| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "bootstrapper.h" |
| #include "codegen-inl.h" |
| #include "compiler.h" |
| #include "debug.h" |
| #include "parser.h" |
| #include "register-allocator-inl.h" |
| #include "runtime.h" |
| #include "scopes.h" |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan); |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict); |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm); |
| static void MultiplyByKnownInt(MacroAssembler* masm, |
| Register source, |
| Register destination, |
| int known_int); |
| static bool IsEasyToMultiplyBy(int x); |
| |
| |
| |
| // ------------------------------------------------------------------------- |
| // Platform-specific DeferredCode functions. |
| |
| void DeferredCode::SaveRegisters() { |
| for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { |
| int action = registers_[i]; |
| if (action == kPush) { |
| __ push(RegisterAllocator::ToRegister(i)); |
| } else if (action != kIgnore && (action & kSyncedFlag) == 0) { |
| __ str(RegisterAllocator::ToRegister(i), MemOperand(fp, action)); |
| } |
| } |
| } |
| |
| |
| void DeferredCode::RestoreRegisters() { |
| // Restore registers in reverse order due to the stack. |
| for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { |
| int action = registers_[i]; |
| if (action == kPush) { |
| __ pop(RegisterAllocator::ToRegister(i)); |
| } else if (action != kIgnore) { |
| action &= ~kSyncedFlag; |
| __ ldr(RegisterAllocator::ToRegister(i), MemOperand(fp, action)); |
| } |
| } |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenState implementation. |
| |
| CodeGenState::CodeGenState(CodeGenerator* owner) |
| : owner_(owner), |
| true_target_(NULL), |
| false_target_(NULL), |
| previous_(NULL) { |
| owner_->set_state(this); |
| } |
| |
| |
| CodeGenState::CodeGenState(CodeGenerator* owner, |
| JumpTarget* true_target, |
| JumpTarget* false_target) |
| : owner_(owner), |
| true_target_(true_target), |
| false_target_(false_target), |
| previous_(owner->state()) { |
| owner_->set_state(this); |
| } |
| |
| |
| CodeGenState::~CodeGenState() { |
| ASSERT(owner_->state() == this); |
| owner_->set_state(previous_); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator implementation |
| |
| CodeGenerator::CodeGenerator(MacroAssembler* masm) |
| : deferred_(8), |
| masm_(masm), |
| info_(NULL), |
| frame_(NULL), |
| allocator_(NULL), |
| cc_reg_(al), |
| state_(NULL), |
| function_return_is_shadowed_(false) { |
| } |
| |
| |
| Scope* CodeGenerator::scope() { return info_->function()->scope(); } |
| |
| |
| // Calling conventions: |
| // fp: caller's frame pointer |
| // sp: stack pointer |
| // r1: called JS function |
| // cp: callee's context |
| |
| void CodeGenerator::Generate(CompilationInfo* info) { |
| // Record the position for debugging purposes. |
| CodeForFunctionPosition(info->function()); |
| |
| // Initialize state. |
| info_ = info; |
| ASSERT(allocator_ == NULL); |
| RegisterAllocator register_allocator(this); |
| allocator_ = ®ister_allocator; |
| ASSERT(frame_ == NULL); |
| frame_ = new VirtualFrame(); |
| cc_reg_ = al; |
| { |
| CodeGenState state(this); |
| |
| // Entry: |
| // Stack: receiver, arguments |
| // lr: return address |
| // fp: caller's frame pointer |
| // sp: stack pointer |
| // r1: called JS function |
| // cp: callee's context |
| allocator_->Initialize(); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| frame_->SpillAll(); |
| __ stop("stop-at"); |
| } |
| #endif |
| |
| if (info->mode() == CompilationInfo::PRIMARY) { |
| frame_->Enter(); |
| // tos: code slot |
| |
| // Allocate space for locals and initialize them. This also checks |
| // for stack overflow. |
| frame_->AllocateStackSlots(); |
| |
| VirtualFrame::SpilledScope spilled_scope; |
| int heap_slots = scope()->num_heap_slots(); |
| if (heap_slots > 0) { |
| // Allocate local context. |
| // Get outer context and create a new context based on it. |
| __ ldr(r0, frame_->Function()); |
| frame_->EmitPush(r0); |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kNewContext, 1); |
| } |
| |
| #ifdef DEBUG |
| JumpTarget verified_true; |
| __ cmp(r0, Operand(cp)); |
| verified_true.Branch(eq); |
| __ stop("NewContext: r0 is expected to be the same as cp"); |
| verified_true.Bind(); |
| #endif |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| } |
| |
| // TODO(1241774): Improve this code: |
| // 1) only needed if we have a context |
| // 2) no need to recompute context ptr every single time |
| // 3) don't copy parameter operand code from SlotOperand! |
| { |
| Comment cmnt2(masm_, "[ copy context parameters into .context"); |
| // Note that iteration order is relevant here! If we have the same |
| // parameter twice (e.g., function (x, y, x)), and that parameter |
| // needs to be copied into the context, it must be the last argument |
| // passed to the parameter that needs to be copied. This is a rare |
| // case so we don't check for it, instead we rely on the copying |
| // order: such a parameter is copied repeatedly into the same |
| // context location and thus the last value is what is seen inside |
| // the function. |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| Variable* par = scope()->parameter(i); |
| Slot* slot = par->slot(); |
| if (slot != NULL && slot->type() == Slot::CONTEXT) { |
| ASSERT(!scope()->is_global_scope()); // No params in global scope. |
| __ ldr(r1, frame_->ParameterAt(i)); |
| // Loads r2 with context; used below in RecordWrite. |
| __ str(r1, SlotOperand(slot, r2)); |
| // Load the offset into r3. |
| int slot_offset = |
| FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| __ mov(r3, Operand(slot_offset)); |
| __ RecordWrite(r2, r3, r1); |
| } |
| } |
| } |
| |
| // Store the arguments object. This must happen after context |
| // initialization because the arguments object may be stored in the |
| // context. |
| if (scope()->arguments() != NULL) { |
| Comment cmnt(masm_, "[ allocate arguments object"); |
| ASSERT(scope()->arguments_shadow() != NULL); |
| Variable* arguments = scope()->arguments()->var(); |
| Variable* shadow = scope()->arguments_shadow()->var(); |
| ASSERT(arguments != NULL && arguments->slot() != NULL); |
| ASSERT(shadow != NULL && shadow->slot() != NULL); |
| ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
| __ ldr(r2, frame_->Function()); |
| // The receiver is below the arguments, the return address, and the |
| // frame pointer on the stack. |
| const int kReceiverDisplacement = 2 + scope()->num_parameters(); |
| __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| frame_->Adjust(3); |
| __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit()); |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| StoreToSlot(arguments->slot(), NOT_CONST_INIT); |
| StoreToSlot(shadow->slot(), NOT_CONST_INIT); |
| frame_->Drop(); // Value is no longer needed. |
| } |
| |
| // Initialize ThisFunction reference if present. |
| if (scope()->is_function_scope() && scope()->function() != NULL) { |
| __ mov(ip, Operand(Factory::the_hole_value())); |
| frame_->EmitPush(ip); |
| StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT); |
| } |
| } else { |
| // When used as the secondary compiler for splitting, r1, cp, |
| // fp, and lr have been pushed on the stack. Adjust the virtual |
| // frame to match this state. |
| frame_->Adjust(4); |
| allocator_->Unuse(r1); |
| allocator_->Unuse(lr); |
| |
| // Bind all the bailout labels to the beginning of the function. |
| List<CompilationInfo::Bailout*>* bailouts = info->bailouts(); |
| for (int i = 0; i < bailouts->length(); i++) { |
| __ bind(bailouts->at(i)->label()); |
| } |
| } |
| |
| // Initialize the function return target after the locals are set |
| // up, because it needs the expected frame height from the frame. |
| function_return_.set_direction(JumpTarget::BIDIRECTIONAL); |
| function_return_is_shadowed_ = false; |
| |
| // Generate code to 'execute' declarations and initialize functions |
| // (source elements). In case of an illegal redeclaration we need to |
| // handle that instead of processing the declarations. |
| if (scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ illegal redeclarations"); |
| scope()->VisitIllegalRedeclaration(this); |
| } else { |
| Comment cmnt(masm_, "[ declarations"); |
| ProcessDeclarations(scope()->declarations()); |
| // Bail out if a stack-overflow exception occurred when processing |
| // declarations. |
| if (HasStackOverflow()) return; |
| } |
| |
| if (FLAG_trace) { |
| frame_->CallRuntime(Runtime::kTraceEnter, 0); |
| // Ignore the return value. |
| } |
| |
| // Compile the body of the function in a vanilla state. Don't |
| // bother compiling all the code if the scope has an illegal |
| // redeclaration. |
| if (!scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ function body"); |
| #ifdef DEBUG |
| bool is_builtin = Bootstrapper::IsActive(); |
| bool should_trace = |
| is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
| if (should_trace) { |
| frame_->CallRuntime(Runtime::kDebugTrace, 0); |
| // Ignore the return value. |
| } |
| #endif |
| VisitStatementsAndSpill(info->function()->body()); |
| } |
| } |
| |
| // Generate the return sequence if necessary. |
| if (has_valid_frame() || function_return_.is_linked()) { |
| if (!function_return_.is_linked()) { |
| CodeForReturnPosition(info->function()); |
| } |
| // exit |
| // r0: result |
| // sp: stack pointer |
| // fp: frame pointer |
| // cp: callee's context |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| |
| function_return_.Bind(); |
| if (FLAG_trace) { |
| // Push the return value on the stack as the parameter. |
| // Runtime::TraceExit returns the parameter as it is. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kTraceExit, 1); |
| } |
| |
| // Add a label for checking the size of the code used for returning. |
| Label check_exit_codesize; |
| masm_->bind(&check_exit_codesize); |
| |
| // Calculate the exact length of the return sequence and make sure that |
| // the constant pool is not emitted inside of the return sequence. |
| int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; |
| int return_sequence_length = Assembler::kJSReturnSequenceLength; |
| if (!masm_->ImmediateFitsAddrMode1Instruction(sp_delta)) { |
| // Additional mov instruction generated. |
| return_sequence_length++; |
| } |
| masm_->BlockConstPoolFor(return_sequence_length); |
| |
| // Tear down the frame which will restore the caller's frame pointer and |
| // the link register. |
| frame_->Exit(); |
| |
| // Here we use masm_-> instead of the __ macro to avoid the code coverage |
| // tool from instrumenting as we rely on the code size here. |
| masm_->add(sp, sp, Operand(sp_delta)); |
| masm_->Jump(lr); |
| |
| // Check that the size of the code used for returning matches what is |
| // expected by the debugger. The add instruction above is an addressing |
| // mode 1 instruction where there are restrictions on which immediate values |
| // can be encoded in the instruction and which immediate values requires |
| // use of an additional instruction for moving the immediate to a temporary |
| // register. |
| ASSERT_EQ(return_sequence_length, |
| masm_->InstructionsGeneratedSince(&check_exit_codesize)); |
| } |
| |
| // Code generation state must be reset. |
| ASSERT(!has_cc()); |
| ASSERT(state_ == NULL); |
| ASSERT(!function_return_is_shadowed_); |
| function_return_.Unuse(); |
| DeleteFrame(); |
| |
| // Process any deferred code using the register allocator. |
| if (!HasStackOverflow()) { |
| ProcessDeferred(); |
| } |
| |
| allocator_ = NULL; |
| } |
| |
| |
| MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
| // Currently, this assertion will fail if we try to assign to |
| // a constant variable that is constant because it is read-only |
| // (such as the variable referring to a named function expression). |
| // We need to implement assignments to read-only variables. |
| // Ideally, we should do this during AST generation (by converting |
| // such assignments into expression statements); however, in general |
| // we may not be able to make the decision until past AST generation, |
| // that is when the entire program is known. |
| ASSERT(slot != NULL); |
| int index = slot->index(); |
| switch (slot->type()) { |
| case Slot::PARAMETER: |
| return frame_->ParameterAt(index); |
| |
| case Slot::LOCAL: |
| return frame_->LocalAt(index); |
| |
| case Slot::CONTEXT: { |
| // Follow the context chain if necessary. |
| ASSERT(!tmp.is(cp)); // do not overwrite context register |
| Register context = cp; |
| int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
| for (int i = 0; i < chain_length; i++) { |
| // Load the closure. |
| // (All contexts, even 'with' contexts, have a closure, |
| // and it is the same for all contexts inside a function. |
| // There is no need to go to the function context first.) |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| // Load the function context (which is the incoming, outer context). |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // We may have a 'with' context now. Get the function context. |
| // (In fact this mov may never be the needed, since the scope analysis |
| // may not permit a direct context access in this case and thus we are |
| // always at a function context. However it is safe to dereference be- |
| // cause the function context of a function context is itself. Before |
| // deleting this mov we should try to create a counter-example first, |
| // though...) |
| __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, index); |
| } |
| |
| default: |
| UNREACHABLE(); |
| return MemOperand(r0, 0); |
| } |
| } |
| |
| |
| MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( |
| Slot* slot, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow) { |
| ASSERT(slot->type() == Slot::CONTEXT); |
| Register context = cp; |
| |
| for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| } |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| } |
| // Check that last extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, slot->index()); |
| } |
| |
| |
| // Loads a value on TOS. If it is a boolean value, the result may have been |
| // (partially) translated into branches, or it may have set the condition |
| // code register. If force_cc is set, the value is forced to set the |
| // condition code register and no value is pushed. If the condition code |
| // register was set, has_cc() is true and cc_reg_ contains the condition to |
| // test for 'true'. |
| void CodeGenerator::LoadCondition(Expression* x, |
| JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool force_cc) { |
| ASSERT(!has_cc()); |
| int original_height = frame_->height(); |
| |
| { CodeGenState new_state(this, true_target, false_target); |
| Visit(x); |
| |
| // If we hit a stack overflow, we may not have actually visited |
| // the expression. In that case, we ensure that we have a |
| // valid-looking frame state because we will continue to generate |
| // code as we unwind the C++ stack. |
| // |
| // It's possible to have both a stack overflow and a valid frame |
| // state (eg, a subexpression overflowed, visiting it returned |
| // with a dummied frame state, and visiting this expression |
| // returned with a normal-looking state). |
| if (HasStackOverflow() && |
| has_valid_frame() && |
| !has_cc() && |
| frame_->height() == original_height) { |
| true_target->Jump(); |
| } |
| } |
| if (force_cc && frame_ != NULL && !has_cc()) { |
| // Convert the TOS value to a boolean in the condition code register. |
| ToBoolean(true_target, false_target); |
| } |
| ASSERT(!force_cc || !has_valid_frame() || has_cc()); |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::Load(Expression* expr) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| JumpTarget true_target; |
| JumpTarget false_target; |
| LoadCondition(expr, &true_target, &false_target, false); |
| |
| if (has_cc()) { |
| // Convert cc_reg_ into a boolean value. |
| JumpTarget loaded; |
| JumpTarget materialize_true; |
| materialize_true.Branch(cc_reg_); |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex); |
| frame_->EmitPush(r0); |
| loaded.Jump(); |
| materialize_true.Bind(); |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex); |
| frame_->EmitPush(r0); |
| loaded.Bind(); |
| cc_reg_ = al; |
| } |
| |
| if (true_target.is_linked() || false_target.is_linked()) { |
| // We have at least one condition value that has been "translated" |
| // into a branch, thus it needs to be loaded explicitly. |
| JumpTarget loaded; |
| if (frame_ != NULL) { |
| loaded.Jump(); // Don't lose the current TOS. |
| } |
| bool both = true_target.is_linked() && false_target.is_linked(); |
| // Load "true" if necessary. |
| if (true_target.is_linked()) { |
| true_target.Bind(); |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| // If both "true" and "false" need to be loaded jump across the code for |
| // "false". |
| if (both) { |
| loaded.Jump(); |
| } |
| // Load "false" if necessary. |
| if (false_target.is_linked()) { |
| false_target.Bind(); |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| // A value is loaded on all paths reaching this point. |
| loaded.Bind(); |
| } |
| ASSERT(has_valid_frame()); |
| ASSERT(!has_cc()); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::LoadGlobal() { |
| VirtualFrame::SpilledScope spilled_scope; |
| __ ldr(r0, GlobalObject()); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::LoadGlobalReceiver(Register scratch) { |
| VirtualFrame::SpilledScope spilled_scope; |
| __ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ ldr(scratch, |
| FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset)); |
| frame_->EmitPush(scratch); |
| } |
| |
| |
| void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
| // Special handling of identifiers as subexpressions of typeof. |
| VirtualFrame::SpilledScope spilled_scope; |
| Variable* variable = expr->AsVariableProxy()->AsVariable(); |
| if (variable != NULL && !variable->is_this() && variable->is_global()) { |
| // For a global variable we build the property reference |
| // <global>.<variable> and perform a (regular non-contextual) property |
| // load to make sure we do not get reference errors. |
| Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
| Literal key(variable->name()); |
| Property property(&global, &key, RelocInfo::kNoPosition); |
| Reference ref(this, &property); |
| ref.GetValueAndSpill(); |
| } else if (variable != NULL && variable->slot() != NULL) { |
| // For a variable that rewrites to a slot, we signal it is the immediate |
| // subexpression of a typeof. |
| LoadFromSlot(variable->slot(), INSIDE_TYPEOF); |
| frame_->SpillAll(); |
| } else { |
| // Anything else can be handled normally. |
| LoadAndSpill(expr); |
| } |
| } |
| |
| |
| Reference::Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get) |
| : cgen_(cgen), |
| expression_(expression), |
| type_(ILLEGAL), |
| persist_after_get_(persist_after_get) { |
| cgen->LoadReference(this); |
| } |
| |
| |
| Reference::~Reference() { |
| ASSERT(is_unloaded() || is_illegal()); |
| } |
| |
| |
| void CodeGenerator::LoadReference(Reference* ref) { |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ LoadReference"); |
| Expression* e = ref->expression(); |
| Property* property = e->AsProperty(); |
| Variable* var = e->AsVariableProxy()->AsVariable(); |
| |
| if (property != NULL) { |
| // The expression is either a property or a variable proxy that rewrites |
| // to a property. |
| LoadAndSpill(property->obj()); |
| if (property->key()->IsPropertyName()) { |
| ref->set_type(Reference::NAMED); |
| } else { |
| LoadAndSpill(property->key()); |
| ref->set_type(Reference::KEYED); |
| } |
| } else if (var != NULL) { |
| // The expression is a variable proxy that does not rewrite to a |
| // property. Global variables are treated as named property references. |
| if (var->is_global()) { |
| LoadGlobal(); |
| ref->set_type(Reference::NAMED); |
| } else { |
| ASSERT(var->slot() != NULL); |
| ref->set_type(Reference::SLOT); |
| } |
| } else { |
| // Anything else is a runtime error. |
| LoadAndSpill(e); |
| frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
| } |
| } |
| |
| |
| void CodeGenerator::UnloadReference(Reference* ref) { |
| VirtualFrame::SpilledScope spilled_scope; |
| // Pop a reference from the stack while preserving TOS. |
| Comment cmnt(masm_, "[ UnloadReference"); |
| int size = ref->size(); |
| if (size > 0) { |
| frame_->EmitPop(r0); |
| frame_->Drop(size); |
| frame_->EmitPush(r0); |
| } |
| ref->set_unloaded(); |
| } |
| |
| |
| // ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given |
| // register to a boolean in the condition code register. The code |
| // may jump to 'false_target' in case the register converts to 'false'. |
| void CodeGenerator::ToBoolean(JumpTarget* true_target, |
| JumpTarget* false_target) { |
| VirtualFrame::SpilledScope spilled_scope; |
| // Note: The generated code snippet does not change stack variables. |
| // Only the condition code should be set. |
| frame_->EmitPop(r0); |
| |
| // Fast case checks |
| |
| // Check if the value is 'false'. |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r0, ip); |
| false_target->Branch(eq); |
| |
| // Check if the value is 'true'. |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(r0, ip); |
| true_target->Branch(eq); |
| |
| // Check if the value is 'undefined'. |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, ip); |
| false_target->Branch(eq); |
| |
| // Check if the value is a smi. |
| __ cmp(r0, Operand(Smi::FromInt(0))); |
| false_target->Branch(eq); |
| __ tst(r0, Operand(kSmiTagMask)); |
| true_target->Branch(eq); |
| |
| // Slow case: call the runtime. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kToBool, 1); |
| // Convert the result (r0) to a condition code. |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r0, ip); |
| |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenericBinaryOperation(Token::Value op, |
| OverwriteMode overwrite_mode, |
| int constant_rhs) { |
| VirtualFrame::SpilledScope spilled_scope; |
| // sp[0] : y |
| // sp[1] : x |
| // result : r0 |
| |
| // Stub is entered with a call: 'return address' is in lr. |
| switch (op) { |
| case Token::ADD: // fall through. |
| case Token::SUB: // fall through. |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| frame_->EmitPop(r0); // r0 : y |
| frame_->EmitPop(r1); // r1 : x |
| GenericBinaryOpStub stub(op, overwrite_mode, constant_rhs); |
| frame_->CallStub(&stub, 0); |
| break; |
| } |
| |
| case Token::COMMA: |
| frame_->EmitPop(r0); |
| // simply discard left value |
| frame_->Drop(); |
| break; |
| |
| default: |
| // Other cases should have been handled before this point. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| class DeferredInlineSmiOperation: public DeferredCode { |
| public: |
| DeferredInlineSmiOperation(Token::Value op, |
| int value, |
| bool reversed, |
| OverwriteMode overwrite_mode) |
| : op_(op), |
| value_(value), |
| reversed_(reversed), |
| overwrite_mode_(overwrite_mode) { |
| set_comment("[ DeferredInlinedSmiOperation"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Token::Value op_; |
| int value_; |
| bool reversed_; |
| OverwriteMode overwrite_mode_; |
| }; |
| |
| |
| void DeferredInlineSmiOperation::Generate() { |
| switch (op_) { |
| case Token::ADD: { |
| // Revert optimistic add. |
| if (reversed_) { |
| __ sub(r0, r0, Operand(Smi::FromInt(value_))); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ sub(r1, r0, Operand(Smi::FromInt(value_))); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| case Token::SUB: { |
| // Revert optimistic sub. |
| if (reversed_) { |
| __ rsb(r0, r0, Operand(Smi::FromInt(value_))); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ add(r1, r0, Operand(Smi::FromInt(value_))); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| // For these operations there is no optimistic operation that needs to be |
| // reverted. |
| case Token::MUL: |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: { |
| if (reversed_) { |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ mov(r1, Operand(r0)); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| if (!reversed_) { |
| __ mov(r1, Operand(r0)); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } else { |
| UNREACHABLE(); // Should have been handled in SmiOperation. |
| } |
| break; |
| } |
| |
| default: |
| // Other cases should have been handled before this point. |
| UNREACHABLE(); |
| break; |
| } |
| |
| GenericBinaryOpStub stub(op_, overwrite_mode_, value_); |
| __ CallStub(&stub); |
| } |
| |
| |
| static bool PopCountLessThanEqual2(unsigned int x) { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| |
| // Returns the index of the lowest bit set. |
| static int BitPosition(unsigned x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| |
| void CodeGenerator::SmiOperation(Token::Value op, |
| Handle<Object> value, |
| bool reversed, |
| OverwriteMode mode) { |
| VirtualFrame::SpilledScope spilled_scope; |
| // NOTE: This is an attempt to inline (a bit) more of the code for |
| // some possible smi operations (like + and -) when (at least) one |
| // of the operands is a literal smi. With this optimization, the |
| // performance of the system is increased by ~15%, and the generated |
| // code size is increased by ~1% (measured on a combination of |
| // different benchmarks). |
| |
| // sp[0] : operand |
| |
| int int_value = Smi::cast(*value)->value(); |
| |
| JumpTarget exit; |
| frame_->EmitPop(r0); |
| |
| bool something_to_inline = true; |
| switch (op) { |
| case Token::ADD: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode); |
| |
| __ add(r0, r0, Operand(value), SetCC); |
| deferred->Branch(vs); |
| __ tst(r0, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| deferred->BindExit(); |
| break; |
| } |
| |
| case Token::SUB: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode); |
| |
| if (reversed) { |
| __ rsb(r0, r0, Operand(value), SetCC); |
| } else { |
| __ sub(r0, r0, Operand(value), SetCC); |
| } |
| deferred->Branch(vs); |
| __ tst(r0, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| deferred->BindExit(); |
| break; |
| } |
| |
| |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode); |
| __ tst(r0, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| switch (op) { |
| case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break; |
| case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break; |
| case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break; |
| default: UNREACHABLE(); |
| } |
| deferred->BindExit(); |
| break; |
| } |
| |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| if (reversed) { |
| something_to_inline = false; |
| break; |
| } |
| int shift_value = int_value & 0x1f; // least significant 5 bits |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, shift_value, false, mode); |
| __ tst(r0, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags |
| switch (op) { |
| case Token::SHL: { |
| if (shift_value != 0) { |
| __ mov(r2, Operand(r2, LSL, shift_value)); |
| } |
| // check that the *unsigned* result fits in a smi |
| __ add(r3, r2, Operand(0x40000000), SetCC); |
| deferred->Branch(mi); |
| break; |
| } |
| case Token::SHR: { |
| // LSR by immediate 0 means shifting 32 bits. |
| if (shift_value != 0) { |
| __ mov(r2, Operand(r2, LSR, shift_value)); |
| } |
| // check that the *unsigned* result fits in a smi |
| // neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging |
| // - 0x40000000: this number would convert to negative when |
| // smi tagging these two cases can only happen with shifts |
| // by 0 or 1 when handed a valid smi |
| __ and_(r3, r2, Operand(0xc0000000), SetCC); |
| deferred->Branch(ne); |
| break; |
| } |
| case Token::SAR: { |
| if (shift_value != 0) { |
| // ASR by immediate 0 means shifting 32 bits. |
| __ mov(r2, Operand(r2, ASR, shift_value)); |
| } |
| break; |
| } |
| default: UNREACHABLE(); |
| } |
| __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| deferred->BindExit(); |
| break; |
| } |
| |
| case Token::MOD: { |
| if (reversed || int_value < 2 || !IsPowerOf2(int_value)) { |
| something_to_inline = false; |
| break; |
| } |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode); |
| unsigned mask = (0x80000000u | kSmiTagMask); |
| __ tst(r0, Operand(mask)); |
| deferred->Branch(ne); // Go to deferred code on non-Smis and negative. |
| mask = (int_value << kSmiTagSize) - 1; |
| __ and_(r0, r0, Operand(mask)); |
| deferred->BindExit(); |
| break; |
| } |
| |
| case Token::MUL: { |
| if (!IsEasyToMultiplyBy(int_value)) { |
| something_to_inline = false; |
| break; |
| } |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode); |
| unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value; |
| max_smi_that_wont_overflow <<= kSmiTagSize; |
| unsigned mask = 0x80000000u; |
| while ((mask & max_smi_that_wont_overflow) == 0) { |
| mask |= mask >> 1; |
| } |
| mask |= kSmiTagMask; |
| // This does a single mask that checks for a too high value in a |
| // conservative way and for a non-Smi. It also filters out negative |
| // numbers, unfortunately, but since this code is inline we prefer |
| // brevity to comprehensiveness. |
| __ tst(r0, Operand(mask)); |
| deferred->Branch(ne); |
| MultiplyByKnownInt(masm_, r0, r0, int_value); |
| deferred->BindExit(); |
| break; |
| } |
| |
| default: |
| something_to_inline = false; |
| break; |
| } |
| |
| if (!something_to_inline) { |
| if (!reversed) { |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(value)); |
| frame_->EmitPush(r0); |
| GenericBinaryOperation(op, mode, int_value); |
| } else { |
| __ mov(ip, Operand(value)); |
| frame_->EmitPush(ip); |
| frame_->EmitPush(r0); |
| GenericBinaryOperation(op, mode, kUnknownIntValue); |
| } |
| } |
| |
| exit.Bind(); |
| } |
| |
| |
| void CodeGenerator::Comparison(Condition cc, |
| Expression* left, |
| Expression* right, |
| bool strict) { |
| if (left != NULL) LoadAndSpill(left); |
| if (right != NULL) LoadAndSpill(right); |
| |
| VirtualFrame::SpilledScope spilled_scope; |
| // sp[0] : y |
| // sp[1] : x |
| // result : cc register |
| |
| // Strict only makes sense for equality comparisons. |
| ASSERT(!strict || cc == eq); |
| |
| JumpTarget exit; |
| JumpTarget smi; |
| // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
| if (cc == gt || cc == le) { |
| cc = ReverseCondition(cc); |
| frame_->EmitPop(r1); |
| frame_->EmitPop(r0); |
| } else { |
| frame_->EmitPop(r0); |
| frame_->EmitPop(r1); |
| } |
| __ orr(r2, r0, Operand(r1)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| smi.Branch(eq); |
| |
| // Perform non-smi comparison by stub. |
| // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0. |
| // We call with 0 args because there are 0 on the stack. |
| CompareStub stub(cc, strict); |
| frame_->CallStub(&stub, 0); |
| __ cmp(r0, Operand(0)); |
| exit.Jump(); |
| |
| // Do smi comparisons by pointer comparison. |
| smi.Bind(); |
| __ cmp(r1, Operand(r0)); |
| |
| exit.Bind(); |
| cc_reg_ = cc; |
| } |
| |
| |
| // Call the function on the stack with the given arguments. |
| void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
| CallFunctionFlags flags, |
| int position) { |
| VirtualFrame::SpilledScope spilled_scope; |
| // Push the arguments ("left-to-right") on the stack. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| LoadAndSpill(args->at(i)); |
| } |
| |
| // Record the position for debugging purposes. |
| CodeForSourcePosition(position); |
| |
| // Use the shared code stub to call the function. |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, flags); |
| frame_->CallStub(&call_function, arg_count + 1); |
| |
| // Restore context and pop function from the stack. |
| __ ldr(cp, frame_->Context()); |
| frame_->Drop(); // discard the TOS |
| } |
| |
| |
| void CodeGenerator::Branch(bool if_true, JumpTarget* target) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(has_cc()); |
| Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_); |
| target->Branch(cc); |
| cc_reg_ = al; |
| } |
| |
| |
| void CodeGenerator::CheckStack() { |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ check stack"); |
| __ LoadRoot(ip, Heap::kStackLimitRootIndex); |
| // Put the lr setup instruction in the delay slot. kInstrSize is added to |
| // the implicit 8 byte offset that always applies to operations with pc and |
| // gives a return address 12 bytes down. |
| masm_->add(lr, pc, Operand(Assembler::kInstrSize)); |
| masm_->cmp(sp, Operand(ip)); |
| StackCheckStub stub; |
| // Call the stub if lower. |
| masm_->mov(pc, |
| Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), |
| RelocInfo::CODE_TARGET), |
| LeaveCC, |
| lo); |
| } |
| |
| |
| void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| for (int i = 0; frame_ != NULL && i < statements->length(); i++) { |
| VisitAndSpill(statements->at(i)); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitBlock(Block* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Block"); |
| CodeForStatementPosition(node); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| VisitStatementsAndSpill(node->statements()); |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
| VirtualFrame::SpilledScope spilled_scope; |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(pairs)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0))); |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
| // The result is discarded. |
| } |
| |
| |
| void CodeGenerator::VisitDeclaration(Declaration* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Declaration"); |
| Variable* var = node->proxy()->var(); |
| ASSERT(var != NULL); // must have been resolved |
| Slot* slot = var->slot(); |
| |
| // If it was not possible to allocate the variable at compile time, |
| // we need to "declare" it at runtime to make sure it actually |
| // exists in the local context. |
| if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // Variables with a "LOOKUP" slot were introduced as non-locals |
| // during variable resolution and must have mode DYNAMIC. |
| ASSERT(var->is_dynamic()); |
| // For now, just do a runtime call. |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(var->name())); |
| frame_->EmitPush(r0); |
| // Declaration nodes are always declared in only two modes. |
| ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
| PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
| __ mov(r0, Operand(Smi::FromInt(attr))); |
| frame_->EmitPush(r0); |
| // Push initial value, if any. |
| // Note: For variables we must not push an initial value (such as |
| // 'undefined') because we may have a (legal) redeclaration and we |
| // must not destroy the current value. |
| if (node->mode() == Variable::CONST) { |
| __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); |
| frame_->EmitPush(r0); |
| } else if (node->fun() != NULL) { |
| LoadAndSpill(node->fun()); |
| } else { |
| __ mov(r0, Operand(0)); // no initial value! |
| frame_->EmitPush(r0); |
| } |
| frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
| // Ignore the return value (declarations are statements). |
| ASSERT(frame_->height() == original_height); |
| return; |
| } |
| |
| ASSERT(!var->is_global()); |
| |
| // If we have a function or a constant, we need to initialize the variable. |
| Expression* val = NULL; |
| if (node->mode() == Variable::CONST) { |
| val = new Literal(Factory::the_hole_value()); |
| } else { |
| val = node->fun(); // NULL if we don't have a function |
| } |
| |
| if (val != NULL) { |
| { |
| // Set initial value. |
| Reference target(this, node->proxy()); |
| LoadAndSpill(val); |
| target.SetValue(NOT_CONST_INIT); |
| } |
| // Get rid of the assigned value (declarations are statements). |
| frame_->Drop(); |
| } |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ExpressionStatement"); |
| CodeForStatementPosition(node); |
| Expression* expression = node->expression(); |
| expression->MarkAsStatement(); |
| LoadAndSpill(expression); |
| frame_->Drop(); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "// EmptyStatement"); |
| CodeForStatementPosition(node); |
| // nothing to do |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitIfStatement(IfStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ IfStatement"); |
| // Generate different code depending on which parts of the if statement |
| // are present or not. |
| bool has_then_stm = node->HasThenStatement(); |
| bool has_else_stm = node->HasElseStatement(); |
| |
| CodeForStatementPosition(node); |
| |
| JumpTarget exit; |
| if (has_then_stm && has_else_stm) { |
| Comment cmnt(masm_, "[ IfThenElse"); |
| JumpTarget then; |
| JumpTarget else_; |
| // if (cond) |
| LoadConditionAndSpill(node->condition(), &then, &else_, true); |
| if (frame_ != NULL) { |
| Branch(false, &else_); |
| } |
| // then |
| if (frame_ != NULL || then.is_linked()) { |
| then.Bind(); |
| VisitAndSpill(node->then_statement()); |
| } |
| if (frame_ != NULL) { |
| exit.Jump(); |
| } |
| // else |
| if (else_.is_linked()) { |
| else_.Bind(); |
| VisitAndSpill(node->else_statement()); |
| } |
| |
| } else if (has_then_stm) { |
| Comment cmnt(masm_, "[ IfThen"); |
| ASSERT(!has_else_stm); |
| JumpTarget then; |
| // if (cond) |
| LoadConditionAndSpill(node->condition(), &then, &exit, true); |
| if (frame_ != NULL) { |
| Branch(false, &exit); |
| } |
| // then |
| if (frame_ != NULL || then.is_linked()) { |
| then.Bind(); |
| VisitAndSpill(node->then_statement()); |
| } |
| |
| } else if (has_else_stm) { |
| Comment cmnt(masm_, "[ IfElse"); |
| ASSERT(!has_then_stm); |
| JumpTarget else_; |
| // if (!cond) |
| LoadConditionAndSpill(node->condition(), &exit, &else_, true); |
| if (frame_ != NULL) { |
| Branch(true, &exit); |
| } |
| // else |
| if (frame_ != NULL || else_.is_linked()) { |
| else_.Bind(); |
| VisitAndSpill(node->else_statement()); |
| } |
| |
| } else { |
| Comment cmnt(masm_, "[ If"); |
| ASSERT(!has_then_stm && !has_else_stm); |
| // if (cond) |
| LoadConditionAndSpill(node->condition(), &exit, &exit, false); |
| if (frame_ != NULL) { |
| if (has_cc()) { |
| cc_reg_ = al; |
| } else { |
| frame_->Drop(); |
| } |
| } |
| } |
| |
| // end |
| if (exit.is_linked()) { |
| exit.Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ContinueStatement"); |
| CodeForStatementPosition(node); |
| node->target()->continue_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ BreakStatement"); |
| CodeForStatementPosition(node); |
| node->target()->break_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ReturnStatement"); |
| |
| CodeForStatementPosition(node); |
| LoadAndSpill(node->expression()); |
| if (function_return_is_shadowed_) { |
| frame_->EmitPop(r0); |
| function_return_.Jump(); |
| } else { |
| // Pop the result from the frame and prepare the frame for |
| // returning thus making it easier to merge. |
| frame_->EmitPop(r0); |
| frame_->PrepareForReturn(); |
| |
| function_return_.Jump(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ WithEnterStatement"); |
| CodeForStatementPosition(node); |
| LoadAndSpill(node->expression()); |
| if (node->is_catch_block()) { |
| frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kPushContext, 1); |
| } |
| #ifdef DEBUG |
| JumpTarget verified_true; |
| __ cmp(r0, Operand(cp)); |
| verified_true.Branch(eq); |
| __ stop("PushContext: r0 is expected to be the same as cp"); |
| verified_true.Bind(); |
| #endif |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ WithExitStatement"); |
| CodeForStatementPosition(node); |
| // Pop context. |
| __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ SwitchStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| |
| LoadAndSpill(node->tag()); |
| |
| JumpTarget next_test; |
| JumpTarget fall_through; |
| JumpTarget default_entry; |
| JumpTarget default_exit(JumpTarget::BIDIRECTIONAL); |
| ZoneList<CaseClause*>* cases = node->cases(); |
| int length = cases->length(); |
| CaseClause* default_clause = NULL; |
| |
| for (int i = 0; i < length; i++) { |
| CaseClause* clause = cases->at(i); |
| if (clause->is_default()) { |
| // Remember the default clause and compile it at the end. |
| default_clause = clause; |
| continue; |
| } |
| |
| Comment cmnt(masm_, "[ Case clause"); |
| // Compile the test. |
| next_test.Bind(); |
| next_test.Unuse(); |
| // Duplicate TOS. |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| Comparison(eq, NULL, clause->label(), true); |
| Branch(false, &next_test); |
| |
| // Before entering the body from the test, remove the switch value from |
| // the stack. |
| frame_->Drop(); |
| |
| // Label the body so that fall through is enabled. |
| if (i > 0 && cases->at(i - 1)->is_default()) { |
| default_exit.Bind(); |
| } else { |
| fall_through.Bind(); |
| fall_through.Unuse(); |
| } |
| VisitStatementsAndSpill(clause->statements()); |
| |
| // If control flow can fall through from the body, jump to the next body |
| // or the end of the statement. |
| if (frame_ != NULL) { |
| if (i < length - 1 && cases->at(i + 1)->is_default()) { |
| default_entry.Jump(); |
| } else { |
| fall_through.Jump(); |
| } |
| } |
| } |
| |
| // The final "test" removes the switch value. |
| next_test.Bind(); |
| frame_->Drop(); |
| |
| // If there is a default clause, compile it. |
| if (default_clause != NULL) { |
| Comment cmnt(masm_, "[ Default clause"); |
| default_entry.Bind(); |
| VisitStatementsAndSpill(default_clause->statements()); |
| // If control flow can fall out of the default and there is a case after |
| // it, jup to that case's body. |
| if (frame_ != NULL && default_exit.is_bound()) { |
| default_exit.Jump(); |
| } |
| } |
| |
| if (fall_through.is_linked()) { |
| fall_through.Bind(); |
| } |
| |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ DoWhileStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| JumpTarget body(JumpTarget::BIDIRECTIONAL); |
| |
| // Label the top of the loop for the backward CFG edge. If the test |
| // is always true we can use the continue target, and if the test is |
| // always false there is no need. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| switch (info) { |
| case ALWAYS_TRUE: |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| break; |
| case ALWAYS_FALSE: |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| break; |
| case DONT_KNOW: |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| body.Bind(); |
| break; |
| } |
| |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| VisitAndSpill(node->body()); |
| |
| // Compile the test. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // If control can fall off the end of the body, jump back to the |
| // top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| break; |
| case ALWAYS_FALSE: |
| // If we have a continue in the body, we only have to bind its |
| // jump target. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| break; |
| case DONT_KNOW: |
| // We have to compile the test expression if it can be reached by |
| // control flow falling out of the body or via continue. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| Comment cmnt(masm_, "[ DoWhileCondition"); |
| CodeForDoWhileConditionPosition(node); |
| LoadConditionAndSpill(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| // A invalid frame here indicates that control did not |
| // fall out of the test expression. |
| Branch(true, &body); |
| } |
| } |
| break; |
| } |
| |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitWhileStatement(WhileStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ WhileStatement"); |
| CodeForStatementPosition(node); |
| |
| // If the test is never true and has no side effects there is no need |
| // to compile the test or body. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| |
| // Label the top of the loop with the continue target for the backward |
| // CFG edge. |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| |
| if (info == DONT_KNOW) { |
| JumpTarget body; |
| LoadConditionAndSpill(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| // A NULL frame indicates that control did not fall out of the |
| // test expression. |
| Branch(false, node->break_target()); |
| } |
| if (has_valid_frame() || body.is_linked()) { |
| body.Bind(); |
| } |
| } |
| |
| if (has_valid_frame()) { |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| VisitAndSpill(node->body()); |
| |
| // If control flow can fall out of the body, jump back to the top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitForStatement(ForStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ForStatement"); |
| CodeForStatementPosition(node); |
| if (node->init() != NULL) { |
| VisitAndSpill(node->init()); |
| } |
| |
| // If the test is never true there is no need to compile the test or |
| // body. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| |
| // If there is no update statement, label the top of the loop with the |
| // continue target, otherwise with the loop target. |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| if (node->next() == NULL) { |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| } else { |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| loop.Bind(); |
| } |
| |
| // If the test is always true, there is no need to compile it. |
| if (info == DONT_KNOW) { |
| JumpTarget body; |
| LoadConditionAndSpill(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| Branch(false, node->break_target()); |
| } |
| if (has_valid_frame() || body.is_linked()) { |
| body.Bind(); |
| } |
| } |
| |
| if (has_valid_frame()) { |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| VisitAndSpill(node->body()); |
| |
| if (node->next() == NULL) { |
| // If there is no update statement and control flow can fall out |
| // of the loop, jump directly to the continue label. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } else { |
| // If there is an update statement and control flow can reach it |
| // via falling out of the body of the loop or continuing, we |
| // compile the update statement. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| // Record source position of the statement as this code which is |
| // after the code for the body actually belongs to the loop |
| // statement and not the body. |
| CodeForStatementPosition(node); |
| VisitAndSpill(node->next()); |
| loop.Jump(); |
| } |
| } |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ForInStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget primitive; |
| JumpTarget jsobject; |
| JumpTarget fixed_array; |
| JumpTarget entry(JumpTarget::BIDIRECTIONAL); |
| JumpTarget end_del_check; |
| JumpTarget exit; |
| |
| // Get the object to enumerate over (converted to JSObject). |
| LoadAndSpill(node->enumerable()); |
| |
| // Both SpiderMonkey and kjs ignore null and undefined in contrast |
| // to the specification. 12.6.4 mandates a call to ToObject. |
| frame_->EmitPop(r0); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(eq); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(eq); |
| |
| // Stack layout in body: |
| // [iteration counter (Smi)] |
| // [length of array] |
| // [FixedArray] |
| // [Map or 0] |
| // [Object] |
| |
| // Check if enumerable is already a JSObject |
| __ tst(r0, Operand(kSmiTagMask)); |
| primitive.Branch(eq); |
| __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); |
| jsobject.Branch(hs); |
| |
| primitive.Bind(); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1); |
| |
| jsobject.Bind(); |
| // Get the set of properties (as a FixedArray or Map). |
| // r0: value to be iterated over |
| frame_->EmitPush(r0); // Push the object being iterated over. |
| |
| // Check cache validity in generated code. This is a fast case for |
| // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
| // guarantee cache validity, call the runtime system to check cache |
| // validity or get the property names in a fixed array. |
| JumpTarget call_runtime; |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| JumpTarget check_prototype; |
| JumpTarget use_cache; |
| __ mov(r1, Operand(r0)); |
| loop.Bind(); |
| // Check that there are no elements. |
| __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex); |
| __ cmp(r2, r4); |
| call_runtime.Branch(ne); |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in r3 for the subsequent |
| // prototype load. |
| __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset)); |
| __ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex); |
| __ cmp(r2, ip); |
| call_runtime.Branch(eq); |
| // Check that there in an enum cache in the non-empty instance |
| // descriptors. This is the case if the next enumeration index |
| // field does not contain a smi. |
| __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| call_runtime.Branch(eq); |
| // For all objects but the receiver, check that the cache is empty. |
| // r4: empty fixed array root. |
| __ cmp(r1, r0); |
| check_prototype.Branch(eq); |
| __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| __ cmp(r2, r4); |
| call_runtime.Branch(ne); |
| check_prototype.Bind(); |
| // Load the prototype from the map and loop if non-null. |
| __ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r1, ip); |
| loop.Branch(ne); |
| // The enum cache is valid. Load the map of the object being |
| // iterated over and use the cache for the iteration. |
| __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| use_cache.Jump(); |
| |
| call_runtime.Bind(); |
| // Call the runtime to get the property names for the object. |
| frame_->EmitPush(r0); // push the object (slot 4) for the runtime call |
| frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
| |
| // If we got a map from the runtime call, we can do a fast |
| // modification check. Otherwise, we got a fixed array, and we have |
| // to do a slow check. |
| // r0: map or fixed array (result from call to |
| // Runtime::kGetPropertyNamesFast) |
| __ mov(r2, Operand(r0)); |
| __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kMetaMapRootIndex); |
| __ cmp(r1, ip); |
| fixed_array.Branch(ne); |
| |
| use_cache.Bind(); |
| // Get enum cache |
| // r0: map (either the result from a call to |
| // Runtime::kGetPropertyNamesFast or has been fetched directly from |
| // the object) |
| __ mov(r1, Operand(r0)); |
| __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); |
| __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); |
| __ ldr(r2, |
| FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| |
| frame_->EmitPush(r0); // map |
| frame_->EmitPush(r2); // enum cache bridge cache |
| __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| entry.Jump(); |
| |
| fixed_array.Bind(); |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r1); // insert 0 in place of Map |
| frame_->EmitPush(r0); |
| |
| // Push the length of the array and the initial index onto the stack. |
| __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(0))); // init index |
| frame_->EmitPush(r0); |
| |
| // Condition. |
| entry.Bind(); |
| // sp[0] : index |
| // sp[1] : array/enum cache length |
| // sp[2] : array or enum cache |
| // sp[3] : 0 or map |
| // sp[4] : enumerable |
| // Grab the current frame's height for the break and continue |
| // targets only after all the state is pushed on the frame. |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| |
| __ ldr(r0, frame_->ElementAt(0)); // load the current count |
| __ ldr(r1, frame_->ElementAt(1)); // load the length |
| __ cmp(r0, Operand(r1)); // compare to the array length |
| node->break_target()->Branch(hs); |
| |
| __ ldr(r0, frame_->ElementAt(0)); |
| |
| // Get the i'th entry of the array. |
| __ ldr(r2, frame_->ElementAt(2)); |
| __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Get Map or 0. |
| __ ldr(r2, frame_->ElementAt(3)); |
| // Check if this (still) matches the map of the enumerable. |
| // If not, we have to filter the key. |
| __ ldr(r1, frame_->ElementAt(4)); |
| __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ cmp(r1, Operand(r2)); |
| end_del_check.Branch(eq); |
| |
| // Convert the entry to a string (or null if it isn't a property anymore). |
| __ ldr(r0, frame_->ElementAt(4)); // push enumerable |
| frame_->EmitPush(r0); |
| frame_->EmitPush(r3); // push entry |
| frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2); |
| __ mov(r3, Operand(r0)); |
| |
| // If the property has been removed while iterating, we just skip it. |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r3, ip); |
| node->continue_target()->Branch(eq); |
| |
| end_del_check.Bind(); |
| // Store the entry in the 'each' expression and take another spin in the |
| // loop. r3: i'th entry of the enum cache (or string there of) |
| frame_->EmitPush(r3); // push entry |
| { Reference each(this, node->each()); |
| if (!each.is_illegal()) { |
| if (each.size() > 0) { |
| __ ldr(r0, frame_->ElementAt(each.size())); |
| frame_->EmitPush(r0); |
| each.SetValue(NOT_CONST_INIT); |
| frame_->Drop(2); |
| } else { |
| // If the reference was to a slot we rely on the convenient property |
| // that it doesn't matter whether a value (eg, r3 pushed above) is |
| // right on top of or right underneath a zero-sized reference. |
| each.SetValue(NOT_CONST_INIT); |
| frame_->Drop(); |
| } |
| } |
| } |
| // Body. |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| VisitAndSpill(node->body()); |
| |
| // Next. Reestablish a spilled frame in case we are coming here via |
| // a continue in the body. |
| node->continue_target()->Bind(); |
| frame_->SpillAll(); |
| frame_->EmitPop(r0); |
| __ add(r0, r0, Operand(Smi::FromInt(1))); |
| frame_->EmitPush(r0); |
| entry.Jump(); |
| |
| // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
| // any frame. |
| node->break_target()->Bind(); |
| frame_->Drop(5); |
| |
| // Exit. |
| exit.Bind(); |
| node->continue_target()->Unuse(); |
| node->break_target()->Unuse(); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ TryCatchStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget try_block; |
| JumpTarget exit; |
| |
| try_block.Call(); |
| // --- Catch block --- |
| frame_->EmitPush(r0); |
| |
| // Store the caught exception in the catch variable. |
| Variable* catch_var = node->catch_var()->var(); |
| ASSERT(catch_var != NULL && catch_var->slot() != NULL); |
| StoreToSlot(catch_var->slot(), NOT_CONST_INIT); |
| |
| // Remove the exception from the stack. |
| frame_->Drop(); |
| |
| VisitStatementsAndSpill(node->catch_block()->statements()); |
| if (frame_ != NULL) { |
| exit.Jump(); |
| } |
| |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_CATCH_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the labels for all escapes from the try block, including |
| // returns. During shadowing, the original label is hidden as the |
| // LabelShadow and operations on the original actually affect the |
| // shadowing label. |
| // |
| // We should probably try to unify the escaping labels and the return |
| // label. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| VisitStatementsAndSpill(node->try_block()->statements()); |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original labels are unshadowed and the |
| // LabelShadows represent the formerly shadowing labels. |
| bool has_unlinks = false; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| has_unlinks = has_unlinks || shadows[i]->is_linked(); |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from try chain. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. Unlink from |
| // the handler list and drop the rest of this handler from the |
| // frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ mov(r3, Operand(handler_address)); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| if (has_unlinks) { |
| exit.Jump(); |
| } |
| } |
| |
| // Generate unlink code for the (formerly) shadowing labels that have been |
| // jumped to. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // Unlink from try chain; |
| shadows[i]->Bind(); |
| // Because we can be jumping here (to spilled code) from unspilled |
| // code, we need to reestablish a spilled frame at this block. |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that we |
| // break from (eg, for...in) may have left stuff on the stack. |
| __ mov(r3, Operand(handler_address)); |
| __ ldr(sp, MemOperand(r3)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
| frame_->PrepareForReturn(); |
| } |
| shadows[i]->other_target()->Jump(); |
| } |
| } |
| |
| exit.Bind(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ TryFinallyStatement"); |
| CodeForStatementPosition(node); |
| |
| // State: Used to keep track of reason for entering the finally |
| // block. Should probably be extended to hold information for |
| // break/continue from within the try block. |
| enum { FALLING, THROWING, JUMPING }; |
| |
| JumpTarget try_block; |
| JumpTarget finally_block; |
| |
| try_block.Call(); |
| |
| frame_->EmitPush(r0); // save exception object on the stack |
| // In case of thrown exceptions, this is where we continue. |
| __ mov(r2, Operand(Smi::FromInt(THROWING))); |
| finally_block.Jump(); |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the labels for all escapes from the try block, including |
| // returns. Shadowing hides the original label as the LabelShadow and |
| // operations on the original actually affect the shadowing label. |
| // |
| // We should probably try to unify the escaping labels and the return |
| // label. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| VisitStatementsAndSpill(node->try_block()->statements()); |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original labels are unshadowed and the |
| // LabelShadows represent the formerly shadowing labels. |
| int nof_unlinks = 0; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| if (shadows[i]->is_linked()) nof_unlinks++; |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from the try |
| // chain and set the state on the frame to FALLING. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ mov(r3, Operand(handler_address)); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| // Fake a top of stack value (unneeded when FALLING) and set the |
| // state in r2, then jump around the unlink blocks if any. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| __ mov(r2, Operand(Smi::FromInt(FALLING))); |
| if (nof_unlinks > 0) { |
| finally_block.Jump(); |
| } |
| } |
| |
| // Generate code to unlink and set the state for the (formerly) |
| // shadowing targets that have been jumped to. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // If we have come from the shadowed return, the return value is |
| // in (a non-refcounted reference to) r0. We must preserve it |
| // until it is pushed. |
| // |
| // Because we can be jumping here (to spilled code) from |
| // unspilled code, we need to reestablish a spilled frame at |
| // this block. |
| shadows[i]->Bind(); |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that |
| // we break from (eg, for...in) may have left stuff on the |
| // stack. |
| __ mov(r3, Operand(handler_address)); |
| __ ldr(sp, MemOperand(r3)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| // Unlink this handler and drop it from the frame. The next |
| // handler address is currently on top of the frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (i == kReturnShadowIndex) { |
| // If this label shadowed the function return, materialize the |
| // return value on the stack. |
| frame_->EmitPush(r0); |
| } else { |
| // Fake TOS for targets that shadowed breaks and continues. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); |
| if (--nof_unlinks > 0) { |
| // If this is not the last unlink block, jump around the next. |
| finally_block.Jump(); |
| } |
| } |
| } |
| |
| // --- Finally block --- |
| finally_block.Bind(); |
| |
| // Push the state on the stack. |
| frame_->EmitPush(r2); |
| |
| // We keep two elements on the stack - the (possibly faked) result |
| // and the state - while evaluating the finally block. |
| // |
| // Generate code for the statements in the finally block. |
| VisitStatementsAndSpill(node->finally_block()->statements()); |
| |
| if (has_valid_frame()) { |
| // Restore state and return value or faked TOS. |
| frame_->EmitPop(r2); |
| frame_->EmitPop(r0); |
| } |
| |
| // Generate code to jump to the right destination for all used |
| // formerly shadowing targets. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (has_valid_frame() && shadows[i]->is_bound()) { |
| JumpTarget* original = shadows[i]->other_target(); |
| __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); |
| if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
| JumpTarget skip; |
| skip.Branch(ne); |
| frame_->PrepareForReturn(); |
| original->Jump(); |
| skip.Bind(); |
| } else { |
| original->Branch(eq); |
| } |
| } |
| } |
| |
| if (has_valid_frame()) { |
| // Check if we need to rethrow the exception. |
| JumpTarget exit; |
| __ cmp(r2, Operand(Smi::FromInt(THROWING))); |
| exit.Branch(ne); |
| |
| // Rethrow exception. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kReThrow, 1); |
| |
| // Done. |
| exit.Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ DebuggerStatament"); |
| CodeForStatementPosition(node); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| frame_->DebugBreak(); |
| #endif |
| // Ignore the return value. |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(boilerplate->IsBoilerplate()); |
| |
| __ mov(r0, Operand(boilerplate)); |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. |
| if (scope()->is_function_scope() && boilerplate->NumberOfLiterals() == 0) { |
| FastNewClosureStub stub; |
| frame_->EmitPush(r0); |
| frame_->CallStub(&stub, 1); |
| frame_->EmitPush(r0); |
| } else { |
| // Create a new closure. |
| frame_->EmitPush(cp); |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kNewClosure, 2); |
| frame_->EmitPush(r0); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ FunctionLiteral"); |
| |
| // Build the function boilerplate and instantiate it. |
| Handle<JSFunction> boilerplate = |
| Compiler::BuildBoilerplate(node, script(), this); |
| // Check for stack-overflow exception. |
| if (HasStackOverflow()) { |
| ASSERT(frame_->height() == original_height); |
| return; |
| } |
| InstantiateBoilerplate(boilerplate); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitFunctionBoilerplateLiteral( |
| FunctionBoilerplateLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ FunctionBoilerplateLiteral"); |
| InstantiateBoilerplate(node->boilerplate()); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitConditional(Conditional* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Conditional"); |
| JumpTarget then; |
| JumpTarget else_; |
| LoadConditionAndSpill(node->condition(), &then, &else_, true); |
| if (has_valid_frame()) { |
| Branch(false, &else_); |
| } |
| if (has_valid_frame() || then.is_linked()) { |
| then.Bind(); |
| LoadAndSpill(node->then_expression()); |
| } |
| if (else_.is_linked()) { |
| JumpTarget exit; |
| if (has_valid_frame()) exit.Jump(); |
| else_.Bind(); |
| LoadAndSpill(node->else_expression()); |
| if (exit.is_linked()) exit.Bind(); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
| VirtualFrame::SpilledScope spilled_scope; |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| |
| JumpTarget slow; |
| JumpTarget done; |
| |
| // Generate fast-case code for variables that might be shadowed by |
| // eval-introduced variables. Eval is used a lot without |
| // introducing variables. In those cases, we do not want to |
| // perform a runtime call for all variables in the scope |
| // containing the eval. |
| if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
| LoadFromGlobalSlotCheckExtensions(slot, typeof_state, r1, r2, &slow); |
| // If there was no control flow to slow, we can exit early. |
| if (!slow.is_linked()) { |
| frame_->EmitPush(r0); |
| return; |
| } |
| |
| done.Jump(); |
| |
| } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
| Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); |
| // Only generate the fast case for locals that rewrite to slots. |
| // This rules out argument loads. |
| if (potential_slot != NULL) { |
| __ ldr(r0, |
| ContextSlotOperandCheckExtensions(potential_slot, |
| r1, |
| r2, |
| &slow)); |
| if (potential_slot->var()->mode() == Variable::CONST) { |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r0, ip); |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); |
| } |
| // There is always control flow to slow from |
| // ContextSlotOperandCheckExtensions so we have to jump around |
| // it. |
| done.Jump(); |
| } |
| } |
| |
| slow.Bind(); |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(slot->var()->name())); |
| frame_->EmitPush(r0); |
| |
| if (typeof_state == INSIDE_TYPEOF) { |
| frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
| } else { |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| } |
| |
| done.Bind(); |
| frame_->EmitPush(r0); |
| |
| } else { |
| // Special handling for locals allocated in registers. |
| __ ldr(r0, SlotOperand(slot, r2)); |
| frame_->EmitPush(r0); |
| if (slot->var()->mode() == Variable::CONST) { |
| // Const slots may contain 'the hole' value (the constant hasn't been |
| // initialized yet) which needs to be converted into the 'undefined' |
| // value. |
| Comment cmnt(masm_, "[ Unhole const"); |
| frame_->EmitPop(r0); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r0, ip); |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); |
| frame_->EmitPush(r0); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
| ASSERT(slot != NULL); |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| |
| // For now, just do a runtime call. |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(slot->var()->name())); |
| frame_->EmitPush(r0); |
| |
| if (init_state == CONST_INIT) { |
| // Same as the case for a normal store, but ignores attribute |
| // (e.g. READ_ONLY) of context slot so that we can initialize |
| // const properties (introduced via eval("const foo = (some |
| // expr);")). Also, uses the current function context instead of |
| // the top context. |
| // |
| // Note that we must declare the foo upon entry of eval(), via a |
| // context slot declaration, but we cannot initialize it at the |
| // same time, because the const declaration may be at the end of |
| // the eval code (sigh...) and the const variable may have been |
| // used before (where its value is 'undefined'). Thus, we can only |
| // do the initialization when we actually encounter the expression |
| // and when the expression operands are defined and valid, and |
| // thus we need the split into 2 operations: declaration of the |
| // context slot followed by initialization. |
| frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
| } else { |
| frame_->CallRuntime(Runtime::kStoreContextSlot, 3); |
| } |
| // Storing a variable must keep the (new) value on the expression |
| // stack. This is necessary for compiling assignment expressions. |
| frame_->EmitPush(r0); |
| |
| } else { |
| ASSERT(!slot->var()->is_dynamic()); |
| |
| JumpTarget exit; |
| if (init_state == CONST_INIT) { |
| ASSERT(slot->var()->mode() == Variable::CONST); |
| // Only the first const initialization must be executed (the slot |
| // still contains 'the hole' value). When the assignment is |
| // executed, the code is identical to a normal store (see below). |
| Comment cmnt(masm_, "[ Init const"); |
| __ ldr(r2, SlotOperand(slot, r2)); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r2, ip); |
| exit.Branch(ne); |
| } |
| |
| // We must execute the store. Storing a variable must keep the |
| // (new) value on the stack. This is necessary for compiling |
| // assignment expressions. |
| // |
| // Note: We will reach here even with slot->var()->mode() == |
| // Variable::CONST because of const declarations which will |
| // initialize consts to 'the hole' value and by doing so, end up |
| // calling this code. r2 may be loaded with context; used below in |
| // RecordWrite. |
| frame_->EmitPop(r0); |
| __ str(r0, SlotOperand(slot, r2)); |
| frame_->EmitPush(r0); |
| if (slot->type() == Slot::CONTEXT) { |
| // Skip write barrier if the written value is a smi. |
| __ tst(r0, Operand(kSmiTagMask)); |
| exit.Branch(eq); |
| // r2 is loaded with context when calling SlotOperand above. |
| int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| __ mov(r3, Operand(offset)); |
| __ RecordWrite(r2, r3, r1); |
| } |
| // If we definitely did not jump over the assignment, we do not need |
| // to bind the exit label. Doing so can defeat peephole |
| // optimization. |
| if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { |
| exit.Bind(); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, |
| TypeofState typeof_state, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow) { |
| // Check that no extension objects have been created by calls to |
| // eval from the current scope to the global scope. |
| Register context = cp; |
| Scope* s = scope(); |
| while (s != NULL) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| } |
| // Load next context in chain. |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // If no outer scope calls eval, we do not need to check more |
| // context extensions. |
| if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
| s = s->outer_scope(); |
| } |
| |
| if (s->is_eval_scope()) { |
| Label next, fast; |
| if (!context.is(tmp)) { |
| __ mov(tmp, Operand(context)); |
| } |
| __ bind(&next); |
| // Terminate at global context. |
| __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| __ cmp(tmp2, ip); |
| __ b(eq, &fast); |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| // Load next context in chain. |
| __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| __ b(&next); |
| __ bind(&fast); |
| } |
| |
| // All extension objects were empty and it is safe to use a global |
| // load IC call. |
| Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
| // Load the global object. |
| LoadGlobal(); |
| // Setup the name register. |
| __ mov(r2, Operand(slot->var()->name())); |
| // Call IC stub. |
| if (typeof_state == INSIDE_TYPEOF) { |
| frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
| } else { |
| frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET_CONTEXT, 0); |
| } |
| |
| // Drop the global object. The result is in r0. |
| frame_->Drop(); |
| } |
| |
| |
| void CodeGenerator::VisitSlot(Slot* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Slot"); |
| LoadFromSlot(node, NOT_INSIDE_TYPEOF); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ VariableProxy"); |
| |
| Variable* var = node->var(); |
| Expression* expr = var->rewrite(); |
| if (expr != NULL) { |
| Visit(expr); |
| } else { |
| ASSERT(var->is_global()); |
| Reference ref(this, node); |
| ref.GetValueAndSpill(); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitLiteral(Literal* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Literal"); |
| __ mov(r0, Operand(node->handle())); |
| frame_->EmitPush(r0); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ RexExp Literal"); |
| |
| // Retrieve the literal array and check the allocated entry. |
| |
| // Load the function of this activation. |
| __ ldr(r1, frame_->Function()); |
| |
| // Load the literals array of the function. |
| __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset)); |
| |
| // Load the literal at the ast saved index. |
| int literal_offset = |
| FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
| __ ldr(r2, FieldMemOperand(r1, literal_offset)); |
| |
| JumpTarget done; |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r2, ip); |
| done.Branch(ne); |
| |
| // If the entry is undefined we call the runtime system to computed |
| // the literal. |
| frame_->EmitPush(r1); // literal array (0) |
| __ mov(r0, Operand(Smi::FromInt(node->literal_index()))); |
| frame_->EmitPush(r0); // literal index (1) |
| __ mov(r0, Operand(node->pattern())); // RegExp pattern (2) |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(node->flags())); // RegExp flags (3) |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
| __ mov(r2, Operand(r0)); |
| |
| done.Bind(); |
| // Push the literal. |
| frame_->EmitPush(r2); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ObjectLiteral"); |
| |
| // Load the function of this activation. |
| __ ldr(r2, frame_->Function()); |
| // Literal array. |
| __ ldr(r2, FieldMemOperand(r2, JSFunction::kLiteralsOffset)); |
| // Literal index. |
| __ mov(r1, Operand(Smi::FromInt(node->literal_index()))); |
| // Constant properties. |
| __ mov(r0, Operand(node->constant_properties())); |
| frame_->EmitPushMultiple(3, r2.bit() | r1.bit() | r0.bit()); |
| if (node->depth() > 1) { |
| frame_->CallRuntime(Runtime::kCreateObjectLiteral, 3); |
| } else { |
| frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 3); |
| } |
| frame_->EmitPush(r0); // save the result |
| for (int i = 0; i < node->properties()->length(); i++) { |
| // At the start of each iteration, the top of stack contains |
| // the newly created object literal. |
| ObjectLiteral::Property* property = node->properties()->at(i); |
| Literal* key = property->key(); |
| Expression* value = property->value(); |
| switch (property->kind()) { |
| case ObjectLiteral::Property::CONSTANT: |
| break; |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
| // else fall through |
| case ObjectLiteral::Property::COMPUTED: |
| if (key->handle()->IsSymbol()) { |
| Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); |
| LoadAndSpill(value); |
| frame_->EmitPop(r0); |
| __ mov(r2, Operand(key->handle())); |
| __ ldr(r1, frame_->Top()); // Load the receiver. |
| frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
| break; |
| } |
| // else fall through |
| case ObjectLiteral::Property::PROTOTYPE: { |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); // dup the result |
| LoadAndSpill(key); |
| LoadAndSpill(value); |
| frame_->CallRuntime(Runtime::kSetProperty, 3); |
| break; |
| } |
| case ObjectLiteral::Property::SETTER: { |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| LoadAndSpill(key); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| frame_->EmitPush(r0); |
| LoadAndSpill(value); |
| frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| case ObjectLiteral::Property::GETTER: { |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| LoadAndSpill(key); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| LoadAndSpill(value); |
| frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| } |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ArrayLiteral"); |
| |
| // Load the function of this activation. |
| __ ldr(r2, frame_->Function()); |
| // Load the literals array of the function. |
| __ ldr(r2, FieldMemOperand(r2, JSFunction::kLiteralsOffset)); |
| __ mov(r1, Operand(Smi::FromInt(node->literal_index()))); |
| __ mov(r0, Operand(node->constant_elements())); |
| frame_->EmitPushMultiple(3, r2.bit() | r1.bit() | r0.bit()); |
| int length = node->values()->length(); |
| if (node->depth() > 1) { |
| frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); |
| } else if (length > FastCloneShallowArrayStub::kMaximumLength) { |
| frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
| } else { |
| FastCloneShallowArrayStub stub(length); |
| frame_->CallStub(&stub, 3); |
| } |
| frame_->EmitPush(r0); // save the result |
| // r0: created object literal |
| |
| // Generate code to set the elements in the array that are not |
| // literals. |
| for (int i = 0; i < node->values()->length(); i++) { |
| Expression* value = node->values()->at(i); |
| |
| // If value is a literal the property value is already set in the |
| // boilerplate object. |
| if (value->AsLiteral() != NULL) continue; |
| // If value is a materialized literal the property value is already set |
| // in the boilerplate object if it is simple. |
| if (CompileTimeValue::IsCompileTimeValue(value)) continue; |
| |
| // The property must be set by generated code. |
| LoadAndSpill(value); |
| frame_->EmitPop(r0); |
| |
| // Fetch the object literal. |
| __ ldr(r1, frame_->Top()); |
| // Get the elements array. |
| __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| |
| // Write to the indexed properties array. |
| int offset = i * kPointerSize + FixedArray::kHeaderSize; |
| __ str(r0, FieldMemOperand(r1, offset)); |
| |
| // Update the write barrier for the array address. |
| __ mov(r3, Operand(offset)); |
| __ RecordWrite(r1, r3, r2); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| // Call runtime routine to allocate the catch extension object and |
| // assign the exception value to the catch variable. |
| Comment cmnt(masm_, "[ CatchExtensionObject"); |
| LoadAndSpill(node->key()); |
| LoadAndSpill(node->value()); |
| frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
| frame_->EmitPush(r0); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Assignment"); |
| |
| { Reference target(this, node->target(), node->is_compound()); |
| if (target.is_illegal()) { |
| // Fool the virtual frame into thinking that we left the assignment's |
| // value on the frame. |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| ASSERT(frame_->height() == original_height + 1); |
| return; |
| } |
| |
| if (node->op() == Token::ASSIGN || |
| node->op() == Token::INIT_VAR || |
| node->op() == Token::INIT_CONST) { |
| LoadAndSpill(node->value()); |
| |
| } else { // Assignment is a compound assignment. |
| // Get the old value of the lhs. |
| target.GetValueAndSpill(); |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| frame_->EmitPush(r0); |
| |
| } else { |
| LoadAndSpill(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| frame_->EmitPush(r0); |
| } |
| } |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| if (var != NULL && |
| (var->mode() == Variable::CONST) && |
| node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) { |
| // Assignment ignored - leave the value on the stack. |
| UnloadReference(&target); |
| } else { |
| CodeForSourcePosition(node->position()); |
| if (node->op() == Token::INIT_CONST) { |
| // Dynamic constant initializations must use the function context |
| // and initialize the actual constant declared. Dynamic variable |
| // initializations are simply assignments and use SetValue. |
| target.SetValue(CONST_INIT); |
| } else { |
| target.SetValue(NOT_CONST_INIT); |
| } |
| } |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitThrow(Throw* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Throw"); |
| |
| LoadAndSpill(node->exception()); |
| CodeForSourcePosition(node->position()); |
| frame_->CallRuntime(Runtime::kThrow, 1); |
| frame_->EmitPush(r0); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitProperty(Property* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Property"); |
| |
| { Reference property(this, node); |
| property.GetValueAndSpill(); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitCall(Call* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Call"); |
| |
| Expression* function = node->expression(); |
| ZoneList<Expression*>* args = node->arguments(); |
| |
| // Standard function call. |
| // Check if the function is a variable or a property. |
| Variable* var = function->AsVariableProxy()->AsVariable(); |
| Property* property = function->AsProperty(); |
| |
| // ------------------------------------------------------------------------ |
| // Fast-case: Use inline caching. |
| // --- |
| // According to ECMA-262, section 11.2.3, page 44, the function to call |
| // must be resolved after the arguments have been evaluated. The IC code |
| // automatically handles this by loading the arguments before the function |
| // is resolved in cache misses (this also holds for megamorphic calls). |
| // ------------------------------------------------------------------------ |
| |
| if (var != NULL && var->is_possibly_eval()) { |
| // ---------------------------------- |
| // JavaScript example: 'eval(arg)' // eval is not known to be shadowed |
| // ---------------------------------- |
| |
| // In a call to eval, we first call %ResolvePossiblyDirectEval to |
| // resolve the function we need to call and the receiver of the |
| // call. Then we call the resolved function using the given |
| // arguments. |
| // Prepare stack for call to resolved function. |
| LoadAndSpill(function); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r2); // Slot for receiver |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| LoadAndSpill(args->at(i)); |
| } |
| |
| // Prepare stack for call to ResolvePossiblyDirectEval. |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); |
| frame_->EmitPush(r1); |
| if (arg_count > 0) { |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
| frame_->EmitPush(r1); |
| } else { |
| frame_->EmitPush(r2); |
| } |
| |
| // Push the receiver. |
| __ ldr(r1, frame_->Receiver()); |
| frame_->EmitPush(r1); |
| |
| // Resolve the call. |
| frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); |
| |
| // Touch up stack with the right values for the function and the receiver. |
| __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
| __ str(r1, MemOperand(sp, arg_count * kPointerSize)); |
| |
| // Call the function. |
| CodeForSourcePosition(node->position()); |
| |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); |
| frame_->CallStub(&call_function, arg_count + 1); |
| |
| __ ldr(cp, frame_->Context()); |
| // Remove the function from the stack. |
| frame_->Drop(); |
| frame_->EmitPush(r0); |
| |
| } else if (var != NULL && !var->is_this() && var->is_global()) { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is global |
| // ---------------------------------- |
| // Pass the global object as the receiver and let the IC stub |
| // patch the stack to use the global proxy as 'this' in the |
| // invoked function. |
| LoadGlobal(); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| LoadAndSpill(args->at(i)); |
| } |
| |
| // Setup the name register and call the IC initialization code. |
| __ mov(r2, Operand(var->name())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, |
| arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| |
| } else if (var != NULL && var->slot() != NULL && |
| var->slot()->type() == Slot::LOOKUP) { |
| // ---------------------------------- |
| // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj |
| // ---------------------------------- |
| |
| // Load the function |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(var->name())); |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| // r0: slot value; r1: receiver |
| |
| // Load the receiver. |
| frame_->EmitPush(r0); // function |
| frame_->EmitPush(r1); // receiver |
| |
| // Call the function. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| frame_->EmitPush(r0); |
| |
| } else if (property != NULL) { |
| // Check if the key is a literal string. |
| Literal* literal = property->key()->AsLiteral(); |
| |
| if (literal != NULL && literal->handle()->IsSymbol()) { |
| // ------------------------------------------------------------------ |
| // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
| // ------------------------------------------------------------------ |
| |
| LoadAndSpill(property->obj()); // Receiver. |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| LoadAndSpill(args->at(i)); |
| } |
| |
| // Set the name register and call the IC initialization code. |
| __ mov(r2, Operand(literal->handle())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| |
| } else { |
| // ------------------------------------------- |
| // JavaScript example: 'array[index](1, 2, 3)' |
| // ------------------------------------------- |
| |
| LoadAndSpill(property->obj()); |
| LoadAndSpill(property->key()); |
| EmitKeyedLoad(false); |
| frame_->Drop(); // key |
| // Put the function below the receiver. |
| if (property->is_synthetic()) { |
| // Use the global receiver. |
| frame_->Drop(); |
| frame_->EmitPush(r0); |
| LoadGlobalReceiver(r0); |
| } else { |
| frame_->EmitPop(r1); // receiver |
| frame_->EmitPush(r0); // function |
| frame_->EmitPush(r1); // receiver |
| } |
| |
| // Call the function. |
| CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); |
| frame_->EmitPush(r0); |
| } |
| |
| } else { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
| // ---------------------------------- |
| |
| // Load the function. |
| LoadAndSpill(function); |
| |
| // Pass the global proxy as the receiver. |
| LoadGlobalReceiver(r0); |
| |
| // Call the function. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| frame_->EmitPush(r0); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitCallNew(CallNew* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ CallNew"); |
| |
| // According to ECMA-262, section 11.2.2, page 44, the function |
| // expression in new calls must be evaluated before the |
| // arguments. This is different from ordinary calls, where the |
| // actual function to call is resolved after the arguments have been |
| // evaluated. |
| |
| // Compute function to call and use the global object as the |
| // receiver. There is no need to use the global proxy here because |
| // it will always be replaced with a newly allocated object. |
| LoadAndSpill(node->expression()); |
| LoadGlobal(); |
| |
| // Push the arguments ("left-to-right") on the stack. |
| ZoneList<Expression*>* args = node->arguments(); |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| LoadAndSpill(args->at(i)); |
| } |
| |
| // r0: the number of arguments. |
| __ mov(r0, Operand(arg_count)); |
| // Load the function into r1 as per calling convention. |
| __ ldr(r1, frame_->ElementAt(arg_count + 1)); |
| |
| // Call the construct call builtin that handles allocation and |
| // constructor invocation. |
| CodeForSourcePosition(node->position()); |
| Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall)); |
| frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1); |
| |
| // Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)). |
| __ str(r0, frame_->Top()); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| JumpTarget leave, null, function, non_function_constructor; |
| |
| // Load the object into r0. |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r0); |
| |
| // If the object is a smi, we return null. |
| __ tst(r0, Operand(kSmiTagMask)); |
| null.Branch(eq); |
| |
| // Check that the object is a JS object but take special care of JS |
| // functions to make sure they have 'Function' as their class. |
| __ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE); |
| null.Branch(lt); |
| |
| // As long as JS_FUNCTION_TYPE is the last instance type and it is |
| // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
| // LAST_JS_OBJECT_TYPE. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ cmp(r1, Operand(JS_FUNCTION_TYPE)); |
| function.Branch(eq); |
| |
| // Check if the constructor in the map is a function. |
| __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset)); |
| __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); |
| non_function_constructor.Branch(ne); |
| |
| // The r0 register now contains the constructor function. Grab the |
| // instance class name from there. |
| __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset)); |
| frame_->EmitPush(r0); |
| leave.Jump(); |
| |
| // Functions have class 'Function'. |
| function.Bind(); |
| __ mov(r0, Operand(Factory::function_class_symbol())); |
| frame_->EmitPush(r0); |
| leave.Jump(); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| non_function_constructor.Bind(); |
| __ mov(r0, Operand(Factory::Object_symbol())); |
| frame_->EmitPush(r0); |
| leave.Jump(); |
| |
| // Non-JS objects have class null. |
| null.Bind(); |
| __ LoadRoot(r0, Heap::kNullValueRootIndex); |
| frame_->EmitPush(r0); |
| |
| // All done. |
| leave.Bind(); |
| } |
| |
| |
| void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| JumpTarget leave; |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r0); // r0 contains object. |
| // if (object->IsSmi()) return the object. |
| __ tst(r0, Operand(kSmiTagMask)); |
| leave.Branch(eq); |
| // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
| __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE); |
| leave.Branch(ne); |
| // Load the value. |
| __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset)); |
| leave.Bind(); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 2); |
| JumpTarget leave; |
| LoadAndSpill(args->at(0)); // Load the object. |
| LoadAndSpill(args->at(1)); // Load the value. |
| frame_->EmitPop(r0); // r0 contains value |
| frame_->EmitPop(r1); // r1 contains object |
| // if (object->IsSmi()) return object. |
| __ tst(r1, Operand(kSmiTagMask)); |
| leave.Branch(eq); |
| // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
| __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE); |
| leave.Branch(ne); |
| // Store the value. |
| __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset)); |
| // Update the write barrier. |
| __ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag)); |
| __ RecordWrite(r1, r2, r3); |
| // Leave. |
| leave.Bind(); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r0); |
| __ tst(r0, Operand(kSmiTagMask)); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. |
| ASSERT_EQ(args->length(), 3); |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| if (ShouldGenerateLog(args->at(0))) { |
| LoadAndSpill(args->at(1)); |
| LoadAndSpill(args->at(2)); |
| __ CallRuntime(Runtime::kLog, 2); |
| } |
| #endif |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r0); |
| __ tst(r0, Operand(kSmiTagMask | 0x80000000u)); |
| cc_reg_ = eq; |
| } |
| |
| |
| // This should generate code that performs a charCodeAt() call or returns |
| // undefined in order to trigger the slow case, Runtime_StringCharCodeAt. |
| // It is not yet implemented on ARM, so it always goes to the slow case. |
| void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 2); |
| Comment(masm_, "[ GenerateFastCharCodeAt"); |
| |
| LoadAndSpill(args->at(0)); |
| LoadAndSpill(args->at(1)); |
| frame_->EmitPop(r0); // Index. |
| frame_->EmitPop(r1); // String. |
| |
| Label slow, end, not_a_flat_string, ascii_string, try_again_with_new_string; |
| |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &slow); // The 'string' was a Smi. |
| |
| ASSERT(kSmiTag == 0); |
| __ tst(r0, Operand(kSmiTagMask | 0x80000000u)); |
| __ b(ne, &slow); // The index was negative or not a Smi. |
| |
| __ bind(&try_again_with_new_string); |
| __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, &slow); |
| |
| // Now r2 has the string type. |
| __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); |
| // Now r3 has the length of the string. Compare with the index. |
| __ cmp(r3, Operand(r0, LSR, kSmiTagSize)); |
| __ b(le, &slow); |
| |
| // Here we know the index is in range. Check that string is sequential. |
| ASSERT_EQ(0, kSeqStringTag); |
| __ tst(r2, Operand(kStringRepresentationMask)); |
| __ b(ne, ¬_a_flat_string); |
| |
| // Check whether it is an ASCII string. |
| ASSERT_EQ(0, kTwoByteStringTag); |
| __ tst(r2, Operand(kStringEncodingMask)); |
| __ b(ne, &ascii_string); |
| |
| // 2-byte string. We can add without shifting since the Smi tag size is the |
| // log2 of the number of bytes in a two-byte character. |
| ASSERT_EQ(1, kSmiTagSize); |
| ASSERT_EQ(0, kSmiShiftSize); |
| __ add(r1, r1, Operand(r0)); |
| __ ldrh(r0, FieldMemOperand(r1, SeqTwoByteString::kHeaderSize)); |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| __ jmp(&end); |
| |
| __ bind(&ascii_string); |
| __ add(r1, r1, Operand(r0, LSR, kSmiTagSize)); |
| __ ldrb(r0, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| __ jmp(&end); |
| |
| __ bind(¬_a_flat_string); |
| __ and_(r2, r2, Operand(kStringRepresentationMask)); |
| __ cmp(r2, Operand(kConsStringTag)); |
| __ b(ne, &slow); |
| |
| // ConsString. |
| // Check that the right hand side is the empty string (ie if this is really a |
| // flat string in a cons string). If that is not the case we would rather go |
| // to the runtime system now, to flatten the string. |
| __ ldr(r2, FieldMemOperand(r1, ConsString::kSecondOffset)); |
| __ LoadRoot(r3, Heap::kEmptyStringRootIndex); |
| __ cmp(r2, Operand(r3)); |
| __ b(ne, &slow); |
| |
| // Get the first of the two strings. |
| __ ldr(r1, FieldMemOperand(r1, ConsString::kFirstOffset)); |
| __ jmp(&try_again_with_new_string); |
| |
| __ bind(&slow); |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| |
| __ bind(&end); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| JumpTarget answer; |
| // We need the CC bits to come out as not_equal in the case where the |
| // object is a smi. This can't be done with the usual test opcode so |
| // we use XOR to get the right CC bits. |
| frame_->EmitPop(r0); |
| __ and_(r1, r0, Operand(kSmiTagMask)); |
| __ eor(r1, r1, Operand(kSmiTagMask), SetCC); |
| answer.Branch(ne); |
| // It is a heap object - get the map. Check if the object is a JS array. |
| __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); |
| answer.Bind(); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| JumpTarget answer; |
| // We need the CC bits to come out as not_equal in the case where the |
| // object is a smi. This can't be done with the usual test opcode so |
| // we use XOR to get the right CC bits. |
| frame_->EmitPop(r0); |
| __ and_(r1, r0, Operand(kSmiTagMask)); |
| __ eor(r1, r1, Operand(kSmiTagMask), SetCC); |
| answer.Branch(ne); |
| // It is a heap object - get the map. Check if the object is a regexp. |
| __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); |
| answer.Bind(); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r1); |
| __ tst(r1, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r1, ip); |
| true_target()->Branch(eq); |
| |
| Register map_reg = r2; |
| __ ldr(map_reg, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined when tested with typeof. |
| __ ldrb(r1, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
| __ and_(r1, r1, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(r1, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(r1, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
| __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE)); |
| false_target()->Branch(lt); |
| __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE)); |
| cc_reg_ = le; |
| } |
| |
| |
| void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (%_ClassOf(arg) === 'Function') |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r0); |
| __ tst(r0, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register map_reg = r2; |
| __ CompareObjectType(r0, map_reg, r1, JS_FUNCTION_TYPE); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r0); |
| __ tst(r0, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset)); |
| __ tst(r1, Operand(1 << Map::kIsUndetectable)); |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 0); |
| |
| // Get the frame pointer for the calling frame. |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| Label check_frame_marker; |
| __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(ne, &check_frame_marker); |
| __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Check the marker in the calling frame. |
| __ bind(&check_frame_marker); |
| __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset)); |
| __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 0); |
| |
| // Seed the result with the formal parameters count, which will be used |
| // in case no arguments adaptor frame is found below the current frame. |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| |
| // Call the shared stub to get to the arguments.length. |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 1); |
| |
| // Satisfy contract with ArgumentsAccessStub: |
| // Load the key into r1 and the formal parameters count into r0. |
| LoadAndSpill(args->at(0)); |
| frame_->EmitPop(r1); |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| |
| // Call the shared stub to get to arguments[key]. |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 0); |
| __ Call(ExternalReference::random_positive_smi_function().address(), |
| RelocInfo::RUNTIME_ENTRY); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| frame_->CallStub(&stub, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| |
| SubStringStub stub; |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringCompareStub stub; |
| frame_->CallStub(&stub, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
| ASSERT_EQ(4, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| Load(args->at(3)); |
| |
| frame_->CallRuntime(Runtime::kRegExpExec, 4); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| |
| // Load the argument on the stack and jump to the runtime. |
| Load(args->at(0)); |
| |
| frame_->CallRuntime(Runtime::kNumberToString, 1); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| // Load the argument on the stack and jump to the runtime. |
| Load(args->at(0)); |
| frame_->CallRuntime(Runtime::kMath_sin, 1); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| // Load the argument on the stack and jump to the runtime. |
| Load(args->at(0)); |
| frame_->CallRuntime(Runtime::kMath_cos, 1); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope; |
| ASSERT(args->length() == 2); |
| |
| // Load the two objects into registers and perform the comparison. |
| LoadAndSpill(args->at(0)); |
| LoadAndSpill(args->at(1)); |
| frame_->EmitPop(r0); |
| frame_->EmitPop(r1); |
| __ cmp(r0, Operand(r1)); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| if (CheckForInlineRuntimeCall(node)) { |
| ASSERT((has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| return; |
| } |
| |
| ZoneList<Expression*>* args = node->arguments(); |
| Comment cmnt(masm_, "[ CallRuntime"); |
| Runtime::Function* function = node->function(); |
| |
| if (function == NULL) { |
| // Prepare stack for calling JS runtime function. |
| // Push the builtins object found in the current global object. |
| __ ldr(r1, GlobalObject()); |
| __ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset)); |
| frame_->EmitPush(r0); |
| } |
| |
| // Push the arguments ("left-to-right"). |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| LoadAndSpill(args->at(i)); |
| } |
| |
| if (function == NULL) { |
| // Call the JS runtime function. |
| __ mov(r2, Operand(node->name())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| } else { |
| // Call the C runtime function. |
| frame_->CallRuntime(function, arg_count); |
| frame_->EmitPush(r0); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ UnaryOperation"); |
| |
| Token::Value op = node->op(); |
| |
| if (op == Token::NOT) { |
| LoadConditionAndSpill(node->expression(), |
| false_target(), |
| true_target(), |
| true); |
| // LoadCondition may (and usually does) leave a test and branch to |
| // be emitted by the caller. In that case, negate the condition. |
| if (has_cc()) cc_reg_ = NegateCondition(cc_reg_); |
| |
| } else if (op == Token::DELETE) { |
| Property* property = node->expression()->AsProperty(); |
| Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
| if (property != NULL) { |
| LoadAndSpill(property->obj()); |
| LoadAndSpill(property->key()); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| |
| } else if (variable != NULL) { |
| Slot* slot = variable->slot(); |
| if (variable->is_global()) { |
| LoadGlobal(); |
| __ mov(r0, Operand(variable->name())); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| |
| } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // lookup the context holding the named variable |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(variable->name())); |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kLookupContext, 2); |
| // r0: context |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(variable->name())); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| |
| } else { |
| // Default: Result of deleting non-global, not dynamically |
| // introduced variables is false. |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex); |
| } |
| |
| } else { |
| // Default: Result of deleting expressions is true. |
| LoadAndSpill(node->expression()); // may have side-effects |
| frame_->Drop(); |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex); |
| } |
| frame_->EmitPush(r0); |
| |
| } else if (op == Token::TYPEOF) { |
| // Special case for loading the typeof expression; see comment on |
| // LoadTypeofExpression(). |
| LoadTypeofExpression(node->expression()); |
| frame_->CallRuntime(Runtime::kTypeof, 1); |
| frame_->EmitPush(r0); // r0 has result |
| |
| } else { |
| bool overwrite = |
| (node->expression()->AsBinaryOperation() != NULL && |
| node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| LoadAndSpill(node->expression()); |
| frame_->EmitPop(r0); |
| switch (op) { |
| case Token::NOT: |
| case Token::DELETE: |
| case Token::TYPEOF: |
| UNREACHABLE(); // handled above |
| break; |
| |
| case Token::SUB: { |
| GenericUnaryOpStub stub(Token::SUB, overwrite); |
| frame_->CallStub(&stub, 0); |
| break; |
| } |
| |
| case Token::BIT_NOT: { |
| // smi check |
| JumpTarget smi_label; |
| JumpTarget continue_label; |
| __ tst(r0, Operand(kSmiTagMask)); |
| smi_label.Branch(eq); |
| |
| GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); |
| frame_->CallStub(&stub, 0); |
| continue_label.Jump(); |
| |
| smi_label.Bind(); |
| __ mvn(r0, Operand(r0)); |
| __ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag |
| continue_label.Bind(); |
| break; |
| } |
| |
| case Token::VOID: |
| // since the stack top is cached in r0, popping and then |
| // pushing a value can be done by just writing to r0. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| break; |
| |
| case Token::ADD: { |
| // Smi check. |
| JumpTarget continue_label; |
| __ tst(r0, Operand(kSmiTagMask)); |
| continue_label.Branch(eq); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
| continue_label.Bind(); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| frame_->EmitPush(r0); // r0 has result |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::VisitCountOperation(CountOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ CountOperation"); |
| |
| bool is_postfix = node->is_postfix(); |
| bool is_increment = node->op() == Token::INC; |
| |
| Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
| bool is_const = (var != NULL && var->mode() == Variable::CONST); |
| |
| // Postfix: Make room for the result. |
| if (is_postfix) { |
| __ mov(r0, Operand(0)); |
| frame_->EmitPush(r0); |
| } |
| |
| // A constant reference is not saved to, so a constant reference is not a |
| // compound assignment reference. |
| { Reference target(this, node->expression(), !is_const); |
| if (target.is_illegal()) { |
| // Spoof the virtual frame to have the expected height (one higher |
| // than on entry). |
| if (!is_postfix) { |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| } |
| ASSERT(frame_->height() == original_height + 1); |
| return; |
| } |
| target.GetValueAndSpill(); |
| frame_->EmitPop(r0); |
| |
| JumpTarget slow; |
| JumpTarget exit; |
| |
| // Load the value (1) into register r1. |
| __ mov(r1, Operand(Smi::FromInt(1))); |
| |
| // Check for smi operand. |
| __ tst(r0, Operand(kSmiTagMask)); |
| slow.Branch(ne); |
| |
| // Postfix: Store the old value as the result. |
| if (is_postfix) { |
| __ str(r0, frame_->ElementAt(target.size())); |
| } |
| |
| // Perform optimistic increment/decrement. |
| if (is_increment) { |
| __ add(r0, r0, Operand(r1), SetCC); |
| } else { |
| __ sub(r0, r0, Operand(r1), SetCC); |
| } |
| |
| // If the increment/decrement didn't overflow, we're done. |
| exit.Branch(vc); |
| |
| // Revert optimistic increment/decrement. |
| if (is_increment) { |
| __ sub(r0, r0, Operand(r1)); |
| } else { |
| __ add(r0, r0, Operand(r1)); |
| } |
| |
| // Slow case: Convert to number. |
| slow.Bind(); |
| { |
| // Convert the operand to a number. |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
| } |
| if (is_postfix) { |
| // Postfix: store to result (on the stack). |
| __ str(r0, frame_->ElementAt(target.size())); |
| } |
| |
| // Compute the new value. |
| __ mov(r1, Operand(Smi::FromInt(1))); |
| frame_->EmitPush(r0); |
| frame_->EmitPush(r1); |
| if (is_increment) { |
| frame_->CallRuntime(Runtime::kNumberAdd, 2); |
| } else { |
| frame_->CallRuntime(Runtime::kNumberSub, 2); |
| } |
| |
| // Store the new value in the target if not const. |
| exit.Bind(); |
| frame_->EmitPush(r0); |
| if (!is_const) target.SetValue(NOT_CONST_INIT); |
| } |
| |
| // Postfix: Discard the new value and use the old. |
| if (is_postfix) frame_->EmitPop(r0); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ BinaryOperation"); |
| Token::Value op = node->op(); |
| |
| // According to ECMA-262 section 11.11, page 58, the binary logical |
| // operators must yield the result of one of the two expressions |
| // before any ToBoolean() conversions. This means that the value |
| // produced by a && or || operator is not necessarily a boolean. |
| |
| // NOTE: If the left hand side produces a materialized value (not in |
| // the CC register), we force the right hand side to do the |
| // same. This is necessary because we may have to branch to the exit |
| // after evaluating the left hand side (due to the shortcut |
| // semantics), but the compiler must (statically) know if the result |
| // of compiling the binary operation is materialized or not. |
| |
| if (op == Token::AND) { |
| JumpTarget is_true; |
| LoadConditionAndSpill(node->left(), |
| &is_true, |
| false_target(), |
| false); |
| if (has_valid_frame() && !has_cc()) { |
| // The left-hand side result is on top of the virtual frame. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| __ ldr(r0, frame_->Top()); // Duplicate the stack top. |
| frame_->EmitPush(r0); |
| // Avoid popping the result if it converts to 'false' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| ToBoolean(&pop_and_continue, &exit); |
| Branch(false, &exit); |
| |
| // Pop the result of evaluating the first part. |
| pop_and_continue.Bind(); |
| frame_->EmitPop(r0); |
| |
| // Evaluate right side expression. |
| is_true.Bind(); |
| LoadAndSpill(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } else if (has_cc() || is_true.is_linked()) { |
| // The left-hand side is either (a) partially compiled to |
| // control flow with a final branch left to emit or (b) fully |
| // compiled to control flow and possibly true. |
| if (has_cc()) { |
| Branch(false, false_target()); |
| } |
| is_true.Bind(); |
| LoadConditionAndSpill(node->right(), |
| true_target(), |
| false_target(), |
| false); |
| } else { |
| // Nothing to do. |
| ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked()); |
| } |
| |
| } else if (op == Token::OR) { |
| JumpTarget is_false; |
| LoadConditionAndSpill(node->left(), |
| true_target(), |
| &is_false, |
| false); |
| if (has_valid_frame() && !has_cc()) { |
| // The left-hand side result is on top of the virtual frame. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| // Avoid popping the result if it converts to 'true' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| ToBoolean(&exit, &pop_and_continue); |
| Branch(true, &exit); |
| |
| // Pop the result of evaluating the first part. |
| pop_and_continue.Bind(); |
| frame_->EmitPop(r0); |
| |
| // Evaluate right side expression. |
| is_false.Bind(); |
| LoadAndSpill(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } else if (has_cc() || is_false.is_linked()) { |
| // The left-hand side is either (a) partially compiled to |
| // control flow with a final branch left to emit or (b) fully |
| // compiled to control flow and possibly false. |
| if (has_cc()) { |
| Branch(true, true_target()); |
| } |
| is_false.Bind(); |
| LoadConditionAndSpill(node->right(), |
| true_target(), |
| false_target(), |
| false); |
| } else { |
| // Nothing to do. |
| ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked()); |
| } |
| |
| } else { |
| // Optimize for the case where (at least) one of the expressions |
| // is a literal small integer. |
| Literal* lliteral = node->left()->AsLiteral(); |
| Literal* rliteral = node->right()->AsLiteral(); |
| // NOTE: The code below assumes that the slow cases (calls to runtime) |
| // never return a constant/immutable object. |
| bool overwrite_left = |
| (node->left()->AsBinaryOperation() != NULL && |
| node->left()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| bool overwrite_right = |
| (node->right()->AsBinaryOperation() != NULL && |
| node->right()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| |
| if (rliteral != NULL && rliteral->handle()->IsSmi()) { |
| LoadAndSpill(node->left()); |
| SmiOperation(node->op(), |
| rliteral->handle(), |
| false, |
| overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| |
| } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { |
| LoadAndSpill(node->right()); |
| SmiOperation(node->op(), |
| lliteral->handle(), |
| true, |
| overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); |
| |
| } else { |
| OverwriteMode overwrite_mode = NO_OVERWRITE; |
| if (overwrite_left) { |
| overwrite_mode = OVERWRITE_LEFT; |
| } else if (overwrite_right) { |
| overwrite_mode = OVERWRITE_RIGHT; |
| } |
| LoadAndSpill(node->left()); |
| LoadAndSpill(node->right()); |
| GenericBinaryOperation(node->op(), overwrite_mode); |
| } |
| frame_->EmitPush(r0); |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| __ ldr(r0, frame_->Function()); |
| frame_->EmitPush(r0); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ CompareOperation"); |
| |
| // Get the expressions from the node. |
| Expression* left = node->left(); |
| Expression* right = node->right(); |
| Token::Value op = node->op(); |
| |
| // To make null checks efficient, we check if either left or right is the |
| // literal 'null'. If so, we optimize the code by inlining a null check |
| // instead of calling the (very) general runtime routine for checking |
| // equality. |
| if (op == Token::EQ || op == Token::EQ_STRICT) { |
| bool left_is_null = |
| left->AsLiteral() != NULL && left->AsLiteral()->IsNull(); |
| bool right_is_null = |
| right->AsLiteral() != NULL && right->AsLiteral()->IsNull(); |
| // The 'null' value can only be equal to 'null' or 'undefined'. |
| if (left_is_null || right_is_null) { |
| LoadAndSpill(left_is_null ? right : left); |
| frame_->EmitPop(r0); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r0, ip); |
| |
| // The 'null' value is only equal to 'undefined' if using non-strict |
| // comparisons. |
| if (op != Token::EQ_STRICT) { |
| true_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, Operand(ip)); |
| true_target()->Branch(eq); |
| |
| __ tst(r0, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kBitFieldOffset)); |
| __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(r0, Operand(1 << Map::kIsUndetectable)); |
| } |
| |
| cc_reg_ = eq; |
| ASSERT(has_cc() && frame_->height() == original_height); |
| return; |
| } |
| } |
| |
| // To make typeof testing for natives implemented in JavaScript really |
| // efficient, we generate special code for expressions of the form: |
| // 'typeof <expression> == <string>'. |
| UnaryOperation* operation = left->AsUnaryOperation(); |
| if ((op == Token::EQ || op == Token::EQ_STRICT) && |
| (operation != NULL && operation->op() == Token::TYPEOF) && |
| (right->AsLiteral() != NULL && |
| right->AsLiteral()->handle()->IsString())) { |
| Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
| |
| // Load the operand, move it to register r1. |
| LoadTypeofExpression(operation->expression()); |
| frame_->EmitPop(r1); |
| |
| if (check->Equals(Heap::number_symbol())) { |
| __ tst(r1, Operand(kSmiTagMask)); |
| true_target()->Branch(eq); |
| __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r1, ip); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::string_symbol())) { |
| __ tst(r1, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| |
| // It can be an undetectable string object. |
| __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset)); |
| __ and_(r2, r2, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(r2, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
| __ cmp(r2, Operand(FIRST_NONSTRING_TYPE)); |
| cc_reg_ = lt; |
| |
| } else if (check->Equals(Heap::boolean_symbol())) { |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(r1, ip); |
| true_target()->Branch(eq); |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r1, ip); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::undefined_symbol())) { |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r1, ip); |
| true_target()->Branch(eq); |
| |
| __ tst(r1, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset)); |
| __ and_(r2, r2, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(r2, Operand(1 << Map::kIsUndetectable)); |
| |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::function_symbol())) { |
| __ tst(r1, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register map_reg = r2; |
| __ CompareObjectType(r1, map_reg, r1, JS_FUNCTION_TYPE); |
| true_target()->Branch(eq); |
| // Regular expressions are callable so typeof == 'function'. |
| __ CompareInstanceType(map_reg, r1, JS_REGEXP_TYPE); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::object_symbol())) { |
| __ tst(r1, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r1, ip); |
| true_target()->Branch(eq); |
| |
| Register map_reg = r2; |
| __ CompareObjectType(r1, map_reg, r1, JS_REGEXP_TYPE); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldrb(r1, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
| __ and_(r1, r1, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(r1, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(r1, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
| __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE)); |
| false_target()->Branch(lt); |
| __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE)); |
| cc_reg_ = le; |
| |
| } else { |
| // Uncommon case: typeof testing against a string literal that is |
| // never returned from the typeof operator. |
| false_target()->Jump(); |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height)); |
| return; |
| } |
| |
| switch (op) { |
| case Token::EQ: |
| Comparison(eq, left, right, false); |
| break; |
| |
| case Token::LT: |
| Comparison(lt, left, right); |
| break; |
| |
| case Token::GT: |
| Comparison(gt, left, right); |
| break; |
| |
| case Token::LTE: |
| Comparison(le, left, right); |
| break; |
| |
| case Token::GTE: |
| Comparison(ge, left, right); |
| break; |
| |
| case Token::EQ_STRICT: |
| Comparison(eq, left, right, true); |
| break; |
| |
| case Token::IN: { |
| LoadAndSpill(left); |
| LoadAndSpill(right); |
| frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| break; |
| } |
| |
| case Token::INSTANCEOF: { |
| LoadAndSpill(left); |
| LoadAndSpill(right); |
| InstanceofStub stub; |
| frame_->CallStub(&stub, 2); |
| // At this point if instanceof succeeded then r0 == 0. |
| __ tst(r0, Operand(r0)); |
| cc_reg_ = eq; |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| ASSERT((has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::EmitKeyedLoad(bool is_global) { |
| Comment cmnt(masm_, "[ Load from keyed Property"); |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
| RelocInfo::Mode rmode = is_global |
| ? RelocInfo::CODE_TARGET_CONTEXT |
| : RelocInfo::CODE_TARGET; |
| frame_->CallCodeObject(ic, rmode, 0); |
| } |
| |
| |
| #ifdef DEBUG |
| bool CodeGenerator::HasValidEntryRegisters() { return true; } |
| #endif |
| |
| |
| #undef __ |
| #define __ ACCESS_MASM(masm) |
| |
| |
| Handle<String> Reference::GetName() { |
| ASSERT(type_ == NAMED); |
| Property* property = expression_->AsProperty(); |
| if (property == NULL) { |
| // Global variable reference treated as a named property reference. |
| VariableProxy* proxy = expression_->AsVariableProxy(); |
| ASSERT(proxy->AsVariable() != NULL); |
| ASSERT(proxy->AsVariable()->is_global()); |
| return proxy->name(); |
| } else { |
| Literal* raw_name = property->key()->AsLiteral(); |
| ASSERT(raw_name != NULL); |
| return Handle<String>(String::cast(*raw_name->handle())); |
| } |
| } |
| |
| |
| void Reference::GetValue() { |
| ASSERT(cgen_->HasValidEntryRegisters()); |
| ASSERT(!is_illegal()); |
| ASSERT(!cgen_->has_cc()); |
| MacroAssembler* masm = cgen_->masm(); |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Load from Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| ASSERT(slot != NULL); |
| cgen_->LoadFromSlot(slot, NOT_INSIDE_TYPEOF); |
| break; |
| } |
| |
| case NAMED: { |
| VirtualFrame* frame = cgen_->frame(); |
| Comment cmnt(masm, "[ Load from named Property"); |
| Handle<String> name(GetName()); |
| Variable* var = expression_->AsVariableProxy()->AsVariable(); |
| Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
| // Setup the name register. |
| __ mov(r2, Operand(name)); |
| ASSERT(var == NULL || var->is_global()); |
| RelocInfo::Mode rmode = (var == NULL) |
| ? RelocInfo::CODE_TARGET |
| : RelocInfo::CODE_TARGET_CONTEXT; |
| frame->CallCodeObject(ic, rmode, 0); |
| frame->EmitPush(r0); |
| break; |
| } |
| |
| case KEYED: { |
| // TODO(181): Implement inlined version of array indexing once |
| // loop nesting is properly tracked on ARM. |
| ASSERT(property != NULL); |
| Variable* var = expression_->AsVariableProxy()->AsVariable(); |
| ASSERT(var == NULL || var->is_global()); |
| cgen_->EmitKeyedLoad(var != NULL); |
| cgen_->frame()->EmitPush(r0); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (!persist_after_get_) { |
| cgen_->UnloadReference(this); |
| } |
| } |
| |
| |
| void Reference::SetValue(InitState init_state) { |
| ASSERT(!is_illegal()); |
| ASSERT(!cgen_->has_cc()); |
| MacroAssembler* masm = cgen_->masm(); |
| VirtualFrame* frame = cgen_->frame(); |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Store to Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| cgen_->StoreToSlot(slot, init_state); |
| cgen_->UnloadReference(this); |
| break; |
| } |
| |
| case NAMED: { |
| Comment cmnt(masm, "[ Store to named Property"); |
| // Call the appropriate IC code. |
| Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); |
| Handle<String> name(GetName()); |
| |
| frame->EmitPop(r0); |
| frame->EmitPop(r1); |
| __ mov(r2, Operand(name)); |
| frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
| frame->EmitPush(r0); |
| set_unloaded(); |
| break; |
| } |
| |
| case KEYED: { |
| Comment cmnt(masm, "[ Store to keyed Property"); |
| Property* property = expression_->AsProperty(); |
| ASSERT(property != NULL); |
| cgen_->CodeForSourcePosition(property->position()); |
| |
| // Call IC code. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
| frame->EmitPop(r0); // value |
| frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
| frame->EmitPush(r0); |
| cgen_->UnloadReference(this); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Clone the boilerplate in new space. Set the context to the |
| // current context in cp. |
| Label gc; |
| |
| // Pop the boilerplate function from the stack. |
| __ pop(r3); |
| |
| // Attempt to allocate new JSFunction in new space. |
| __ AllocateInNewSpace(JSFunction::kSize / kPointerSize, |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| |
| // Clone the rest of the boilerplate fields. We don't have to update |
| // the write barrier because the allocated object is in new space. |
| for (int offset = kPointerSize; |
| offset < JSFunction::kSize; |
| offset += kPointerSize) { |
| if (offset == JSFunction::kContextOffset) { |
| __ str(cp, FieldMemOperand(r0, offset)); |
| } else { |
| __ ldr(r1, FieldMemOperand(r3, offset)); |
| __ str(r1, FieldMemOperand(r0, offset)); |
| } |
| } |
| |
| // Return result. The argument boilerplate has been popped already. |
| __ Ret(); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ push(cp); |
| __ push(r3); |
| __ TailCallRuntime(ExternalReference(Runtime::kNewClosure), 2, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| |
| // Attempt to allocate the context in new space. |
| __ AllocateInNewSpace(length + (FixedArray::kHeaderSize / kPointerSize), |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Load the function from the stack. |
| __ ldr(r3, MemOperand(sp, 0)); |
| |
| // Setup the object header. |
| __ LoadRoot(r2, Heap::kContextMapRootIndex); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ mov(r2, Operand(length)); |
| __ str(r2, FieldMemOperand(r0, Array::kLengthOffset)); |
| |
| // Setup the fixed slots. |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
| |
| // Copy the global object from the surrounding context. |
| __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| |
| // Initialize the rest of the slots to undefined. |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ str(r1, MemOperand(r0, Context::SlotOffset(i))); |
| } |
| |
| // Remove the on-stack argument and return. |
| __ mov(cp, r0); |
| __ pop(); |
| __ Ret(); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(ExternalReference(Runtime::kNewContext), 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [sp]: constant elements. |
| // [sp + kPointerSize]: literal index. |
| // [sp + (2 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into r3 and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r3, ip); |
| __ b(eq, &slow_case); |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size / kPointerSize, |
| r0, |
| r1, |
| r2, |
| &slow_case, |
| TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ ldr(r1, FieldMemOperand(r3, i)); |
| __ str(r1, FieldMemOperand(r0, i)); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| __ add(r2, r0, Operand(JSArray::kSize)); |
| __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); |
| |
| // Copy the elements array. |
| for (int i = 0; i < elements_size; i += kPointerSize) { |
| __ ldr(r1, FieldMemOperand(r3, i)); |
| __ str(r1, FieldMemOperand(r2, i)); |
| } |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slow_case); |
| ExternalReference runtime(Runtime::kCreateArrayLiteralShallow); |
| __ TailCallRuntime(runtime, 3, 1); |
| } |
| |
| |
| // Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz |
| // instruction. On pre-ARM5 hardware this routine gives the wrong answer for 0 |
| // (31 instead of 32). |
| static void CountLeadingZeros( |
| MacroAssembler* masm, |
| Register source, |
| Register scratch, |
| Register zeros) { |
| #ifdef CAN_USE_ARMV5_INSTRUCTIONS |
| __ clz(zeros, source); // This instruction is only supported after ARM5. |
| #else |
| __ mov(zeros, Operand(0)); |
| __ mov(scratch, source); |
| // Top 16. |
| __ tst(scratch, Operand(0xffff0000)); |
| __ add(zeros, zeros, Operand(16), LeaveCC, eq); |
| __ mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq); |
| // Top 8. |
| __ tst(scratch, Operand(0xff000000)); |
| __ add(zeros, zeros, Operand(8), LeaveCC, eq); |
| __ mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq); |
| // Top 4. |
| __ tst(scratch, Operand(0xf0000000)); |
| __ add(zeros, zeros, Operand(4), LeaveCC, eq); |
| __ mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq); |
| // Top 2. |
| __ tst(scratch, Operand(0xc0000000)); |
| __ add(zeros, zeros, Operand(2), LeaveCC, eq); |
| __ mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq); |
| // Top bit. |
| __ tst(scratch, Operand(0x80000000u)); |
| __ add(zeros, zeros, Operand(1), LeaveCC, eq); |
| #endif |
| } |
| |
| |
| // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
| // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
| // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
| // scratch register. Destroys the source register. No GC occurs during this |
| // stub so you don't have to set up the frame. |
| class ConvertToDoubleStub : public CodeStub { |
| public: |
| ConvertToDoubleStub(Register result_reg_1, |
| Register result_reg_2, |
| Register source_reg, |
| Register scratch_reg) |
| : result1_(result_reg_1), |
| result2_(result_reg_2), |
| source_(source_reg), |
| zeros_(scratch_reg) { } |
| |
| private: |
| Register result1_; |
| Register result2_; |
| Register source_; |
| Register zeros_; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 14> {}; |
| |
| Major MajorKey() { return ConvertToDouble; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return result1_.code() + |
| (result2_.code() << 4) + |
| (source_.code() << 8) + |
| (zeros_.code() << 12); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "ConvertToDoubleStub"; } |
| |
| #ifdef DEBUG |
| void Print() { PrintF("ConvertToDoubleStub\n"); } |
| #endif |
| }; |
| |
| |
| void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
| #ifndef BIG_ENDIAN_FLOATING_POINT |
| Register exponent = result1_; |
| Register mantissa = result2_; |
| #else |
| Register exponent = result2_; |
| Register mantissa = result1_; |
| #endif |
| Label not_special; |
| // Convert from Smi to integer. |
| __ mov(source_, Operand(source_, ASR, kSmiTagSize)); |
| // Move sign bit from source to destination. This works because the sign bit |
| // in the exponent word of the double has the same position and polarity as |
| // the 2's complement sign bit in a Smi. |
| ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); |
| // Subtract from 0 if source was negative. |
| __ rsb(source_, source_, Operand(0), LeaveCC, ne); |
| __ cmp(source_, Operand(1)); |
| __ b(gt, ¬_special); |
| |
| // We have -1, 0 or 1, which we treat specially. |
| __ cmp(source_, Operand(0)); |
| // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
| static const uint32_t exponent_word_for_1 = |
| HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
| __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, ne); |
| // 1, 0 and -1 all have 0 for the second word. |
| __ mov(mantissa, Operand(0)); |
| __ Ret(); |
| |
| __ bind(¬_special); |
| // Count leading zeros. Uses result2 for a scratch register on pre-ARM5. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| CountLeadingZeros(masm, source_, mantissa, zeros_); |
| // Compute exponent and or it into the exponent register. |
| // We use result2 as a scratch register here. |
| __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias)); |
| __ orr(exponent, |
| exponent, |
| Operand(mantissa, LSL, HeapNumber::kExponentShift)); |
| // Shift up the source chopping the top bit off. |
| __ add(zeros_, zeros_, Operand(1)); |
| // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
| __ mov(source_, Operand(source_, LSL, zeros_)); |
| // Compute lower part of fraction (last 12 bits). |
| __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| // And the top (top 20 bits). |
| __ orr(exponent, |
| exponent, |
| Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
| __ Ret(); |
| } |
| |
| |
| // This stub can convert a signed int32 to a heap number (double). It does |
| // not work for int32s that are in Smi range! No GC occurs during this stub |
| // so you don't have to set up the frame. |
| class WriteInt32ToHeapNumberStub : public CodeStub { |
| public: |
| WriteInt32ToHeapNumberStub(Register the_int, |
| Register the_heap_number, |
| Register scratch) |
| : the_int_(the_int), |
| the_heap_number_(the_heap_number), |
| scratch_(scratch) { } |
| |
| private: |
| Register the_int_; |
| Register the_heap_number_; |
| Register scratch_; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 14> {}; |
| |
| Major MajorKey() { return WriteInt32ToHeapNumber; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return the_int_.code() + |
| (the_heap_number_.code() << 4) + |
| (scratch_.code() << 8); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "WriteInt32ToHeapNumberStub"; } |
| |
| #ifdef DEBUG |
| void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); } |
| #endif |
| }; |
| |
| |
| // See comment for class. |
| void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
| Label max_negative_int; |
| // the_int_ has the answer which is a signed int32 but not a Smi. |
| // We test for the special value that has a different exponent. This test |
| // has the neat side effect of setting the flags according to the sign. |
| ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ cmp(the_int_, Operand(0x80000000u)); |
| __ b(eq, &max_negative_int); |
| // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
| uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ mov(scratch_, Operand(non_smi_exponent)); |
| // Set the sign bit in scratch_ if the value was negative. |
| __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); |
| // Subtract from 0 if the value was negative. |
| __ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs); |
| // We should be masking the implict first digit of the mantissa away here, |
| // but it just ends up combining harmlessly with the last digit of the |
| // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
| // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
| ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kExponentOffset)); |
| __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| |
| __ bind(&max_negative_int); |
| // The max negative int32 is stored as a positive number in the mantissa of |
| // a double because it uses a sign bit instead of using two's complement. |
| // The actual mantissa bits stored are all 0 because the implicit most |
| // significant 1 bit is not stored. |
| non_smi_exponent += 1 << HeapNumber::kExponentShift; |
| __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
| __ mov(ip, Operand(0)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| } |
| |
| |
| // Handle the case where the lhs and rhs are the same object. |
| // Equality is almost reflexive (everything but NaN), so this is a test |
| // for "identity and not NaN". |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan) { |
| Label not_identical; |
| Label heap_number, return_equal; |
| Register exp_mask_reg = r5; |
| __ cmp(r0, Operand(r1)); |
| __ b(ne, ¬_identical); |
| |
| // The two objects are identical. If we know that one of them isn't NaN then |
| // we now know they test equal. |
| if (cc != eq || !never_nan_nan) { |
| __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| |
| // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // They are both equal and they are not both Smis so both of them are not |
| // Smis. If it's not a heap number, then return equal. |
| if (cc == lt || cc == gt) { |
| __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, slow); |
| } else { |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(eq, &heap_number); |
| // Comparing JS objects with <=, >= is complicated. |
| if (cc != eq) { |
| __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(ge, slow); |
| // Normally here we fall through to return_equal, but undefined is |
| // special: (undefined == undefined) == true, but |
| // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| if (cc == le || cc == ge) { |
| __ cmp(r4, Operand(ODDBALL_TYPE)); |
| __ b(ne, &return_equal); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, Operand(r2)); |
| __ b(ne, &return_equal); |
| if (cc == le) { |
| // undefined <= undefined should fail. |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| // undefined >= undefined should fail. |
| __ mov(r0, Operand(LESS)); |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| } |
| } |
| } |
| } |
| |
| __ bind(&return_equal); |
| if (cc == lt) { |
| __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. |
| } else if (cc == gt) { |
| __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. |
| } else { |
| __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| |
| if (cc != eq || !never_nan_nan) { |
| // For less and greater we don't have to check for NaN since the result of |
| // x < x is false regardless. For the others here is some code to check |
| // for NaN. |
| if (cc != lt && cc != gt) { |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if it's |
| // not NaN. |
| |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // Read top bits of double representation (second word of value). |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| // Test that exponent bits are all set. |
| __ and_(r3, r2, Operand(exp_mask_reg)); |
| __ cmp(r3, Operand(exp_mask_reg)); |
| __ b(ne, &return_equal); |
| |
| // Shift out flag and all exponent bits, retaining only mantissa. |
| __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
| // Or with all low-bits of mantissa. |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ orr(r0, r3, Operand(r2), SetCC); |
| // For equal we already have the right value in r0: Return zero (equal) |
| // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
| // not (it's a NaN). For <= and >= we need to load r0 with the failing |
| // value if it's a NaN. |
| if (cc != eq) { |
| // All-zero means Infinity means equal. |
| __ mov(pc, Operand(lr), LeaveCC, eq); // Return equal |
| if (cc == le) { |
| __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. |
| } else { |
| __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. |
| } |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| } |
| // No fall through here. |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict) { |
| Label rhs_is_smi; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &rhs_is_smi); |
| |
| // Lhs is a Smi. Check whether the rhs is a heap number. |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If rhs is not a number and lhs is a Smi then strict equality cannot |
| // succeed. Return non-equal (r0 is already not zero) |
| __ mov(pc, Operand(lr), LeaveCC, ne); // Return. |
| } else { |
| // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Lhs (r1) is a smi, rhs (r0) is a number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert lhs to a double in d7 . |
| CpuFeatures::Scope scope(VFP3); |
| __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt(d7, s15); |
| // Load the double from rhs, tagged HeapNumber r0, to d6. |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| __ push(lr); |
| // Convert lhs to a double in r2, r3. |
| __ mov(r7, Operand(r1)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Load rhs to a double in r0, r1. |
| __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); |
| __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| __ pop(lr); |
| } |
| |
| // We now have both loaded as doubles but we can skip the lhs nan check |
| // since it's a smi. |
| __ jmp(lhs_not_nan); |
| |
| __ bind(&rhs_is_smi); |
| // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
| __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If lhs is not a number and rhs is a smi then strict equality cannot |
| // succeed. Return non-equal. |
| __ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal. |
| __ mov(pc, Operand(lr), LeaveCC, ne); // Return. |
| } else { |
| // Smi compared non-strictly with a non-smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Rhs (r0) is a smi, lhs (r1) is a heap number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert rhs to a double in d6 . |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from lhs, tagged HeapNumber r1, to d7. |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt(d6, s13); |
| } else { |
| __ push(lr); |
| // Load lhs to a double in r2, r3. |
| __ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize)); |
| __ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| // Convert rhs to a double in r0, r1. |
| __ mov(r7, Operand(r0)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| // Fall through to both_loaded_as_doubles. |
| } |
| |
| |
| void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| Label one_is_nan, neither_is_nan; |
| Label lhs_not_nan_exp_mask_is_loaded; |
| |
| Register exp_mask_reg = r5; |
| |
| __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| __ and_(r4, lhs_exponent, Operand(exp_mask_reg)); |
| __ cmp(r4, Operand(exp_mask_reg)); |
| __ b(ne, &lhs_not_nan_exp_mask_is_loaded); |
| __ mov(r4, |
| Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(lhs_mantissa, Operand(0)); |
| __ b(ne, &one_is_nan); |
| |
| __ bind(lhs_not_nan); |
| __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| __ bind(&lhs_not_nan_exp_mask_is_loaded); |
| __ and_(r4, rhs_exponent, Operand(exp_mask_reg)); |
| __ cmp(r4, Operand(exp_mask_reg)); |
| __ b(ne, &neither_is_nan); |
| __ mov(r4, |
| Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(rhs_mantissa, Operand(0)); |
| __ b(eq, &neither_is_nan); |
| |
| __ bind(&one_is_nan); |
| // NaN comparisons always fail. |
| // Load whatever we need in r0 to make the comparison fail. |
| if (cc == lt || cc == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&neither_is_nan); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| |
| // r0, r1, r2, r3 have the two doubles. Neither is a NaN. |
| if (cc == eq) { |
| // Doubles are not equal unless they have the same bit pattern. |
| // Exception: 0 and -0. |
| __ cmp(rhs_mantissa, Operand(lhs_mantissa)); |
| __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); |
| // Return non-zero if the numbers are unequal. |
| __ mov(pc, Operand(lr), LeaveCC, ne); |
| |
| __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); |
| // If exponents are equal then return 0. |
| __ mov(pc, Operand(lr), LeaveCC, eq); |
| |
| // Exponents are unequal. The only way we can return that the numbers |
| // are equal is if one is -0 and the other is 0. We already dealt |
| // with the case where both are -0 or both are 0. |
| // We start by seeing if the mantissas (that are equal) or the bottom |
| // 31 bits of the rhs exponent are non-zero. If so we return not |
| // equal. |
| __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); |
| __ mov(r0, Operand(r4), LeaveCC, ne); |
| __ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally. |
| // Now they are equal if and only if the lhs exponent is zero in its |
| // low 31 bits. |
| __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); |
| __ mov(pc, Operand(lr)); |
| } else { |
| // Call a native function to do a comparison between two non-NaNs. |
| // Call C routine that may not cause GC or other trouble. |
| __ mov(r5, Operand(ExternalReference::compare_doubles())); |
| __ Jump(r5); // Tail call. |
| } |
| } |
| |
| |
| // See comment at call site. |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm) { |
| // If either operand is a JSObject or an oddball value, then they are |
| // not equal since their pointers are different. |
| // There is no test for undetectability in strict equality. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| Label first_non_object; |
| // Get the type of the first operand into r2 and compare it with |
| // FIRST_JS_OBJECT_TYPE. |
| __ CompareObjectType(r0, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &first_non_object); |
| |
| // Return non-zero (r0 is not zero) |
| Label return_not_equal; |
| __ bind(&return_not_equal); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r2, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| __ CompareObjectType(r1, r3, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r3, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| // Now that we have the types we might as well check for symbol-symbol. |
| // Ensure that no non-strings have the symbol bit set. |
| ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
| ASSERT(kSymbolTag != 0); |
| __ and_(r2, r2, Operand(r3)); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(ne, &return_not_equal); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
| Label* both_loaded_as_doubles, |
| Label* not_heap_numbers, |
| Label* slow) { |
| __ CompareObjectType(r0, r3, r2, HEAP_NUMBER_TYPE); |
| __ b(ne, not_heap_numbers); |
| __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ cmp(r2, r3); |
| __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. |
| |
| // Both are heap numbers. Load them up then jump to the code we have |
| // for that. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| __ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| __ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize)); |
| __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); |
| __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| } |
| __ jmp(both_loaded_as_doubles); |
| } |
| |
| |
| // Fast negative check for symbol-to-symbol equality. |
| static void EmitCheckForSymbols(MacroAssembler* masm, Label* slow) { |
| // r2 is object type of r0. |
| // Ensure that no non-strings have the symbol bit set. |
| ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
| ASSERT(kSymbolTag != 0); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(eq, slow); |
| __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
| __ tst(r3, Operand(kIsSymbolMask)); |
| __ b(eq, slow); |
| |
| // Both are symbols. We already checked they weren't the same pointer |
| // so they are not equal. |
| __ mov(r0, Operand(1)); // Non-zero indicates not equal. |
| __ mov(pc, Operand(lr)); // Return. |
| } |
| |
| |
| // On entry r0 (rhs) and r1 (lhs) are the values to be compared. |
| // On exit r0 is 0, positive or negative to indicate the result of |
| // the comparison. |
| void CompareStub::Generate(MacroAssembler* masm) { |
| Label slow; // Call builtin. |
| Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Handle the case where the objects are identical. Either returns the answer |
| // or goes to slow. Only falls through if the objects were not identical. |
| EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
| |
| // If either is a Smi (we know that not both are), then they can only |
| // be strictly equal if the other is a HeapNumber. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ and_(r2, r0, Operand(r1)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smis); |
| // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
| // 1) Return the answer. |
| // 2) Go to slow. |
| // 3) Fall through to both_loaded_as_doubles. |
| // 4) Jump to lhs_not_nan. |
| // In cases 3 and 4 we have found out we were dealing with a number-number |
| // comparison. If VFP3 is supported the double values of the numbers have |
| // been loaded into d7 and d6. Otherwise, the double values have been loaded |
| // into r0, r1, r2, and r3. |
| EmitSmiNonsmiComparison(masm, &lhs_not_nan, &slow, strict_); |
| |
| __ bind(&both_loaded_as_doubles); |
| // The arguments have been converted to doubles and stored in d6 and d7, if |
| // VFP3 is supported, or in r0, r1, r2, and r3. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ bind(&lhs_not_nan); |
| CpuFeatures::Scope scope(VFP3); |
| Label no_nan; |
| // ARMv7 VFP3 instructions to implement double precision comparison. |
| __ vcmp(d7, d6); |
| __ vmrs(pc); // Move vector status bits to normal status bits. |
| Label nan; |
| __ b(vs, &nan); |
| __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| __ mov(r0, Operand(LESS), LeaveCC, lt); |
| __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| __ mov(pc, Operand(lr)); |
| |
| __ bind(&nan); |
| // If one of the sides was a NaN then the v flag is set. Load r0 with |
| // whatever it takes to make the comparison fail, since comparisons with NaN |
| // always fail. |
| if (cc_ == lt || cc_ == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ mov(pc, Operand(lr)); |
| } else { |
| // Checks for NaN in the doubles we have loaded. Can return the answer or |
| // fall through if neither is a NaN. Also binds lhs_not_nan. |
| EmitNanCheck(masm, &lhs_not_nan, cc_); |
| // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the |
| // answer. Never falls through. |
| EmitTwoNonNanDoubleComparison(masm, cc_); |
| } |
| |
| __ bind(¬_smis); |
| // At this point we know we are dealing with two different objects, |
| // and neither of them is a Smi. The objects are in r0 and r1. |
| if (strict_) { |
| // This returns non-equal for some object types, or falls through if it |
| // was not lucky. |
| EmitStrictTwoHeapObjectCompare(masm); |
| } |
| |
| Label check_for_symbols; |
| Label flat_string_check; |
| // Check for heap-number-heap-number comparison. Can jump to slow case, |
| // or load both doubles into r0, r1, r2, r3 and jump to the code that handles |
| // that case. If the inputs are not doubles then jumps to check_for_symbols. |
| // In this case r2 will contain the type of r0. Never falls through. |
| EmitCheckForTwoHeapNumbers(masm, |
| &both_loaded_as_doubles, |
| &check_for_symbols, |
| &flat_string_check); |
| |
| __ bind(&check_for_symbols); |
| // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
| // symbols. |
| if (cc_ == eq && !strict_) { |
| // Either jumps to slow or returns the answer. Assumes that r2 is the type |
| // of r0 on entry. |
| EmitCheckForSymbols(masm, &flat_string_check); |
| } |
| |
| // Check for both being sequential ASCII strings, and inline if that is the |
| // case. |
| __ bind(&flat_string_check); |
| |
| __ JumpIfNonSmisNotBothSequentialAsciiStrings(r0, r1, r2, r3, &slow); |
| |
| __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| r1, |
| r0, |
| r2, |
| r3, |
| r4, |
| r5); |
| // Never falls through to here. |
| |
| __ bind(&slow); |
| |
| __ push(r1); |
| __ push(r0); |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript native; |
| if (cc_ == eq) { |
| native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| native = Builtins::COMPARE; |
| int ncr; // NaN compare result |
| if (cc_ == lt || cc_ == le) { |
| ncr = GREATER; |
| } else { |
| ASSERT(cc_ == gt || cc_ == ge); // remaining cases |
| ncr = LESS; |
| } |
| __ mov(r0, Operand(Smi::FromInt(ncr))); |
| __ push(r0); |
| } |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(native, JUMP_JS); |
| } |
| |
| |
| // Allocates a heap number or jumps to the label if the young space is full and |
| // a scavenge is needed. |
| static void AllocateHeapNumber( |
| MacroAssembler* masm, |
| Label* need_gc, // Jump here if young space is full. |
| Register result, // The tagged address of the new heap number. |
| Register scratch1, // A scratch register. |
| Register scratch2) { // Another scratch register. |
| // Allocate an object in the heap for the heap number and tag it as a heap |
| // object. |
| __ AllocateInNewSpace(HeapNumber::kSize / kPointerSize, |
| result, |
| scratch1, |
| scratch2, |
| need_gc, |
| TAG_OBJECT); |
| |
| // Get heap number map and store it in the allocated object. |
| __ LoadRoot(scratch1, Heap::kHeapNumberMapRootIndex); |
| __ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
| } |
| |
| |
| // We fall into this code if the operands were Smis, but the result was |
| // not (eg. overflow). We branch into this code (to the not_smi label) if |
| // the operands were not both Smi. The operands are in r0 and r1. In order |
| // to call the C-implemented binary fp operation routines we need to end up |
| // with the double precision floating point operands in r0 and r1 (for the |
| // value in r1) and r2 and r3 (for the value in r0). |
| static void HandleBinaryOpSlowCases(MacroAssembler* masm, |
| Label* not_smi, |
| const Builtins::JavaScript& builtin, |
| Token::Value operation, |
| OverwriteMode mode) { |
| Label slow, slow_pop_2_first, do_the_call; |
| Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; |
| // Smi-smi case (overflow). |
| // Since both are Smis there is no heap number to overwrite, so allocate. |
| // The new heap number is in r5. r6 and r7 are scratch. |
| AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| |
| // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, |
| // using registers d7 and d6 for the double values. |
| bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && |
| Token::MOD != operation; |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt(d7, s15); |
| __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt(d6, s13); |
| } else { |
| // Write Smi from r0 to r3 and r2 in double format. r6 is scratch. |
| __ mov(r7, Operand(r0)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| __ push(lr); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Write Smi from r1 to r1 and r0 in double format. r6 is scratch. |
| __ mov(r7, Operand(r1)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| __ jmp(&do_the_call); // Tail call. No return. |
| |
| // We jump to here if something goes wrong (one param is not a number of any |
| // sort or new-space allocation fails). |
| __ bind(&slow); |
| |
| // Push arguments to the stack |
| __ push(r1); |
| __ push(r0); |
| |
| if (Token::ADD == operation) { |
| // Test for string arguments before calling runtime. |
| // r1 : first argument |
| // r0 : second argument |
| // sp[0] : second argument |
| // sp[4] : first argument |
| |
| Label not_strings, not_string1, string1; |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, ¬_string1); |
| __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, ¬_string1); |
| |
| // First argument is a a string, test second. |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &string1); |
| __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, &string1); |
| |
| // First and second argument are strings. |
| StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
| __ TailCallStub(&stub); |
| |
| // Only first argument is a string. |
| __ bind(&string1); |
| __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS); |
| |
| // First argument was not a string, test second. |
| __ bind(¬_string1); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, ¬_strings); |
| __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, ¬_strings); |
| |
| // Only second argument is a string. |
| __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); |
| |
| __ bind(¬_strings); |
| } |
| |
| __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. |
| |
| // We branch here if at least one of r0 and r1 is not a Smi. |
| __ bind(not_smi); |
| if (mode == NO_OVERWRITE) { |
| // In the case where there is no chance of an overwritable float we may as |
| // well do the allocation immediately while r0 and r1 are untouched. |
| AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| } |
| |
| // Move r0 to a double in r2-r3. |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| if (mode == OVERWRITE_RIGHT) { |
| __ mov(r5, Operand(r0)); // Overwrite this heap number. |
| } |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber r0 to d7. |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| // Calling convention says that second double is in r2 and r3. |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4)); |
| } |
| __ jmp(&finished_loading_r0); |
| __ bind(&r0_is_smi); |
| if (mode == OVERWRITE_RIGHT) { |
| // We can't overwrite a Smi so get address of new heap number into r5. |
| AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| } |
| |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi in r0 to double in d7. |
| __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt(d7, s15); |
| } else { |
| // Write Smi from r0 to r3 and r2 in double format. |
| __ mov(r7, Operand(r0)); |
| ConvertToDoubleStub stub3(r3, r2, r7, r6); |
| __ push(lr); |
| __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| __ bind(&finished_loading_r0); |
| |
| // Move r1 to a double in r0-r1. |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| if (mode == OVERWRITE_LEFT) { |
| __ mov(r5, Operand(r1)); // Overwrite this heap number. |
| } |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber r1 to d6. |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| // Calling convention says that first double is in r0 and r1. |
| __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4)); |
| } |
| __ jmp(&finished_loading_r1); |
| __ bind(&r1_is_smi); |
| if (mode == OVERWRITE_LEFT) { |
| // We can't overwrite a Smi so get address of new heap number into r5. |
| AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| } |
| |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi in r1 to double in d6. |
| __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt(d6, s13); |
| } else { |
| // Write Smi from r1 to r1 and r0 in double format. |
| __ mov(r7, Operand(r1)); |
| ConvertToDoubleStub stub4(r1, r0, r7, r6); |
| __ push(lr); |
| __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| __ bind(&finished_loading_r1); |
| |
| __ bind(&do_the_call); |
| // If we are inlining the operation using VFP3 instructions for |
| // add, subtract, multiply, or divide, the arguments are in d6 and d7. |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // ARMv7 VFP3 instructions to implement |
| // double precision, add, subtract, multiply, divide. |
| |
| if (Token::MUL == operation) { |
| __ vmul(d5, d6, d7); |
| } else if (Token::DIV == operation) { |
| __ vdiv(d5, d6, d7); |
| } else if (Token::ADD == operation) { |
| __ vadd(d5, d6, d7); |
| } else if (Token::SUB == operation) { |
| __ vsub(d5, d6, d7); |
| } else { |
| UNREACHABLE(); |
| } |
| __ sub(r0, r5, Operand(kHeapObjectTag)); |
| __ vstr(d5, r0, HeapNumber::kValueOffset); |
| __ add(r0, r0, Operand(kHeapObjectTag)); |
| __ mov(pc, lr); |
| return; |
| } |
| |
| // If we did not inline the operation, then the arguments are in: |
| // r0: Left value (least significant part of mantissa). |
| // r1: Left value (sign, exponent, top of mantissa). |
| // r2: Right value (least significant part of mantissa). |
| // r3: Right value (sign, exponent, top of mantissa). |
| // r5: Address of heap number for result. |
| |
| __ push(lr); // For later. |
| __ push(r5); // Address of heap number that is answer. |
| __ AlignStack(0); |
| // Call C routine that may not cause GC or other trouble. |
| __ mov(r5, Operand(ExternalReference::double_fp_operation(operation))); |
| __ Call(r5); |
| __ pop(r4); // Address of heap number. |
| __ cmp(r4, Operand(Smi::FromInt(0))); |
| __ pop(r4, eq); // Conditional pop instruction to get rid of alignment push. |
| // Store answer in the overwritable heap number. |
| #if !defined(USE_ARM_EABI) |
| // Double returned in fp coprocessor register 0 and 1, encoded as register |
| // cr8. Offsets must be divisible by 4 for coprocessor so we need to |
| // substract the tag from r4. |
| __ sub(r5, r4, Operand(kHeapObjectTag)); |
| __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset)); |
| #else |
| // Double returned in registers 0 and 1. |
| __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset)); |
| __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4)); |
| #endif |
| __ mov(r0, Operand(r4)); |
| // And we are done. |
| __ pop(pc); |
| } |
| |
| |
| // Tries to get a signed int32 out of a double precision floating point heap |
| // number. Rounds towards 0. Fastest for doubles that are in the ranges |
| // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds |
| // almost to the range of signed int32 values that are not Smis. Jumps to the |
| // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 |
| // (excluding the endpoints). |
| static void GetInt32(MacroAssembler* masm, |
| Register source, |
| Register dest, |
| Register scratch, |
| Register scratch2, |
| Label* slow) { |
| Label right_exponent, done; |
| // Get exponent word. |
| __ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| __ and_(scratch2, scratch, Operand(HeapNumber::kExponentMask)); |
| // Load dest with zero. We use this either for the final shift or |
| // for the answer. |
| __ mov(dest, Operand(0)); |
| // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
| // the exponent that we are fastest at and also the highest exponent we can |
| // handle here. |
| const uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ cmp(scratch2, Operand(non_smi_exponent)); |
| // If we have a match of the int32-but-not-Smi exponent then skip some logic. |
| __ b(eq, &right_exponent); |
| // If the exponent is higher than that then go to slow case. This catches |
| // numbers that don't fit in a signed int32, infinities and NaNs. |
| __ b(gt, slow); |
| |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| // it rounds to zero. |
| const uint32_t zero_exponent = |
| (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| __ sub(scratch2, scratch2, Operand(zero_exponent), SetCC); |
| // Dest already has a Smi zero. |
| __ b(lt, &done); |
| if (!CpuFeatures::IsSupported(VFP3)) { |
| // We have a shifted exponent between 0 and 30 in scratch2. |
| __ mov(dest, Operand(scratch2, LSR, HeapNumber::kExponentShift)); |
| // We now have the exponent in dest. Subtract from 30 to get |
| // how much to shift down. |
| __ rsb(dest, dest, Operand(30)); |
| } |
| __ bind(&right_exponent); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // ARMv7 VFP3 instructions implementing double precision to integer |
| // conversion using round to zero. |
| __ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| __ vmov(d7, scratch2, scratch); |
| __ vcvt(s15, d7); |
| __ vmov(dest, s15); |
| } else { |
| // Get the top bits of the mantissa. |
| __ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); |
| // Put back the implicit 1. |
| __ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
| // distance. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ mov(scratch2, Operand(scratch2, LSL, shift_distance)); |
| // Put sign in zero flag. |
| __ tst(scratch, Operand(HeapNumber::kSignMask)); |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| __ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 22 bits to get the last 10 bits. |
| __ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); |
| // Move down according to the exponent. |
| __ mov(dest, Operand(scratch, LSR, dest)); |
| // Fix sign if sign bit was set. |
| __ rsb(dest, dest, Operand(0), LeaveCC, ne); |
| } |
| __ bind(&done); |
| } |
| |
| // For bitwise ops where the inputs are not both Smis we here try to determine |
| // whether both inputs are either Smis or at least heap numbers that can be |
| // represented by a 32 bit signed value. We truncate towards zero as required |
| // by the ES spec. If this is the case we do the bitwise op and see if the |
| // result is a Smi. If so, great, otherwise we try to find a heap number to |
| // write the answer into (either by allocating or by overwriting). |
| // On entry the operands are in r0 and r1. On exit the answer is in r0. |
| void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm) { |
| Label slow, result_not_a_smi; |
| Label r0_is_smi, r1_is_smi; |
| Label done_checking_r0, done_checking_r1; |
| |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| GetInt32(masm, r1, r3, r5, r4, &slow); |
| __ jmp(&done_checking_r1); |
| __ bind(&r1_is_smi); |
| __ mov(r3, Operand(r1, ASR, 1)); |
| __ bind(&done_checking_r1); |
| |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| GetInt32(masm, r0, r2, r5, r4, &slow); |
| __ jmp(&done_checking_r0); |
| __ bind(&r0_is_smi); |
| __ mov(r2, Operand(r0, ASR, 1)); |
| __ bind(&done_checking_r0); |
| |
| // r0 and r1: Original operands (Smi or heap numbers). |
| // r2 and r3: Signed int32 operands. |
| switch (op_) { |
| case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break; |
| case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break; |
| case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break; |
| case Token::SAR: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, ASR, r2)); |
| break; |
| case Token::SHR: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSR, r2), SetCC); |
| // SHR is special because it is required to produce a positive answer. |
| // The code below for writing into heap numbers isn't capable of writing |
| // the register as an unsigned int so we go to slow case if we hit this |
| // case. |
| __ b(mi, &slow); |
| break; |
| case Token::SHL: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSL, r2)); |
| break; |
| default: UNREACHABLE(); |
| } |
| // check that the *signed* result fits in a smi |
| __ add(r3, r2, Operand(0x40000000), SetCC); |
| __ b(mi, &result_not_a_smi); |
| __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| __ Ret(); |
| |
| Label have_to_allocate, got_a_heap_number; |
| __ bind(&result_not_a_smi); |
| switch (mode_) { |
| case OVERWRITE_RIGHT: { |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &have_to_allocate); |
| __ mov(r5, Operand(r0)); |
| break; |
| } |
| case OVERWRITE_LEFT: { |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &have_to_allocate); |
| __ mov(r5, Operand(r1)); |
| break; |
| } |
| case NO_OVERWRITE: { |
| // Get a new heap number in r5. r6 and r7 are scratch. |
| AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| } |
| default: break; |
| } |
| __ bind(&got_a_heap_number); |
| // r2: Answer as signed int32. |
| // r5: Heap number to write answer into. |
| |
| // Nothing can go wrong now, so move the heap number to r0, which is the |
| // result. |
| __ mov(r0, Operand(r5)); |
| |
| // Tail call that writes the int32 in r2 to the heap number in r0, using |
| // r3 as scratch. r0 is preserved and returned. |
| WriteInt32ToHeapNumberStub stub(r2, r0, r3); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| |
| if (mode_ != NO_OVERWRITE) { |
| __ bind(&have_to_allocate); |
| // Get a new heap number in r5. r6 and r7 are scratch. |
| AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| __ jmp(&got_a_heap_number); |
| } |
| |
| // If all else failed then we go to the runtime system. |
| __ bind(&slow); |
| __ push(r1); // restore stack |
| __ push(r0); |
| switch (op_) { |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_JS); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_JS); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| // Can we multiply by x with max two shifts and an add. |
| // This answers yes to all integers from 2 to 10. |
| static bool IsEasyToMultiplyBy(int x) { |
| if (x < 2) return false; // Avoid special cases. |
| if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows. |
| if (IsPowerOf2(x)) return true; // Simple shift. |
| if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift. |
| if (IsPowerOf2(x + 1)) return true; // Patterns like 11111. |
| return false; |
| } |
| |
| |
| // Can multiply by anything that IsEasyToMultiplyBy returns true for. |
| // Source and destination may be the same register. This routine does |
| // not set carry and overflow the way a mul instruction would. |
| static void MultiplyByKnownInt(MacroAssembler* masm, |
| Register source, |
| Register destination, |
| int known_int) { |
| if (IsPowerOf2(known_int)) { |
| __ mov(destination, Operand(source, LSL, BitPosition(known_int))); |
| } else if (PopCountLessThanEqual2(known_int)) { |
| int first_bit = BitPosition(known_int); |
| int second_bit = BitPosition(known_int ^ (1 << first_bit)); |
| __ add(destination, source, Operand(source, LSL, second_bit - first_bit)); |
| if (first_bit != 0) { |
| __ mov(destination, Operand(destination, LSL, first_bit)); |
| } |
| } else { |
| ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111. |
| int the_bit = BitPosition(known_int + 1); |
| __ rsb(destination, source, Operand(source, LSL, the_bit)); |
| } |
| } |
| |
| |
| // This function (as opposed to MultiplyByKnownInt) takes the known int in a |
| // a register for the cases where it doesn't know a good trick, and may deliver |
| // a result that needs shifting. |
| static void MultiplyByKnownInt2( |
| MacroAssembler* masm, |
| Register result, |
| Register source, |
| Register known_int_register, // Smi tagged. |
| int known_int, |
| int* required_shift) { // Including Smi tag shift |
| switch (known_int) { |
| case 3: |
| __ add(result, source, Operand(source, LSL, 1)); |
| *required_shift = 1; |
| break; |
| case 5: |
| __ add(result, source, Operand(source, LSL, 2)); |
| *required_shift = 1; |
| break; |
| case 6: |
| __ add(result, source, Operand(source, LSL, 1)); |
| *required_shift = 2; |
| break; |
| case 7: |
| __ rsb(result, source, Operand(source, LSL, 3)); |
| *required_shift = 1; |
| break; |
| case 9: |
| __ add(result, source, Operand(source, LSL, 3)); |
| *required_shift = 1; |
| break; |
| case 10: |
| __ add(result, source, Operand(source, LSL, 2)); |
| *required_shift = 2; |
| break; |
| default: |
| ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient. |
| __ mul(result, source, known_int_register); |
| *required_shift = 0; |
| } |
| } |
| |
| |
| const char* GenericBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int len = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(len); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, len), |
| "GenericBinaryOpStub_%s_%s%s", |
| op_name, |
| overwrite_name, |
| specialized_on_rhs_ ? "_ConstantRhs" : 0); |
| return name_; |
| } |
| |
| |
| |
| void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| // r1 : x |
| // r0 : y |
| // result : r0 |
| |
| // All ops need to know whether we are dealing with two Smis. Set up r2 to |
| // tell us that. |
| __ orr(r2, r1, Operand(r0)); // r2 = x | y; |
| |
| switch (op_) { |
| case Token::ADD: { |
| Label not_smi; |
| // Fast path. |
| ASSERT(kSmiTag == 0); // Adjust code below. |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
| |
| HandleBinaryOpSlowCases(masm, |
| ¬_smi, |
| Builtins::ADD, |
| Token::ADD, |
| mode_); |
| break; |
| } |
| |
| case Token::SUB: { |
| Label not_smi; |
| // Fast path. |
| ASSERT(kSmiTag == 0); // Adjust code below. |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
| |
| HandleBinaryOpSlowCases(masm, |
| ¬_smi, |
| Builtins::SUB, |
| Token::SUB, |
| mode_); |
| break; |
| } |
| |
| case Token::MUL: { |
| Label not_smi, slow; |
| ASSERT(kSmiTag == 0); // adjust code below |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| // Remove tag from one operand (but keep sign), so that result is Smi. |
| __ mov(ip, Operand(r0, ASR, kSmiTagSize)); |
| // Do multiplication |
| __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1. |
| // Go slow on overflows (overflow bit is not set). |
| __ mov(ip, Operand(r3, ASR, 31)); |
| __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical |
| __ b(ne, &slow); |
| // Go slow on zero result to handle -0. |
| __ tst(r3, Operand(r3)); |
| __ mov(r0, Operand(r3), LeaveCC, ne); |
| __ Ret(ne); |
| // We need -0 if we were multiplying a negative number with 0 to get 0. |
| // We know one of them was zero. |
| __ add(r2, r0, Operand(r1), SetCC); |
| __ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl); |
| __ Ret(pl); // Return Smi 0 if the non-zero one was positive. |
| // Slow case. We fall through here if we multiplied a negative number |
| // with 0, because that would mean we should produce -0. |
| __ bind(&slow); |
| |
| HandleBinaryOpSlowCases(masm, |
| ¬_smi, |
| Builtins::MUL, |
| Token::MUL, |
| mode_); |
| break; |
| } |
| |
| case Token::DIV: |
| case Token::MOD: { |
| Label not_smi; |
| if (specialized_on_rhs_) { |
| Label smi_is_unsuitable; |
| __ BranchOnNotSmi(r1, ¬_smi); |
| if (IsPowerOf2(constant_rhs_)) { |
| if (op_ == Token::MOD) { |
| __ and_(r0, |
| r1, |
| Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), |
| SetCC); |
| // We now have the answer, but if the input was negative we also |
| // have the sign bit. Our work is done if the result is |
| // positive or zero: |
| __ Ret(pl); |
| // A mod of a negative left hand side must return a negative number. |
| // Unfortunately if the answer is 0 then we must return -0. And we |
| // already optimistically trashed r0 so we may need to restore it. |
| __ eor(r0, r0, Operand(0x80000000u), SetCC); |
| // Next two instructions are conditional on the answer being -0. |
| __ mov(r0, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq); |
| __ b(eq, &smi_is_unsuitable); |
| // We need to subtract the dividend. Eg. -3 % 4 == -3. |
| __ sub(r0, r0, Operand(Smi::FromInt(constant_rhs_))); |
| } else { |
| ASSERT(op_ == Token::DIV); |
| __ tst(r1, |
| Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1))); |
| __ b(ne, &smi_is_unsuitable); // Go slow on negative or remainder. |
| int shift = 0; |
| int d = constant_rhs_; |
| while ((d & 1) == 0) { |
| d >>= 1; |
| shift++; |
| } |
| __ mov(r0, Operand(r1, LSR, shift)); |
| __ bic(r0, r0, Operand(kSmiTagMask)); |
| } |
| } else { |
| // Not a power of 2. |
| __ tst(r1, Operand(0x80000000u)); |
| __ b(ne, &smi_is_unsuitable); |
| // Find a fixed point reciprocal of the divisor so we can divide by |
| // multiplying. |
| double divisor = 1.0 / constant_rhs_; |
| int shift = 32; |
| double scale = 4294967296.0; // 1 << 32. |
| uint32_t mul; |
| // Maximise the precision of the fixed point reciprocal. |
| while (true) { |
| mul = static_cast<uint32_t>(scale * divisor); |
| if (mul >= 0x7fffffff) break; |
| scale *= 2.0; |
| shift++; |
| } |
| mul++; |
| __ mov(r2, Operand(mul)); |
| __ umull(r3, r2, r2, r1); |
| __ mov(r2, Operand(r2, LSR, shift - 31)); |
| // r2 is r1 / rhs. r2 is not Smi tagged. |
| // r0 is still the known rhs. r0 is Smi tagged. |
| // r1 is still the unkown lhs. r1 is Smi tagged. |
| int required_r4_shift = 0; // Including the Smi tag shift of 1. |
| // r4 = r2 * r0. |
| MultiplyByKnownInt2(masm, |
| r4, |
| r2, |
| r0, |
| constant_rhs_, |
| &required_r4_shift); |
| // r4 << required_r4_shift is now the Smi tagged rhs * (r1 / rhs). |
| if (op_ == Token::DIV) { |
| __ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC); |
| __ b(ne, &smi_is_unsuitable); // There was a remainder. |
| __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| } else { |
| ASSERT(op_ == Token::MOD); |
| __ sub(r0, r1, Operand(r4, LSL, required_r4_shift)); |
| } |
| } |
| __ Ret(); |
| __ bind(&smi_is_unsuitable); |
| } else { |
| __ jmp(¬_smi); |
| } |
| HandleBinaryOpSlowCases(masm, |
| ¬_smi, |
| op_ == Token::MOD ? Builtins::MOD : Builtins::DIV, |
| op_, |
| mode_); |
| break; |
| } |
| |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| Label slow; |
| ASSERT(kSmiTag == 0); // adjust code below |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, &slow); |
| switch (op_) { |
| case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break; |
| case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break; |
| case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break; |
| case Token::SAR: |
| // Remove tags from right operand. |
| __ GetLeastBitsFromSmi(r2, r0, 5); |
| __ mov(r0, Operand(r1, ASR, r2)); |
| // Smi tag result. |
| __ bic(r0, r0, Operand(kSmiTagMask)); |
| break; |
| case Token::SHR: |
| // Remove tags from operands. We can't do this on a 31 bit number |
| // because then the 0s get shifted into bit 30 instead of bit 31. |
| __ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x |
| __ GetLeastBitsFromSmi(r2, r0, 5); |
| __ mov(r3, Operand(r3, LSR, r2)); |
| // Unsigned shift is not allowed to produce a negative number, so |
| // check the sign bit and the sign bit after Smi tagging. |
| __ tst(r3, Operand(0xc0000000)); |
| __ b(ne, &slow); |
| // Smi tag result. |
| __ mov(r0, Operand(r3, LSL, kSmiTagSize)); |
| break; |
| case Token::SHL: |
| // Remove tags from operands. |
| __ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x |
| __ GetLeastBitsFromSmi(r2, r0, 5); |
| __ mov(r3, Operand(r3, LSL, r2)); |
| // Check that the signed result fits in a Smi. |
| __ add(r2, r3, Operand(0x40000000), SetCC); |
| __ b(mi, &slow); |
| __ mov(r0, Operand(r3, LSL, kSmiTagSize)); |
| break; |
| default: UNREACHABLE(); |
| } |
| __ Ret(); |
| __ bind(&slow); |
| HandleNonSmiBitwiseOp(masm); |
| break; |
| } |
| |
| default: UNREACHABLE(); |
| } |
| // This code should be unreachable. |
| __ stop("Unreachable"); |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| // Do tail-call to runtime routine. Runtime routines expect at least one |
| // argument, so give it a Smi. |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ push(r0); |
| __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1, 1); |
| |
| __ StubReturn(1); |
| } |
| |
| |
| void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| Label slow, done; |
| |
| if (op_ == Token::SUB) { |
| // Check whether the value is a smi. |
| Label try_float; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &try_float); |
| |
| // Go slow case if the value of the expression is zero |
| // to make sure that we switch between 0 and -0. |
| __ cmp(r0, Operand(0)); |
| __ b(eq, &slow); |
| |
| // The value of the expression is a smi that is not zero. Try |
| // optimistic subtraction '0 - value'. |
| __ rsb(r1, r0, Operand(0), SetCC); |
| __ b(vs, &slow); |
| |
| __ mov(r0, Operand(r1)); // Set r0 to result. |
| __ b(&done); |
| |
| __ bind(&try_float); |
| __ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| // r0 is a heap number. Get a new heap number in r1. |
| if (overwrite_) { |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| } else { |
| AllocateHeapNumber(masm, &slow, r1, r2, r3); |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); |
| __ mov(r0, Operand(r1)); |
| } |
| } else if (op_ == Token::BIT_NOT) { |
| // Check if the operand is a heap number. |
| __ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| |
| // Convert the heap number is r0 to an untagged integer in r1. |
| GetInt32(masm, r0, r1, r2, r3, &slow); |
| |
| // Do the bitwise operation (move negated) and check if the result |
| // fits in a smi. |
| Label try_float; |
| __ mvn(r1, Operand(r1)); |
| __ add(r2, r1, Operand(0x40000000), SetCC); |
| __ b(mi, &try_float); |
| __ mov(r0, Operand(r1, LSL, kSmiTagSize)); |
| __ b(&done); |
| |
| __ bind(&try_float); |
| if (!overwrite_) { |
| // Allocate a fresh heap number, but don't overwrite r0 until |
| // we're sure we can do it without going through the slow case |
| // that needs the value in r0. |
| AllocateHeapNumber(masm, &slow, r2, r3, r4); |
| __ mov(r0, Operand(r2)); |
| } |
| |
| // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
| // have to set up a frame. |
| WriteInt32ToHeapNumberStub stub(r1, r0, r2); |
| __ push(lr); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| |
| __ bind(&done); |
| __ StubReturn(1); |
| |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ bind(&slow); |
| __ push(r0); |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| // r0 holds the exception. |
| |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop the sp to the top of the handler. |
| __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| __ ldr(sp, MemOperand(r3)); |
| |
| // Restore the next handler and frame pointer, discard handler state. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(r2); |
| __ str(r2, MemOperand(r3)); |
| ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state. |
| |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of a |
| // JS entry frame. |
| __ cmp(fp, Operand(0)); |
| // Set cp to NULL if fp is NULL. |
| __ mov(cp, Operand(0), LeaveCC, eq); |
| // Restore cp otherwise. |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ pop(pc); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop sp to the top stack handler. |
| __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| __ ldr(sp, MemOperand(r3)); |
| |
| // Unwind the handlers until the ENTRY handler is found. |
| Label loop, done; |
| __ bind(&loop); |
| // Load the type of the current stack handler. |
| const int kStateOffset = StackHandlerConstants::kStateOffset; |
| __ ldr(r2, MemOperand(sp, kStateOffset)); |
| __ cmp(r2, Operand(StackHandler::ENTRY)); |
| __ b(eq, &done); |
| // Fetch the next handler in the list. |
| const int kNextOffset = StackHandlerConstants::kNextOffset; |
| __ ldr(sp, MemOperand(sp, kNextOffset)); |
| __ jmp(&loop); |
| __ bind(&done); |
| |
| // Set the top handler address to next handler past the current ENTRY handler. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(r2); |
| __ str(r2, MemOperand(r3)); |
| |
| if (type == OUT_OF_MEMORY) { |
| // Set external caught exception to false. |
| ExternalReference external_caught(Top::k_external_caught_exception_address); |
| __ mov(r0, Operand(false)); |
| __ mov(r2, Operand(external_caught)); |
| __ str(r0, MemOperand(r2)); |
| |
| // Set pending exception and r0 to out of memory exception. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r0, MemOperand(r2)); |
| } |
| |
| // Stack layout at this point. See also StackHandlerConstants. |
| // sp -> state (ENTRY) |
| // fp |
| // lr |
| |
| // Discard handler state (r2 is not used) and restore frame pointer. |
| ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state. |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of a |
| // JS entry frame. |
| __ cmp(fp, Operand(0)); |
| // Set cp to NULL if fp is NULL. |
| __ mov(cp, Operand(0), LeaveCC, eq); |
| // Restore cp otherwise. |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ pop(pc); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate) { |
| // r0: result parameter for PerformGC, if any |
| // r4: number of arguments including receiver (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to the first argument (C callee-saved) |
| |
| if (do_gc) { |
| // Passing r0. |
| ExternalReference gc_reference = ExternalReference::perform_gc_function(); |
| __ Call(gc_reference.address(), RelocInfo::RUNTIME_ENTRY); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(); |
| if (always_allocate) { |
| __ mov(r0, Operand(scope_depth)); |
| __ ldr(r1, MemOperand(r0)); |
| __ add(r1, r1, Operand(1)); |
| __ str(r1, MemOperand(r0)); |
| } |
| |
| // Call C built-in. |
| // r0 = argc, r1 = argv |
| __ mov(r0, Operand(r4)); |
| __ mov(r1, Operand(r6)); |
| |
| // TODO(1242173): To let the GC traverse the return address of the exit |
| // frames, we need to know where the return address is. Right now, |
| // we push it on the stack to be able to find it again, but we never |
| // restore from it in case of changes, which makes it impossible to |
| // support moving the C entry code stub. This should be fixed, but currently |
| // this is OK because the CEntryStub gets generated so early in the V8 boot |
| // sequence that it is not moving ever. |
| masm->add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4 |
| masm->push(lr); |
| masm->Jump(r5); |
| |
| if (always_allocate) { |
| // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 |
| // though (contain the result). |
| __ mov(r2, Operand(scope_depth)); |
| __ ldr(r3, MemOperand(r2)); |
| __ sub(r3, r3, Operand(1)); |
| __ str(r3, MemOperand(r2)); |
| } |
| |
| // check for failure result |
| Label failure_returned; |
| ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| // Lower 2 bits of r2 are 0 iff r0 has failure tag. |
| __ add(r2, r0, Operand(1)); |
| __ tst(r2, Operand(kFailureTagMask)); |
| __ b(eq, &failure_returned); |
| |
| // Exit C frame and return. |
| // r0:r1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| __ LeaveExitFrame(mode_); |
| |
| // check if we should retry or throw exception |
| Label retry; |
| __ bind(&failure_returned); |
| ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ b(eq, &retry); |
| |
| // Special handling of out of memory exceptions. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ b(eq, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r3, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ ldr(r0, MemOperand(ip)); |
| __ str(r3, MemOperand(ip)); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(r0, Operand(Factory::termination_exception())); |
| __ b(eq, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // r0: number of arguments including receiver |
| // r1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| |
| // Result returned in r0 or r0+r1 by default. |
| |
| // NOTE: Invocations of builtins may return failure objects |
| // instead of a proper result. The builtin entry handles |
| // this by performing a garbage collection and retrying the |
| // builtin once. |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(mode_); |
| |
| // r4: number of arguments (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to first argument (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // [sp+0]: argv |
| |
| Label invoke, exit; |
| |
| // Called from C, so do not pop argc and args on exit (preserve sp) |
| // No need to save register-passed args |
| // Save callee-saved registers (incl. cp and fp), sp, and lr |
| __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
| |
| // Get address of argv, see stm above. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv |
| |
| // Push a frame with special values setup to mark it as an entry frame. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ mov(r7, Operand(Smi::FromInt(marker))); |
| __ mov(r6, Operand(Smi::FromInt(marker))); |
| __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| __ ldr(r5, MemOperand(r5)); |
| __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit()); |
| |
| // Setup frame pointer for the frame to be pushed. |
| __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Call a faked try-block that does the invoke. |
| __ bl(&invoke); |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| // Coming in here the fp will be invalid because the PushTryHandler below |
| // sets it to 0 to signal the existence of the JSEntry frame. |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r0, MemOperand(ip)); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
| __ b(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| // Must preserve r0-r4, r5-r7 are available. |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bl(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Clear any pending exceptions. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r5, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r5, MemOperand(ip)); |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Expected registers by Builtins::JSEntryTrampoline |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| __ mov(ip, Operand(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::JSEntryTrampoline); |
| __ mov(ip, Operand(entry)); |
| } |
| __ ldr(ip, MemOperand(ip)); // deref address |
| |
| // Branch and link to JSEntryTrampoline. We don't use the double underscore |
| // macro for the add instruction because we don't want the coverage tool |
| // inserting instructions here after we read the pc. |
| __ mov(lr, Operand(pc)); |
| masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Unlink this frame from the handler chain. When reading the |
| // address of the next handler, there is no need to use the address |
| // displacement since the current stack pointer (sp) points directly |
| // to the stack handler. |
| __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
| __ mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
| __ str(r3, MemOperand(ip)); |
| // No need to restore registers |
| __ add(sp, sp, Operand(StackHandlerConstants::kSize)); |
| |
| |
| __ bind(&exit); // r0 holds result |
| // Restore the top frame descriptors from the stack. |
| __ pop(r3); |
| __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| __ str(r3, MemOperand(ip)); |
| |
| // Reset the stack to the callee saved registers. |
| __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Restore callee-saved registers and return. |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
| } |
| |
| |
| // This stub performs an instanceof, calling the builtin function if |
| // necessary. Uses r1 for the object, r0 for the function that it may |
| // be an instance of (these are fetched from the stack). |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Get the object - slow case for smis (we may need to throw an exception |
| // depending on the rhs). |
| Label slow, loop, is_instance, is_not_instance; |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ BranchOnSmi(r0, &slow); |
| |
| // Check that the left hand is a JS object and put map in r3. |
| __ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(gt, &slow); |
| |
| // Get the prototype of the function (r4 is result, r2 is scratch). |
| __ ldr(r1, MemOperand(sp, 0)); |
| __ TryGetFunctionPrototype(r1, r4, r2, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ BranchOnSmi(r4, &slow); |
| __ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| __ cmp(r5, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(gt, &slow); |
| |
| // Register mapping: r3 is object map and r4 is function prototype. |
| // Get prototype of object into r2. |
| __ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| |
| // Loop through the prototype chain looking for the function prototype. |
| __ bind(&loop); |
| __ cmp(r2, Operand(r4)); |
| __ b(eq, &is_instance); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r2, ip); |
| __ b(eq, &is_not_instance); |
| __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&is_not_instance); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| // Slow-case. Tail call builtin. |
| __ bind(&slow); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) { |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor); |
| |
| // Nothing to do: The formal number of parameters has already been |
| // passed in register r0 by calling function. Just return it. |
| __ Jump(lr); |
| |
| // Arguments adaptor case: Read the arguments length from the |
| // adaptor frame and return it. |
| __ bind(&adaptor); |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ Jump(lr); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The displacement is the offset of the last parameter (if any) |
| // relative to the frame pointer. |
| static const int kDisplacement = |
| StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ BranchOnNotSmi(r1, &slow); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor); |
| |
| // Check index against formal parameters count limit passed in |
| // through register r0. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the stack and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the adaptor frame and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ push(r1); |
| __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| // sp[0] : number of parameters |
| // sp[4] : receiver displacement |
| // sp[8] : function |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor_frame); |
| |
| // Get the length from the frame. |
| __ ldr(r1, MemOperand(sp, 0)); |
| __ b(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ str(r1, MemOperand(sp, 0)); |
| __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| __ str(r3, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Try the new space allocation. Start out with computing the size |
| // of the arguments object and the elements array (in words, not |
| // bytes because AllocateInNewSpace expects words). |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ cmp(r1, Operand(0)); |
| __ b(eq, &add_arguments_object); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); |
| __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ bind(&add_arguments_object); |
| __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace(r1, r0, r2, r3, &runtime, TAG_OBJECT); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r4, MemOperand(r4, offset)); |
| |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ ldr(r3, FieldMemOperand(r4, i)); |
| __ str(r3, FieldMemOperand(r0, i)); |
| } |
| |
| // Setup the callee in-object property. |
| ASSERT(Heap::arguments_callee_index == 0); |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize)); |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| ASSERT(Heap::arguments_length_index == 1); |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize)); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ cmp(r1, Operand(0)); |
| __ b(eq, &done); |
| |
| // Get the parameters pointer from the stack and untag the length. |
| __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ add(r4, r0, Operand(Heap::kArgumentsObjectSize)); |
| __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); |
| __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); |
| __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); |
| |
| // Copy the fixed array slots. |
| Label loop; |
| // Setup r4 to point to the first array slot. |
| __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| // Pre-decrement r2 with kPointerSize on each iteration. |
| // Pre-decrement in order to skip receiver. |
| __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); |
| // Post-increment r4 with kPointerSize on each iteration. |
| __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); |
| __ sub(r1, r1, Operand(1)); |
| __ cmp(r1, Operand(0)); |
| __ b(ne, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1); |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // If the receiver might be a value (string, number or boolean) check for this |
| // and box it if it is. |
| if (ReceiverMightBeValue()) { |
| // Get the receiver from the stack. |
| // function, receiver [, arguments] |
| Label receiver_is_value, receiver_is_js_object; |
| __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); |
| |
| // Check if receiver is a smi (which is a number value). |
| __ BranchOnSmi(r1, &receiver_is_value); |
| |
| // Check if the receiver is a valid JS object. |
| __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &receiver_is_js_object); |
| |
| // Call the runtime to box the value. |
| __ bind(&receiver_is_value); |
| __ EnterInternalFrame(); |
| __ push(r1); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| __ LeaveInternalFrame(); |
| __ str(r0, MemOperand(sp, argc_ * kPointerSize)); |
| |
| __ bind(&receiver_is_js_object); |
| } |
| |
| // Get the function to call from the stack. |
| // function, receiver [, arguments] |
| __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
| |
| // Check that the function is really a JavaScript function. |
| // r1: pushed function (to be verified) |
| __ BranchOnSmi(r1, &slow); |
| // Get the map of the function object. |
| __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &slow); |
| |
| // Fast-case: Invoke the function now. |
| // r1: pushed function |
| ParameterCount actual(argc_); |
| __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ str(r1, MemOperand(sp, argc_ * kPointerSize)); |
| __ mov(r0, Operand(argc_)); // Setup the number of arguments. |
| __ mov(r2, Operand(0)); |
| __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
| __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| const char* CompareStub::GetName() { |
| switch (cc_) { |
| case lt: return "CompareStub_LT"; |
| case gt: return "CompareStub_GT"; |
| case le: return "CompareStub_LE"; |
| case ge: return "CompareStub_GE"; |
| case ne: { |
| if (strict_) { |
| if (never_nan_nan_) { |
| return "CompareStub_NE_STRICT_NO_NAN"; |
| } else { |
| return "CompareStub_NE_STRICT"; |
| } |
| } else { |
| if (never_nan_nan_) { |
| return "CompareStub_NE_NO_NAN"; |
| } else { |
| return "CompareStub_NE"; |
| } |
| } |
| } |
| case eq: { |
| if (strict_) { |
| if (never_nan_nan_) { |
| return "CompareStub_EQ_STRICT_NO_NAN"; |
| } else { |
| return "CompareStub_EQ_STRICT"; |
| } |
| } else { |
| if (never_nan_nan_) { |
| return "CompareStub_EQ_NO_NAN"; |
| } else { |
| return "CompareStub_EQ"; |
| } |
| } |
| } |
| default: return "CompareStub"; |
| } |
| } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. |
| ASSERT((static_cast<unsigned>(cc_) >> 26) < (1 << 16)); |
| int nnn_value = (never_nan_nan_ ? 2 : 0); |
| if (cc_ != eq) nnn_value = 0; // Avoid duplicate stubs. |
| return (static_cast<unsigned>(cc_) >> 26) | nnn_value | (strict_ ? 1 : 0); |
| } |
| |
| |
| void StringStubBase::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| Label done; |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0)); |
| } |
| __ b(eq, &done); |
| |
| __ bind(&loop); |
| __ ldrb(scratch, MemOperand(src, 1, PostIndex)); |
| // Perform sub between load and dependent store to get the load time to |
| // complete. |
| __ sub(count, count, Operand(1), SetCC); |
| __ strb(scratch, MemOperand(dest, 1, PostIndex)); |
| // last iteration. |
| __ b(gt, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| enum CopyCharactersFlags { |
| COPY_ASCII = 1, |
| DEST_ALWAYS_ALIGNED = 2 |
| }; |
| |
| |
| void StringStubBase::GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags) { |
| bool ascii = (flags & COPY_ASCII) != 0; |
| bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
| |
| if (dest_always_aligned && FLAG_debug_code) { |
| // Check that destination is actually word aligned if the flag says |
| // that it is. |
| __ tst(dest, Operand(kPointerAlignmentMask)); |
| __ Check(eq, "Destination of copy not aligned."); |
| } |
| |
| const int kReadAlignment = 4; |
| const int kReadAlignmentMask = kReadAlignment - 1; |
| // Ensure that reading an entire aligned word containing the last character |
| // of a string will not read outside the allocated area (because we pad up |
| // to kObjectAlignment). |
| ASSERT(kObjectAlignment >= kReadAlignment); |
| // Assumes word reads and writes are little endian. |
| // Nothing to do for zero characters. |
| Label done; |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0)); |
| } |
| __ b(eq, &done); |
| |
| // Assume that you cannot read (or write) unaligned. |
| Label byte_loop; |
| // Must copy at least eight bytes, otherwise just do it one byte at a time. |
| __ cmp(count, Operand(8)); |
| __ add(count, dest, Operand(count)); |
| Register limit = count; // Read until src equals this. |
| __ b(lt, &byte_loop); |
| |
| if (!dest_always_aligned) { |
| // Align dest by byte copying. Copies between zero and three bytes. |
| __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); |
| Label dest_aligned; |
| __ b(eq, &dest_aligned); |
| __ cmp(scratch4, Operand(2)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); |
| __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); |
| __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); |
| __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); |
| __ bind(&dest_aligned); |
| } |
| |
| Label simple_loop; |
| |
| __ sub(scratch4, dest, Operand(src)); |
| __ and_(scratch4, scratch4, Operand(0x03), SetCC); |
| __ b(eq, &simple_loop); |
| // Shift register is number of bits in a source word that |
| // must be combined with bits in the next source word in order |
| // to create a destination word. |
| |
| // Complex loop for src/dst that are not aligned the same way. |
| { |
| Label loop; |
| __ mov(scratch4, Operand(scratch4, LSL, 3)); |
| Register left_shift = scratch4; |
| __ and_(src, src, Operand(~3)); // Round down to load previous word. |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| // Store the "shift" most significant bits of scratch in the least |
| // signficant bits (i.e., shift down by (32-shift)). |
| __ rsb(scratch2, left_shift, Operand(32)); |
| Register right_shift = scratch2; |
| __ mov(scratch1, Operand(scratch1, LSR, right_shift)); |
| |
| __ bind(&loop); |
| __ ldr(scratch3, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch5, limit, Operand(dest)); |
| __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| __ mov(scratch1, Operand(scratch3, LSR, right_shift)); |
| // Loop if four or more bytes left to copy. |
| // Compare to eight, because we did the subtract before increasing dst. |
| __ sub(scratch5, scratch5, Operand(8), SetCC); |
| __ b(ge, &loop); |
| } |
| // There is now between zero and three bytes left to copy (negative that |
| // number is in scratch5), and between one and three bytes already read into |
| // scratch1 (eight times that number in scratch4). We may have read past |
| // the end of the string, but because objects are aligned, we have not read |
| // past the end of the object. |
| // Find the minimum of remaining characters to move and preloaded characters |
| // and write those as bytes. |
| __ add(scratch5, scratch5, Operand(4), SetCC); |
| __ b(eq, &done); |
| __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); |
| // Move minimum of bytes read and bytes left to copy to scratch4. |
| __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); |
| // Between one and three (value in scratch5) characters already read into |
| // scratch ready to write. |
| __ cmp(scratch5, Operand(2)); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); |
| // Copy any remaining bytes. |
| __ b(&byte_loop); |
| |
| // Simple loop. |
| // Copy words from src to dst, until less than four bytes left. |
| // Both src and dest are word aligned. |
| __ bind(&simple_loop); |
| { |
| Label loop; |
| __ bind(&loop); |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch3, limit, Operand(dest)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| // Compare to 8, not 4, because we do the substraction before increasing |
| // dest. |
| __ cmp(scratch3, Operand(8)); |
| __ b(ge, &loop); |
| } |
| |
| // Copy bytes from src to dst until dst hits limit. |
| __ bind(&byte_loop); |
| __ cmp(dest, Operand(limit)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); |
| __ b(ge, &done); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ b(&byte_loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // lr: return address |
| // sp[0]: to |
| // sp[4]: from |
| // sp[8]: string |
| |
| // This stub is called from the native-call %_SubString(...), so |
| // nothing can be assumed about the arguments. It is tested that: |
| // "string" is a sequential string, |
| // both "from" and "to" are smis, and |
| // 0 <= from <= to <= string.length. |
| // If any of these assumptions fail, we call the runtime system. |
| |
| static const int kToOffset = 0 * kPointerSize; |
| static const int kFromOffset = 1 * kPointerSize; |
| static const int kStringOffset = 2 * kPointerSize; |
| |
| |
| // Check bounds and smi-ness. |
| __ ldr(r7, MemOperand(sp, kToOffset)); |
| __ ldr(r6, MemOperand(sp, kFromOffset)); |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| // I.e., arithmetic shift right by one un-smi-tags. |
| __ mov(r2, Operand(r7, ASR, 1), SetCC); |
| __ mov(r3, Operand(r6, ASR, 1), SetCC, cc); |
| // If either r2 or r6 had the smi tag bit set, then carry is set now. |
| __ b(cs, &runtime); // Either "from" or "to" is not a smi. |
| __ b(mi, &runtime); // From is negative. |
| |
| __ sub(r2, r2, Operand(r3), SetCC); |
| __ b(mi, &runtime); // Fail if from > to. |
| // Handle sub-strings of length 2 and less in the runtime system. |
| __ cmp(r2, Operand(2)); |
| __ b(le, &runtime); |
| |
| // r2: length |
| // r6: from (smi) |
| // r7: to (smi) |
| |
| // Make sure first argument is a sequential (or flat) string. |
| __ ldr(r5, MemOperand(sp, kStringOffset)); |
| ASSERT_EQ(0, kSmiTag); |
| __ tst(r5, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(r5, r1); |
| __ b(NegateCondition(is_string), &runtime); |
| |
| // r1: instance type |
| // r2: length |
| // r5: string |
| // r6: from (smi) |
| // r7: to (smi) |
| Label seq_string; |
| __ and_(r4, r1, Operand(kStringRepresentationMask)); |
| ASSERT(kSeqStringTag < kConsStringTag); |
| ASSERT(kExternalStringTag > kConsStringTag); |
| __ cmp(r4, Operand(kConsStringTag)); |
| __ b(gt, &runtime); // External strings go to runtime. |
| __ b(lt, &seq_string); // Sequential strings are handled directly. |
| |
| // Cons string. Try to recurse (once) on the first substring. |
| // (This adds a little more generality than necessary to handle flattened |
| // cons strings, but not much). |
| __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); |
| __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ tst(r1, Operand(kStringRepresentationMask)); |
| ASSERT_EQ(0, kSeqStringTag); |
| __ b(ne, &runtime); // Cons and External strings go to runtime. |
| |
| // Definitly a sequential string. |
| __ bind(&seq_string); |
| |
| // r1: instance type. |
| // r2: length |
| // r5: string |
| // r6: from (smi) |
| // r7: to (smi) |
| __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); |
| __ cmp(r4, Operand(r7, ASR, 1)); |
| __ b(lt, &runtime); // Fail if to > length. |
| |
| // r1: instance type. |
| // r2: result string length. |
| // r5: string. |
| // r6: from offset (smi) |
| // Check for flat ascii string. |
| Label non_ascii_flat; |
| __ tst(r1, Operand(kStringEncodingMask)); |
| ASSERT_EQ(0, kTwoByteStringTag); |
| __ b(eq, &non_ascii_flat); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // r6: from offset (smi) |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(r5, r5, Operand(r6, ASR, 1)); |
| |
| // r0: result string. |
| // r1: first character of result string. |
| // r2: result string length. |
| // r5: first character of sub string to copy. |
| ASSERT_EQ(0, SeqAsciiString::kHeaderSize & kObjectAlignmentMask); |
| GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| COPY_ASCII | DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_flat); |
| // r2: result string length. |
| // r5: string. |
| // r6: from offset (smi) |
| // Check for flat two byte string. |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // As "from" is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| __ add(r5, r5, Operand(r6)); |
| |
| // r0: result string. |
| // r1: first character of result. |
| // r2: result length. |
| // r5: first character of string to copy. |
| ASSERT_EQ(0, SeqTwoByteString::kHeaderSize & kObjectAlignmentMask); |
| GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kSubString), 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4) { |
| Label compare_lengths; |
| // Find minimum length and length difference. |
| __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| __ sub(scratch3, scratch1, Operand(scratch2), SetCC); |
| Register length_delta = scratch3; |
| __ mov(scratch1, scratch2, LeaveCC, gt); |
| Register min_length = scratch1; |
| __ tst(min_length, Operand(min_length)); |
| __ b(eq, &compare_lengths); |
| |
| // Setup registers so that we only need to increment one register |
| // in the loop. |
| __ add(scratch2, min_length, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(left, left, Operand(scratch2)); |
| __ add(right, right, Operand(scratch2)); |
| // Registers left and right points to the min_length character of strings. |
| __ rsb(min_length, min_length, Operand(-1)); |
| Register index = min_length; |
| // Index starts at -min_length. |
| |
| { |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| // Compare characters. |
| __ add(index, index, Operand(1), SetCC); |
| __ ldrb(scratch2, MemOperand(left, index), ne); |
| __ ldrb(scratch4, MemOperand(right, index), ne); |
| // Skip to compare lengths with eq condition true. |
| __ b(eq, &compare_lengths); |
| __ cmp(scratch2, scratch4); |
| __ b(eq, &loop); |
| // Fallthrough with eq condition false. |
| } |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| // Use zero length_delta as result. |
| __ mov(r0, Operand(length_delta), SetCC, eq); |
| // Fall through to here if characters compare not-equal. |
| __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); |
| __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); |
| __ Ret(); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // sp[0]: right string |
| // sp[4]: left string |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // left |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // right |
| |
| Label not_same; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_same); |
| ASSERT_EQ(0, EQUAL); |
| ASSERT_EQ(0, kSmiTag); |
| __ mov(r0, Operand(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(r0, r1, r2, r3, &runtime); |
| |
| // Compare flat ascii strings natively. Remove arguments from stack first. |
| __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| GenerateCompareFlatAsciiStrings(masm, r0, r1, r2, r3, r4, r5); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kStringCompare), 2, 1); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime; |
| // Stack on entry: |
| // sp[0]: second argument. |
| // sp[4]: first argument. |
| |
| // Load the two arguments. |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (string_check_) { |
| ASSERT_EQ(0, kSmiTag); |
| __ JumpIfEitherSmi(r0, r1, &string_add_runtime); |
| // Load instance types. |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| ASSERT_EQ(0, kStringTag); |
| // If either is not a string, go to runtime. |
| __ tst(r4, Operand(kIsNotStringMask)); |
| __ tst(r5, Operand(kIsNotStringMask), eq); |
| __ b(ne, &string_add_runtime); |
| } |
| |
| // Both arguments are strings. |
| // r0: first string |
| // r1: second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| { |
| Label strings_not_empty; |
| // Check if either of the strings are empty. In that case return the other. |
| __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); |
| __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); |
| __ cmp(r2, Operand(0)); // Test if first string is empty. |
| __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. |
| __ cmp(r3, Operand(0), ne); // Else test if second string is empty. |
| __ b(ne, &strings_not_empty); // If either string was empty, return r0. |
| |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&strings_not_empty); |
| } |
| |
| // Both strings are non-empty. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result; |
| // Adding two lengths can't overflow. |
| ASSERT(String::kMaxLength * 2 > String::kMaxLength); |
| __ add(r6, r2, Operand(r3)); |
| // Use the runtime system when adding two one character strings, as it |
| // contains optimizations for this specific case using the symbol table. |
| __ cmp(r6, Operand(2)); |
| __ b(eq, &string_add_runtime); |
| // Check if resulting string will be flat. |
| __ cmp(r6, Operand(String::kMinNonFlatLength)); |
| __ b(lt, &string_add_flat_result); |
| // Handle exceptionally long strings in the runtime system. |
| ASSERT((String::kMaxLength & 0x80000000) == 0); |
| ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
| // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
| __ cmp(r6, Operand(String::kMaxLength + 1)); |
| __ b(hs, &string_add_runtime); |
| |
| // If result is not supposed to be flat, allocate a cons string object. |
| // If both strings are ascii the result is an ascii cons string. |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| Label non_ascii, allocated; |
| ASSERT_EQ(0, kTwoByteStringTag); |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ tst(r5, Operand(kStringEncodingMask), ne); |
| __ b(eq, &non_ascii); |
| |
| // Allocate an ASCII cons string. |
| __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); |
| __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii); |
| // Allocate a two byte cons string. |
| __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ jmp(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are |
| // sequential and that they have the same encoding. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| // r6: sum of lengths. |
| __ bind(&string_add_flat_result); |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| // Check that both strings are sequential. |
| ASSERT_EQ(0, kSeqStringTag); |
| __ tst(r4, Operand(kStringRepresentationMask)); |
| __ tst(r5, Operand(kStringRepresentationMask), eq); |
| __ b(ne, &string_add_runtime); |
| // Now check if both strings have the same encoding (ASCII/Two-byte). |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of lengths.. |
| Label non_ascii_string_add_flat_result; |
| ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
| __ eor(r7, r4, Operand(r5)); |
| __ tst(r7, Operand(kStringEncodingMask)); |
| __ b(ne, &string_add_runtime); |
| // And see if it's ASCII or two-byte. |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ b(eq, &non_ascii_string_add_flat_result); |
| |
| // Both strings are sequential ASCII strings. We also know that they are |
| // short (since the sum of the lengths is less than kMinNonFlatLength). |
| __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| GenerateCopyCharacters(masm, r6, r0, r2, r4, true); |
| |
| // Load second argument and locate first character. |
| __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result. |
| // r7: result string. |
| GenerateCopyCharacters(masm, r6, r1, r3, r4, true); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_string_add_flat_result); |
| // Both strings are sequential two byte strings. |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of length of strings. |
| __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r7: result string. |
| |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| GenerateCopyCharacters(masm, r6, r0, r2, r4, false); |
| |
| // Locate first character of second argument. |
| __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result (after copy of first string). |
| // r7: result string. |
| GenerateCopyCharacters(masm, r6, r1, r3, r4, false); |
| |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kStringAdd), 2, 1); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |