstrSize; |
| } else { |
| Format(instr, "svc'cond 'svc"); |
| } |
| } else { |
| DecodeTypeVFP(instr); |
| } |
| return Instruction::kInstrSize; |
| } |
| |
| |
| // void Decoder::DecodeTypeVFP(Instruction* instr) |
| // vmov: Sn = Rt |
| // vmov: Rt = Sn |
| // vcvt: Dd = Sm |
| // vcvt: Sd = Dm |
| // Dd = vabs(Dm) |
| // Dd = vneg(Dm) |
| // Dd = vadd(Dn, Dm) |
| // Dd = vsub(Dn, Dm) |
| // Dd = vmul(Dn, Dm) |
| // Dd = vdiv(Dn, Dm) |
| // vcmp(Dd, Dm) |
| // vmrs |
| // vmsr |
| // Dd = vsqrt(Dm) |
| void Decoder::DecodeTypeVFP(Instruction* instr) { |
| ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); |
| ASSERT(instr->Bits(11, 9) == 0x5); |
| |
| if (instr->Bit(4) == 0) { |
| if (instr->Opc1Value() == 0x7) { |
| // Other data processing instructions |
| if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { |
| // vmov register to register. |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmov.f64'cond 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vmov.f32'cond 'Sd, 'Sm"); |
| } |
| } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { |
| // vabs |
| Format(instr, "vabs.f64'cond 'Dd, 'Dm"); |
| } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { |
| // vneg |
| Format(instr, "vneg.f64'cond 'Dd, 'Dm"); |
| } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { |
| DecodeVCVTBetweenDoubleAndSingle(instr); |
| } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if (((instr->Opc2Value() >> 1) == 0x6) && |
| (instr->Opc3Value() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && |
| (instr->Opc3Value() & 0x1)) { |
| DecodeVCMP(instr); |
| } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { |
| Format(instr, "vsqrt.f64'cond 'Dd, 'Dm"); |
| } else if (instr->Opc3Value() == 0x0) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmov.f64'cond 'Dd, 'd"); |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else if (instr->Opc1Value() == 0x3) { |
| if (instr->SzValue() == 0x1) { |
| if (instr->Opc3Value() & 0x1) { |
| Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm"); |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm"); |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm"); |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else { |
| if ((instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x0)) { |
| DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); |
| } else if ((instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x7) && |
| (instr->Bits(19, 16) == 0x1)) { |
| if (instr->VLValue() == 0) { |
| if (instr->Bits(15, 12) == 0xF) { |
| Format(instr, "vmsr'cond FPSCR, APSR"); |
| } else { |
| Format(instr, "vmsr'cond FPSCR, 'rt"); |
| } |
| } else { |
| if (instr->Bits(15, 12) == 0xF) { |
| Format(instr, "vmrs'cond APSR, FPSCR"); |
| } else { |
| Format(instr, "vmrs'cond 'rt, FPSCR"); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( |
| Instruction* instr) { |
| ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x0)); |
| |
| bool to_arm_register = (instr->VLValue() == 0x1); |
| |
| if (to_arm_register) { |
| Format(instr, "vmov'cond 'rt, 'Sn"); |
| } else { |
| Format(instr, "vmov'cond 'Sn, 'rt"); |
| } |
| } |
| |
| |
| void Decoder::DecodeVCMP(Instruction* instr) { |
| ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && |
| (instr->Opc3Value() & 0x1)); |
| |
| // Comparison. |
| bool dp_operation = (instr->SzValue() == 1); |
| bool raise_exception_for_qnan = (instr->Bit(7) == 0x1); |
| |
| if (dp_operation && !raise_exception_for_qnan) { |
| if (instr->Opc2Value() == 0x4) { |
| Format(instr, "vcmp.f64'cond 'Dd, 'Dm"); |
| } else if (instr->Opc2Value() == 0x5) { |
| Format(instr, "vcmp.f64'cond 'Dd, #0.0"); |
| } else { |
| Unknown(instr); // invalid |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } |
| |
| |
| void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { |
| ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); |
| |
| bool double_to_single = (instr->SzValue() == 1); |
| |
| if (double_to_single) { |
| Format(instr, "vcvt.f32.f64'cond 'Sd, 'Dm"); |
| } else { |
| Format(instr, "vcvt.f64.f32'cond 'Dd, 'Sm"); |
| } |
| } |
| |
| |
| void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { |
| ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || |
| (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); |
| |
| bool to_integer = (instr->Bit(18) == 1); |
| bool dp_operation = (instr->SzValue() == 1); |
| if (to_integer) { |
| bool unsigned_integer = (instr->Bit(16) == 0); |
| |
| if (dp_operation) { |
| if (unsigned_integer) { |
| Format(instr, "vcvt.u32.f64'cond 'Sd, 'Dm"); |
| } else { |
| Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm"); |
| } |
| } else { |
| if (unsigned_integer) { |
| Format(instr, "vcvt.u32.f32'cond 'Sd, 'Sm"); |
| } else { |
| Format(instr, "vcvt.s32.f32'cond 'Sd, 'Sm"); |
| } |
| } |
| } else { |
| bool unsigned_integer = (instr->Bit(7) == 0); |
| |
| if (dp_operation) { |
| if (unsigned_integer) { |
| Format(instr, "vcvt.f64.u32'cond 'Dd, 'Sm"); |
| } else { |
| Format(instr, "vcvt.f64.s32'cond 'Dd, 'Sm"); |
| } |
| } else { |
| if (unsigned_integer) { |
| Format(instr, "vcvt.f32.u32'cond 'Sd, 'Sm"); |
| } else { |
| Format(instr, "vcvt.f32.s32'cond 'Sd, 'Sm"); |
| } |
| } |
| } |
| } |
| |
| |
| // Decode Type 6 coprocessor instructions. |
| // Dm = vmov(Rt, Rt2) |
| // <Rt, Rt2> = vmov(Dm) |
| // Ddst = MEM(Rbase + 4*offset). |
| // MEM(Rbase + 4*offset) = Dsrc. |
| void Decoder::DecodeType6CoprocessorIns(Instruction* instr) { |
| ASSERT(instr->TypeValue() == 6); |
| |
| if (instr->CoprocessorValue() == 0xA) { |
| switch (instr->OpcodeValue()) { |
| case 0x8: |
| case 0xA: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]"); |
| } |
| break; |
| case 0xC: |
| case 0xE: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]"); |
| } |
| break; |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x9: |
| case 0xB: { |
| bool to_vfp_register = (instr->VLValue() == 0x1); |
| if (to_vfp_register) { |
| Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}"); |
| } else { |
| Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}"); |
| } |
| break; |
| } |
| default: |
| Unknown(instr); // Not used by V8. |
| } |
| } else if (instr->CoprocessorValue() == 0xB) { |
| switch (instr->OpcodeValue()) { |
| case 0x2: |
| // Load and store double to two GP registers |
| if (instr->Bits(7, 4) != 0x1) { |
| Unknown(instr); // Not used by V8. |
| } else if (instr->HasL()) { |
| Format(instr, "vmov'cond 'rt, 'rn, 'Dm"); |
| } else { |
| Format(instr, "vmov'cond 'Dm, 'rt, 'rn"); |
| } |
| break; |
| case 0x8: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]"); |
| } |
| break; |
| case 0xC: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]"); |
| } |
| break; |
| case 0x4: |
| case 0x5: |
| case 0x9: { |
| bool to_vfp_register = (instr->VLValue() == 0x1); |
| if (to_vfp_register) { |
| Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}"); |
| } else { |
| Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}"); |
| } |
| break; |
| } |
| default: |
| Unknown(instr); // Not used by V8. |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } |
| |
| |
| bool Decoder::IsConstantPoolAt(byte* instr_ptr) { |
| int instruction_bits = *(reinterpret_cast<int*>(instr_ptr)); |
| return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker; |
| } |
| |
| |
| int Decoder::ConstantPoolSizeAt(byte* instr_ptr) { |
| if (IsConstantPoolAt(instr_ptr)) { |
| int instruction_bits = *(reinterpret_cast<int*>(instr_ptr)); |
| return instruction_bits & kConstantPoolLengthMask; |
| } else { |
| return -1; |
| } |
| } |
| |
| |
| // Disassemble the instruction at *instr_ptr into the output buffer. |
| int Decoder::InstructionDecode(byte* instr_ptr) { |
| Instruction* instr = Instruction::At(instr_ptr); |
| // Print raw instruction bytes. |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%08x ", |
| instr->InstructionBits()); |
| if (instr->ConditionField() == kSpecialCondition) { |
| Unknown(instr); |
| return Instruction::kInstrSize; |
| } |
| int instruction_bits = *(reinterpret_cast<int*>(instr_ptr)); |
| if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) { |
| out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, |
| "constant pool begin (length %d)", |
| instruction_bits & |
| kConstantPoolLengthMask); |
| return Instruction::kInstrSize; |
| } |
| switch (instr->TypeValue()) { |
| case 0: |
| case 1: { |
| DecodeType01(instr); |
| break; |
| } |
| case 2: { |
| DecodeType2(instr); |
| break; |
| } |
| case 3: { |
| DecodeType3(instr); |
| break; |
| } |
| case 4: { |
| DecodeType4(instr); |
| break; |
| } |
| case 5: { |
| DecodeType5(instr); |
| break; |
| } |
| case 6: { |
| DecodeType6(instr); |
| break; |
| } |
| case 7: { |
| return DecodeType7(instr); |
| } |
| default: { |
| // The type field is 3-bits in the ARM encoding. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| return Instruction::kInstrSize; |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| |
| |
| //------------------------------------------------------------------------------ |
| |
| namespace disasm { |
| |
| |
| const char* NameConverter::NameOfAddress(byte* addr) const { |
| v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr); |
| return tmp_buffer_.start(); |
| } |
| |
| |
| const char* NameConverter::NameOfConstant(byte* addr) const { |
| return NameOfAddress(addr); |
| } |
| |
| |
| const char* NameConverter::NameOfCPURegister(int reg) const { |
| return v8::internal::Registers::Name(reg); |
| } |
| |
| |
| const char* NameConverter::NameOfByteCPURegister(int reg) const { |
| UNREACHABLE(); // ARM does not have the concept of a byte register |
| return "nobytereg"; |
| } |
| |
| |
| const char* NameConverter::NameOfXMMRegister(int reg) const { |
| UNREACHABLE(); // ARM does not have any XMM registers |
| return "noxmmreg"; |
| } |
| |
| |
| const char* NameConverter::NameInCode(byte* addr) const { |
| // The default name converter is called for unknown code. So we will not try |
| // to access any memory. |
| return ""; |
| } |
| |
| |
| //------------------------------------------------------------------------------ |
| |
| Disassembler::Disassembler(const NameConverter& converter) |
| : converter_(converter) {} |
| |
| |
| Disassembler::~Disassembler() {} |
| |
| |
| int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer, |
| byte* instruction) { |
| v8::internal::Decoder d(converter_, buffer); |
| return d.InstructionDecode(instruction); |
| } |
| |
| |
| int Disassembler::ConstantPoolSizeAt(byte* instruction) { |
| return v8::internal::Decoder::ConstantPoolSizeAt(instruction); |
| } |
| |
| |
| void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { |
| NameConverter converter; |
| Disassembler d(converter); |
| for (byte* pc = begin; pc < end;) { |
| v8::internal::EmbeddedVector<char, 128> buffer; |
| buffer[0] = '\0'; |
| byte* prev_pc = pc; |
| pc += d.InstructionDecode(buffer, pc); |
| fprintf(f, "%p %08x %s\n", |
| prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start()); |
| } |
| } |
| |
| |
| } // namespace disasm |
| |
| #endif // V8_TARGET_ARCH_ARM |