| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "codegen.h" |
| #include "deoptimizer.h" |
| #include "full-codegen.h" |
| #include "safepoint-table.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| int Deoptimizer::table_entry_size_ = 10; |
| |
| |
| int Deoptimizer::patch_size() { |
| return Assembler::kCallInstructionLength; |
| } |
| |
| |
| static void ZapCodeRange(Address start, Address end) { |
| #ifdef DEBUG |
| ASSERT(start <= end); |
| int size = end - start; |
| CodePatcher destroyer(start, size); |
| while (size-- > 0) destroyer.masm()->int3(); |
| #endif |
| } |
| |
| |
| void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) { |
| Isolate* isolate = code->GetIsolate(); |
| HandleScope scope(isolate); |
| |
| // Compute the size of relocation information needed for the code |
| // patching in Deoptimizer::DeoptimizeFunction. |
| int min_reloc_size = 0; |
| Address prev_reloc_address = code->instruction_start(); |
| Address code_start_address = code->instruction_start(); |
| SafepointTable table(*code); |
| for (unsigned i = 0; i < table.length(); ++i) { |
| Address curr_reloc_address = code_start_address + table.GetPcOffset(i); |
| ASSERT_GE(curr_reloc_address, prev_reloc_address); |
| SafepointEntry safepoint_entry = table.GetEntry(i); |
| int deoptimization_index = safepoint_entry.deoptimization_index(); |
| if (deoptimization_index != Safepoint::kNoDeoptimizationIndex) { |
| // The gap code is needed to get to the state expected at the |
| // bailout and we need to skip the call opcode to get to the |
| // address that needs reloc. |
| curr_reloc_address += safepoint_entry.gap_code_size() + 1; |
| int pc_delta = curr_reloc_address - prev_reloc_address; |
| // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes |
| // if encodable with small pc delta encoding and up to 6 bytes |
| // otherwise. |
| if (pc_delta <= RelocInfo::kMaxSmallPCDelta) { |
| min_reloc_size += 2; |
| } else { |
| min_reloc_size += 6; |
| } |
| prev_reloc_address = curr_reloc_address; |
| } |
| } |
| |
| // If the relocation information is not big enough we create a new |
| // relocation info object that is padded with comments to make it |
| // big enough for lazy doptimization. |
| int reloc_length = code->relocation_info()->length(); |
| if (min_reloc_size > reloc_length) { |
| int comment_reloc_size = RelocInfo::kMinRelocCommentSize; |
| // Padding needed. |
| int min_padding = min_reloc_size - reloc_length; |
| // Number of comments needed to take up at least that much space. |
| int additional_comments = |
| (min_padding + comment_reloc_size - 1) / comment_reloc_size; |
| // Actual padding size. |
| int padding = additional_comments * comment_reloc_size; |
| // Allocate new relocation info and copy old relocation to the end |
| // of the new relocation info array because relocation info is |
| // written and read backwards. |
| Factory* factory = isolate->factory(); |
| Handle<ByteArray> new_reloc = |
| factory->NewByteArray(reloc_length + padding, TENURED); |
| memcpy(new_reloc->GetDataStartAddress() + padding, |
| code->relocation_info()->GetDataStartAddress(), |
| reloc_length); |
| // Create a relocation writer to write the comments in the padding |
| // space. Use position 0 for everything to ensure short encoding. |
| RelocInfoWriter reloc_info_writer( |
| new_reloc->GetDataStartAddress() + padding, 0); |
| intptr_t comment_string |
| = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString); |
| RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string); |
| for (int i = 0; i < additional_comments; ++i) { |
| #ifdef DEBUG |
| byte* pos_before = reloc_info_writer.pos(); |
| #endif |
| reloc_info_writer.Write(&rinfo); |
| ASSERT(RelocInfo::kMinRelocCommentSize == |
| pos_before - reloc_info_writer.pos()); |
| } |
| // Replace relocation information on the code object. |
| code->set_relocation_info(*new_reloc); |
| } |
| } |
| |
| |
| void Deoptimizer::DeoptimizeFunction(JSFunction* function) { |
| if (!function->IsOptimized()) return; |
| |
| Isolate* isolate = function->GetIsolate(); |
| HandleScope scope(isolate); |
| AssertNoAllocation no_allocation; |
| |
| // Get the optimized code. |
| Code* code = function->code(); |
| Address code_start_address = code->instruction_start(); |
| |
| // We will overwrite the code's relocation info in-place. Relocation info |
| // is written backward. The relocation info is the payload of a byte |
| // array. Later on we will slide this to the start of the byte array and |
| // create a filler object in the remaining space. |
| ByteArray* reloc_info = code->relocation_info(); |
| Address reloc_end_address = reloc_info->address() + reloc_info->Size(); |
| RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address); |
| |
| // For each return after a safepoint insert a call to the corresponding |
| // deoptimization entry. Since the call is a relative encoding, write new |
| // reloc info. We do not need any of the existing reloc info because the |
| // existing code will not be used again (we zap it in debug builds). |
| SafepointTable table(code); |
| Address prev_address = code_start_address; |
| for (unsigned i = 0; i < table.length(); ++i) { |
| Address curr_address = code_start_address + table.GetPcOffset(i); |
| ASSERT_GE(curr_address, prev_address); |
| ZapCodeRange(prev_address, curr_address); |
| |
| SafepointEntry safepoint_entry = table.GetEntry(i); |
| int deoptimization_index = safepoint_entry.deoptimization_index(); |
| if (deoptimization_index != Safepoint::kNoDeoptimizationIndex) { |
| // The gap code is needed to get to the state expected at the bailout. |
| curr_address += safepoint_entry.gap_code_size(); |
| |
| CodePatcher patcher(curr_address, patch_size()); |
| Address deopt_entry = GetDeoptimizationEntry(deoptimization_index, LAZY); |
| patcher.masm()->call(deopt_entry, RelocInfo::NONE); |
| |
| // We use RUNTIME_ENTRY for deoptimization bailouts. |
| RelocInfo rinfo(curr_address + 1, // 1 after the call opcode. |
| RelocInfo::RUNTIME_ENTRY, |
| reinterpret_cast<intptr_t>(deopt_entry)); |
| reloc_info_writer.Write(&rinfo); |
| ASSERT_GE(reloc_info_writer.pos(), |
| reloc_info->address() + ByteArray::kHeaderSize); |
| curr_address += patch_size(); |
| } |
| prev_address = curr_address; |
| } |
| ZapCodeRange(prev_address, |
| code_start_address + code->safepoint_table_offset()); |
| |
| // Move the relocation info to the beginning of the byte array. |
| int new_reloc_size = reloc_end_address - reloc_info_writer.pos(); |
| memmove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size); |
| |
| // The relocation info is in place, update the size. |
| reloc_info->set_length(new_reloc_size); |
| |
| // Handle the junk part after the new relocation info. We will create |
| // a non-live object in the extra space at the end of the former reloc info. |
| Address junk_address = reloc_info->address() + reloc_info->Size(); |
| ASSERT(junk_address <= reloc_end_address); |
| isolate->heap()->CreateFillerObjectAt(junk_address, |
| reloc_end_address - junk_address); |
| |
| // Add the deoptimizing code to the list. |
| DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code); |
| DeoptimizerData* data = isolate->deoptimizer_data(); |
| node->set_next(data->deoptimizing_code_list_); |
| data->deoptimizing_code_list_ = node; |
| |
| // Set the code for the function to non-optimized version. |
| function->ReplaceCode(function->shared()->code()); |
| |
| if (FLAG_trace_deopt) { |
| PrintF("[forced deoptimization: "); |
| function->PrintName(); |
| PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function)); |
| #ifdef DEBUG |
| if (FLAG_print_code) { |
| code->PrintLn(); |
| } |
| #endif |
| } |
| } |
| |
| |
| void Deoptimizer::PatchStackCheckCodeAt(Address pc_after, |
| Code* check_code, |
| Code* replacement_code) { |
| Address call_target_address = pc_after - kIntSize; |
| ASSERT(check_code->entry() == |
| Assembler::target_address_at(call_target_address)); |
| // The stack check code matches the pattern: |
| // |
| // cmp esp, <limit> |
| // jae ok |
| // call <stack guard> |
| // test eax, <loop nesting depth> |
| // ok: ... |
| // |
| // We will patch away the branch so the code is: |
| // |
| // cmp esp, <limit> ;; Not changed |
| // nop |
| // nop |
| // call <on-stack replacment> |
| // test eax, <loop nesting depth> |
| // ok: |
| ASSERT(*(call_target_address - 3) == 0x73 && // jae |
| *(call_target_address - 2) == 0x07 && // offset |
| *(call_target_address - 1) == 0xe8); // call |
| *(call_target_address - 3) = 0x90; // nop |
| *(call_target_address - 2) = 0x90; // nop |
| Assembler::set_target_address_at(call_target_address, |
| replacement_code->entry()); |
| } |
| |
| |
| void Deoptimizer::RevertStackCheckCodeAt(Address pc_after, |
| Code* check_code, |
| Code* replacement_code) { |
| Address call_target_address = pc_after - kIntSize; |
| ASSERT(replacement_code->entry() == |
| Assembler::target_address_at(call_target_address)); |
| // Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to |
| // restore the conditional branch. |
| ASSERT(*(call_target_address - 3) == 0x90 && // nop |
| *(call_target_address - 2) == 0x90 && // nop |
| *(call_target_address - 1) == 0xe8); // call |
| *(call_target_address - 3) = 0x73; // jae |
| *(call_target_address - 2) = 0x07; // offset |
| Assembler::set_target_address_at(call_target_address, |
| check_code->entry()); |
| } |
| |
| |
| static int LookupBailoutId(DeoptimizationInputData* data, unsigned ast_id) { |
| ByteArray* translations = data->TranslationByteArray(); |
| int length = data->DeoptCount(); |
| for (int i = 0; i < length; i++) { |
| if (static_cast<unsigned>(data->AstId(i)->value()) == ast_id) { |
| TranslationIterator it(translations, data->TranslationIndex(i)->value()); |
| int value = it.Next(); |
| ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value)); |
| // Read the number of frames. |
| value = it.Next(); |
| if (value == 1) return i; |
| } |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| void Deoptimizer::DoComputeOsrOutputFrame() { |
| DeoptimizationInputData* data = DeoptimizationInputData::cast( |
| optimized_code_->deoptimization_data()); |
| unsigned ast_id = data->OsrAstId()->value(); |
| // TODO(kasperl): This should not be the bailout_id_. It should be |
| // the ast id. Confusing. |
| ASSERT(bailout_id_ == ast_id); |
| |
| int bailout_id = LookupBailoutId(data, ast_id); |
| unsigned translation_index = data->TranslationIndex(bailout_id)->value(); |
| ByteArray* translations = data->TranslationByteArray(); |
| |
| TranslationIterator iterator(translations, translation_index); |
| Translation::Opcode opcode = |
| static_cast<Translation::Opcode>(iterator.Next()); |
| ASSERT(Translation::BEGIN == opcode); |
| USE(opcode); |
| int count = iterator.Next(); |
| ASSERT(count == 1); |
| USE(count); |
| |
| opcode = static_cast<Translation::Opcode>(iterator.Next()); |
| USE(opcode); |
| ASSERT(Translation::FRAME == opcode); |
| unsigned node_id = iterator.Next(); |
| USE(node_id); |
| ASSERT(node_id == ast_id); |
| JSFunction* function = JSFunction::cast(ComputeLiteral(iterator.Next())); |
| USE(function); |
| ASSERT(function == function_); |
| unsigned height = iterator.Next(); |
| unsigned height_in_bytes = height * kPointerSize; |
| USE(height_in_bytes); |
| |
| unsigned fixed_size = ComputeFixedSize(function_); |
| unsigned input_frame_size = input_->GetFrameSize(); |
| ASSERT(fixed_size + height_in_bytes == input_frame_size); |
| |
| unsigned stack_slot_size = optimized_code_->stack_slots() * kPointerSize; |
| unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); |
| unsigned outgoing_size = outgoing_height * kPointerSize; |
| unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; |
| ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. |
| |
| if (FLAG_trace_osr) { |
| PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", |
| reinterpret_cast<intptr_t>(function_)); |
| function_->PrintName(); |
| PrintF(" => node=%u, frame=%d->%d]\n", |
| ast_id, |
| input_frame_size, |
| output_frame_size); |
| } |
| |
| // There's only one output frame in the OSR case. |
| output_count_ = 1; |
| output_ = new FrameDescription*[1]; |
| output_[0] = new(output_frame_size) FrameDescription( |
| output_frame_size, function_); |
| #ifdef DEBUG |
| output_[0]->SetKind(Code::OPTIMIZED_FUNCTION); |
| #endif |
| |
| // Clear the incoming parameters in the optimized frame to avoid |
| // confusing the garbage collector. |
| unsigned output_offset = output_frame_size - kPointerSize; |
| int parameter_count = function_->shared()->formal_parameter_count() + 1; |
| for (int i = 0; i < parameter_count; ++i) { |
| output_[0]->SetFrameSlot(output_offset, 0); |
| output_offset -= kPointerSize; |
| } |
| |
| // Translate the incoming parameters. This may overwrite some of the |
| // incoming argument slots we've just cleared. |
| int input_offset = input_frame_size - kPointerSize; |
| bool ok = true; |
| int limit = input_offset - (parameter_count * kPointerSize); |
| while (ok && input_offset > limit) { |
| ok = DoOsrTranslateCommand(&iterator, &input_offset); |
| } |
| |
| // There are no translation commands for the caller's pc and fp, the |
| // context, and the function. Set them up explicitly. |
| for (int i = StandardFrameConstants::kCallerPCOffset; |
| ok && i >= StandardFrameConstants::kMarkerOffset; |
| i -= kPointerSize) { |
| uint32_t input_value = input_->GetFrameSlot(input_offset); |
| if (FLAG_trace_osr) { |
| const char* name = "UNKNOWN"; |
| switch (i) { |
| case StandardFrameConstants::kCallerPCOffset: |
| name = "caller's pc"; |
| break; |
| case StandardFrameConstants::kCallerFPOffset: |
| name = "fp"; |
| break; |
| case StandardFrameConstants::kContextOffset: |
| name = "context"; |
| break; |
| case StandardFrameConstants::kMarkerOffset: |
| name = "function"; |
| break; |
| } |
| PrintF(" [esp + %d] <- 0x%08x ; [esp + %d] (fixed part - %s)\n", |
| output_offset, |
| input_value, |
| input_offset, |
| name); |
| } |
| output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); |
| input_offset -= kPointerSize; |
| output_offset -= kPointerSize; |
| } |
| |
| // Translate the rest of the frame. |
| while (ok && input_offset >= 0) { |
| ok = DoOsrTranslateCommand(&iterator, &input_offset); |
| } |
| |
| // If translation of any command failed, continue using the input frame. |
| if (!ok) { |
| delete output_[0]; |
| output_[0] = input_; |
| output_[0]->SetPc(reinterpret_cast<uint32_t>(from_)); |
| } else { |
| // Setup the frame pointer and the context pointer. |
| output_[0]->SetRegister(ebp.code(), input_->GetRegister(ebp.code())); |
| output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code())); |
| |
| unsigned pc_offset = data->OsrPcOffset()->value(); |
| uint32_t pc = reinterpret_cast<uint32_t>( |
| optimized_code_->entry() + pc_offset); |
| output_[0]->SetPc(pc); |
| } |
| Code* continuation = |
| function->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR); |
| output_[0]->SetContinuation( |
| reinterpret_cast<uint32_t>(continuation->entry())); |
| |
| if (FLAG_trace_osr) { |
| PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", |
| ok ? "finished" : "aborted", |
| reinterpret_cast<intptr_t>(function)); |
| function->PrintName(); |
| PrintF(" => pc=0x%0x]\n", output_[0]->GetPc()); |
| } |
| } |
| |
| |
| void Deoptimizer::DoComputeFrame(TranslationIterator* iterator, |
| int frame_index) { |
| // Read the ast node id, function, and frame height for this output frame. |
| Translation::Opcode opcode = |
| static_cast<Translation::Opcode>(iterator->Next()); |
| USE(opcode); |
| ASSERT(Translation::FRAME == opcode); |
| int node_id = iterator->Next(); |
| JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); |
| unsigned height = iterator->Next(); |
| unsigned height_in_bytes = height * kPointerSize; |
| if (FLAG_trace_deopt) { |
| PrintF(" translating "); |
| function->PrintName(); |
| PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes); |
| } |
| |
| // The 'fixed' part of the frame consists of the incoming parameters and |
| // the part described by JavaScriptFrameConstants. |
| unsigned fixed_frame_size = ComputeFixedSize(function); |
| unsigned input_frame_size = input_->GetFrameSize(); |
| unsigned output_frame_size = height_in_bytes + fixed_frame_size; |
| |
| // Allocate and store the output frame description. |
| FrameDescription* output_frame = |
| new(output_frame_size) FrameDescription(output_frame_size, function); |
| #ifdef DEBUG |
| output_frame->SetKind(Code::FUNCTION); |
| #endif |
| |
| bool is_bottommost = (0 == frame_index); |
| bool is_topmost = (output_count_ - 1 == frame_index); |
| ASSERT(frame_index >= 0 && frame_index < output_count_); |
| ASSERT(output_[frame_index] == NULL); |
| output_[frame_index] = output_frame; |
| |
| // The top address for the bottommost output frame can be computed from |
| // the input frame pointer and the output frame's height. For all |
| // subsequent output frames, it can be computed from the previous one's |
| // top address and the current frame's size. |
| uint32_t top_address; |
| if (is_bottommost) { |
| // 2 = context and function in the frame. |
| top_address = |
| input_->GetRegister(ebp.code()) - (2 * kPointerSize) - height_in_bytes; |
| } else { |
| top_address = output_[frame_index - 1]->GetTop() - output_frame_size; |
| } |
| output_frame->SetTop(top_address); |
| |
| // Compute the incoming parameter translation. |
| int parameter_count = function->shared()->formal_parameter_count() + 1; |
| unsigned output_offset = output_frame_size; |
| unsigned input_offset = input_frame_size; |
| for (int i = 0; i < parameter_count; ++i) { |
| output_offset -= kPointerSize; |
| DoTranslateCommand(iterator, frame_index, output_offset); |
| } |
| input_offset -= (parameter_count * kPointerSize); |
| |
| // There are no translation commands for the caller's pc and fp, the |
| // context, and the function. Synthesize their values and set them up |
| // explicitly. |
| // |
| // The caller's pc for the bottommost output frame is the same as in the |
| // input frame. For all subsequent output frames, it can be read from the |
| // previous one. This frame's pc can be computed from the non-optimized |
| // function code and AST id of the bailout. |
| output_offset -= kPointerSize; |
| input_offset -= kPointerSize; |
| intptr_t value; |
| if (is_bottommost) { |
| value = input_->GetFrameSlot(input_offset); |
| } else { |
| value = output_[frame_index - 1]->GetPc(); |
| } |
| output_frame->SetFrameSlot(output_offset, value); |
| if (FLAG_trace_deopt) { |
| PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", |
| top_address + output_offset, output_offset, value); |
| } |
| |
| // The caller's frame pointer for the bottommost output frame is the same |
| // as in the input frame. For all subsequent output frames, it can be |
| // read from the previous one. Also compute and set this frame's frame |
| // pointer. |
| output_offset -= kPointerSize; |
| input_offset -= kPointerSize; |
| if (is_bottommost) { |
| value = input_->GetFrameSlot(input_offset); |
| } else { |
| value = output_[frame_index - 1]->GetFp(); |
| } |
| output_frame->SetFrameSlot(output_offset, value); |
| intptr_t fp_value = top_address + output_offset; |
| ASSERT(!is_bottommost || input_->GetRegister(ebp.code()) == fp_value); |
| output_frame->SetFp(fp_value); |
| if (is_topmost) output_frame->SetRegister(ebp.code(), fp_value); |
| if (FLAG_trace_deopt) { |
| PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", |
| fp_value, output_offset, value); |
| } |
| |
| // For the bottommost output frame the context can be gotten from the input |
| // frame. For all subsequent output frames it can be gotten from the function |
| // so long as we don't inline functions that need local contexts. |
| output_offset -= kPointerSize; |
| input_offset -= kPointerSize; |
| if (is_bottommost) { |
| value = input_->GetFrameSlot(input_offset); |
| } else { |
| value = reinterpret_cast<uint32_t>(function->context()); |
| } |
| output_frame->SetFrameSlot(output_offset, value); |
| if (is_topmost) output_frame->SetRegister(esi.code(), value); |
| if (FLAG_trace_deopt) { |
| PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n", |
| top_address + output_offset, output_offset, value); |
| } |
| |
| // The function was mentioned explicitly in the BEGIN_FRAME. |
| output_offset -= kPointerSize; |
| input_offset -= kPointerSize; |
| value = reinterpret_cast<uint32_t>(function); |
| // The function for the bottommost output frame should also agree with the |
| // input frame. |
| ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value); |
| output_frame->SetFrameSlot(output_offset, value); |
| if (FLAG_trace_deopt) { |
| PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n", |
| top_address + output_offset, output_offset, value); |
| } |
| |
| // Translate the rest of the frame. |
| for (unsigned i = 0; i < height; ++i) { |
| output_offset -= kPointerSize; |
| DoTranslateCommand(iterator, frame_index, output_offset); |
| } |
| ASSERT(0 == output_offset); |
| |
| // Compute this frame's PC, state, and continuation. |
| Code* non_optimized_code = function->shared()->code(); |
| FixedArray* raw_data = non_optimized_code->deoptimization_data(); |
| DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); |
| Address start = non_optimized_code->instruction_start(); |
| unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); |
| unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state); |
| uint32_t pc_value = reinterpret_cast<uint32_t>(start + pc_offset); |
| output_frame->SetPc(pc_value); |
| |
| FullCodeGenerator::State state = |
| FullCodeGenerator::StateField::decode(pc_and_state); |
| output_frame->SetState(Smi::FromInt(state)); |
| |
| // Set the continuation for the topmost frame. |
| if (is_topmost && bailout_type_ != DEBUGGER) { |
| Builtins* builtins = isolate_->builtins(); |
| Code* continuation = (bailout_type_ == EAGER) |
| ? builtins->builtin(Builtins::kNotifyDeoptimized) |
| : builtins->builtin(Builtins::kNotifyLazyDeoptimized); |
| output_frame->SetContinuation( |
| reinterpret_cast<uint32_t>(continuation->entry())); |
| } |
| |
| if (output_count_ - 1 == frame_index) iterator->Done(); |
| } |
| |
| |
| void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { |
| // Set the register values. The values are not important as there are no |
| // callee saved registers in JavaScript frames, so all registers are |
| // spilled. Registers ebp and esp are set to the correct values though. |
| |
| for (int i = 0; i < Register::kNumRegisters; i++) { |
| input_->SetRegister(i, i * 4); |
| } |
| input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp())); |
| input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp())); |
| for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) { |
| input_->SetDoubleRegister(i, 0.0); |
| } |
| |
| // Fill the frame content from the actual data on the frame. |
| for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { |
| input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); |
| } |
| } |
| |
| |
| #define __ masm()-> |
| |
| void Deoptimizer::EntryGenerator::Generate() { |
| GeneratePrologue(); |
| CpuFeatures::Scope scope(SSE2); |
| |
| Isolate* isolate = masm()->isolate(); |
| |
| // Save all general purpose registers before messing with them. |
| const int kNumberOfRegisters = Register::kNumRegisters; |
| |
| const int kDoubleRegsSize = kDoubleSize * |
| XMMRegister::kNumAllocatableRegisters; |
| __ sub(Operand(esp), Immediate(kDoubleRegsSize)); |
| for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { |
| XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); |
| int offset = i * kDoubleSize; |
| __ movdbl(Operand(esp, offset), xmm_reg); |
| } |
| |
| __ pushad(); |
| |
| const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + |
| kDoubleRegsSize; |
| |
| // Get the bailout id from the stack. |
| __ mov(ebx, Operand(esp, kSavedRegistersAreaSize)); |
| |
| // Get the address of the location in the code object if possible |
| // and compute the fp-to-sp delta in register edx. |
| if (type() == EAGER) { |
| __ Set(ecx, Immediate(0)); |
| __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); |
| } else { |
| __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); |
| __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize)); |
| } |
| __ sub(edx, Operand(ebp)); |
| __ neg(edx); |
| |
| // Allocate a new deoptimizer object. |
| __ PrepareCallCFunction(6, eax); |
| __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ mov(Operand(esp, 0 * kPointerSize), eax); // Function. |
| __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type. |
| __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id. |
| __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0. |
| __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta. |
| __ mov(Operand(esp, 5 * kPointerSize), |
| Immediate(ExternalReference::isolate_address())); |
| __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6); |
| |
| // Preserve deoptimizer object in register eax and get the input |
| // frame descriptor pointer. |
| __ mov(ebx, Operand(eax, Deoptimizer::input_offset())); |
| |
| // Fill in the input registers. |
| for (int i = kNumberOfRegisters - 1; i >= 0; i--) { |
| int offset = (i * kPointerSize) + FrameDescription::registers_offset(); |
| __ pop(Operand(ebx, offset)); |
| } |
| |
| // Fill in the double input registers. |
| int double_regs_offset = FrameDescription::double_registers_offset(); |
| for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { |
| int dst_offset = i * kDoubleSize + double_regs_offset; |
| int src_offset = i * kDoubleSize; |
| __ movdbl(xmm0, Operand(esp, src_offset)); |
| __ movdbl(Operand(ebx, dst_offset), xmm0); |
| } |
| |
| // Remove the bailout id and the double registers from the stack. |
| if (type() == EAGER) { |
| __ add(Operand(esp), Immediate(kDoubleRegsSize + kPointerSize)); |
| } else { |
| __ add(Operand(esp), Immediate(kDoubleRegsSize + 2 * kPointerSize)); |
| } |
| |
| // Compute a pointer to the unwinding limit in register ecx; that is |
| // the first stack slot not part of the input frame. |
| __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); |
| __ add(ecx, Operand(esp)); |
| |
| // Unwind the stack down to - but not including - the unwinding |
| // limit and copy the contents of the activation frame to the input |
| // frame description. |
| __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset())); |
| Label pop_loop; |
| __ bind(&pop_loop); |
| __ pop(Operand(edx, 0)); |
| __ add(Operand(edx), Immediate(sizeof(uint32_t))); |
| __ cmp(ecx, Operand(esp)); |
| __ j(not_equal, &pop_loop); |
| |
| // Compute the output frame in the deoptimizer. |
| __ push(eax); |
| __ PrepareCallCFunction(1, ebx); |
| __ mov(Operand(esp, 0 * kPointerSize), eax); |
| __ CallCFunction( |
| ExternalReference::compute_output_frames_function(isolate), 1); |
| __ pop(eax); |
| |
| // Replace the current frame with the output frames. |
| Label outer_push_loop, inner_push_loop; |
| // Outer loop state: eax = current FrameDescription**, edx = one past the |
| // last FrameDescription**. |
| __ mov(edx, Operand(eax, Deoptimizer::output_count_offset())); |
| __ mov(eax, Operand(eax, Deoptimizer::output_offset())); |
| __ lea(edx, Operand(eax, edx, times_4, 0)); |
| __ bind(&outer_push_loop); |
| // Inner loop state: ebx = current FrameDescription*, ecx = loop index. |
| __ mov(ebx, Operand(eax, 0)); |
| __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); |
| __ bind(&inner_push_loop); |
| __ sub(Operand(ecx), Immediate(sizeof(uint32_t))); |
| __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset())); |
| __ test(ecx, Operand(ecx)); |
| __ j(not_zero, &inner_push_loop); |
| __ add(Operand(eax), Immediate(kPointerSize)); |
| __ cmp(eax, Operand(edx)); |
| __ j(below, &outer_push_loop); |
| |
| // In case of OSR, we have to restore the XMM registers. |
| if (type() == OSR) { |
| for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { |
| XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); |
| int src_offset = i * kDoubleSize + double_regs_offset; |
| __ movdbl(xmm_reg, Operand(ebx, src_offset)); |
| } |
| } |
| |
| // Push state, pc, and continuation from the last output frame. |
| if (type() != OSR) { |
| __ push(Operand(ebx, FrameDescription::state_offset())); |
| } |
| __ push(Operand(ebx, FrameDescription::pc_offset())); |
| __ push(Operand(ebx, FrameDescription::continuation_offset())); |
| |
| |
| // Push the registers from the last output frame. |
| for (int i = 0; i < kNumberOfRegisters; i++) { |
| int offset = (i * kPointerSize) + FrameDescription::registers_offset(); |
| __ push(Operand(ebx, offset)); |
| } |
| |
| // Restore the registers from the stack. |
| __ popad(); |
| |
| // Return to the continuation point. |
| __ ret(0); |
| } |
| |
| |
| void Deoptimizer::TableEntryGenerator::GeneratePrologue() { |
| // Create a sequence of deoptimization entries. |
| Label done; |
| for (int i = 0; i < count(); i++) { |
| int start = masm()->pc_offset(); |
| USE(start); |
| __ push_imm32(i); |
| __ jmp(&done); |
| ASSERT(masm()->pc_offset() - start == table_entry_size_); |
| } |
| __ bind(&done); |
| } |
| |
| #undef __ |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |