| // Copyright 2006-2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| |
| #include "v8.h" |
| |
| #include "accessors.h" |
| #include "api.h" |
| #include "arguments.h" |
| #include "compiler.h" |
| #include "cpu.h" |
| #include "dateparser-inl.h" |
| #include "debug.h" |
| #include "execution.h" |
| #include "jsregexp.h" |
| #include "parser.h" |
| #include "platform.h" |
| #include "runtime.h" |
| #include "scopeinfo.h" |
| #include "smart-pointer.h" |
| #include "stub-cache.h" |
| #include "v8threads.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define RUNTIME_ASSERT(value) \ |
| if (!(value)) return Top::ThrowIllegalOperation(); |
| |
| // Cast the given object to a value of the specified type and store |
| // it in a variable with the given name. If the object is not of the |
| // expected type call IllegalOperation and return. |
| #define CONVERT_CHECKED(Type, name, obj) \ |
| RUNTIME_ASSERT(obj->Is##Type()); \ |
| Type* name = Type::cast(obj); |
| |
| #define CONVERT_ARG_CHECKED(Type, name, index) \ |
| RUNTIME_ASSERT(args[index]->Is##Type()); \ |
| Handle<Type> name = args.at<Type>(index); |
| |
| // Cast the given object to a boolean and store it in a variable with |
| // the given name. If the object is not a boolean call IllegalOperation |
| // and return. |
| #define CONVERT_BOOLEAN_CHECKED(name, obj) \ |
| RUNTIME_ASSERT(obj->IsBoolean()); \ |
| bool name = (obj)->IsTrue(); |
| |
| // Cast the given object to a Smi and store its value in an int variable |
| // with the given name. If the object is not a Smi call IllegalOperation |
| // and return. |
| #define CONVERT_SMI_CHECKED(name, obj) \ |
| RUNTIME_ASSERT(obj->IsSmi()); \ |
| int name = Smi::cast(obj)->value(); |
| |
| // Cast the given object to a double and store it in a variable with |
| // the given name. If the object is not a number (as opposed to |
| // the number not-a-number) call IllegalOperation and return. |
| #define CONVERT_DOUBLE_CHECKED(name, obj) \ |
| RUNTIME_ASSERT(obj->IsNumber()); \ |
| double name = (obj)->Number(); |
| |
| // Call the specified converter on the object *comand store the result in |
| // a variable of the specified type with the given name. If the |
| // object is not a Number call IllegalOperation and return. |
| #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \ |
| RUNTIME_ASSERT(obj->IsNumber()); \ |
| type name = NumberTo##Type(obj); |
| |
| // Non-reentrant string buffer for efficient general use in this file. |
| static StaticResource<StringInputBuffer> runtime_string_input_buffer; |
| |
| |
| static Object* DeepCopyBoilerplate(JSObject* boilerplate) { |
| StackLimitCheck check; |
| if (check.HasOverflowed()) return Top::StackOverflow(); |
| |
| Object* result = Heap::CopyJSObject(boilerplate); |
| if (result->IsFailure()) return result; |
| JSObject* copy = JSObject::cast(result); |
| |
| // Deep copy local properties. |
| if (copy->HasFastProperties()) { |
| FixedArray* properties = copy->properties(); |
| for (int i = 0; i < properties->length(); i++) { |
| Object* value = properties->get(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| result = DeepCopyBoilerplate(js_object); |
| if (result->IsFailure()) return result; |
| properties->set(i, result); |
| } |
| } |
| int nof = copy->map()->inobject_properties(); |
| for (int i = 0; i < nof; i++) { |
| Object* value = copy->InObjectPropertyAt(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| result = DeepCopyBoilerplate(js_object); |
| if (result->IsFailure()) return result; |
| copy->InObjectPropertyAtPut(i, result); |
| } |
| } |
| } else { |
| result = Heap::AllocateFixedArray(copy->NumberOfLocalProperties(NONE)); |
| if (result->IsFailure()) return result; |
| FixedArray* names = FixedArray::cast(result); |
| copy->GetLocalPropertyNames(names, 0); |
| for (int i = 0; i < names->length(); i++) { |
| ASSERT(names->get(i)->IsString()); |
| String* key_string = String::cast(names->get(i)); |
| PropertyAttributes attributes = |
| copy->GetLocalPropertyAttribute(key_string); |
| // Only deep copy fields from the object literal expression. |
| // In particular, don't try to copy the length attribute of |
| // an array. |
| if (attributes != NONE) continue; |
| Object* value = copy->GetProperty(key_string, &attributes); |
| ASSERT(!value->IsFailure()); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| result = DeepCopyBoilerplate(js_object); |
| if (result->IsFailure()) return result; |
| result = copy->SetProperty(key_string, result, NONE); |
| if (result->IsFailure()) return result; |
| } |
| } |
| } |
| |
| // Deep copy local elements. |
| // Pixel elements cannot be created using an object literal. |
| ASSERT(!copy->HasPixelElements() && !copy->HasExternalArrayElements()); |
| switch (copy->GetElementsKind()) { |
| case JSObject::FAST_ELEMENTS: { |
| FixedArray* elements = FixedArray::cast(copy->elements()); |
| for (int i = 0; i < elements->length(); i++) { |
| Object* value = elements->get(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| result = DeepCopyBoilerplate(js_object); |
| if (result->IsFailure()) return result; |
| elements->set(i, result); |
| } |
| } |
| break; |
| } |
| case JSObject::DICTIONARY_ELEMENTS: { |
| NumberDictionary* element_dictionary = copy->element_dictionary(); |
| int capacity = element_dictionary->Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = element_dictionary->KeyAt(i); |
| if (element_dictionary->IsKey(k)) { |
| Object* value = element_dictionary->ValueAt(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| result = DeepCopyBoilerplate(js_object); |
| if (result->IsFailure()) return result; |
| element_dictionary->ValueAtPut(i, result); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return copy; |
| } |
| |
| |
| static Object* Runtime_CloneLiteralBoilerplate(Arguments args) { |
| CONVERT_CHECKED(JSObject, boilerplate, args[0]); |
| return DeepCopyBoilerplate(boilerplate); |
| } |
| |
| |
| static Object* Runtime_CloneShallowLiteralBoilerplate(Arguments args) { |
| CONVERT_CHECKED(JSObject, boilerplate, args[0]); |
| return Heap::CopyJSObject(boilerplate); |
| } |
| |
| |
| static Handle<Map> ComputeObjectLiteralMap( |
| Handle<Context> context, |
| Handle<FixedArray> constant_properties, |
| bool* is_result_from_cache) { |
| int number_of_properties = constant_properties->length() / 2; |
| if (FLAG_canonicalize_object_literal_maps) { |
| // First find prefix of consecutive symbol keys. |
| int number_of_symbol_keys = 0; |
| while ((number_of_symbol_keys < number_of_properties) && |
| (constant_properties->get(number_of_symbol_keys*2)->IsSymbol())) { |
| number_of_symbol_keys++; |
| } |
| // Based on the number of prefix symbols key we decide whether |
| // to use the map cache in the global context. |
| const int kMaxKeys = 10; |
| if ((number_of_symbol_keys == number_of_properties) && |
| (number_of_symbol_keys < kMaxKeys)) { |
| // Create the fixed array with the key. |
| Handle<FixedArray> keys = Factory::NewFixedArray(number_of_symbol_keys); |
| for (int i = 0; i < number_of_symbol_keys; i++) { |
| keys->set(i, constant_properties->get(i*2)); |
| } |
| *is_result_from_cache = true; |
| return Factory::ObjectLiteralMapFromCache(context, keys); |
| } |
| } |
| *is_result_from_cache = false; |
| return Factory::CopyMap( |
| Handle<Map>(context->object_function()->initial_map()), |
| number_of_properties); |
| } |
| |
| |
| static Handle<Object> CreateLiteralBoilerplate( |
| Handle<FixedArray> literals, |
| Handle<FixedArray> constant_properties); |
| |
| |
| static Handle<Object> CreateObjectLiteralBoilerplate( |
| Handle<FixedArray> literals, |
| Handle<FixedArray> constant_properties) { |
| // Get the global context from the literals array. This is the |
| // context in which the function was created and we use the object |
| // function from this context to create the object literal. We do |
| // not use the object function from the current global context |
| // because this might be the object function from another context |
| // which we should not have access to. |
| Handle<Context> context = |
| Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals)); |
| |
| bool is_result_from_cache; |
| Handle<Map> map = ComputeObjectLiteralMap(context, |
| constant_properties, |
| &is_result_from_cache); |
| |
| Handle<JSObject> boilerplate = Factory::NewJSObjectFromMap(map); |
| { // Add the constant properties to the boilerplate. |
| int length = constant_properties->length(); |
| OptimizedObjectForAddingMultipleProperties opt(boilerplate, |
| length / 2, |
| !is_result_from_cache); |
| for (int index = 0; index < length; index +=2) { |
| Handle<Object> key(constant_properties->get(index+0)); |
| Handle<Object> value(constant_properties->get(index+1)); |
| if (value->IsFixedArray()) { |
| // The value contains the constant_properties of a |
| // simple object literal. |
| Handle<FixedArray> array = Handle<FixedArray>::cast(value); |
| value = CreateLiteralBoilerplate(literals, array); |
| if (value.is_null()) return value; |
| } |
| Handle<Object> result; |
| uint32_t element_index = 0; |
| if (key->IsSymbol()) { |
| // If key is a symbol it is not an array element. |
| Handle<String> name(String::cast(*key)); |
| ASSERT(!name->AsArrayIndex(&element_index)); |
| result = SetProperty(boilerplate, name, value, NONE); |
| } else if (Array::IndexFromObject(*key, &element_index)) { |
| // Array index (uint32). |
| result = SetElement(boilerplate, element_index, value); |
| } else { |
| // Non-uint32 number. |
| ASSERT(key->IsNumber()); |
| double num = key->Number(); |
| char arr[100]; |
| Vector<char> buffer(arr, ARRAY_SIZE(arr)); |
| const char* str = DoubleToCString(num, buffer); |
| Handle<String> name = Factory::NewStringFromAscii(CStrVector(str)); |
| result = SetProperty(boilerplate, name, value, NONE); |
| } |
| // If setting the property on the boilerplate throws an |
| // exception, the exception is converted to an empty handle in |
| // the handle based operations. In that case, we need to |
| // convert back to an exception. |
| if (result.is_null()) return result; |
| } |
| } |
| |
| return boilerplate; |
| } |
| |
| |
| static Handle<Object> CreateArrayLiteralBoilerplate( |
| Handle<FixedArray> literals, |
| Handle<FixedArray> elements) { |
| // Create the JSArray. |
| Handle<JSFunction> constructor( |
| JSFunction::GlobalContextFromLiterals(*literals)->array_function()); |
| Handle<Object> object = Factory::NewJSObject(constructor); |
| |
| Handle<Object> copied_elements = Factory::CopyFixedArray(elements); |
| |
| Handle<FixedArray> content = Handle<FixedArray>::cast(copied_elements); |
| for (int i = 0; i < content->length(); i++) { |
| if (content->get(i)->IsFixedArray()) { |
| // The value contains the constant_properties of a |
| // simple object literal. |
| Handle<FixedArray> fa(FixedArray::cast(content->get(i))); |
| Handle<Object> result = |
| CreateLiteralBoilerplate(literals, fa); |
| if (result.is_null()) return result; |
| content->set(i, *result); |
| } |
| } |
| |
| // Set the elements. |
| Handle<JSArray>::cast(object)->SetContent(*content); |
| return object; |
| } |
| |
| |
| static Handle<Object> CreateLiteralBoilerplate( |
| Handle<FixedArray> literals, |
| Handle<FixedArray> array) { |
| Handle<FixedArray> elements = CompileTimeValue::GetElements(array); |
| switch (CompileTimeValue::GetType(array)) { |
| case CompileTimeValue::OBJECT_LITERAL: |
| return CreateObjectLiteralBoilerplate(literals, elements); |
| case CompileTimeValue::ARRAY_LITERAL: |
| return CreateArrayLiteralBoilerplate(literals, elements); |
| default: |
| UNREACHABLE(); |
| return Handle<Object>::null(); |
| } |
| } |
| |
| |
| static Object* Runtime_CreateObjectLiteralBoilerplate(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| // Copy the arguments. |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_CHECKED(literals_index, args[1]); |
| CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2); |
| |
| Handle<Object> result = |
| CreateObjectLiteralBoilerplate(literals, constant_properties); |
| |
| if (result.is_null()) return Failure::Exception(); |
| |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *result); |
| |
| return *result; |
| } |
| |
| |
| static Object* Runtime_CreateArrayLiteralBoilerplate(Arguments args) { |
| // Takes a FixedArray of elements containing the literal elements of |
| // the array literal and produces JSArray with those elements. |
| // Additionally takes the literals array of the surrounding function |
| // which contains the context from which to get the Array function |
| // to use for creating the array literal. |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_CHECKED(literals_index, args[1]); |
| CONVERT_ARG_CHECKED(FixedArray, elements, 2); |
| |
| Handle<Object> object = CreateArrayLiteralBoilerplate(literals, elements); |
| if (object.is_null()) return Failure::Exception(); |
| |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *object); |
| return *object; |
| } |
| |
| |
| static Object* Runtime_CreateObjectLiteral(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_CHECKED(literals_index, args[1]); |
| CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2); |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index)); |
| if (*boilerplate == Heap::undefined_value()) { |
| boilerplate = CreateObjectLiteralBoilerplate(literals, constant_properties); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return DeepCopyBoilerplate(JSObject::cast(*boilerplate)); |
| } |
| |
| |
| static Object* Runtime_CreateObjectLiteralShallow(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_CHECKED(literals_index, args[1]); |
| CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2); |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index)); |
| if (*boilerplate == Heap::undefined_value()) { |
| boilerplate = CreateObjectLiteralBoilerplate(literals, constant_properties); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return Heap::CopyJSObject(JSObject::cast(*boilerplate)); |
| } |
| |
| |
| static Object* Runtime_CreateArrayLiteral(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_CHECKED(literals_index, args[1]); |
| CONVERT_ARG_CHECKED(FixedArray, elements, 2); |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index)); |
| if (*boilerplate == Heap::undefined_value()) { |
| boilerplate = CreateArrayLiteralBoilerplate(literals, elements); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return DeepCopyBoilerplate(JSObject::cast(*boilerplate)); |
| } |
| |
| |
| static Object* Runtime_CreateArrayLiteralShallow(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_CHECKED(literals_index, args[1]); |
| CONVERT_ARG_CHECKED(FixedArray, elements, 2); |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index)); |
| if (*boilerplate == Heap::undefined_value()) { |
| boilerplate = CreateArrayLiteralBoilerplate(literals, elements); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return Heap::CopyJSObject(JSObject::cast(*boilerplate)); |
| } |
| |
| |
| static Object* Runtime_CreateCatchExtensionObject(Arguments args) { |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(String, key, args[0]); |
| Object* value = args[1]; |
| // Create a catch context extension object. |
| JSFunction* constructor = |
| Top::context()->global_context()->context_extension_function(); |
| Object* object = Heap::AllocateJSObject(constructor); |
| if (object->IsFailure()) return object; |
| // Assign the exception value to the catch variable and make sure |
| // that the catch variable is DontDelete. |
| value = JSObject::cast(object)->SetProperty(key, value, DONT_DELETE); |
| if (value->IsFailure()) return value; |
| return object; |
| } |
| |
| |
| static Object* Runtime_ClassOf(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Object* obj = args[0]; |
| if (!obj->IsJSObject()) return Heap::null_value(); |
| return JSObject::cast(obj)->class_name(); |
| } |
| |
| |
| static Object* Runtime_IsInPrototypeChain(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8). |
| Object* O = args[0]; |
| Object* V = args[1]; |
| while (true) { |
| Object* prototype = V->GetPrototype(); |
| if (prototype->IsNull()) return Heap::false_value(); |
| if (O == prototype) return Heap::true_value(); |
| V = prototype; |
| } |
| } |
| |
| |
| // Inserts an object as the hidden prototype of another object. |
| static Object* Runtime_SetHiddenPrototype(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(JSObject, jsobject, args[0]); |
| CONVERT_CHECKED(JSObject, proto, args[1]); |
| |
| // Sanity checks. The old prototype (that we are replacing) could |
| // theoretically be null, but if it is not null then check that we |
| // didn't already install a hidden prototype here. |
| RUNTIME_ASSERT(!jsobject->GetPrototype()->IsHeapObject() || |
| !HeapObject::cast(jsobject->GetPrototype())->map()->is_hidden_prototype()); |
| RUNTIME_ASSERT(!proto->map()->is_hidden_prototype()); |
| |
| // Allocate up front before we start altering state in case we get a GC. |
| Object* map_or_failure = proto->map()->CopyDropTransitions(); |
| if (map_or_failure->IsFailure()) return map_or_failure; |
| Map* new_proto_map = Map::cast(map_or_failure); |
| |
| map_or_failure = jsobject->map()->CopyDropTransitions(); |
| if (map_or_failure->IsFailure()) return map_or_failure; |
| Map* new_map = Map::cast(map_or_failure); |
| |
| // Set proto's prototype to be the old prototype of the object. |
| new_proto_map->set_prototype(jsobject->GetPrototype()); |
| proto->set_map(new_proto_map); |
| new_proto_map->set_is_hidden_prototype(); |
| |
| // Set the object's prototype to proto. |
| new_map->set_prototype(proto); |
| jsobject->set_map(new_map); |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_IsConstructCall(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 0); |
| JavaScriptFrameIterator it; |
| return Heap::ToBoolean(it.frame()->IsConstructor()); |
| } |
| |
| |
| // Recursively traverses hidden prototypes if property is not found |
| static void GetOwnPropertyImplementation(JSObject* obj, |
| String* name, |
| LookupResult* result) { |
| obj->LocalLookupRealNamedProperty(name, result); |
| |
| if (!result->IsProperty()) { |
| Object* proto = obj->GetPrototype(); |
| if (proto->IsJSObject() && |
| JSObject::cast(proto)->map()->is_hidden_prototype()) |
| GetOwnPropertyImplementation(JSObject::cast(proto), |
| name, result); |
| } |
| } |
| |
| |
| // Returns an array with the property description: |
| // if args[1] is not a property on args[0] |
| // returns undefined |
| // if args[1] is a data property on args[0] |
| // [false, value, Writeable, Enumerable, Configurable] |
| // if args[1] is an accessor on args[0] |
| // [true, GetFunction, SetFunction, Enumerable, Configurable] |
| static Object* Runtime_GetOwnProperty(Arguments args) { |
| ASSERT(args.length() == 2); |
| HandleScope scope; |
| Handle<FixedArray> elms = Factory::NewFixedArray(5); |
| Handle<JSArray> desc = Factory::NewJSArrayWithElements(elms); |
| LookupResult result; |
| CONVERT_CHECKED(JSObject, obj, args[0]); |
| CONVERT_CHECKED(String, name, args[1]); |
| |
| // Use recursive implementation to also traverse hidden prototypes |
| GetOwnPropertyImplementation(obj, name, &result); |
| |
| if (!result.IsProperty()) |
| return Heap::undefined_value(); |
| |
| if (result.type() == CALLBACKS) { |
| Object* structure = result.GetCallbackObject(); |
| if (structure->IsProxy() || structure->IsAccessorInfo()) { |
| // Property that is internally implemented as a callback or |
| // an API defined callback. |
| Object* value = obj->GetPropertyWithCallback( |
| obj, structure, name, result.holder()); |
| elms->set(0, Heap::false_value()); |
| elms->set(1, value); |
| elms->set(2, Heap::ToBoolean(!result.IsReadOnly())); |
| } else if (structure->IsFixedArray()) { |
| // __defineGetter__/__defineSetter__ callback. |
| elms->set(0, Heap::true_value()); |
| elms->set(1, FixedArray::cast(structure)->get(0)); |
| elms->set(2, FixedArray::cast(structure)->get(1)); |
| } else { |
| return Heap::undefined_value(); |
| } |
| } else { |
| elms->set(0, Heap::false_value()); |
| elms->set(1, result.GetLazyValue()); |
| elms->set(2, Heap::ToBoolean(!result.IsReadOnly())); |
| } |
| |
| elms->set(3, Heap::ToBoolean(!result.IsDontEnum())); |
| elms->set(4, Heap::ToBoolean(!result.IsDontDelete())); |
| return *desc; |
| } |
| |
| |
| static Object* Runtime_IsExtensible(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(JSObject, obj, args[0]); |
| return obj->map()->is_extensible() ? Heap::true_value() |
| : Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_RegExpCompile(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSRegExp, re, 0); |
| CONVERT_ARG_CHECKED(String, pattern, 1); |
| CONVERT_ARG_CHECKED(String, flags, 2); |
| Handle<Object> result = RegExpImpl::Compile(re, pattern, flags); |
| if (result.is_null()) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| static Object* Runtime_CreateApiFunction(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(FunctionTemplateInfo, data, 0); |
| return *Factory::CreateApiFunction(data); |
| } |
| |
| |
| static Object* Runtime_IsTemplate(Arguments args) { |
| ASSERT(args.length() == 1); |
| Object* arg = args[0]; |
| bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo(); |
| return Heap::ToBoolean(result); |
| } |
| |
| |
| static Object* Runtime_GetTemplateField(Arguments args) { |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(HeapObject, templ, args[0]); |
| CONVERT_CHECKED(Smi, field, args[1]); |
| int index = field->value(); |
| int offset = index * kPointerSize + HeapObject::kHeaderSize; |
| InstanceType type = templ->map()->instance_type(); |
| RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE || |
| type == OBJECT_TEMPLATE_INFO_TYPE); |
| RUNTIME_ASSERT(offset > 0); |
| if (type == FUNCTION_TEMPLATE_INFO_TYPE) { |
| RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize); |
| } else { |
| RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize); |
| } |
| return *HeapObject::RawField(templ, offset); |
| } |
| |
| |
| static Object* Runtime_DisableAccessChecks(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(HeapObject, object, args[0]); |
| Map* old_map = object->map(); |
| bool needs_access_checks = old_map->is_access_check_needed(); |
| if (needs_access_checks) { |
| // Copy map so it won't interfere constructor's initial map. |
| Object* new_map = old_map->CopyDropTransitions(); |
| if (new_map->IsFailure()) return new_map; |
| |
| Map::cast(new_map)->set_is_access_check_needed(false); |
| object->set_map(Map::cast(new_map)); |
| } |
| return needs_access_checks ? Heap::true_value() : Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_EnableAccessChecks(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(HeapObject, object, args[0]); |
| Map* old_map = object->map(); |
| if (!old_map->is_access_check_needed()) { |
| // Copy map so it won't interfere constructor's initial map. |
| Object* new_map = old_map->CopyDropTransitions(); |
| if (new_map->IsFailure()) return new_map; |
| |
| Map::cast(new_map)->set_is_access_check_needed(true); |
| object->set_map(Map::cast(new_map)); |
| } |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* ThrowRedeclarationError(const char* type, Handle<String> name) { |
| HandleScope scope; |
| Handle<Object> type_handle = Factory::NewStringFromAscii(CStrVector(type)); |
| Handle<Object> args[2] = { type_handle, name }; |
| Handle<Object> error = |
| Factory::NewTypeError("redeclaration", HandleVector(args, 2)); |
| return Top::Throw(*error); |
| } |
| |
| |
| static Object* Runtime_DeclareGlobals(Arguments args) { |
| HandleScope scope; |
| Handle<GlobalObject> global = Handle<GlobalObject>(Top::context()->global()); |
| |
| Handle<Context> context = args.at<Context>(0); |
| CONVERT_ARG_CHECKED(FixedArray, pairs, 1); |
| bool is_eval = Smi::cast(args[2])->value() == 1; |
| |
| // Compute the property attributes. According to ECMA-262, section |
| // 13, page 71, the property must be read-only and |
| // non-deletable. However, neither SpiderMonkey nor KJS creates the |
| // property as read-only, so we don't either. |
| PropertyAttributes base = is_eval ? NONE : DONT_DELETE; |
| |
| // Traverse the name/value pairs and set the properties. |
| int length = pairs->length(); |
| for (int i = 0; i < length; i += 2) { |
| HandleScope scope; |
| Handle<String> name(String::cast(pairs->get(i))); |
| Handle<Object> value(pairs->get(i + 1)); |
| |
| // We have to declare a global const property. To capture we only |
| // assign to it when evaluating the assignment for "const x = |
| // <expr>" the initial value is the hole. |
| bool is_const_property = value->IsTheHole(); |
| |
| if (value->IsUndefined() || is_const_property) { |
| // Lookup the property in the global object, and don't set the |
| // value of the variable if the property is already there. |
| LookupResult lookup; |
| global->Lookup(*name, &lookup); |
| if (lookup.IsProperty()) { |
| // Determine if the property is local by comparing the holder |
| // against the global object. The information will be used to |
| // avoid throwing re-declaration errors when declaring |
| // variables or constants that exist in the prototype chain. |
| bool is_local = (*global == lookup.holder()); |
| // Get the property attributes and determine if the property is |
| // read-only. |
| PropertyAttributes attributes = global->GetPropertyAttribute(*name); |
| bool is_read_only = (attributes & READ_ONLY) != 0; |
| if (lookup.type() == INTERCEPTOR) { |
| // If the interceptor says the property is there, we |
| // just return undefined without overwriting the property. |
| // Otherwise, we continue to setting the property. |
| if (attributes != ABSENT) { |
| // Check if the existing property conflicts with regards to const. |
| if (is_local && (is_read_only || is_const_property)) { |
| const char* type = (is_read_only) ? "const" : "var"; |
| return ThrowRedeclarationError(type, name); |
| }; |
| // The property already exists without conflicting: Go to |
| // the next declaration. |
| continue; |
| } |
| // Fall-through and introduce the absent property by using |
| // SetProperty. |
| } else { |
| if (is_local && (is_read_only || is_const_property)) { |
| const char* type = (is_read_only) ? "const" : "var"; |
| return ThrowRedeclarationError(type, name); |
| } |
| // The property already exists without conflicting: Go to |
| // the next declaration. |
| continue; |
| } |
| } |
| } else { |
| // Copy the function and update its context. Use it as value. |
| Handle<JSFunction> boilerplate = Handle<JSFunction>::cast(value); |
| Handle<JSFunction> function = |
| Factory::NewFunctionFromBoilerplate(boilerplate, context, TENURED); |
| value = function; |
| } |
| |
| LookupResult lookup; |
| global->LocalLookup(*name, &lookup); |
| |
| PropertyAttributes attributes = is_const_property |
| ? static_cast<PropertyAttributes>(base | READ_ONLY) |
| : base; |
| |
| if (lookup.IsProperty()) { |
| // There's a local property that we need to overwrite because |
| // we're either declaring a function or there's an interceptor |
| // that claims the property is absent. |
| |
| // Check for conflicting re-declarations. We cannot have |
| // conflicting types in case of intercepted properties because |
| // they are absent. |
| if (lookup.type() != INTERCEPTOR && |
| (lookup.IsReadOnly() || is_const_property)) { |
| const char* type = (lookup.IsReadOnly()) ? "const" : "var"; |
| return ThrowRedeclarationError(type, name); |
| } |
| SetProperty(global, name, value, attributes); |
| } else { |
| // If a property with this name does not already exist on the |
| // global object add the property locally. We take special |
| // precautions to always add it as a local property even in case |
| // of callbacks in the prototype chain (this rules out using |
| // SetProperty). Also, we must use the handle-based version to |
| // avoid GC issues. |
| IgnoreAttributesAndSetLocalProperty(global, name, value, attributes); |
| } |
| } |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_DeclareContextSlot(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 4); |
| |
| CONVERT_ARG_CHECKED(Context, context, 0); |
| Handle<String> name(String::cast(args[1])); |
| PropertyAttributes mode = |
| static_cast<PropertyAttributes>(Smi::cast(args[2])->value()); |
| ASSERT(mode == READ_ONLY || mode == NONE); |
| Handle<Object> initial_value(args[3]); |
| |
| // Declarations are always done in the function context. |
| context = Handle<Context>(context->fcontext()); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = DONT_FOLLOW_CHAINS; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes); |
| |
| if (attributes != ABSENT) { |
| // The name was declared before; check for conflicting |
| // re-declarations: This is similar to the code in parser.cc in |
| // the AstBuildingParser::Declare function. |
| if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) { |
| // Functions are not read-only. |
| ASSERT(mode != READ_ONLY || initial_value->IsTheHole()); |
| const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var"; |
| return ThrowRedeclarationError(type, name); |
| } |
| |
| // Initialize it if necessary. |
| if (*initial_value != NULL) { |
| if (index >= 0) { |
| // The variable or constant context slot should always be in |
| // the function context or the arguments object. |
| if (holder->IsContext()) { |
| ASSERT(holder.is_identical_to(context)); |
| if (((attributes & READ_ONLY) == 0) || |
| context->get(index)->IsTheHole()) { |
| context->set(index, *initial_value); |
| } |
| } else { |
| Handle<JSObject>::cast(holder)->SetElement(index, *initial_value); |
| } |
| } else { |
| // Slow case: The property is not in the FixedArray part of the context. |
| Handle<JSObject> context_ext = Handle<JSObject>::cast(holder); |
| SetProperty(context_ext, name, initial_value, mode); |
| } |
| } |
| |
| } else { |
| // The property is not in the function context. It needs to be |
| // "declared" in the function context's extension context, or in the |
| // global context. |
| Handle<JSObject> context_ext; |
| if (context->has_extension()) { |
| // The function context's extension context exists - use it. |
| context_ext = Handle<JSObject>(context->extension()); |
| } else { |
| // The function context's extension context does not exists - allocate |
| // it. |
| context_ext = Factory::NewJSObject(Top::context_extension_function()); |
| // And store it in the extension slot. |
| context->set_extension(*context_ext); |
| } |
| ASSERT(*context_ext != NULL); |
| |
| // Declare the property by setting it to the initial value if provided, |
| // or undefined, and use the correct mode (e.g. READ_ONLY attribute for |
| // constant declarations). |
| ASSERT(!context_ext->HasLocalProperty(*name)); |
| Handle<Object> value(Heap::undefined_value()); |
| if (*initial_value != NULL) value = initial_value; |
| SetProperty(context_ext, name, value, mode); |
| ASSERT(context_ext->GetLocalPropertyAttribute(*name) == mode); |
| } |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_InitializeVarGlobal(Arguments args) { |
| NoHandleAllocation nha; |
| |
| // Determine if we need to assign to the variable if it already |
| // exists (based on the number of arguments). |
| RUNTIME_ASSERT(args.length() == 1 || args.length() == 2); |
| bool assign = args.length() == 2; |
| |
| CONVERT_ARG_CHECKED(String, name, 0); |
| GlobalObject* global = Top::context()->global(); |
| |
| // According to ECMA-262, section 12.2, page 62, the property must |
| // not be deletable. |
| PropertyAttributes attributes = DONT_DELETE; |
| |
| // Lookup the property locally in the global object. If it isn't |
| // there, there is a property with this name in the prototype chain. |
| // We follow Safari and Firefox behavior and only set the property |
| // locally if there is an explicit initialization value that we have |
| // to assign to the property. When adding the property we take |
| // special precautions to always add it as a local property even in |
| // case of callbacks in the prototype chain (this rules out using |
| // SetProperty). We have IgnoreAttributesAndSetLocalProperty for |
| // this. |
| // Note that objects can have hidden prototypes, so we need to traverse |
| // the whole chain of hidden prototypes to do a 'local' lookup. |
| JSObject* real_holder = global; |
| LookupResult lookup; |
| while (true) { |
| real_holder->LocalLookup(*name, &lookup); |
| if (lookup.IsProperty()) { |
| // Determine if this is a redeclaration of something read-only. |
| if (lookup.IsReadOnly()) { |
| // If we found readonly property on one of hidden prototypes, |
| // just shadow it. |
| if (real_holder != Top::context()->global()) break; |
| return ThrowRedeclarationError("const", name); |
| } |
| |
| // Determine if this is a redeclaration of an intercepted read-only |
| // property and figure out if the property exists at all. |
| bool found = true; |
| PropertyType type = lookup.type(); |
| if (type == INTERCEPTOR) { |
| HandleScope handle_scope; |
| Handle<JSObject> holder(real_holder); |
| PropertyAttributes intercepted = holder->GetPropertyAttribute(*name); |
| real_holder = *holder; |
| if (intercepted == ABSENT) { |
| // The interceptor claims the property isn't there. We need to |
| // make sure to introduce it. |
| found = false; |
| } else if ((intercepted & READ_ONLY) != 0) { |
| // The property is present, but read-only. Since we're trying to |
| // overwrite it with a variable declaration we must throw a |
| // re-declaration error. However if we found readonly property |
| // on one of hidden prototypes, just shadow it. |
| if (real_holder != Top::context()->global()) break; |
| return ThrowRedeclarationError("const", name); |
| } |
| } |
| |
| if (found && !assign) { |
| // The global property is there and we're not assigning any value |
| // to it. Just return. |
| return Heap::undefined_value(); |
| } |
| |
| // Assign the value (or undefined) to the property. |
| Object* value = (assign) ? args[1] : Heap::undefined_value(); |
| return real_holder->SetProperty(&lookup, *name, value, attributes); |
| } |
| |
| Object* proto = real_holder->GetPrototype(); |
| if (!proto->IsJSObject()) |
| break; |
| |
| if (!JSObject::cast(proto)->map()->is_hidden_prototype()) |
| break; |
| |
| real_holder = JSObject::cast(proto); |
| } |
| |
| global = Top::context()->global(); |
| if (assign) { |
| return global->IgnoreAttributesAndSetLocalProperty(*name, |
| args[1], |
| attributes); |
| } |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_InitializeConstGlobal(Arguments args) { |
| // All constants are declared with an initial value. The name |
| // of the constant is the first argument and the initial value |
| // is the second. |
| RUNTIME_ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(String, name, 0); |
| Handle<Object> value = args.at<Object>(1); |
| |
| // Get the current global object from top. |
| GlobalObject* global = Top::context()->global(); |
| |
| // According to ECMA-262, section 12.2, page 62, the property must |
| // not be deletable. Since it's a const, it must be READ_ONLY too. |
| PropertyAttributes attributes = |
| static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); |
| |
| // Lookup the property locally in the global object. If it isn't |
| // there, we add the property and take special precautions to always |
| // add it as a local property even in case of callbacks in the |
| // prototype chain (this rules out using SetProperty). |
| // We use IgnoreAttributesAndSetLocalProperty instead |
| LookupResult lookup; |
| global->LocalLookup(*name, &lookup); |
| if (!lookup.IsProperty()) { |
| return global->IgnoreAttributesAndSetLocalProperty(*name, |
| *value, |
| attributes); |
| } |
| |
| // Determine if this is a redeclaration of something not |
| // read-only. In case the result is hidden behind an interceptor we |
| // need to ask it for the property attributes. |
| if (!lookup.IsReadOnly()) { |
| if (lookup.type() != INTERCEPTOR) { |
| return ThrowRedeclarationError("var", name); |
| } |
| |
| PropertyAttributes intercepted = global->GetPropertyAttribute(*name); |
| |
| // Throw re-declaration error if the intercepted property is present |
| // but not read-only. |
| if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) { |
| return ThrowRedeclarationError("var", name); |
| } |
| |
| // Restore global object from context (in case of GC) and continue |
| // with setting the value because the property is either absent or |
| // read-only. We also have to do redo the lookup. |
| global = Top::context()->global(); |
| |
| // BUG 1213579: Handle the case where we have to set a read-only |
| // property through an interceptor and only do it if it's |
| // uninitialized, e.g. the hole. Nirk... |
| global->SetProperty(*name, *value, attributes); |
| return *value; |
| } |
| |
| // Set the value, but only we're assigning the initial value to a |
| // constant. For now, we determine this by checking if the |
| // current value is the hole. |
| PropertyType type = lookup.type(); |
| if (type == FIELD) { |
| FixedArray* properties = global->properties(); |
| int index = lookup.GetFieldIndex(); |
| if (properties->get(index)->IsTheHole()) { |
| properties->set(index, *value); |
| } |
| } else if (type == NORMAL) { |
| if (global->GetNormalizedProperty(&lookup)->IsTheHole()) { |
| global->SetNormalizedProperty(&lookup, *value); |
| } |
| } else { |
| // Ignore re-initialization of constants that have already been |
| // assigned a function value. |
| ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION); |
| } |
| |
| // Use the set value as the result of the operation. |
| return *value; |
| } |
| |
| |
| static Object* Runtime_InitializeConstContextSlot(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| |
| Handle<Object> value(args[0]); |
| ASSERT(!value->IsTheHole()); |
| CONVERT_ARG_CHECKED(Context, context, 1); |
| Handle<String> name(String::cast(args[2])); |
| |
| // Initializations are always done in the function context. |
| context = Handle<Context>(context->fcontext()); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes); |
| |
| // In most situations, the property introduced by the const |
| // declaration should be present in the context extension object. |
| // However, because declaration and initialization are separate, the |
| // property might have been deleted (if it was introduced by eval) |
| // before we reach the initialization point. |
| // |
| // Example: |
| // |
| // function f() { eval("delete x; const x;"); } |
| // |
| // In that case, the initialization behaves like a normal assignment |
| // to property 'x'. |
| if (index >= 0) { |
| // Property was found in a context. |
| if (holder->IsContext()) { |
| // The holder cannot be the function context. If it is, there |
| // should have been a const redeclaration error when declaring |
| // the const property. |
| ASSERT(!holder.is_identical_to(context)); |
| if ((attributes & READ_ONLY) == 0) { |
| Handle<Context>::cast(holder)->set(index, *value); |
| } |
| } else { |
| // The holder is an arguments object. |
| ASSERT((attributes & READ_ONLY) == 0); |
| Handle<JSObject>::cast(holder)->SetElement(index, *value); |
| } |
| return *value; |
| } |
| |
| // The property could not be found, we introduce it in the global |
| // context. |
| if (attributes == ABSENT) { |
| Handle<JSObject> global = Handle<JSObject>(Top::context()->global()); |
| SetProperty(global, name, value, NONE); |
| return *value; |
| } |
| |
| // The property was present in a context extension object. |
| Handle<JSObject> context_ext = Handle<JSObject>::cast(holder); |
| |
| if (*context_ext == context->extension()) { |
| // This is the property that was introduced by the const |
| // declaration. Set it if it hasn't been set before. NOTE: We |
| // cannot use GetProperty() to get the current value as it |
| // 'unholes' the value. |
| LookupResult lookup; |
| context_ext->LocalLookupRealNamedProperty(*name, &lookup); |
| ASSERT(lookup.IsProperty()); // the property was declared |
| ASSERT(lookup.IsReadOnly()); // and it was declared as read-only |
| |
| PropertyType type = lookup.type(); |
| if (type == FIELD) { |
| FixedArray* properties = context_ext->properties(); |
| int index = lookup.GetFieldIndex(); |
| if (properties->get(index)->IsTheHole()) { |
| properties->set(index, *value); |
| } |
| } else if (type == NORMAL) { |
| if (context_ext->GetNormalizedProperty(&lookup)->IsTheHole()) { |
| context_ext->SetNormalizedProperty(&lookup, *value); |
| } |
| } else { |
| // We should not reach here. Any real, named property should be |
| // either a field or a dictionary slot. |
| UNREACHABLE(); |
| } |
| } else { |
| // The property was found in a different context extension object. |
| // Set it if it is not a read-only property. |
| if ((attributes & READ_ONLY) == 0) { |
| Handle<Object> set = SetProperty(context_ext, name, value, attributes); |
| // Setting a property might throw an exception. Exceptions |
| // are converted to empty handles in handle operations. We |
| // need to convert back to exceptions here. |
| if (set.is_null()) { |
| ASSERT(Top::has_pending_exception()); |
| return Failure::Exception(); |
| } |
| } |
| } |
| |
| return *value; |
| } |
| |
| |
| static Object* Runtime_OptimizeObjectForAddingMultipleProperties( |
| Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSObject, object, 0); |
| CONVERT_SMI_CHECKED(properties, args[1]); |
| if (object->HasFastProperties()) { |
| NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties); |
| } |
| return *object; |
| } |
| |
| |
| static Object* Runtime_RegExpExec(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_CHECKED(JSRegExp, regexp, 0); |
| CONVERT_ARG_CHECKED(String, subject, 1); |
| // Due to the way the JS calls are constructed this must be less than the |
| // length of a string, i.e. it is always a Smi. We check anyway for security. |
| CONVERT_SMI_CHECKED(index, args[2]); |
| CONVERT_ARG_CHECKED(JSArray, last_match_info, 3); |
| RUNTIME_ASSERT(last_match_info->HasFastElements()); |
| RUNTIME_ASSERT(index >= 0); |
| RUNTIME_ASSERT(index <= subject->length()); |
| Counters::regexp_entry_runtime.Increment(); |
| Handle<Object> result = RegExpImpl::Exec(regexp, |
| subject, |
| index, |
| last_match_info); |
| if (result.is_null()) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| static Object* Runtime_MaterializeRegExpLiteral(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_CHECKED(FixedArray, literals, 0); |
| int index = Smi::cast(args[1])->value(); |
| Handle<String> pattern = args.at<String>(2); |
| Handle<String> flags = args.at<String>(3); |
| |
| // Get the RegExp function from the context in the literals array. |
| // This is the RegExp function from the context in which the |
| // function was created. We do not use the RegExp function from the |
| // current global context because this might be the RegExp function |
| // from another context which we should not have access to. |
| Handle<JSFunction> constructor = |
| Handle<JSFunction>( |
| JSFunction::GlobalContextFromLiterals(*literals)->regexp_function()); |
| // Compute the regular expression literal. |
| bool has_pending_exception; |
| Handle<Object> regexp = |
| RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags, |
| &has_pending_exception); |
| if (has_pending_exception) { |
| ASSERT(Top::has_pending_exception()); |
| return Failure::Exception(); |
| } |
| literals->set(index, *regexp); |
| return *regexp; |
| } |
| |
| |
| static Object* Runtime_FunctionGetName(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, f, args[0]); |
| return f->shared()->name(); |
| } |
| |
| |
| static Object* Runtime_FunctionSetName(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSFunction, f, args[0]); |
| CONVERT_CHECKED(String, name, args[1]); |
| f->shared()->set_name(name); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_FunctionGetScript(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, fun, args[0]); |
| Handle<Object> script = Handle<Object>(fun->shared()->script()); |
| if (!script->IsScript()) return Heap::undefined_value(); |
| |
| return *GetScriptWrapper(Handle<Script>::cast(script)); |
| } |
| |
| |
| static Object* Runtime_FunctionGetSourceCode(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, f, args[0]); |
| return f->shared()->GetSourceCode(); |
| } |
| |
| |
| static Object* Runtime_FunctionGetScriptSourcePosition(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, fun, args[0]); |
| int pos = fun->shared()->start_position(); |
| return Smi::FromInt(pos); |
| } |
| |
| |
| static Object* Runtime_FunctionGetPositionForOffset(Arguments args) { |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSFunction, fun, args[0]); |
| CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]); |
| |
| Code* code = fun->code(); |
| RUNTIME_ASSERT(0 <= offset && offset < code->Size()); |
| |
| Address pc = code->address() + offset; |
| return Smi::FromInt(fun->code()->SourcePosition(pc)); |
| } |
| |
| |
| |
| static Object* Runtime_FunctionSetInstanceClassName(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSFunction, fun, args[0]); |
| CONVERT_CHECKED(String, name, args[1]); |
| fun->SetInstanceClassName(name); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_FunctionSetLength(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSFunction, fun, args[0]); |
| CONVERT_CHECKED(Smi, length, args[1]); |
| fun->shared()->set_length(length->value()); |
| return length; |
| } |
| |
| |
| static Object* Runtime_FunctionSetPrototype(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSFunction, fun, args[0]); |
| Object* obj = Accessors::FunctionSetPrototype(fun, args[1], NULL); |
| if (obj->IsFailure()) return obj; |
| return args[0]; // return TOS |
| } |
| |
| |
| static Object* Runtime_FunctionIsAPIFunction(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, f, args[0]); |
| // The function_data field of the shared function info is used exclusively by |
| // the API. |
| return !f->shared()->function_data()->IsUndefined() ? Heap::true_value() |
| : Heap::false_value(); |
| } |
| |
| static Object* Runtime_FunctionIsBuiltin(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, f, args[0]); |
| return f->IsBuiltin() ? Heap::true_value() : Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_SetCode(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSFunction, target, 0); |
| Handle<Object> code = args.at<Object>(1); |
| |
| Handle<Context> context(target->context()); |
| |
| if (!code->IsNull()) { |
| RUNTIME_ASSERT(code->IsJSFunction()); |
| Handle<JSFunction> fun = Handle<JSFunction>::cast(code); |
| Handle<SharedFunctionInfo> shared(fun->shared()); |
| SetExpectedNofProperties(target, shared->expected_nof_properties()); |
| |
| if (!EnsureCompiled(shared, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| // Set the code, formal parameter count, and the length of the target |
| // function. |
| target->set_code(fun->code()); |
| target->shared()->set_length(shared->length()); |
| target->shared()->set_formal_parameter_count( |
| shared->formal_parameter_count()); |
| // Set the source code of the target function to undefined. |
| // SetCode is only used for built-in constructors like String, |
| // Array, and Object, and some web code |
| // doesn't like seeing source code for constructors. |
| target->shared()->set_script(Heap::undefined_value()); |
| // Clear the optimization hints related to the compiled code as these are no |
| // longer valid when the code is overwritten. |
| target->shared()->ClearThisPropertyAssignmentsInfo(); |
| context = Handle<Context>(fun->context()); |
| |
| // Make sure we get a fresh copy of the literal vector to avoid |
| // cross context contamination. |
| int number_of_literals = fun->NumberOfLiterals(); |
| Handle<FixedArray> literals = |
| Factory::NewFixedArray(number_of_literals, TENURED); |
| if (number_of_literals > 0) { |
| // Insert the object, regexp and array functions in the literals |
| // array prefix. These are the functions that will be used when |
| // creating object, regexp and array literals. |
| literals->set(JSFunction::kLiteralGlobalContextIndex, |
| context->global_context()); |
| } |
| // It's okay to skip the write barrier here because the literals |
| // are guaranteed to be in old space. |
| target->set_literals(*literals, SKIP_WRITE_BARRIER); |
| } |
| |
| target->set_context(*context); |
| return *target; |
| } |
| |
| |
| static Object* CharCodeAt(String* subject, Object* index) { |
| uint32_t i = 0; |
| if (!Array::IndexFromObject(index, &i)) return Heap::nan_value(); |
| // Flatten the string. If someone wants to get a char at an index |
| // in a cons string, it is likely that more indices will be |
| // accessed. |
| Object* flat = subject->TryFlatten(); |
| if (flat->IsFailure()) return flat; |
| subject = String::cast(flat); |
| if (i >= static_cast<uint32_t>(subject->length())) { |
| return Heap::nan_value(); |
| } |
| return Smi::FromInt(subject->Get(i)); |
| } |
| |
| |
| static Object* CharFromCode(Object* char_code) { |
| uint32_t code; |
| if (Array::IndexFromObject(char_code, &code)) { |
| if (code <= 0xffff) { |
| return Heap::LookupSingleCharacterStringFromCode(code); |
| } |
| } |
| return Heap::empty_string(); |
| } |
| |
| |
| static Object* Runtime_StringCharCodeAt(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(String, subject, args[0]); |
| Object* index = args[1]; |
| return CharCodeAt(subject, index); |
| } |
| |
| |
| static Object* Runtime_StringCharAt(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(String, subject, args[0]); |
| Object* index = args[1]; |
| Object* code = CharCodeAt(subject, index); |
| if (code == Heap::nan_value()) { |
| return Heap::undefined_value(); |
| } |
| return CharFromCode(code); |
| } |
| |
| |
| static Object* Runtime_CharFromCode(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| return CharFromCode(args[0]); |
| } |
| |
| // Forward declarations. |
| static const int kStringBuilderConcatHelperLengthBits = 11; |
| static const int kStringBuilderConcatHelperPositionBits = 19; |
| |
| template <typename schar> |
| static inline void StringBuilderConcatHelper(String*, |
| schar*, |
| FixedArray*, |
| int); |
| |
| typedef BitField<int, 0, 11> StringBuilderSubstringLength; |
| typedef BitField<int, 11, 19> StringBuilderSubstringPosition; |
| |
| class ReplacementStringBuilder { |
| public: |
| ReplacementStringBuilder(Handle<String> subject, int estimated_part_count) |
| : subject_(subject), |
| parts_(Factory::NewFixedArray(estimated_part_count)), |
| part_count_(0), |
| character_count_(0), |
| is_ascii_(subject->IsAsciiRepresentation()) { |
| // Require a non-zero initial size. Ensures that doubling the size to |
| // extend the array will work. |
| ASSERT(estimated_part_count > 0); |
| } |
| |
| void EnsureCapacity(int elements) { |
| int length = parts_->length(); |
| int required_length = part_count_ + elements; |
| if (length < required_length) { |
| int new_length = length; |
| do { |
| new_length *= 2; |
| } while (new_length < required_length); |
| Handle<FixedArray> extended_array = |
| Factory::NewFixedArray(new_length); |
| parts_->CopyTo(0, *extended_array, 0, part_count_); |
| parts_ = extended_array; |
| } |
| } |
| |
| void AddSubjectSlice(int from, int to) { |
| ASSERT(from >= 0); |
| int length = to - from; |
| ASSERT(length > 0); |
| // Can we encode the slice in 11 bits for length and 19 bits for |
| // start position - as used by StringBuilderConcatHelper? |
| if (StringBuilderSubstringLength::is_valid(length) && |
| StringBuilderSubstringPosition::is_valid(from)) { |
| int encoded_slice = StringBuilderSubstringLength::encode(length) | |
| StringBuilderSubstringPosition::encode(from); |
| AddElement(Smi::FromInt(encoded_slice)); |
| } else { |
| // Otherwise encode as two smis. |
| AddElement(Smi::FromInt(-length)); |
| AddElement(Smi::FromInt(from)); |
| } |
| IncrementCharacterCount(length); |
| } |
| |
| |
| void AddString(Handle<String> string) { |
| int length = string->length(); |
| ASSERT(length > 0); |
| AddElement(*string); |
| if (!string->IsAsciiRepresentation()) { |
| is_ascii_ = false; |
| } |
| IncrementCharacterCount(length); |
| } |
| |
| |
| Handle<String> ToString() { |
| if (part_count_ == 0) { |
| return Factory::empty_string(); |
| } |
| |
| Handle<String> joined_string; |
| if (is_ascii_) { |
| joined_string = NewRawAsciiString(character_count_); |
| AssertNoAllocation no_alloc; |
| SeqAsciiString* seq = SeqAsciiString::cast(*joined_string); |
| char* char_buffer = seq->GetChars(); |
| StringBuilderConcatHelper(*subject_, |
| char_buffer, |
| *parts_, |
| part_count_); |
| } else { |
| // Non-ASCII. |
| joined_string = NewRawTwoByteString(character_count_); |
| AssertNoAllocation no_alloc; |
| SeqTwoByteString* seq = SeqTwoByteString::cast(*joined_string); |
| uc16* char_buffer = seq->GetChars(); |
| StringBuilderConcatHelper(*subject_, |
| char_buffer, |
| *parts_, |
| part_count_); |
| } |
| return joined_string; |
| } |
| |
| |
| void IncrementCharacterCount(int by) { |
| if (character_count_ > String::kMaxLength - by) { |
| V8::FatalProcessOutOfMemory("String.replace result too large."); |
| } |
| character_count_ += by; |
| } |
| |
| private: |
| |
| Handle<String> NewRawAsciiString(int size) { |
| CALL_HEAP_FUNCTION(Heap::AllocateRawAsciiString(size), String); |
| } |
| |
| |
| Handle<String> NewRawTwoByteString(int size) { |
| CALL_HEAP_FUNCTION(Heap::AllocateRawTwoByteString(size), String); |
| } |
| |
| |
| void AddElement(Object* element) { |
| ASSERT(element->IsSmi() || element->IsString()); |
| ASSERT(parts_->length() > part_count_); |
| parts_->set(part_count_, element); |
| part_count_++; |
| } |
| |
| Handle<String> subject_; |
| Handle<FixedArray> parts_; |
| int part_count_; |
| int character_count_; |
| bool is_ascii_; |
| }; |
| |
| |
| class CompiledReplacement { |
| public: |
| CompiledReplacement() |
| : parts_(1), replacement_substrings_(0) {} |
| |
| void Compile(Handle<String> replacement, |
| int capture_count, |
| int subject_length); |
| |
| void Apply(ReplacementStringBuilder* builder, |
| int match_from, |
| int match_to, |
| Handle<JSArray> last_match_info); |
| |
| // Number of distinct parts of the replacement pattern. |
| int parts() { |
| return parts_.length(); |
| } |
| private: |
| enum PartType { |
| SUBJECT_PREFIX = 1, |
| SUBJECT_SUFFIX, |
| SUBJECT_CAPTURE, |
| REPLACEMENT_SUBSTRING, |
| REPLACEMENT_STRING, |
| |
| NUMBER_OF_PART_TYPES |
| }; |
| |
| struct ReplacementPart { |
| static inline ReplacementPart SubjectMatch() { |
| return ReplacementPart(SUBJECT_CAPTURE, 0); |
| } |
| static inline ReplacementPart SubjectCapture(int capture_index) { |
| return ReplacementPart(SUBJECT_CAPTURE, capture_index); |
| } |
| static inline ReplacementPart SubjectPrefix() { |
| return ReplacementPart(SUBJECT_PREFIX, 0); |
| } |
| static inline ReplacementPart SubjectSuffix(int subject_length) { |
| return ReplacementPart(SUBJECT_SUFFIX, subject_length); |
| } |
| static inline ReplacementPart ReplacementString() { |
| return ReplacementPart(REPLACEMENT_STRING, 0); |
| } |
| static inline ReplacementPart ReplacementSubString(int from, int to) { |
| ASSERT(from >= 0); |
| ASSERT(to > from); |
| return ReplacementPart(-from, to); |
| } |
| |
| // If tag <= 0 then it is the negation of a start index of a substring of |
| // the replacement pattern, otherwise it's a value from PartType. |
| ReplacementPart(int tag, int data) |
| : tag(tag), data(data) { |
| // Must be non-positive or a PartType value. |
| ASSERT(tag < NUMBER_OF_PART_TYPES); |
| } |
| // Either a value of PartType or a non-positive number that is |
| // the negation of an index into the replacement string. |
| int tag; |
| // The data value's interpretation depends on the value of tag: |
| // tag == SUBJECT_PREFIX || |
| // tag == SUBJECT_SUFFIX: data is unused. |
| // tag == SUBJECT_CAPTURE: data is the number of the capture. |
| // tag == REPLACEMENT_SUBSTRING || |
| // tag == REPLACEMENT_STRING: data is index into array of substrings |
| // of the replacement string. |
| // tag <= 0: Temporary representation of the substring of the replacement |
| // string ranging over -tag .. data. |
| // Is replaced by REPLACEMENT_{SUB,}STRING when we create the |
| // substring objects. |
| int data; |
| }; |
| |
| template<typename Char> |
| static void ParseReplacementPattern(ZoneList<ReplacementPart>* parts, |
| Vector<Char> characters, |
| int capture_count, |
| int subject_length) { |
| int length = characters.length(); |
| int last = 0; |
| for (int i = 0; i < length; i++) { |
| Char c = characters[i]; |
| if (c == '$') { |
| int next_index = i + 1; |
| if (next_index == length) { // No next character! |
| break; |
| } |
| Char c2 = characters[next_index]; |
| switch (c2) { |
| case '$': |
| if (i > last) { |
| // There is a substring before. Include the first "$". |
| parts->Add(ReplacementPart::ReplacementSubString(last, next_index)); |
| last = next_index + 1; // Continue after the second "$". |
| } else { |
| // Let the next substring start with the second "$". |
| last = next_index; |
| } |
| i = next_index; |
| break; |
| case '`': |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| parts->Add(ReplacementPart::SubjectPrefix()); |
| i = next_index; |
| last = i + 1; |
| break; |
| case '\'': |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| parts->Add(ReplacementPart::SubjectSuffix(subject_length)); |
| i = next_index; |
| last = i + 1; |
| break; |
| case '&': |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| parts->Add(ReplacementPart::SubjectMatch()); |
| i = next_index; |
| last = i + 1; |
| break; |
| case '0': |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': { |
| int capture_ref = c2 - '0'; |
| if (capture_ref > capture_count) { |
| i = next_index; |
| continue; |
| } |
| int second_digit_index = next_index + 1; |
| if (second_digit_index < length) { |
| // Peek ahead to see if we have two digits. |
| Char c3 = characters[second_digit_index]; |
| if ('0' <= c3 && c3 <= '9') { // Double digits. |
| int double_digit_ref = capture_ref * 10 + c3 - '0'; |
| if (double_digit_ref <= capture_count) { |
| next_index = second_digit_index; |
| capture_ref = double_digit_ref; |
| } |
| } |
| } |
| if (capture_ref > 0) { |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| ASSERT(capture_ref <= capture_count); |
| parts->Add(ReplacementPart::SubjectCapture(capture_ref)); |
| last = next_index + 1; |
| } |
| i = next_index; |
| break; |
| } |
| default: |
| i = next_index; |
| break; |
| } |
| } |
| } |
| if (length > last) { |
| if (last == 0) { |
| parts->Add(ReplacementPart::ReplacementString()); |
| } else { |
| parts->Add(ReplacementPart::ReplacementSubString(last, length)); |
| } |
| } |
| } |
| |
| ZoneList<ReplacementPart> parts_; |
| ZoneList<Handle<String> > replacement_substrings_; |
| }; |
| |
| |
| void CompiledReplacement::Compile(Handle<String> replacement, |
| int capture_count, |
| int subject_length) { |
| ASSERT(replacement->IsFlat()); |
| if (replacement->IsAsciiRepresentation()) { |
| AssertNoAllocation no_alloc; |
| ParseReplacementPattern(&parts_, |
| replacement->ToAsciiVector(), |
| capture_count, |
| subject_length); |
| } else { |
| ASSERT(replacement->IsTwoByteRepresentation()); |
| AssertNoAllocation no_alloc; |
| |
| ParseReplacementPattern(&parts_, |
| replacement->ToUC16Vector(), |
| capture_count, |
| subject_length); |
| } |
| // Find substrings of replacement string and create them as String objects. |
| int substring_index = 0; |
| for (int i = 0, n = parts_.length(); i < n; i++) { |
| int tag = parts_[i].tag; |
| if (tag <= 0) { // A replacement string slice. |
| int from = -tag; |
| int to = parts_[i].data; |
| replacement_substrings_.Add(Factory::NewSubString(replacement, from, to)); |
| parts_[i].tag = REPLACEMENT_SUBSTRING; |
| parts_[i].data = substring_index; |
| substring_index++; |
| } else if (tag == REPLACEMENT_STRING) { |
| replacement_substrings_.Add(replacement); |
| parts_[i].data = substring_index; |
| substring_index++; |
| } |
| } |
| } |
| |
| |
| void CompiledReplacement::Apply(ReplacementStringBuilder* builder, |
| int match_from, |
| int match_to, |
| Handle<JSArray> last_match_info) { |
| for (int i = 0, n = parts_.length(); i < n; i++) { |
| ReplacementPart part = parts_[i]; |
| switch (part.tag) { |
| case SUBJECT_PREFIX: |
| if (match_from > 0) builder->AddSubjectSlice(0, match_from); |
| break; |
| case SUBJECT_SUFFIX: { |
| int subject_length = part.data; |
| if (match_to < subject_length) { |
| builder->AddSubjectSlice(match_to, subject_length); |
| } |
| break; |
| } |
| case SUBJECT_CAPTURE: { |
| int capture = part.data; |
| FixedArray* match_info = FixedArray::cast(last_match_info->elements()); |
| int from = RegExpImpl::GetCapture(match_info, capture * 2); |
| int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1); |
| if (from >= 0 && to > from) { |
| builder->AddSubjectSlice(from, to); |
| } |
| break; |
| } |
| case REPLACEMENT_SUBSTRING: |
| case REPLACEMENT_STRING: |
| builder->AddString(replacement_substrings_[part.data]); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| |
| |
| static Object* StringReplaceRegExpWithString(String* subject, |
| JSRegExp* regexp, |
| String* replacement, |
| JSArray* last_match_info) { |
| ASSERT(subject->IsFlat()); |
| ASSERT(replacement->IsFlat()); |
| |
| HandleScope handles; |
| |
| int length = subject->length(); |
| Handle<String> subject_handle(subject); |
| Handle<JSRegExp> regexp_handle(regexp); |
| Handle<String> replacement_handle(replacement); |
| Handle<JSArray> last_match_info_handle(last_match_info); |
| Handle<Object> match = RegExpImpl::Exec(regexp_handle, |
| subject_handle, |
| 0, |
| last_match_info_handle); |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| if (match->IsNull()) { |
| return *subject_handle; |
| } |
| |
| int capture_count = regexp_handle->CaptureCount(); |
| |
| // CompiledReplacement uses zone allocation. |
| CompilationZoneScope zone(DELETE_ON_EXIT); |
| CompiledReplacement compiled_replacement; |
| compiled_replacement.Compile(replacement_handle, |
| capture_count, |
| length); |
| |
| bool is_global = regexp_handle->GetFlags().is_global(); |
| |
| // Guessing the number of parts that the final result string is built |
| // from. Global regexps can match any number of times, so we guess |
| // conservatively. |
| int expected_parts = |
| (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1; |
| ReplacementStringBuilder builder(subject_handle, expected_parts); |
| |
| // Index of end of last match. |
| int prev = 0; |
| |
| // Number of parts added by compiled replacement plus preceeding |
| // string and possibly suffix after last match. It is possible for |
| // all components to use two elements when encoded as two smis. |
| const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2); |
| bool matched = true; |
| do { |
| ASSERT(last_match_info_handle->HasFastElements()); |
| // Increase the capacity of the builder before entering local handle-scope, |
| // so its internal buffer can safely allocate a new handle if it grows. |
| builder.EnsureCapacity(parts_added_per_loop); |
| |
| HandleScope loop_scope; |
| int start, end; |
| { |
| AssertNoAllocation match_info_array_is_not_in_a_handle; |
| FixedArray* match_info_array = |
| FixedArray::cast(last_match_info_handle->elements()); |
| |
| ASSERT_EQ(capture_count * 2 + 2, |
| RegExpImpl::GetLastCaptureCount(match_info_array)); |
| start = RegExpImpl::GetCapture(match_info_array, 0); |
| end = RegExpImpl::GetCapture(match_info_array, 1); |
| } |
| |
| if (prev < start) { |
| builder.AddSubjectSlice(prev, start); |
| } |
| compiled_replacement.Apply(&builder, |
| start, |
| end, |
| last_match_info_handle); |
| prev = end; |
| |
| // Only continue checking for global regexps. |
| if (!is_global) break; |
| |
| // Continue from where the match ended, unless it was an empty match. |
| int next = end; |
| if (start == end) { |
| next = end + 1; |
| if (next > length) break; |
| } |
| |
| match = RegExpImpl::Exec(regexp_handle, |
| subject_handle, |
| next, |
| last_match_info_handle); |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| matched = !match->IsNull(); |
| } while (matched); |
| |
| if (prev < length) { |
| builder.AddSubjectSlice(prev, length); |
| } |
| |
| return *(builder.ToString()); |
| } |
| |
| |
| static Object* Runtime_StringReplaceRegExpWithString(Arguments args) { |
| ASSERT(args.length() == 4); |
| |
| CONVERT_CHECKED(String, subject, args[0]); |
| if (!subject->IsFlat()) { |
| Object* flat_subject = subject->TryFlatten(); |
| if (flat_subject->IsFailure()) { |
| return flat_subject; |
| } |
| subject = String::cast(flat_subject); |
| } |
| |
| CONVERT_CHECKED(String, replacement, args[2]); |
| if (!replacement->IsFlat()) { |
| Object* flat_replacement = replacement->TryFlatten(); |
| if (flat_replacement->IsFailure()) { |
| return flat_replacement; |
| } |
| replacement = String::cast(flat_replacement); |
| } |
| |
| CONVERT_CHECKED(JSRegExp, regexp, args[1]); |
| CONVERT_CHECKED(JSArray, last_match_info, args[3]); |
| |
| ASSERT(last_match_info->HasFastElements()); |
| |
| return StringReplaceRegExpWithString(subject, |
| regexp, |
| replacement, |
| last_match_info); |
| } |
| |
| |
| |
| // Cap on the maximal shift in the Boyer-Moore implementation. By setting a |
| // limit, we can fix the size of tables. |
| static const int kBMMaxShift = 0xff; |
| // Reduce alphabet to this size. |
| static const int kBMAlphabetSize = 0x100; |
| // For patterns below this length, the skip length of Boyer-Moore is too short |
| // to compensate for the algorithmic overhead compared to simple brute force. |
| static const int kBMMinPatternLength = 5; |
| |
| // Holds the two buffers used by Boyer-Moore string search's Good Suffix |
| // shift. Only allows the last kBMMaxShift characters of the needle |
| // to be indexed. |
| class BMGoodSuffixBuffers { |
| public: |
| BMGoodSuffixBuffers() {} |
| inline void init(int needle_length) { |
| ASSERT(needle_length > 1); |
| int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift; |
| int len = needle_length - start; |
| biased_suffixes_ = suffixes_ - start; |
| biased_good_suffix_shift_ = good_suffix_shift_ - start; |
| for (int i = 0; i <= len; i++) { |
| good_suffix_shift_[i] = len; |
| } |
| } |
| inline int& suffix(int index) { |
| ASSERT(biased_suffixes_ + index >= suffixes_); |
| return biased_suffixes_[index]; |
| } |
| inline int& shift(int index) { |
| ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_); |
| return biased_good_suffix_shift_[index]; |
| } |
| private: |
| int suffixes_[kBMMaxShift + 1]; |
| int good_suffix_shift_[kBMMaxShift + 1]; |
| int* biased_suffixes_; |
| int* biased_good_suffix_shift_; |
| DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers); |
| }; |
| |
| // buffers reused by BoyerMoore |
| static int bad_char_occurrence[kBMAlphabetSize]; |
| static BMGoodSuffixBuffers bmgs_buffers; |
| |
| // Compute the bad-char table for Boyer-Moore in the static buffer. |
| template <typename pchar> |
| static void BoyerMoorePopulateBadCharTable(Vector<const pchar> pattern, |
| int start) { |
| // Run forwards to populate bad_char_table, so that *last* instance |
| // of character equivalence class is the one registered. |
| // Notice: Doesn't include the last character. |
| int table_size = (sizeof(pchar) == 1) ? String::kMaxAsciiCharCode + 1 |
| : kBMAlphabetSize; |
| if (start == 0) { // All patterns less than kBMMaxShift in length. |
| memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence)); |
| } else { |
| for (int i = 0; i < table_size; i++) { |
| bad_char_occurrence[i] = start - 1; |
| } |
| } |
| for (int i = start; i < pattern.length() - 1; i++) { |
| pchar c = pattern[i]; |
| int bucket = (sizeof(pchar) ==1) ? c : c % kBMAlphabetSize; |
| bad_char_occurrence[bucket] = i; |
| } |
| } |
| |
| template <typename pchar> |
| static void BoyerMoorePopulateGoodSuffixTable(Vector<const pchar> pattern, |
| int start) { |
| int m = pattern.length(); |
| int len = m - start; |
| // Compute Good Suffix tables. |
| bmgs_buffers.init(m); |
| |
| bmgs_buffers.shift(m-1) = 1; |
| bmgs_buffers.suffix(m) = m + 1; |
| pchar last_char = pattern[m - 1]; |
| int suffix = m + 1; |
| for (int i = m; i > start;) { |
| for (pchar c = pattern[i - 1]; suffix <= m && c != pattern[suffix - 1];) { |
| if (bmgs_buffers.shift(suffix) == len) { |
| bmgs_buffers.shift(suffix) = suffix - i; |
| } |
| suffix = bmgs_buffers.suffix(suffix); |
| } |
| i--; |
| suffix--; |
| bmgs_buffers.suffix(i) = suffix; |
| if (suffix == m) { |
| // No suffix to extend, so we check against last_char only. |
| while (i > start && pattern[i - 1] != last_char) { |
| if (bmgs_buffers.shift(m) == len) { |
| bmgs_buffers.shift(m) = m - i; |
| } |
| i--; |
| bmgs_buffers.suffix(i) = m; |
| } |
| if (i > start) { |
| i--; |
| suffix--; |
| bmgs_buffers.suffix(i) = suffix; |
| } |
| } |
| } |
| if (suffix < m) { |
| for (int i = start; i <= m; i++) { |
| if (bmgs_buffers.shift(i) == len) { |
| bmgs_buffers.shift(i) = suffix - start; |
| } |
| if (i == suffix) { |
| suffix = bmgs_buffers.suffix(suffix); |
| } |
| } |
| } |
| } |
| |
| template <typename schar, typename pchar> |
| static inline int CharOccurrence(int char_code) { |
| if (sizeof(schar) == 1) { |
| return bad_char_occurrence[char_code]; |
| } |
| if (sizeof(pchar) == 1) { |
| if (char_code > String::kMaxAsciiCharCode) { |
| return -1; |
| } |
| return bad_char_occurrence[char_code]; |
| } |
| return bad_char_occurrence[char_code % kBMAlphabetSize]; |
| } |
| |
| // Restricted simplified Boyer-Moore string matching. |
| // Uses only the bad-shift table of Boyer-Moore and only uses it |
| // for the character compared to the last character of the needle. |
| template <typename schar, typename pchar> |
| static int BoyerMooreHorspool(Vector<const schar> subject, |
| Vector<const pchar> pattern, |
| int start_index, |
| bool* complete) { |
| int n = subject.length(); |
| int m = pattern.length(); |
| // Only preprocess at most kBMMaxShift last characters of pattern. |
| int start = m < kBMMaxShift ? 0 : m - kBMMaxShift; |
| |
| BoyerMoorePopulateBadCharTable(pattern, start); |
| |
| int badness = -m; // How bad we are doing without a good-suffix table. |
| int idx; // No matches found prior to this index. |
| pchar last_char = pattern[m - 1]; |
| int last_char_shift = m - 1 - CharOccurrence<schar, pchar>(last_char); |
| // Perform search |
| for (idx = start_index; idx <= n - m;) { |
| int j = m - 1; |
| int c; |
| while (last_char != (c = subject[idx + j])) { |
| int bc_occ = CharOccurrence<schar, pchar>(c); |
| int shift = j - bc_occ; |
| idx += shift; |
| badness += 1 - shift; // at most zero, so badness cannot increase. |
| if (idx > n - m) { |
| *complete = true; |
| return -1; |
| } |
| } |
| j--; |
| while (j >= 0 && pattern[j] == (subject[idx + j])) j--; |
| if (j < 0) { |
| *complete = true; |
| return idx; |
| } else { |
| idx += last_char_shift; |
| // Badness increases by the number of characters we have |
| // checked, and decreases by the number of characters we |
| // can skip by shifting. It's a measure of how we are doing |
| // compared to reading each character exactly once. |
| badness += (m - j) - last_char_shift; |
| if (badness > 0) { |
| *complete = false; |
| return idx; |
| } |
| } |
| } |
| *complete = true; |
| return -1; |
| } |
| |
| |
| template <typename schar, typename pchar> |
| static int BoyerMooreIndexOf(Vector<const schar> subject, |
| Vector<const pchar> pattern, |
| int idx) { |
| int n = subject.length(); |
| int m = pattern.length(); |
| // Only preprocess at most kBMMaxShift last characters of pattern. |
| int start = m < kBMMaxShift ? 0 : m - kBMMaxShift; |
| |
| // Build the Good Suffix table and continue searching. |
| BoyerMoorePopulateGoodSuffixTable(pattern, start); |
| pchar last_char = pattern[m - 1]; |
| // Continue search from i. |
| while (idx <= n - m) { |
| int j = m - 1; |
| schar c; |
| while (last_char != (c = subject[idx + j])) { |
| int shift = j - CharOccurrence<schar, pchar>(c); |
| idx += shift; |
| if (idx > n - m) { |
| return -1; |
| } |
| } |
| while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--; |
| if (j < 0) { |
| return idx; |
| } else if (j < start) { |
| // we have matched more than our tables allow us to be smart about. |
| // Fall back on BMH shift. |
| idx += m - 1 - CharOccurrence<schar, pchar>(last_char); |
| } else { |
| int gs_shift = bmgs_buffers.shift(j + 1); // Good suffix shift. |
| int bc_occ = CharOccurrence<schar, pchar>(c); |
| int shift = j - bc_occ; // Bad-char shift. |
| if (gs_shift > shift) { |
| shift = gs_shift; |
| } |
| idx += shift; |
| } |
| } |
| |
| return -1; |
| } |
| |
| |
| template <typename schar> |
| static int SingleCharIndexOf(Vector<const schar> string, |
| schar pattern_char, |
| int start_index) { |
| for (int i = start_index, n = string.length(); i < n; i++) { |
| if (pattern_char == string[i]) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| |
| template <typename schar> |
| static int SingleCharLastIndexOf(Vector<const schar> string, |
| schar pattern_char, |
| int start_index) { |
| for (int i = start_index; i >= 0; i--) { |
| if (pattern_char == string[i]) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| |
| // Trivial string search for shorter strings. |
| // On return, if "complete" is set to true, the return value is the |
| // final result of searching for the patter in the subject. |
| // If "complete" is set to false, the return value is the index where |
| // further checking should start, i.e., it's guaranteed that the pattern |
| // does not occur at a position prior to the returned index. |
| template <typename pchar, typename schar> |
| static int SimpleIndexOf(Vector<const schar> subject, |
| Vector<const pchar> pattern, |
| int idx, |
| bool* complete) { |
| // Badness is a count of how much work we have done. When we have |
| // done enough work we decide it's probably worth switching to a better |
| // algorithm. |
| int badness = -10 - (pattern.length() << 2); |
| // We know our pattern is at least 2 characters, we cache the first so |
| // the common case of the first character not matching is faster. |
| pchar pattern_first_char = pattern[0]; |
| |
| for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) { |
| badness++; |
| if (badness > 0) { |
| *complete = false; |
| return i; |
| } |
| if (subject[i] != pattern_first_char) continue; |
| int j = 1; |
| do { |
| if (pattern[j] != subject[i+j]) { |
| break; |
| } |
| j++; |
| } while (j < pattern.length()); |
| if (j == pattern.length()) { |
| *complete = true; |
| return i; |
| } |
| badness += j; |
| } |
| *complete = true; |
| return -1; |
| } |
| |
| // Simple indexOf that never bails out. For short patterns only. |
| template <typename pchar, typename schar> |
| static int SimpleIndexOf(Vector<const schar> subject, |
| Vector<const pchar> pattern, |
| int idx) { |
| pchar pattern_first_char = pattern[0]; |
| for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) { |
| if (subject[i] != pattern_first_char) continue; |
| int j = 1; |
| do { |
| if (pattern[j] != subject[i+j]) { |
| break; |
| } |
| j++; |
| } while (j < pattern.length()); |
| if (j == pattern.length()) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| |
| // Dispatch to different algorithms. |
| template <typename schar, typename pchar> |
| static int StringMatchStrategy(Vector<const schar> sub, |
| Vector<const pchar> pat, |
| int start_index) { |
| ASSERT(pat.length() > 1); |
| |
| // We have an ASCII haystack and a non-ASCII needle. Check if there |
| // really is a non-ASCII character in the needle and bail out if there |
| // is. |
| if (sizeof(schar) == 1 && sizeof(pchar) > 1) { |
| for (int i = 0; i < pat.length(); i++) { |
| uc16 c = pat[i]; |
| if (c > String::kMaxAsciiCharCode) { |
| return -1; |
| } |
| } |
| } |
| if (pat.length() < kBMMinPatternLength) { |
| // We don't believe fancy searching can ever be more efficient. |
| // The max shift of Boyer-Moore on a pattern of this length does |
| // not compensate for the overhead. |
| return SimpleIndexOf(sub, pat, start_index); |
| } |
| // Try algorithms in order of increasing setup cost and expected performance. |
| bool complete; |
| int idx = SimpleIndexOf(sub, pat, start_index, &complete); |
| if (complete) return idx; |
| idx = BoyerMooreHorspool(sub, pat, idx, &complete); |
| if (complete) return idx; |
| return BoyerMooreIndexOf(sub, pat, idx); |
| } |
| |
| // Perform string match of pattern on subject, starting at start index. |
| // Caller must ensure that 0 <= start_index <= sub->length(), |
| // and should check that pat->length() + start_index <= sub->length() |
| int Runtime::StringMatch(Handle<String> sub, |
| Handle<String> pat, |
| int start_index) { |
| ASSERT(0 <= start_index); |
| ASSERT(start_index <= sub->length()); |
| |
| int pattern_length = pat->length(); |
| if (pattern_length == 0) return start_index; |
| |
| int subject_length = sub->length(); |
| if (start_index + pattern_length > subject_length) return -1; |
| |
| if (!sub->IsFlat()) { |
| FlattenString(sub); |
| } |
| // Searching for one specific character is common. For one |
| // character patterns linear search is necessary, so any smart |
| // algorithm is unnecessary overhead. |
| if (pattern_length == 1) { |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid |
| if (sub->IsAsciiRepresentation()) { |
| uc16 pchar = pat->Get(0); |
| if (pchar > String::kMaxAsciiCharCode) { |
| return -1; |
| } |
| Vector<const char> ascii_vector = |
| sub->ToAsciiVector().SubVector(start_index, subject_length); |
| const void* pos = memchr(ascii_vector.start(), |
| static_cast<const char>(pchar), |
| static_cast<size_t>(ascii_vector.length())); |
| if (pos == NULL) { |
| return -1; |
| } |
| return static_cast<int>(reinterpret_cast<const char*>(pos) |
| - ascii_vector.start() + start_index); |
| } |
| return SingleCharIndexOf(sub->ToUC16Vector(), pat->Get(0), start_index); |
| } |
| |
| if (!pat->IsFlat()) { |
| FlattenString(pat); |
| } |
| |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid |
| // dispatch on type of strings |
| if (pat->IsAsciiRepresentation()) { |
| Vector<const char> pat_vector = pat->ToAsciiVector(); |
| if (sub->IsAsciiRepresentation()) { |
| return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index); |
| } |
| return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index); |
| } |
| Vector<const uc16> pat_vector = pat->ToUC16Vector(); |
| if (sub->IsAsciiRepresentation()) { |
| return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index); |
| } |
| return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index); |
| } |
| |
| |
| static Object* Runtime_StringIndexOf(Arguments args) { |
| HandleScope scope; // create a new handle scope |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_CHECKED(String, sub, 0); |
| CONVERT_ARG_CHECKED(String, pat, 1); |
| |
| Object* index = args[2]; |
| uint32_t start_index; |
| if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1); |
| |
| RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length())); |
| int position = Runtime::StringMatch(sub, pat, start_index); |
| return Smi::FromInt(position); |
| } |
| |
| |
| template <typename schar, typename pchar> |
| static int StringMatchBackwards(Vector<const schar> sub, |
| Vector<const pchar> pat, |
| int idx) { |
| ASSERT(pat.length() >= 1); |
| ASSERT(idx + pat.length() <= sub.length()); |
| |
| if (sizeof(schar) == 1 && sizeof(pchar) > 1) { |
| for (int i = 0; i < pat.length(); i++) { |
| uc16 c = pat[i]; |
| if (c > String::kMaxAsciiCharCode) { |
| return -1; |
| } |
| } |
| } |
| |
| pchar pattern_first_char = pat[0]; |
| for (int i = idx; i >= 0; i--) { |
| if (sub[i] != pattern_first_char) continue; |
| int j = 1; |
| while (j < pat.length()) { |
| if (pat[j] != sub[i+j]) { |
| break; |
| } |
| j++; |
| } |
| if (j == pat.length()) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static Object* Runtime_StringLastIndexOf(Arguments args) { |
| HandleScope scope; // create a new handle scope |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_CHECKED(String, sub, 0); |
| CONVERT_ARG_CHECKED(String, pat, 1); |
| |
| Object* index = args[2]; |
| uint32_t start_index; |
| if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1); |
| |
| uint32_t pat_length = pat->length(); |
| uint32_t sub_length = sub->length(); |
| |
| if (start_index + pat_length > sub_length) { |
| start_index = sub_length - pat_length; |
| } |
| |
| if (pat_length == 0) { |
| return Smi::FromInt(start_index); |
| } |
| |
| if (!sub->IsFlat()) { |
| FlattenString(sub); |
| } |
| |
| if (pat_length == 1) { |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid |
| if (sub->IsAsciiRepresentation()) { |
| uc16 pchar = pat->Get(0); |
| if (pchar > String::kMaxAsciiCharCode) { |
| return Smi::FromInt(-1); |
| } |
| return Smi::FromInt(SingleCharLastIndexOf(sub->ToAsciiVector(), |
| static_cast<char>(pat->Get(0)), |
| start_index)); |
| } else { |
| return Smi::FromInt(SingleCharLastIndexOf(sub->ToUC16Vector(), |
| pat->Get(0), |
| start_index)); |
| } |
| } |
| |
| if (!pat->IsFlat()) { |
| FlattenString(pat); |
| } |
| |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid |
| |
| int position = -1; |
| |
| if (pat->IsAsciiRepresentation()) { |
| Vector<const char> pat_vector = pat->ToAsciiVector(); |
| if (sub->IsAsciiRepresentation()) { |
| position = StringMatchBackwards(sub->ToAsciiVector(), |
| pat_vector, |
| start_index); |
| } else { |
| position = StringMatchBackwards(sub->ToUC16Vector(), |
| pat_vector, |
| start_index); |
| } |
| } else { |
| Vector<const uc16> pat_vector = pat->ToUC16Vector(); |
| if (sub->IsAsciiRepresentation()) { |
| position = StringMatchBackwards(sub->ToAsciiVector(), |
| pat_vector, |
| start_index); |
| } else { |
| position = StringMatchBackwards(sub->ToUC16Vector(), |
| pat_vector, |
| start_index); |
| } |
| } |
| |
| return Smi::FromInt(position); |
| } |
| |
| |
| static Object* Runtime_StringLocaleCompare(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(String, str1, args[0]); |
| CONVERT_CHECKED(String, str2, args[1]); |
| |
| if (str1 == str2) return Smi::FromInt(0); // Equal. |
| int str1_length = str1->length(); |
| int str2_length = str2->length(); |
| |
| // Decide trivial cases without flattening. |
| if (str1_length == 0) { |
| if (str2_length == 0) return Smi::FromInt(0); // Equal. |
| return Smi::FromInt(-str2_length); |
| } else { |
| if (str2_length == 0) return Smi::FromInt(str1_length); |
| } |
| |
| int end = str1_length < str2_length ? str1_length : str2_length; |
| |
| // No need to flatten if we are going to find the answer on the first |
| // character. At this point we know there is at least one character |
| // in each string, due to the trivial case handling above. |
| int d = str1->Get(0) - str2->Get(0); |
| if (d != 0) return Smi::FromInt(d); |
| |
| str1->TryFlattenIfNotFlat(); |
| str2->TryFlattenIfNotFlat(); |
| |
| static StringInputBuffer buf1; |
| static StringInputBuffer buf2; |
| |
| buf1.Reset(str1); |
| buf2.Reset(str2); |
| |
| for (int i = 0; i < end; i++) { |
| uint16_t char1 = buf1.GetNext(); |
| uint16_t char2 = buf2.GetNext(); |
| if (char1 != char2) return Smi::FromInt(char1 - char2); |
| } |
| |
| return Smi::FromInt(str1_length - str2_length); |
| } |
| |
| |
| static Object* Runtime_SubString(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_CHECKED(String, value, args[0]); |
| Object* from = args[1]; |
| Object* to = args[2]; |
| int start, end; |
| // We have a fast integer-only case here to avoid a conversion to double in |
| // the common case where from and to are Smis. |
| if (from->IsSmi() && to->IsSmi()) { |
| start = Smi::cast(from)->value(); |
| end = Smi::cast(to)->value(); |
| } else { |
| CONVERT_DOUBLE_CHECKED(from_number, from); |
| CONVERT_DOUBLE_CHECKED(to_number, to); |
| start = FastD2I(from_number); |
| end = FastD2I(to_number); |
| } |
| RUNTIME_ASSERT(end >= start); |
| RUNTIME_ASSERT(start >= 0); |
| RUNTIME_ASSERT(end <= value->length()); |
| Counters::sub_string_runtime.Increment(); |
| return value->SubString(start, end); |
| } |
| |
| |
| static Object* Runtime_StringMatch(Arguments args) { |
| ASSERT_EQ(3, args.length()); |
| |
| CONVERT_ARG_CHECKED(String, subject, 0); |
| CONVERT_ARG_CHECKED(JSRegExp, regexp, 1); |
| CONVERT_ARG_CHECKED(JSArray, regexp_info, 2); |
| HandleScope handles; |
| |
| Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info); |
| |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| if (match->IsNull()) { |
| return Heap::null_value(); |
| } |
| int length = subject->length(); |
| |
| CompilationZoneScope zone_space(DELETE_ON_EXIT); |
| ZoneList<int> offsets(8); |
| do { |
| int start; |
| int end; |
| { |
| AssertNoAllocation no_alloc; |
| FixedArray* elements = FixedArray::cast(regexp_info->elements()); |
| start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value(); |
| end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value(); |
| } |
| offsets.Add(start); |
| offsets.Add(end); |
| int index = start < end ? end : end + 1; |
| if (index > length) break; |
| match = RegExpImpl::Exec(regexp, subject, index, regexp_info); |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| } while (!match->IsNull()); |
| int matches = offsets.length() / 2; |
| Handle<FixedArray> elements = Factory::NewFixedArray(matches); |
| for (int i = 0; i < matches ; i++) { |
| int from = offsets.at(i * 2); |
| int to = offsets.at(i * 2 + 1); |
| elements->set(i, *Factory::NewSubString(subject, from, to)); |
| } |
| Handle<JSArray> result = Factory::NewJSArrayWithElements(elements); |
| result->set_length(Smi::FromInt(matches)); |
| return *result; |
| } |
| |
| |
| static Object* Runtime_NumberToRadixString(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| // Fast case where the result is a one character string. |
| if (args[0]->IsSmi() && args[1]->IsSmi()) { |
| int value = Smi::cast(args[0])->value(); |
| int radix = Smi::cast(args[1])->value(); |
| if (value >= 0 && value < radix) { |
| RUNTIME_ASSERT(radix <= 36); |
| // Character array used for conversion. |
| static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| return Heap::LookupSingleCharacterStringFromCode(kCharTable[value]); |
| } |
| } |
| |
| // Slow case. |
| CONVERT_DOUBLE_CHECKED(value, args[0]); |
| if (isnan(value)) { |
| return Heap::AllocateStringFromAscii(CStrVector("NaN")); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return Heap::AllocateStringFromAscii(CStrVector("-Infinity")); |
| } |
| return Heap::AllocateStringFromAscii(CStrVector("Infinity")); |
| } |
| CONVERT_DOUBLE_CHECKED(radix_number, args[1]); |
| int radix = FastD2I(radix_number); |
| RUNTIME_ASSERT(2 <= radix && radix <= 36); |
| char* str = DoubleToRadixCString(value, radix); |
| Object* result = Heap::AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return result; |
| } |
| |
| |
| static Object* Runtime_NumberToFixed(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(value, args[0]); |
| if (isnan(value)) { |
| return Heap::AllocateStringFromAscii(CStrVector("NaN")); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return Heap::AllocateStringFromAscii(CStrVector("-Infinity")); |
| } |
| return Heap::AllocateStringFromAscii(CStrVector("Infinity")); |
| } |
| CONVERT_DOUBLE_CHECKED(f_number, args[1]); |
| int f = FastD2I(f_number); |
| RUNTIME_ASSERT(f >= 0); |
| char* str = DoubleToFixedCString(value, f); |
| Object* res = Heap::AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return res; |
| } |
| |
| |
| static Object* Runtime_NumberToExponential(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(value, args[0]); |
| if (isnan(value)) { |
| return Heap::AllocateStringFromAscii(CStrVector("NaN")); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return Heap::AllocateStringFromAscii(CStrVector("-Infinity")); |
| } |
| return Heap::AllocateStringFromAscii(CStrVector("Infinity")); |
| } |
| CONVERT_DOUBLE_CHECKED(f_number, args[1]); |
| int f = FastD2I(f_number); |
| RUNTIME_ASSERT(f >= -1 && f <= 20); |
| char* str = DoubleToExponentialCString(value, f); |
| Object* res = Heap::AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return res; |
| } |
| |
| |
| static Object* Runtime_NumberToPrecision(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(value, args[0]); |
| if (isnan(value)) { |
| return Heap::AllocateStringFromAscii(CStrVector("NaN")); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return Heap::AllocateStringFromAscii(CStrVector("-Infinity")); |
| } |
| return Heap::AllocateStringFromAscii(CStrVector("Infinity")); |
| } |
| CONVERT_DOUBLE_CHECKED(f_number, args[1]); |
| int f = FastD2I(f_number); |
| RUNTIME_ASSERT(f >= 1 && f <= 21); |
| char* str = DoubleToPrecisionCString(value, f); |
| Object* res = Heap::AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return res; |
| } |
| |
| |
| // Returns a single character string where first character equals |
| // string->Get(index). |
| static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) { |
| if (index < static_cast<uint32_t>(string->length())) { |
| string->TryFlattenIfNotFlat(); |
| return LookupSingleCharacterStringFromCode( |
| string->Get(index)); |
| } |
| return Execution::CharAt(string, index); |
| } |
| |
| |
| Object* Runtime::GetElementOrCharAt(Handle<Object> object, uint32_t index) { |
| // Handle [] indexing on Strings |
| if (object->IsString()) { |
| Handle<Object> result = GetCharAt(Handle<String>::cast(object), index); |
| if (!result->IsUndefined()) return *result; |
| } |
| |
| // Handle [] indexing on String objects |
| if (object->IsStringObjectWithCharacterAt(index)) { |
| Handle<JSValue> js_value = Handle<JSValue>::cast(object); |
| Handle<Object> result = |
| GetCharAt(Handle<String>(String::cast(js_value->value())), index); |
| if (!result->IsUndefined()) return *result; |
| } |
| |
| if (object->IsString() || object->IsNumber() || object->IsBoolean()) { |
| Handle<Object> prototype = GetPrototype(object); |
| return prototype->GetElement(index); |
| } |
| |
| return object->GetElement(index); |
| } |
| |
| |
| Object* Runtime::GetObjectProperty(Handle<Object> object, Handle<Object> key) { |
| HandleScope scope; |
| |
| if (object->IsUndefined() || object->IsNull()) { |
| Handle<Object> args[2] = { key, object }; |
| Handle<Object> error = |
| Factory::NewTypeError("non_object_property_load", |
| HandleVector(args, 2)); |
| return Top::Throw(*error); |
| } |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (Array::IndexFromObject(*key, &index)) { |
| return GetElementOrCharAt(object, index); |
| } |
| |
| // Convert the key to a string - possibly by calling back into JavaScript. |
| Handle<String> name; |
| if (key->IsString()) { |
| name = Handle<String>::cast(key); |
| } else { |
| bool has_pending_exception = false; |
| Handle<Object> converted = |
| Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| name = Handle<String>::cast(converted); |
| } |
| |
| // Check if the name is trivially convertible to an index and get |
| // the element if so. |
| if (name->AsArrayIndex(&index)) { |
| return GetElementOrCharAt(object, index); |
| } else { |
| PropertyAttributes attr; |
| return object->GetProperty(*name, &attr); |
| } |
| } |
| |
| |
| static Object* Runtime_GetProperty(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| Handle<Object> object = args.at<Object>(0); |
| Handle<Object> key = args.at<Object>(1); |
| |
| return Runtime::GetObjectProperty(object, key); |
| } |
| |
| |
| // KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric. |
| static Object* Runtime_KeyedGetProperty(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| // Fast cases for getting named properties of the receiver JSObject |
| // itself. |
| // |
| // The global proxy objects has to be excluded since LocalLookup on |
| // the global proxy object can return a valid result even though the |
| // global proxy object never has properties. This is the case |
| // because the global proxy object forwards everything to its hidden |
| // prototype including local lookups. |
| // |
| // Additionally, we need to make sure that we do not cache results |
| // for objects that require access checks. |
| if (args[0]->IsJSObject() && |
| !args[0]->IsJSGlobalProxy() && |
| !args[0]->IsAccessCheckNeeded() && |
| args[1]->IsString()) { |
| JSObject* receiver = JSObject::cast(args[0]); |
| String* key = String::cast(args[1]); |
| if (receiver->HasFastProperties()) { |
| // Attempt to use lookup cache. |
| Map* receiver_map = receiver->map(); |
| int offset = KeyedLookupCache::Lookup(receiver_map, key); |
| if (offset != -1) { |
| Object* value = receiver->FastPropertyAt(offset); |
| return value->IsTheHole() ? Heap::undefined_value() : value; |
| } |
| // Lookup cache miss. Perform lookup and update the cache if appropriate. |
| LookupResult result; |
| receiver->LocalLookup(key, &result); |
| if (result.IsProperty() && result.type() == FIELD) { |
| int offset = result.GetFieldIndex(); |
| KeyedLookupCache::Update(receiver_map, key, offset); |
| return receiver->FastPropertyAt(offset); |
| } |
| } else { |
| // Attempt dictionary lookup. |
| StringDictionary* dictionary = receiver->property_dictionary(); |
| int entry = dictionary->FindEntry(key); |
| if ((entry != StringDictionary::kNotFound) && |
| (dictionary->DetailsAt(entry).type() == NORMAL)) { |
| Object* value = dictionary->ValueAt(entry); |
| if (!receiver->IsGlobalObject()) return value; |
| value = JSGlobalPropertyCell::cast(value)->value(); |
| if (!value->IsTheHole()) return value; |
| // If value is the hole do the general lookup. |
| } |
| } |
| } else if (args[0]->IsString() && args[1]->IsSmi()) { |
| // Fast case for string indexing using [] with a smi index. |
| HandleScope scope; |
| Handle<String> str = args.at<String>(0); |
| int index = Smi::cast(args[1])->value(); |
| Handle<Object> result = GetCharAt(str, index); |
| return *result; |
| } |
| |
| // Fall back to GetObjectProperty. |
| return Runtime::GetObjectProperty(args.at<Object>(0), |
| args.at<Object>(1)); |
| } |
| |
| |
| static Object* Runtime_DefineOrRedefineAccessorProperty(Arguments args) { |
| ASSERT(args.length() == 5); |
| HandleScope scope; |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| CONVERT_CHECKED(String, name, args[1]); |
| CONVERT_CHECKED(Smi, flag_setter, args[2]); |
| CONVERT_CHECKED(JSFunction, fun, args[3]); |
| CONVERT_CHECKED(Smi, flag_attr, args[4]); |
| int unchecked = flag_attr->value(); |
| RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| RUNTIME_ASSERT(!obj->IsNull()); |
| LookupResult result; |
| obj->LocalLookupRealNamedProperty(name, &result); |
| |
| PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); |
| // If an existing property is either FIELD, NORMAL or CONSTANT_FUNCTION |
| // delete it to avoid running into trouble in DefineAccessor, which |
| // handles this incorrectly if the property is readonly (does nothing) |
| if (result.IsProperty() && |
| (result.type() == FIELD || result.type() == NORMAL |
| || result.type() == CONSTANT_FUNCTION)) { |
| obj->DeleteProperty(name, JSObject::NORMAL_DELETION); |
| } |
| return obj->DefineAccessor(name, flag_setter->value() == 0, fun, attr); |
| } |
| |
| static Object* Runtime_DefineOrRedefineDataProperty(Arguments args) { |
| ASSERT(args.length() == 4); |
| HandleScope scope; |
| CONVERT_ARG_CHECKED(JSObject, js_object, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| Handle<Object> obj_value = args.at<Object>(2); |
| |
| CONVERT_CHECKED(Smi, flag, args[3]); |
| int unchecked = flag->value(); |
| RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| |
| LookupResult result; |
| js_object->LocalLookupRealNamedProperty(*name, &result); |
| |
| PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); |
| |
| // Take special care when attributes are different and there is already |
| // a property. For simplicity we normalize the property which enables us |
| // to not worry about changing the instance_descriptor and creating a new |
| // map. The current version of SetObjectProperty does not handle attributes |
| // correctly in the case where a property is a field and is reset with |
| // new attributes. |
| if (result.IsProperty() && attr != result.GetAttributes()) { |
| // New attributes - normalize to avoid writing to instance descriptor |
| js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| // Use IgnoreAttributes version since a readonly property may be |
| // overridden and SetProperty does not allow this. |
| return js_object->IgnoreAttributesAndSetLocalProperty(*name, |
| *obj_value, |
| attr); |
| } |
| return Runtime::SetObjectProperty(js_object, name, obj_value, attr); |
| } |
| |
| |
| Object* Runtime::SetObjectProperty(Handle<Object> object, |
| Handle<Object> key, |
| Handle<Object> value, |
| PropertyAttributes attr) { |
| HandleScope scope; |
| |
| if (object->IsUndefined() || object->IsNull()) { |
| Handle<Object> args[2] = { key, object }; |
| Handle<Object> error = |
| Factory::NewTypeError("non_object_property_store", |
| HandleVector(args, 2)); |
| return Top::Throw(*error); |
| } |
| |
| // If the object isn't a JavaScript object, we ignore the store. |
| if (!object->IsJSObject()) return *value; |
| |
| Handle<JSObject> js_object = Handle<JSObject>::cast(object); |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (Array::IndexFromObject(*key, &index)) { |
| // In Firefox/SpiderMonkey, Safari and Opera you can access the characters |
| // of a string using [] notation. We need to support this too in |
| // JavaScript. |
| // In the case of a String object we just need to redirect the assignment to |
| // the underlying string if the index is in range. Since the underlying |
| // string does nothing with the assignment then we can ignore such |
| // assignments. |
| if (js_object->IsStringObjectWithCharacterAt(index)) { |
| return *value; |
| } |
| |
| Handle<Object> result = SetElement(js_object, index, value); |
| if (result.is_null()) return Failure::Exception(); |
| return *value; |
| } |
| |
| if (key->IsString()) { |
| Handle<Object> result; |
| if (Handle<String>::cast(key)->AsArrayIndex(&index)) { |
| result = SetElement(js_object, index, value); |
| } else { |
| Handle<String> key_string = Handle<String>::cast(key); |
| key_string->TryFlattenIfNotFlat(); |
| result = SetProperty(js_object, key_string, value, attr); |
| } |
| if (result.is_null()) return Failure::Exception(); |
| return *value; |
| } |
| |
| // Call-back into JavaScript to convert the key to a string. |
| bool has_pending_exception = false; |
| Handle<Object> converted = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| Handle<String> name = Handle<String>::cast(converted); |
| |
| if (name->AsArrayIndex(&index)) { |
| return js_object->SetElement(index, *value); |
| } else { |
| return js_object->SetProperty(*name, *value, attr); |
| } |
| } |
| |
| |
| Object* Runtime::ForceSetObjectProperty(Handle<JSObject> js_object, |
| Handle<Object> key, |
| Handle<Object> value, |
| PropertyAttributes attr) { |
| HandleScope scope; |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (Array::IndexFromObject(*key, &index)) { |
| // In Firefox/SpiderMonkey, Safari and Opera you can access the characters |
| // of a string using [] notation. We need to support this too in |
| // JavaScript. |
| // In the case of a String object we just need to redirect the assignment to |
| // the underlying string if the index is in range. Since the underlying |
| // string does nothing with the assignment then we can ignore such |
| // assignments. |
| if (js_object->IsStringObjectWithCharacterAt(index)) { |
| return *value; |
| } |
| |
| return js_object->SetElement(index, *value); |
| } |
| |
| if (key->IsString()) { |
| if (Handle<String>::cast(key)->AsArrayIndex(&index)) { |
| return js_object->SetElement(index, *value); |
| } else { |
| Handle<String> key_string = Handle<String>::cast(key); |
| key_string->TryFlattenIfNotFlat(); |
| return js_object->IgnoreAttributesAndSetLocalProperty(*key_string, |
| *value, |
| attr); |
| } |
| } |
| |
| // Call-back into JavaScript to convert the key to a string. |
| bool has_pending_exception = false; |
| Handle<Object> converted = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| Handle<String> name = Handle<String>::cast(converted); |
| |
| if (name->AsArrayIndex(&index)) { |
| return js_object->SetElement(index, *value); |
| } else { |
| return js_object->IgnoreAttributesAndSetLocalProperty(*name, *value, attr); |
| } |
| } |
| |
| |
| Object* Runtime::ForceDeleteObjectProperty(Handle<JSObject> js_object, |
| Handle<Object> key) { |
| HandleScope scope; |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (Array::IndexFromObject(*key, &index)) { |
| // In Firefox/SpiderMonkey, Safari and Opera you can access the |
| // characters of a string using [] notation. In the case of a |
| // String object we just need to redirect the deletion to the |
| // underlying string if the index is in range. Since the |
| // underlying string does nothing with the deletion, we can ignore |
| // such deletions. |
| if (js_object->IsStringObjectWithCharacterAt(index)) { |
| return Heap::true_value(); |
| } |
| |
| return js_object->DeleteElement(index, JSObject::FORCE_DELETION); |
| } |
| |
| Handle<String> key_string; |
| if (key->IsString()) { |
| key_string = Handle<String>::cast(key); |
| } else { |
| // Call-back into JavaScript to convert the key to a string. |
| bool has_pending_exception = false; |
| Handle<Object> converted = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| key_string = Handle<String>::cast(converted); |
| } |
| |
| key_string->TryFlattenIfNotFlat(); |
| return js_object->DeleteProperty(*key_string, JSObject::FORCE_DELETION); |
| } |
| |
| |
| static Object* Runtime_SetProperty(Arguments args) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 3 || args.length() == 4); |
| |
| Handle<Object> object = args.at<Object>(0); |
| Handle<Object> key = args.at<Object>(1); |
| Handle<Object> value = args.at<Object>(2); |
| |
| // Compute attributes. |
| PropertyAttributes attributes = NONE; |
| if (args.length() == 4) { |
| CONVERT_CHECKED(Smi, value_obj, args[3]); |
| int unchecked_value = value_obj->value(); |
| // Only attribute bits should be set. |
| RUNTIME_ASSERT( |
| (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| attributes = static_cast<PropertyAttributes>(unchecked_value); |
| } |
| return Runtime::SetObjectProperty(object, key, value, attributes); |
| } |
| |
| |
| // Set a local property, even if it is READ_ONLY. If the property does not |
| // exist, it will be added with attributes NONE. |
| static Object* Runtime_IgnoreAttributesAndSetProperty(Arguments args) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 3 || args.length() == 4); |
| CONVERT_CHECKED(JSObject, object, args[0]); |
| CONVERT_CHECKED(String, name, args[1]); |
| // Compute attributes. |
| PropertyAttributes attributes = NONE; |
| if (args.length() == 4) { |
| CONVERT_CHECKED(Smi, value_obj, args[3]); |
| int unchecked_value = value_obj->value(); |
| // Only attribute bits should be set. |
| RUNTIME_ASSERT( |
| (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| attributes = static_cast<PropertyAttributes>(unchecked_value); |
| } |
| |
| return object-> |
| IgnoreAttributesAndSetLocalProperty(name, args[2], attributes); |
| } |
| |
| |
| static Object* Runtime_DeleteProperty(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSObject, object, args[0]); |
| CONVERT_CHECKED(String, key, args[1]); |
| return object->DeleteProperty(key, JSObject::NORMAL_DELETION); |
| } |
| |
| |
| static Object* HasLocalPropertyImplementation(Handle<JSObject> object, |
| Handle<String> key) { |
| if (object->HasLocalProperty(*key)) return Heap::true_value(); |
| // Handle hidden prototypes. If there's a hidden prototype above this thing |
| // then we have to check it for properties, because they are supposed to |
| // look like they are on this object. |
| Handle<Object> proto(object->GetPrototype()); |
| if (proto->IsJSObject() && |
| Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) { |
| return HasLocalPropertyImplementation(Handle<JSObject>::cast(proto), key); |
| } |
| return Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_HasLocalProperty(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(String, key, args[1]); |
| |
| Object* obj = args[0]; |
| // Only JS objects can have properties. |
| if (obj->IsJSObject()) { |
| JSObject* object = JSObject::cast(obj); |
| // Fast case - no interceptors. |
| if (object->HasRealNamedProperty(key)) return Heap::true_value(); |
| // Slow case. Either it's not there or we have an interceptor. We should |
| // have handles for this kind of deal. |
| HandleScope scope; |
| return HasLocalPropertyImplementation(Handle<JSObject>(object), |
| Handle<String>(key)); |
| } else if (obj->IsString()) { |
| // Well, there is one exception: Handle [] on strings. |
| uint32_t index; |
| if (key->AsArrayIndex(&index)) { |
| String* string = String::cast(obj); |
| if (index < static_cast<uint32_t>(string->length())) |
| return Heap::true_value(); |
| } |
| } |
| return Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_HasProperty(Arguments args) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 2); |
| |
| // Only JS objects can have properties. |
| if (args[0]->IsJSObject()) { |
| JSObject* object = JSObject::cast(args[0]); |
| CONVERT_CHECKED(String, key, args[1]); |
| if (object->HasProperty(key)) return Heap::true_value(); |
| } |
| return Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_HasElement(Arguments args) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 2); |
| |
| // Only JS objects can have elements. |
| if (args[0]->IsJSObject()) { |
| JSObject* object = JSObject::cast(args[0]); |
| CONVERT_CHECKED(Smi, index_obj, args[1]); |
| uint32_t index = index_obj->value(); |
| if (object->HasElement(index)) return Heap::true_value(); |
| } |
| return Heap::false_value(); |
| } |
| |
| |
| static Object* Runtime_IsPropertyEnumerable(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(JSObject, object, args[0]); |
| CONVERT_CHECKED(String, key, args[1]); |
| |
| uint32_t index; |
| if (key->AsArrayIndex(&index)) { |
| return Heap::ToBoolean(object->HasElement(index)); |
| } |
| |
| PropertyAttributes att = object->GetLocalPropertyAttribute(key); |
| return Heap::ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0); |
| } |
| |
| |
| static Object* Runtime_GetPropertyNames(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSObject, object, 0); |
| return *GetKeysFor(object); |
| } |
| |
| |
| // Returns either a FixedArray as Runtime_GetPropertyNames, |
| // or, if the given object has an enum cache that contains |
| // all enumerable properties of the object and its prototypes |
| // have none, the map of the object. This is used to speed up |
| // the check for deletions during a for-in. |
| static Object* Runtime_GetPropertyNamesFast(Arguments args) { |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSObject, raw_object, args[0]); |
| |
| if (raw_object->IsSimpleEnum()) return raw_object->map(); |
| |
| HandleScope scope; |
| Handle<JSObject> object(raw_object); |
| Handle<FixedArray> content = GetKeysInFixedArrayFor(object, |
| INCLUDE_PROTOS); |
| |
| // Test again, since cache may have been built by preceding call. |
| if (object->IsSimpleEnum()) return object->map(); |
| |
| return *content; |
| } |
| |
| |
| // Find the length of the prototype chain that is to to handled as one. If a |
| // prototype object is hidden it is to be viewed as part of the the object it |
| // is prototype for. |
| static int LocalPrototypeChainLength(JSObject* obj) { |
| int count = 1; |
| Object* proto = obj->GetPrototype(); |
| while (proto->IsJSObject() && |
| JSObject::cast(proto)->map()->is_hidden_prototype()) { |
| count++; |
| proto = JSObject::cast(proto)->GetPrototype(); |
| } |
| return count; |
| } |
| |
| |
| // Return the names of the local named properties. |
| // args[0]: object |
| static Object* Runtime_GetLocalPropertyNames(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| if (!args[0]->IsJSObject()) { |
| return Heap::undefined_value(); |
| } |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| |
| // Skip the global proxy as it has no properties and always delegates to the |
| // real global object. |
| if (obj->IsJSGlobalProxy()) { |
| // Only collect names if access is permitted. |
| if (obj->IsAccessCheckNeeded() && |
| !Top::MayNamedAccess(*obj, Heap::undefined_value(), v8::ACCESS_KEYS)) { |
| Top::ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS); |
| return *Factory::NewJSArray(0); |
| } |
| obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); |
| } |
| |
| // Find the number of objects making up this. |
| int length = LocalPrototypeChainLength(*obj); |
| |
| // Find the number of local properties for each of the objects. |
| int* local_property_count = NewArray<int>(length); |
| int total_property_count = 0; |
| Handle<JSObject> jsproto = obj; |
| for (int i = 0; i < length; i++) { |
| // Only collect names if access is permitted. |
| if (jsproto->IsAccessCheckNeeded() && |
| !Top::MayNamedAccess(*jsproto, |
| Heap::undefined_value(), |
| v8::ACCESS_KEYS)) { |
| Top::ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS); |
| return *Factory::NewJSArray(0); |
| } |
| int n; |
| n = jsproto->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE)); |
| local_property_count[i] = n; |
| total_property_count += n; |
| if (i < length - 1) { |
| jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); |
| } |
| } |
| |
| // Allocate an array with storage for all the property names. |
| Handle<FixedArray> names = Factory::NewFixedArray(total_property_count); |
| |
| // Get the property names. |
| jsproto = obj; |
| int proto_with_hidden_properties = 0; |
| for (int i = 0; i < length; i++) { |
| jsproto->GetLocalPropertyNames(*names, |
| i == 0 ? 0 : local_property_count[i - 1]); |
| if (!GetHiddenProperties(jsproto, false)->IsUndefined()) { |
| proto_with_hidden_properties++; |
| } |
| if (i < length - 1) { |
| jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); |
| } |
| } |
| |
| // Filter out name of hidden propeties object. |
| if (proto_with_hidden_properties > 0) { |
| Handle<FixedArray> old_names = names; |
| names = Factory::NewFixedArray( |
| names->length() - proto_with_hidden_properties); |
| int dest_pos = 0; |
| for (int i = 0; i < total_property_count; i++) { |
| Object* name = old_names->get(i); |
| if (name == Heap::hidden_symbol()) { |
| continue; |
| } |
| names->set(dest_pos++, name); |
| } |
| } |
| |
| DeleteArray(local_property_count); |
| return *Factory::NewJSArrayWithElements(names); |
| } |
| |
| |
| // Return the names of the local indexed properties. |
| // args[0]: object |
| static Object* Runtime_GetLocalElementNames(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| if (!args[0]->IsJSObject()) { |
| return Heap::undefined_value(); |
| } |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| |
| int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE)); |
| Handle<FixedArray> names = Factory::NewFixedArray(n); |
| obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE)); |
| return *Factory::NewJSArrayWithElements(names); |
| } |
| |
| |
| // Return information on whether an object has a named or indexed interceptor. |
| // args[0]: object |
| static Object* Runtime_GetInterceptorInfo(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| if (!args[0]->IsJSObject()) { |
| return Smi::FromInt(0); |
| } |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| |
| int result = 0; |
| if (obj->HasNamedInterceptor()) result |= 2; |
| if (obj->HasIndexedInterceptor()) result |= 1; |
| |
| return Smi::FromInt(result); |
| } |
| |
| |
| // Return property names from named interceptor. |
| // args[0]: object |
| static Object* Runtime_GetNamedInterceptorPropertyNames(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| |
| if (obj->HasNamedInterceptor()) { |
| v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj); |
| if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); |
| } |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Return element names from indexed interceptor. |
| // args[0]: object |
| static Object* Runtime_GetIndexedInterceptorElementNames(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| |
| if (obj->HasIndexedInterceptor()) { |
| v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj); |
| if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); |
| } |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_LocalKeys(Arguments args) { |
| ASSERT_EQ(args.length(), 1); |
| CONVERT_CHECKED(JSObject, raw_object, args[0]); |
| HandleScope scope; |
| Handle<JSObject> object(raw_object); |
| Handle<FixedArray> contents = GetKeysInFixedArrayFor(object, |
| LOCAL_ONLY); |
| // Some fast paths through GetKeysInFixedArrayFor reuse a cached |
| // property array and since the result is mutable we have to create |
| // a fresh clone on each invocation. |
| int length = contents->length(); |
| Handle<FixedArray> copy = Factory::NewFixedArray(length); |
| for (int i = 0; i < length; i++) { |
| Object* entry = contents->get(i); |
| if (entry->IsString()) { |
| copy->set(i, entry); |
| } else { |
| ASSERT(entry->IsNumber()); |
| HandleScope scope; |
| Handle<Object> entry_handle(entry); |
| Handle<Object> entry_str = Factory::NumberToString(entry_handle); |
| copy->set(i, *entry_str); |
| } |
| } |
| return *Factory::NewJSArrayWithElements(copy); |
| } |
| |
| |
| static Object* Runtime_GetArgumentsProperty(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| // Compute the frame holding the arguments. |
| JavaScriptFrameIterator it; |
| it.AdvanceToArgumentsFrame(); |
| JavaScriptFrame* frame = it.frame(); |
| |
| // Get the actual number of provided arguments. |
| const uint32_t n = frame->GetProvidedParametersCount(); |
| |
| // Try to convert the key to an index. If successful and within |
| // index return the the argument from the frame. |
| uint32_t index; |
| if (Array::IndexFromObject(args[0], &index) && index < n) { |
| return frame->GetParameter(index); |
| } |
| |
| // Convert the key to a string. |
| HandleScope scope; |
| bool exception = false; |
| Handle<Object> converted = |
| Execution::ToString(args.at<Object>(0), &exception); |
| if (exception) return Failure::Exception(); |
| Handle<String> key = Handle<String>::cast(converted); |
| |
| // Try to convert the string key into an array index. |
| if (key->AsArrayIndex(&index)) { |
| if (index < n) { |
| return frame->GetParameter(index); |
| } else { |
| return Top::initial_object_prototype()->GetElement(index); |
| } |
| } |
| |
| // Handle special arguments properties. |
| if (key->Equals(Heap::length_symbol())) return Smi::FromInt(n); |
| if (key->Equals(Heap::callee_symbol())) return frame->function(); |
| |
| // Lookup in the initial Object.prototype object. |
| return Top::initial_object_prototype()->GetProperty(*key); |
| } |
| |
| |
| static Object* Runtime_ToFastProperties(Arguments args) { |
| HandleScope scope; |
| |
| ASSERT(args.length() == 1); |
| Handle<Object> object = args.at<Object>(0); |
| if (object->IsJSObject()) { |
| Handle<JSObject> js_object = Handle<JSObject>::cast(object); |
| if (!js_object->HasFastProperties() && !js_object->IsGlobalObject()) { |
| js_object->TransformToFastProperties(0); |
| } |
| } |
| return *object; |
| } |
| |
| |
| static Object* Runtime_ToSlowProperties(Arguments args) { |
| HandleScope scope; |
| |
| ASSERT(args.length() == 1); |
| Handle<Object> object = args.at<Object>(0); |
| if (object->IsJSObject()) { |
| Handle<JSObject> js_object = Handle<JSObject>::cast(object); |
| js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| } |
| return *object; |
| } |
| |
| |
| static Object* Runtime_ToBool(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| return args[0]->ToBoolean(); |
| } |
| |
| |
| // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47). |
| // Possible optimizations: put the type string into the oddballs. |
| static Object* Runtime_Typeof(Arguments args) { |
| NoHandleAllocation ha; |
| |
| Object* obj = args[0]; |
| if (obj->IsNumber()) return Heap::number_symbol(); |
| HeapObject* heap_obj = HeapObject::cast(obj); |
| |
| // typeof an undetectable object is 'undefined' |
| if (heap_obj->map()->is_undetectable()) return Heap::undefined_symbol(); |
| |
| InstanceType instance_type = heap_obj->map()->instance_type(); |
| if (instance_type < FIRST_NONSTRING_TYPE) { |
| return Heap::string_symbol(); |
| } |
| |
| switch (instance_type) { |
| case ODDBALL_TYPE: |
| if (heap_obj->IsTrue() || heap_obj->IsFalse()) { |
| return Heap::boolean_symbol(); |
| } |
| if (heap_obj->IsNull()) { |
| return Heap::object_symbol(); |
| } |
| ASSERT(heap_obj->IsUndefined()); |
| return Heap::undefined_symbol(); |
| case JS_FUNCTION_TYPE: case JS_REGEXP_TYPE: |
| return Heap::function_symbol(); |
| default: |
| // For any kind of object not handled above, the spec rule for |
| // host objects gives that it is okay to return "object" |
| return Heap::object_symbol(); |
| } |
| } |
| |
| |
| static Object* Runtime_StringToNumber(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(String, subject, args[0]); |
| subject->TryFlattenIfNotFlat(); |
| return Heap::NumberFromDouble(StringToDouble(subject, ALLOW_HEX)); |
| } |
| |
| |
| static Object* Runtime_StringFromCharCodeArray(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSArray, codes, args[0]); |
| int length = Smi::cast(codes->length())->value(); |
| |
| // Check if the string can be ASCII. |
| int i; |
| for (i = 0; i < length; i++) { |
| Object* element = codes->GetElement(i); |
| CONVERT_NUMBER_CHECKED(int, chr, Int32, element); |
| if ((chr & 0xffff) > String::kMaxAsciiCharCode) |
| break; |
| } |
| |
| Object* object = NULL; |
| if (i == length) { // The string is ASCII. |
| object = Heap::AllocateRawAsciiString(length); |
| } else { // The string is not ASCII. |
| object = Heap::AllocateRawTwoByteString(length); |
| } |
| |
| if (object->IsFailure()) return object; |
| String* result = String::cast(object); |
| for (int i = 0; i < length; i++) { |
| Object* element = codes->GetElement(i); |
| CONVERT_NUMBER_CHECKED(int, chr, Int32, element); |
| result->Set(i, chr & 0xffff); |
| } |
| return result; |
| } |
| |
| |
| // kNotEscaped is generated by the following: |
| // |
| // #!/bin/perl |
| // for (my $i = 0; $i < 256; $i++) { |
| // print "\n" if $i % 16 == 0; |
| // my $c = chr($i); |
| // my $escaped = 1; |
| // $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#; |
| // print $escaped ? "0, " : "1, "; |
| // } |
| |
| |
| static bool IsNotEscaped(uint16_t character) { |
| // Only for 8 bit characters, the rest are always escaped (in a different way) |
| ASSERT(character < 256); |
| static const char kNotEscaped[256] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| return kNotEscaped[character] != 0; |
| } |
| |
| |
| static Object* Runtime_URIEscape(Arguments args) { |
| const char hex_chars[] = "0123456789ABCDEF"; |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(String, source, args[0]); |
| |
| source->TryFlattenIfNotFlat(); |
| |
| int escaped_length = 0; |
| int length = source->length(); |
| { |
| Access<StringInputBuffer> buffer(&runtime_string_input_buffer); |
| buffer->Reset(source); |
| while (buffer->has_more()) { |
| uint16_t character = buffer->GetNext(); |
| if (character >= 256) { |
| escaped_length += 6; |
| } else if (IsNotEscaped(character)) { |
| escaped_length++; |
| } else { |
| escaped_length += 3; |
| } |
| // We don't allow strings that are longer than a maximal length. |
| ASSERT(String::kMaxLength < 0x7fffffff - 6); // Cannot overflow. |
| if (escaped_length > String::kMaxLength) { |
| Top::context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| } |
| } |
| // No length change implies no change. Return original string if no change. |
| if (escaped_length == length) { |
| return source; |
| } |
| Object* o = Heap::AllocateRawAsciiString(escaped_length); |
| if (o->IsFailure()) return o; |
| String* destination = String::cast(o); |
| int dest_position = 0; |
| |
| Access<StringInputBuffer> buffer(&runtime_string_input_buffer); |
| buffer->Rewind(); |
| while (buffer->has_more()) { |
| uint16_t chr = buffer->GetNext(); |
| if (chr >= 256) { |
| destination->Set(dest_position, '%'); |
| destination->Set(dest_position+1, 'u'); |
| destination->Set(dest_position+2, hex_chars[chr >> 12]); |
| destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]); |
| destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]); |
| destination->Set(dest_position+5, hex_chars[chr & 0xf]); |
| dest_position += 6; |
| } else if (IsNotEscaped(chr)) { |
| destination->Set(dest_position, chr); |
| dest_position++; |
| } else { |
| destination->Set(dest_position, '%'); |
| destination->Set(dest_position+1, hex_chars[chr >> 4]); |
| destination->Set(dest_position+2, hex_chars[chr & 0xf]); |
| dest_position += 3; |
| } |
| } |
| return destination; |
| } |
| |
| |
| static inline int TwoDigitHex(uint16_t character1, uint16_t character2) { |
| static const signed char kHexValue['g'] = { |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, |
| -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, 10, 11, 12, 13, 14, 15 }; |
| |
| if (character1 > 'f') return -1; |
| int hi = kHexValue[character1]; |
| if (hi == -1) return -1; |
| if (character2 > 'f') return -1; |
| int lo = kHexValue[character2]; |
| if (lo == -1) return -1; |
| return (hi << 4) + lo; |
| } |
| |
| |
| static inline int Unescape(String* source, |
| int i, |
| int length, |
| int* step) { |
| uint16_t character = source->Get(i); |
| int32_t hi = 0; |
| int32_t lo = 0; |
| if (character == '%' && |
| i <= length - 6 && |
| source->Get(i + 1) == 'u' && |
| (hi = TwoDigitHex(source->Get(i + 2), |
| source->Get(i + 3))) != -1 && |
| (lo = TwoDigitHex(source->Get(i + 4), |
| source->Get(i + 5))) != -1) { |
| *step = 6; |
| return (hi << 8) + lo; |
| } else if (character == '%' && |
| i <= length - 3 && |
| (lo = TwoDigitHex(source->Get(i + 1), |
| source->Get(i + 2))) != -1) { |
| *step = 3; |
| return lo; |
| } else { |
| *step = 1; |
| return character; |
| } |
| } |
| |
| |
| static Object* Runtime_URIUnescape(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(String, source, args[0]); |
| |
| source->TryFlattenIfNotFlat(); |
| |
| bool ascii = true; |
| int length = source->length(); |
| |
| int unescaped_length = 0; |
| for (int i = 0; i < length; unescaped_length++) { |
| int step; |
| if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) { |
| ascii = false; |
| } |
| i += step; |
| } |
| |
| // No length change implies no change. Return original string if no change. |
| if (unescaped_length == length) |
| return source; |
| |
| Object* o = ascii ? |
| Heap::AllocateRawAsciiString(unescaped_length) : |
| Heap::AllocateRawTwoByteString(unescaped_length); |
| if (o->IsFailure()) return o; |
| String* destination = String::cast(o); |
| |
| int dest_position = 0; |
| for (int i = 0; i < length; dest_position++) { |
| int step; |
| destination->Set(dest_position, Unescape(source, i, length, &step)); |
| i += step; |
| } |
| return destination; |
| } |
| |
| |
| static Object* Runtime_StringParseInt(Arguments args) { |
| NoHandleAllocation ha; |
| |
| CONVERT_CHECKED(String, s, args[0]); |
| CONVERT_SMI_CHECKED(radix, args[1]); |
| |
| s->TryFlattenIfNotFlat(); |
| |
| int len = s->length(); |
| int i; |
| |
| // Skip leading white space. |
| for (i = 0; i < len && Scanner::kIsWhiteSpace.get(s->Get(i)); i++) ; |
| if (i == len) return Heap::nan_value(); |
| |
| // Compute the sign (default to +). |
| int sign = 1; |
| if (s->Get(i) == '-') { |
| sign = -1; |
| i++; |
| } else if (s->Get(i) == '+') { |
| i++; |
| } |
| |
| // Compute the radix if 0. |
| if (radix == 0) { |
| radix = 10; |
| if (i < len && s->Get(i) == '0') { |
| radix = 8; |
| if (i + 1 < len) { |
| int c = s->Get(i + 1); |
| if (c == 'x' || c == 'X') { |
| radix = 16; |
| i += 2; |
| } |
| } |
| } |
| } else if (radix == 16) { |
| // Allow 0x or 0X prefix if radix is 16. |
| if (i + 1 < len && s->Get(i) == '0') { |
| int c = s->Get(i + 1); |
| if (c == 'x' || c == 'X') i += 2; |
| } |
| } |
| |
| RUNTIME_ASSERT(2 <= radix && radix <= 36); |
| double value; |
| int end_index = StringToInt(s, i, radix, &value); |
| if (end_index != i) { |
| return Heap::NumberFromDouble(sign * value); |
| } |
| return Heap::nan_value(); |
| } |
| |
| |
| static Object* Runtime_StringParseFloat(Arguments args) { |
| NoHandleAllocation ha; |
| CONVERT_CHECKED(String, str, args[0]); |
| |
| // ECMA-262 section 15.1.2.3, empty string is NaN |
| double value = StringToDouble(str, ALLOW_TRAILING_JUNK, OS::nan_value()); |
| |
| // Create a number object from the value. |
| return Heap::NumberFromDouble(value); |
| } |
| |
| |
| static unibrow::Mapping<unibrow::ToUppercase, 128> to_upper_mapping; |
| static unibrow::Mapping<unibrow::ToLowercase, 128> to_lower_mapping; |
| |
| |
| template <class Converter> |
| static Object* ConvertCaseHelper(String* s, |
| int length, |
| int input_string_length, |
| unibrow::Mapping<Converter, 128>* mapping) { |
| // We try this twice, once with the assumption that the result is no longer |
| // than the input and, if that assumption breaks, again with the exact |
| // length. This may not be pretty, but it is nicer than what was here before |
| // and I hereby claim my vaffel-is. |
| // |
| // Allocate the resulting string. |
| // |
| // NOTE: This assumes that the upper/lower case of an ascii |
| // character is also ascii. This is currently the case, but it |
| // might break in the future if we implement more context and locale |
| // dependent upper/lower conversions. |
| Object* o = s->IsAsciiRepresentation() |
| ? Heap::AllocateRawAsciiString(length) |
| : Heap::AllocateRawTwoByteString(length); |
| if (o->IsFailure()) return o; |
| String* result = String::cast(o); |
| bool has_changed_character = false; |
| |
| // Convert all characters to upper case, assuming that they will fit |
| // in the buffer |
| Access<StringInputBuffer> buffer(&runtime_string_input_buffer); |
| buffer->Reset(s); |
| unibrow::uchar chars[Converter::kMaxWidth]; |
| // We can assume that the string is not empty |
| uc32 current = buffer->GetNext(); |
| for (int i = 0; i < length;) { |
| bool has_next = buffer->has_more(); |
| uc32 next = has_next ? buffer->GetNext() : 0; |
| int char_length = mapping->get(current, next, chars); |
| if (char_length == 0) { |
| // The case conversion of this character is the character itself. |
| result->Set(i, current); |
| i++; |
| } else if (char_length == 1) { |
| // Common case: converting the letter resulted in one character. |
| ASSERT(static_cast<uc32>(chars[0]) != current); |
| result->Set(i, chars[0]); |
| has_changed_character = true; |
| i++; |
| } else if (length == input_string_length) { |
| // We've assumed that the result would be as long as the |
| // input but here is a character that converts to several |
| // characters. No matter, we calculate the exact length |
| // of the result and try the whole thing again. |
| // |
| // Note that this leaves room for optimization. We could just |
| // memcpy what we already have to the result string. Also, |
| // the result string is the last object allocated we could |
| // "realloc" it and probably, in the vast majority of cases, |
| // extend the existing string to be able to hold the full |
| // result. |
| int next_length = 0; |
| if (has_next) { |
| next_length = mapping->get(next, 0, chars); |
| if (next_length == 0) next_length = 1; |
| } |
| int current_length = i + char_length + next_length; |
| while (buffer->has_more()) { |
| current = buffer->GetNext(); |
| // NOTE: we use 0 as the next character here because, while |
| // the next character may affect what a character converts to, |
| // it does not in any case affect the length of what it convert |
| // to. |
| int char_length = mapping->get(current, 0, chars); |
| if (char_length == 0) char_length = 1; |
| current_length += char_length; |
| if (current_length > Smi::kMaxValue) { |
| Top::context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| } |
| // Try again with the real length. |
| return Smi::FromInt(current_length); |
| } else { |
| for (int j = 0; j < char_length; j++) { |
| result->Set(i, chars[j]); |
| i++; |
| } |
| has_changed_character = true; |
| } |
| current = next; |
| } |
| if (has_changed_character) { |
| return result; |
| } else { |
| // If we didn't actually change anything in doing the conversion |
| // we simple return the result and let the converted string |
| // become garbage; there is no reason to keep two identical strings |
| // alive. |
| return s; |
| } |
| } |
| |
| |
| template <class Converter> |
| static Object* ConvertCase(Arguments args, |
| unibrow::Mapping<Converter, 128>* mapping) { |
| NoHandleAllocation ha; |
| |
| CONVERT_CHECKED(String, s, args[0]); |
| s->TryFlattenIfNotFlat(); |
| |
| int input_string_length = s->length(); |
| // Assume that the string is not empty; we need this assumption later |
| if (input_string_length == 0) return s; |
| int length = input_string_length; |
| |
| Object* answer = ConvertCaseHelper(s, length, length, mapping); |
| if (answer->IsSmi()) { |
| // Retry with correct length. |
| answer = ConvertCaseHelper(s, Smi::cast(answer)->value(), length, mapping); |
| } |
| return answer; // This may be a failure. |
| } |
| |
| |
| static Object* Runtime_StringToLowerCase(Arguments args) { |
| return ConvertCase<unibrow::ToLowercase>(args, &to_lower_mapping); |
| } |
| |
| |
| static Object* Runtime_StringToUpperCase(Arguments args) { |
| return ConvertCase<unibrow::ToUppercase>(args, &to_upper_mapping); |
| } |
| |
| static inline bool IsTrimWhiteSpace(unibrow::uchar c) { |
| return unibrow::WhiteSpace::Is(c) || c == 0x200b; |
| } |
| |
| static Object* Runtime_StringTrim(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_CHECKED(String, s, args[0]); |
| CONVERT_BOOLEAN_CHECKED(trimLeft, args[1]); |
| CONVERT_BOOLEAN_CHECKED(trimRight, args[2]); |
| |
| s->TryFlattenIfNotFlat(); |
| int length = s->length(); |
| |
| int left = 0; |
| if (trimLeft) { |
| while (left < length && IsTrimWhiteSpace(s->Get(left))) { |
| left++; |
| } |
| } |
| |
| int right = length; |
| if (trimRight) { |
| while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) { |
| right--; |
| } |
| } |
| return s->SubString(left, right); |
| } |
| |
| bool Runtime::IsUpperCaseChar(uint16_t ch) { |
| unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth]; |
| int char_length = to_upper_mapping.get(ch, 0, chars); |
| return char_length == 0; |
| } |
| |
| |
| static Object* Runtime_NumberToString(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* number = args[0]; |
| RUNTIME_ASSERT(number->IsNumber()); |
| |
| return Heap::NumberToString(number); |
| } |
| |
| |
| static Object* Runtime_NumberToInteger(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* obj = args[0]; |
| if (obj->IsSmi()) return obj; |
| CONVERT_DOUBLE_CHECKED(number, obj); |
| return Heap::NumberFromDouble(DoubleToInteger(number)); |
| } |
| |
| |
| static Object* Runtime_NumberToJSUint32(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* obj = args[0]; |
| if (obj->IsSmi() && Smi::cast(obj)->value() >= 0) return obj; |
| CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, obj); |
| return Heap::NumberFromUint32(number); |
| } |
| |
| |
| static Object* Runtime_NumberToJSInt32(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* obj = args[0]; |
| if (obj->IsSmi()) return obj; |
| CONVERT_DOUBLE_CHECKED(number, obj); |
| return Heap::NumberFromInt32(DoubleToInt32(number)); |
| } |
| |
| |
| // Converts a Number to a Smi, if possible. Returns NaN if the number is not |
| // a small integer. |
| static Object* Runtime_NumberToSmi(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* obj = args[0]; |
| if (obj->IsSmi()) { |
| return obj; |
| } |
| if (obj->IsHeapNumber()) { |
| double value = HeapNumber::cast(obj)->value(); |
| int int_value = FastD2I(value); |
| if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { |
| return Smi::FromInt(int_value); |
| } |
| } |
| return Heap::nan_value(); |
| } |
| |
| |
| static Object* Runtime_NumberAdd(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| return Heap::AllocateHeapNumber(x + y); |
| } |
| |
| |
| static Object* Runtime_NumberSub(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| return Heap::AllocateHeapNumber(x - y); |
| } |
| |
| |
| static Object* Runtime_NumberMul(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| return Heap::AllocateHeapNumber(x * y); |
| } |
| |
| |
| static Object* Runtime_NumberUnaryMinus(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return Heap::AllocateHeapNumber(-x); |
| } |
| |
| |
| static Object* Runtime_NumberDiv(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| return Heap::NewNumberFromDouble(x / y); |
| } |
| |
| |
| static Object* Runtime_NumberMod(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| |
| x = modulo(x, y); |
| // NewNumberFromDouble may return a Smi instead of a Number object |
| return Heap::NewNumberFromDouble(x); |
| } |
| |
| |
| static Object* Runtime_StringAdd(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(String, str1, args[0]); |
| CONVERT_CHECKED(String, str2, args[1]); |
| Counters::string_add_runtime.Increment(); |
| return Heap::AllocateConsString(str1, str2); |
| } |
| |
| |
| template<typename sinkchar> |
| static inline void StringBuilderConcatHelper(String* special, |
| sinkchar* sink, |
| FixedArray* fixed_array, |
| int array_length) { |
| int position = 0; |
| for (int i = 0; i < array_length; i++) { |
| Object* element = fixed_array->get(i); |
| if (element->IsSmi()) { |
| // Smi encoding of position and length. |
| int encoded_slice = Smi::cast(element)->value(); |
| int pos; |
| int len; |
| if (encoded_slice > 0) { |
| // Position and length encoded in one smi. |
| pos = StringBuilderSubstringPosition::decode(encoded_slice); |
| len = StringBuilderSubstringLength::decode(encoded_slice); |
| } else { |
| // Position and length encoded in two smis. |
| Object* obj = fixed_array->get(++i); |
| ASSERT(obj->IsSmi()); |
| pos = Smi::cast(obj)->value(); |
| len = -encoded_slice; |
| } |
| String::WriteToFlat(special, |
| sink + position, |
| pos, |
| pos + len); |
| position += len; |
| } else { |
| String* string = String::cast(element); |
| int element_length = string->length(); |
| String::WriteToFlat(string, sink + position, 0, element_length); |
| position += element_length; |
| } |
| } |
| } |
| |
| |
| static Object* Runtime_StringBuilderConcat(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| CONVERT_CHECKED(JSArray, array, args[0]); |
| if (!args[1]->IsSmi()) { |
| Top::context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| int array_length = Smi::cast(args[1])->value(); |
| CONVERT_CHECKED(String, special, args[2]); |
| |
| // This assumption is used by the slice encoding in one or two smis. |
| ASSERT(Smi::kMaxValue >= String::kMaxLength); |
| |
| int special_length = special->length(); |
| if (!array->HasFastElements()) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| FixedArray* fixed_array = FixedArray::cast(array->elements()); |
| if (fixed_array->length() < array_length) { |
| array_length = fixed_array->length(); |
| } |
| |
| if (array_length == 0) { |
| return Heap::empty_string(); |
| } else if (array_length == 1) { |
| Object* first = fixed_array->get(0); |
| if (first->IsString()) return first; |
| } |
| |
| bool ascii = special->IsAsciiRepresentation(); |
| int position = 0; |
| int increment = 0; |
| for (int i = 0; i < array_length; i++) { |
| Object* elt = fixed_array->get(i); |
| if (elt->IsSmi()) { |
| // Smi encoding of position and length. |
| int len = Smi::cast(elt)->value(); |
| if (len > 0) { |
| // Position and length encoded in one smi. |
| int pos = len >> 11; |
| len &= 0x7ff; |
| if (pos + len > special_length) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| increment = len; |
| } else { |
| // Position and length encoded in two smis. |
| increment = (-len); |
| // Get the position and check that it is also a smi. |
| i++; |
| if (i >= array_length) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| Object* pos = fixed_array->get(i); |
| if (!pos->IsSmi()) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| } |
| } else if (elt->IsString()) { |
| String* element = String::cast(elt); |
| int element_length = element->length(); |
| increment = element_length; |
| if (ascii && !element->IsAsciiRepresentation()) { |
| ascii = false; |
| } |
| } else { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| if (increment > String::kMaxLength - position) { |
| Top::context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| position += increment; |
| } |
| |
| int length = position; |
| Object* object; |
| |
| if (ascii) { |
| object = Heap::AllocateRawAsciiString(length); |
| if (object->IsFailure()) return object; |
| SeqAsciiString* answer = SeqAsciiString::cast(object); |
| StringBuilderConcatHelper(special, |
| answer->GetChars(), |
| fixed_array, |
| array_length); |
| return answer; |
| } else { |
| object = Heap::AllocateRawTwoByteString(length); |
| if (object->IsFailure()) return object; |
| SeqTwoByteString* answer = SeqTwoByteString::cast(object); |
| StringBuilderConcatHelper(special, |
| answer->GetChars(), |
| fixed_array, |
| array_length); |
| return answer; |
| } |
| } |
| |
| |
| static Object* Runtime_NumberOr(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return Heap::NumberFromInt32(x | y); |
| } |
| |
| |
| static Object* Runtime_NumberAnd(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return Heap::NumberFromInt32(x & y); |
| } |
| |
| |
| static Object* Runtime_NumberXor(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return Heap::NumberFromInt32(x ^ y); |
| } |
| |
| |
| static Object* Runtime_NumberNot(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| return Heap::NumberFromInt32(~x); |
| } |
| |
| |
| static Object* Runtime_NumberShl(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return Heap::NumberFromInt32(x << (y & 0x1f)); |
| } |
| |
| |
| static Object* Runtime_NumberShr(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return Heap::NumberFromUint32(x >> (y & 0x1f)); |
| } |
| |
| |
| static Object* Runtime_NumberSar(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return Heap::NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f)); |
| } |
| |
| |
| static Object* Runtime_NumberEquals(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| if (isnan(x)) return Smi::FromInt(NOT_EQUAL); |
| if (isnan(y)) return Smi::FromInt(NOT_EQUAL); |
| if (x == y) return Smi::FromInt(EQUAL); |
| Object* result; |
| if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) { |
| result = Smi::FromInt(EQUAL); |
| } else { |
| result = Smi::FromInt(NOT_EQUAL); |
| } |
| return result; |
| } |
| |
| |
| static Object* Runtime_StringEquals(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(String, x, args[0]); |
| CONVERT_CHECKED(String, y, args[1]); |
| |
| bool not_equal = !x->Equals(y); |
| // This is slightly convoluted because the value that signifies |
| // equality is 0 and inequality is 1 so we have to negate the result |
| // from String::Equals. |
| ASSERT(not_equal == 0 || not_equal == 1); |
| STATIC_CHECK(EQUAL == 0); |
| STATIC_CHECK(NOT_EQUAL == 1); |
| return Smi::FromInt(not_equal); |
| } |
| |
| |
| static Object* Runtime_NumberCompare(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| if (isnan(x) || isnan(y)) return args[2]; |
| if (x == y) return Smi::FromInt(EQUAL); |
| if (isless(x, y)) return Smi::FromInt(LESS); |
| return Smi::FromInt(GREATER); |
| } |
| |
| |
| // Compare two Smis as if they were converted to strings and then |
| // compared lexicographically. |
| static Object* Runtime_SmiLexicographicCompare(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| // Arrays for the individual characters of the two Smis. Smis are |
| // 31 bit integers and 10 decimal digits are therefore enough. |
| static int x_elms[10]; |
| static int y_elms[10]; |
| |
| // Extract the integer values from the Smis. |
| CONVERT_CHECKED(Smi, x, args[0]); |
| CONVERT_CHECKED(Smi, y, args[1]); |
| int x_value = x->value(); |
| int y_value = y->value(); |
| |
| // If the integers are equal so are the string representations. |
| if (x_value == y_value) return Smi::FromInt(EQUAL); |
| |
| // If one of the integers are zero the normal integer order is the |
| // same as the lexicographic order of the string representations. |
| if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value); |
| |
| // If only one of the integers is negative the negative number is |
| // smallest because the char code of '-' is less than the char code |
| // of any digit. Otherwise, we make both values positive. |
| if (x_value < 0 || y_value < 0) { |
| if (y_value >= 0) return Smi::FromInt(LESS); |
| if (x_value >= 0) return Smi::FromInt(GREATER); |
| x_value = -x_value; |
| y_value = -y_value; |
| } |
| |
| // Convert the integers to arrays of their decimal digits. |
| int x_index = 0; |
| int y_index = 0; |
| while (x_value > 0) { |
| x_elms[x_index++] = x_value % 10; |
| x_value /= 10; |
| } |
| while (y_value > 0) { |
| y_elms[y_index++] = y_value % 10; |
| y_value /= 10; |
| } |
| |
| // Loop through the arrays of decimal digits finding the first place |
| // where they differ. |
| while (--x_index >= 0 && --y_index >= 0) { |
| int diff = x_elms[x_index] - y_elms[y_index]; |
| if (diff != 0) return Smi::FromInt(diff); |
| } |
| |
| // If one array is a suffix of the other array, the longest array is |
| // the representation of the largest of the Smis in the |
| // lexicographic ordering. |
| return Smi::FromInt(x_index - y_index); |
| } |
| |
| |
| static Object* Runtime_StringCompare(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(String, x, args[0]); |
| CONVERT_CHECKED(String, y, args[1]); |
| |
| Counters::string_compare_runtime.Increment(); |
| |
| // A few fast case tests before we flatten. |
| if (x == y) return Smi::FromInt(EQUAL); |
| if (y->length() == 0) { |
| if (x->length() == 0) return Smi::FromInt(EQUAL); |
| return Smi::FromInt(GREATER); |
| } else if (x->length() == 0) { |
| return Smi::FromInt(LESS); |
| } |
| |
| int d = x->Get(0) - y->Get(0); |
| if (d < 0) return Smi::FromInt(LESS); |
| else if (d > 0) return Smi::FromInt(GREATER); |
| |
| x->TryFlattenIfNotFlat(); |
| y->TryFlattenIfNotFlat(); |
| |
| static StringInputBuffer bufx; |
| static StringInputBuffer bufy; |
| bufx.Reset(x); |
| bufy.Reset(y); |
| while (bufx.has_more() && bufy.has_more()) { |
| int d = bufx.GetNext() - bufy.GetNext(); |
| if (d < 0) return Smi::FromInt(LESS); |
| else if (d > 0) return Smi::FromInt(GREATER); |
| } |
| |
| // x is (non-trivial) prefix of y: |
| if (bufy.has_more()) return Smi::FromInt(LESS); |
| // y is prefix of x: |
| return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL); |
| } |
| |
| |
| static Object* Runtime_Math_abs(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_abs.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return Heap::AllocateHeapNumber(fabs(x)); |
| } |
| |
| |
| static Object* Runtime_Math_acos(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_acos.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::ACOS, x); |
| } |
| |
| |
| static Object* Runtime_Math_asin(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_asin.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::ASIN, x); |
| } |
| |
| |
| static Object* Runtime_Math_atan(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_atan.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::ATAN, x); |
| } |
| |
| |
| static Object* Runtime_Math_atan2(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| Counters::math_atan2.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| double result; |
| if (isinf(x) && isinf(y)) { |
| // Make sure that the result in case of two infinite arguments |
| // is a multiple of Pi / 4. The sign of the result is determined |
| // by the first argument (x) and the sign of the second argument |
| // determines the multiplier: one or three. |
| static double kPiDividedBy4 = 0.78539816339744830962; |
| int multiplier = (x < 0) ? -1 : 1; |
| if (y < 0) multiplier *= 3; |
| result = multiplier * kPiDividedBy4; |
| } else { |
| result = atan2(x, y); |
| } |
| return Heap::AllocateHeapNumber(result); |
| } |
| |
| |
| static Object* Runtime_Math_ceil(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_ceil.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return Heap::NumberFromDouble(ceiling(x)); |
| } |
| |
| |
| static Object* Runtime_Math_cos(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_cos.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::COS, x); |
| } |
| |
| |
| static Object* Runtime_Math_exp(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_exp.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::EXP, x); |
| } |
| |
| |
| static Object* Runtime_Math_floor(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_floor.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return Heap::NumberFromDouble(floor(x)); |
| } |
| |
| |
| static Object* Runtime_Math_log(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_log.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::LOG, x); |
| } |
| |
| |
| // Helper function to compute x^y, where y is known to be an |
| // integer. Uses binary decomposition to limit the number of |
| // multiplications; see the discussion in "Hacker's Delight" by Henry |
| // S. Warren, Jr., figure 11-6, page 213. |
| static double powi(double x, int y) { |
| ASSERT(y != kMinInt); |
| unsigned n = (y < 0) ? -y : y; |
| double m = x; |
| double p = 1; |
| while (true) { |
| if ((n & 1) != 0) p *= m; |
| n >>= 1; |
| if (n == 0) { |
| if (y < 0) { |
| // Unfortunately, we have to be careful when p has reached |
| // infinity in the computation, because sometimes the higher |
| // internal precision in the pow() implementation would have |
| // given us a finite p. This happens very rarely. |
| double result = 1.0 / p; |
| return (result == 0 && isinf(p)) |
| ? pow(x, static_cast<double>(y)) // Avoid pow(double, int). |
| : result; |
| } else { |
| return p; |
| } |
| } |
| m *= m; |
| } |
| } |
| |
| |
| static Object* Runtime_Math_pow(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| Counters::math_pow.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| |
| // If the second argument is a smi, it is much faster to call the |
| // custom powi() function than the generic pow(). |
| if (args[1]->IsSmi()) { |
| int y = Smi::cast(args[1])->value(); |
| return Heap::AllocateHeapNumber(powi(x, y)); |
| } |
| |
| CONVERT_DOUBLE_CHECKED(y, args[1]); |
| |
| if (!isinf(x)) { |
| if (y == 0.5) { |
| // It's not uncommon to use Math.pow(x, 0.5) to compute the |
| // square root of a number. To speed up such computations, we |
| // explictly check for this case and use the sqrt() function |
| // which is faster than pow(). |
| return Heap::AllocateHeapNumber(sqrt(x)); |
| } else if (y == -0.5) { |
| // Optimized using Math.pow(x, -0.5) == 1 / Math.pow(x, 0.5). |
| return Heap::AllocateHeapNumber(1.0 / sqrt(x)); |
| } |
| } |
| |
| if (y == 0) { |
| return Smi::FromInt(1); |
| } else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) { |
| return Heap::nan_value(); |
| } else { |
| return Heap::AllocateHeapNumber(pow(x, y)); |
| } |
| } |
| |
| |
| static Object* Runtime_Math_round(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_round.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| if (signbit(x) && x >= -0.5) return Heap::minus_zero_value(); |
| double integer = ceil(x); |
| if (integer - x > 0.5) { integer -= 1.0; } |
| return Heap::NumberFromDouble(integer); |
| } |
| |
| |
| static Object* Runtime_Math_sin(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_sin.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::SIN, x); |
| } |
| |
| |
| static Object* Runtime_Math_sqrt(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_sqrt.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return Heap::AllocateHeapNumber(sqrt(x)); |
| } |
| |
| |
| static Object* Runtime_Math_tan(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Counters::math_tan.Increment(); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return TranscendentalCache::Get(TranscendentalCache::TAN, x); |
| } |
| |
| |
| static Object* Runtime_NewArgumentsFast(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| JSFunction* callee = JSFunction::cast(args[0]); |
| Object** parameters = reinterpret_cast<Object**>(args[1]); |
| const int length = Smi::cast(args[2])->value(); |
| |
| Object* result = Heap::AllocateArgumentsObject(callee, length); |
| if (result->IsFailure()) return result; |
| // Allocate the elements if needed. |
| if (length > 0) { |
| // Allocate the fixed array. |
| Object* obj = Heap::AllocateRawFixedArray(length); |
| if (obj->IsFailure()) return obj; |
| |
| AssertNoAllocation no_gc; |
| reinterpret_cast<Array*>(obj)->set_map(Heap::fixed_array_map()); |
| FixedArray* array = FixedArray::cast(obj); |
| array->set_length(length); |
| |
| WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < length; i++) { |
| array->set(i, *--parameters, mode); |
| } |
| JSObject::cast(result)->set_elements(FixedArray::cast(obj)); |
| } |
| return result; |
| } |
| |
| |
| static Object* Runtime_NewClosure(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(Context, context, 0); |
| CONVERT_ARG_CHECKED(JSFunction, boilerplate, 1); |
| |
| PretenureFlag pretenure = (context->global_context() == *context) |
| ? TENURED // Allocate global closures in old space. |
| : NOT_TENURED; // Allocate local closures in new space. |
| Handle<JSFunction> result = |
| Factory::NewFunctionFromBoilerplate(boilerplate, context, pretenure); |
| return *result; |
| } |
| |
| |
| static Code* ComputeConstructStub(Handle<JSFunction> function) { |
| Handle<Object> prototype = Factory::null_value(); |
| if (function->has_instance_prototype()) { |
| prototype = Handle<Object>(function->instance_prototype()); |
| } |
| if (function->shared()->CanGenerateInlineConstructor(*prototype)) { |
| ConstructStubCompiler compiler; |
| Object* code = compiler.CompileConstructStub(function->shared()); |
| if (code->IsFailure()) { |
| return Builtins::builtin(Builtins::JSConstructStubGeneric); |
| } |
| return Code::cast(code); |
| } |
| |
| return function->shared()->construct_stub(); |
| } |
| |
| |
| static Object* Runtime_NewObject(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| Handle<Object> constructor = args.at<Object>(0); |
| |
| // If the constructor isn't a proper function we throw a type error. |
| if (!constructor->IsJSFunction()) { |
| Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); |
| Handle<Object> type_error = |
| Factory::NewTypeError("not_constructor", arguments); |
| return Top::Throw(*type_error); |
| } |
| |
| Handle<JSFunction> function = Handle<JSFunction>::cast(constructor); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Handle stepping into constructors if step into is active. |
| if (Debug::StepInActive()) { |
| Debug::HandleStepIn(function, Handle<Object>::null(), 0, true); |
| } |
| #endif |
| |
| if (function->has_initial_map()) { |
| if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) { |
| // The 'Function' function ignores the receiver object when |
| // called using 'new' and creates a new JSFunction object that |
| // is returned. The receiver object is only used for error |
| // reporting if an error occurs when constructing the new |
| // JSFunction. Factory::NewJSObject() should not be used to |
| // allocate JSFunctions since it does not properly initialize |
| // the shared part of the function. Since the receiver is |
| // ignored anyway, we use the global object as the receiver |
| // instead of a new JSFunction object. This way, errors are |
| // reported the same way whether or not 'Function' is called |
| // using 'new'. |
| return Top::context()->global(); |
| } |
| } |
| |
| // The function should be compiled for the optimization hints to be available. |
| Handle<SharedFunctionInfo> shared(function->shared()); |
| EnsureCompiled(shared, CLEAR_EXCEPTION); |
| |
| bool first_allocation = !function->has_initial_map(); |
| Handle<JSObject> result = Factory::NewJSObject(function); |
| if (first_allocation) { |
| Handle<Code> stub = Handle<Code>( |
| ComputeConstructStub(Handle<JSFunction>(function))); |
| shared->set_construct_stub(*stub); |
| } |
| |
| Counters::constructed_objects.Increment(); |
| Counters::constructed_objects_runtime.Increment(); |
| |
| return *result; |
| } |
| |
| |
| static Object* Runtime_LazyCompile(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| Handle<JSFunction> function = args.at<JSFunction>(0); |
| #ifdef DEBUG |
| if (FLAG_trace_lazy) { |
| PrintF("[lazy: "); |
| function->shared()->name()->Print(); |
| PrintF("]\n"); |
| } |
| #endif |
| |
| // Compile the target function. Here we compile using CompileLazyInLoop in |
| // order to get the optimized version. This helps code like delta-blue |
| // that calls performance-critical routines through constructors. A |
| // constructor call doesn't use a CallIC, it uses a LoadIC followed by a |
| // direct call. Since the in-loop tracking takes place through CallICs |
| // this means that things called through constructors are never known to |
| // be in loops. We compile them as if they are in loops here just in case. |
| ASSERT(!function->is_compiled()); |
| if (!CompileLazyInLoop(function, Handle<Object>::null(), KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| |
| return function->code(); |
| } |
| |
| |
| static Object* Runtime_GetFunctionDelegate(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| RUNTIME_ASSERT(!args[0]->IsJSFunction()); |
| return *Execution::GetFunctionDelegate(args.at<Object>(0)); |
| } |
| |
| |
| static Object* Runtime_GetConstructorDelegate(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| RUNTIME_ASSERT(!args[0]->IsJSFunction()); |
| return *Execution::GetConstructorDelegate(args.at<Object>(0)); |
| } |
| |
| |
| static Object* Runtime_NewContext(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, function, args[0]); |
| int length = ScopeInfo<>::NumberOfContextSlots(function->code()); |
| Object* result = Heap::AllocateFunctionContext(length, function); |
| if (result->IsFailure()) return result; |
| |
| Top::set_context(Context::cast(result)); |
| |
| return result; // non-failure |
| } |
| |
| static Object* PushContextHelper(Object* object, bool is_catch_context) { |
| // Convert the object to a proper JavaScript object. |
| Object* js_object = object; |
| if (!js_object->IsJSObject()) { |
| js_object = js_object->ToObject(); |
| if (js_object->IsFailure()) { |
| if (!Failure::cast(js_object)->IsInternalError()) return js_object; |
| HandleScope scope; |
| Handle<Object> handle(object); |
| Handle<Object> result = |
| Factory::NewTypeError("with_expression", HandleVector(&handle, 1)); |
| return Top::Throw(*result); |
| } |
| } |
| |
| Object* result = |
| Heap::AllocateWithContext(Top::context(), |
| JSObject::cast(js_object), |
| is_catch_context); |
| if (result->IsFailure()) return result; |
| |
| Context* context = Context::cast(result); |
| Top::set_context(context); |
| |
| return result; |
| } |
| |
| |
| static Object* Runtime_PushContext(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| return PushContextHelper(args[0], false); |
| } |
| |
| |
| static Object* Runtime_PushCatchContext(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| return PushContextHelper(args[0], true); |
| } |
| |
| |
| static Object* Runtime_LookupContext(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(Context, context, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes); |
| |
| if (index < 0 && !holder.is_null()) { |
| ASSERT(holder->IsJSObject()); |
| return *holder; |
| } |
| |
| // No intermediate context found. Use global object by default. |
| return Top::context()->global(); |
| } |
| |
| |
| // A mechanism to return a pair of Object pointers in registers (if possible). |
| // How this is achieved is calling convention-dependent. |
| // All currently supported x86 compiles uses calling conventions that are cdecl |
| // variants where a 64-bit value is returned in two 32-bit registers |
| // (edx:eax on ia32, r1:r0 on ARM). |
| // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax. |
| // In Win64 calling convention, a struct of two pointers is returned in memory, |
| // allocated by the caller, and passed as a pointer in a hidden first parameter. |
| #ifdef V8_HOST_ARCH_64_BIT |
| struct ObjectPair { |
| Object* x; |
| Object* y; |
| }; |
| |
| static inline ObjectPair MakePair(Object* x, Object* y) { |
| ObjectPair result = {x, y}; |
| // Pointers x and y returned in rax and rdx, in AMD-x64-abi. |
| // In Win64 they are assigned to a hidden first argument. |
| return result; |
| } |
| #else |
| typedef uint64_t ObjectPair; |
| static inline ObjectPair MakePair(Object* x, Object* y) { |
| return reinterpret_cast<uint32_t>(x) | |
| (reinterpret_cast<ObjectPair>(y) << 32); |
| } |
| #endif |
| |
| |
| static inline Object* Unhole(Object* x, PropertyAttributes attributes) { |
| ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0); |
| USE(attributes); |
| return x->IsTheHole() ? Heap::undefined_value() : x; |
| } |
| |
| |
| static JSObject* ComputeReceiverForNonGlobal(JSObject* holder) { |
| ASSERT(!holder->IsGlobalObject()); |
| Context* top = Top::context(); |
| // Get the context extension function. |
| JSFunction* context_extension_function = |
| top->global_context()->context_extension_function(); |
| // If the holder isn't a context extension object, we just return it |
| // as the receiver. This allows arguments objects to be used as |
| // receivers, but only if they are put in the context scope chain |
| // explicitly via a with-statement. |
| Object* constructor = holder->map()->constructor(); |
| if (constructor != context_extension_function) return holder; |
| // Fall back to using the global object as the receiver if the |
| // property turns out to be a local variable allocated in a context |
| // extension object - introduced via eval. |
| return top->global()->global_receiver(); |
| } |
| |
| |
| static ObjectPair LoadContextSlotHelper(Arguments args, bool throw_error) { |
| HandleScope scope; |
| ASSERT_EQ(2, args.length()); |
| |
| if (!args[0]->IsContext() || !args[1]->IsString()) { |
| return MakePair(Top::ThrowIllegalOperation(), NULL); |
| } |
| Handle<Context> context = args.at<Context>(0); |
| Handle<String> name = args.at<String>(1); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes); |
| |
| // If the index is non-negative, the slot has been found in a local |
| // variable or a parameter. Read it from the context object or the |
| // arguments object. |
| if (index >= 0) { |
| // If the "property" we were looking for is a local variable or an |
| // argument in a context, the receiver is the global object; see |
| // ECMA-262, 3rd., 10.1.6 and 10.2.3. |
| JSObject* receiver = Top::context()->global()->global_receiver(); |
| Object* value = (holder->IsContext()) |
| ? Context::cast(*holder)->get(index) |
| : JSObject::cast(*holder)->GetElement(index); |
| return MakePair(Unhole(value, attributes), receiver); |
| } |
| |
| // If the holder is found, we read the property from it. |
| if (!holder.is_null() && holder->IsJSObject()) { |
| ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name)); |
| JSObject* object = JSObject::cast(*holder); |
| JSObject* receiver; |
| if (object->IsGlobalObject()) { |
| receiver = GlobalObject::cast(object)->global_receiver(); |
| } else if (context->is_exception_holder(*holder)) { |
| receiver = Top::context()->global()->global_receiver(); |
| } else { |
| receiver = ComputeReceiverForNonGlobal(object); |
| } |
| // No need to unhole the value here. This is taken care of by the |
| // GetProperty function. |
| Object* value = object->GetProperty(*name); |
| return MakePair(value, receiver); |
| } |
| |
| if (throw_error) { |
| // The property doesn't exist - throw exception. |
| Handle<Object> reference_error = |
| Factory::NewReferenceError("not_defined", HandleVector(&name, 1)); |
| return MakePair(Top::Throw(*reference_error), NULL); |
| } else { |
| // The property doesn't exist - return undefined |
| return MakePair(Heap::undefined_value(), Heap::undefined_value()); |
| } |
| } |
| |
| |
| static ObjectPair Runtime_LoadContextSlot(Arguments args) { |
| return LoadContextSlotHelper(args, true); |
| } |
| |
| |
| static ObjectPair Runtime_LoadContextSlotNoReferenceError(Arguments args) { |
| return LoadContextSlotHelper(args, false); |
| } |
| |
| |
| static Object* Runtime_StoreContextSlot(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| |
| Handle<Object> value(args[0]); |
| CONVERT_ARG_CHECKED(Context, context, 1); |
| CONVERT_ARG_CHECKED(String, name, 2); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes); |
| |
| if (index >= 0) { |
| if (holder->IsContext()) { |
| // Ignore if read_only variable. |
| if ((attributes & READ_ONLY) == 0) { |
| Handle<Context>::cast(holder)->set(index, *value); |
| } |
| } else { |
| ASSERT((attributes & READ_ONLY) == 0); |
| Object* result = |
| Handle<JSObject>::cast(holder)->SetElement(index, *value); |
| USE(result); |
| ASSERT(!result->IsFailure()); |
| } |
| return *value; |
| } |
| |
| // Slow case: The property is not in a FixedArray context. |
| // It is either in an JSObject extension context or it was not found. |
| Handle<JSObject> context_ext; |
| |
| if (!holder.is_null()) { |
| // The property exists in the extension context. |
| context_ext = Handle<JSObject>::cast(holder); |
| } else { |
| // The property was not found. It needs to be stored in the global context. |
| ASSERT(attributes == ABSENT); |
| attributes = NONE; |
| context_ext = Handle<JSObject>(Top::context()->global()); |
| } |
| |
| // Set the property, but ignore if read_only variable on the context |
| // extension object itself. |
| if ((attributes & READ_ONLY) == 0 || |
| (context_ext->GetLocalPropertyAttribute(*name) == ABSENT)) { |
| Handle<Object> set = SetProperty(context_ext, name, value, attributes); |
| if (set.is_null()) { |
| // Failure::Exception is converted to a null handle in the |
| // handle-based methods such as SetProperty. We therefore need |
| // to convert null handles back to exceptions. |
| ASSERT(Top::has_pending_exception()); |
| return Failure::Exception(); |
| } |
| } |
| return *value; |
| } |
| |
| |
| static Object* Runtime_Throw(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| return Top::Throw(args[0]); |
| } |
| |
| |
| static Object* Runtime_ReThrow(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| return Top::ReThrow(args[0]); |
| } |
| |
| |
| static Object* Runtime_PromoteScheduledException(Arguments args) { |
| ASSERT_EQ(0, args.length()); |
| return Top::PromoteScheduledException(); |
| } |
| |
| |
| static Object* Runtime_ThrowReferenceError(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| Handle<Object> name(args[0]); |
| Handle<Object> reference_error = |
| Factory::NewReferenceError("not_defined", HandleVector(&name, 1)); |
| return Top::Throw(*reference_error); |
| } |
| |
| |
| static Object* Runtime_StackOverflow(Arguments args) { |
| NoHandleAllocation na; |
| return Top::StackOverflow(); |
| } |
| |
| |
| static Object* Runtime_StackGuard(Arguments args) { |
| ASSERT(args.length() == 1); |
| |
| // First check if this is a real stack overflow. |
| if (StackGuard::IsStackOverflow()) { |
| return Runtime_StackOverflow(args); |
| } |
| |
| return Execution::HandleStackGuardInterrupt(); |
| } |
| |
| |
| // NOTE: These PrintXXX functions are defined for all builds (not just |
| // DEBUG builds) because we may want to be able to trace function |
| // calls in all modes. |
| static void PrintString(String* str) { |
| // not uncommon to have empty strings |
| if (str->length() > 0) { |
| SmartPointer<char> s = |
| str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); |
| PrintF("%s", *s); |
| } |
| } |
| |
| |
| static void PrintObject(Object* obj) { |
| if (obj->IsSmi()) { |
| PrintF("%d", Smi::cast(obj)->value()); |
| } else if (obj->IsString() || obj->IsSymbol()) { |
| PrintString(String::cast(obj)); |
| } else if (obj->IsNumber()) { |
| PrintF("%g", obj->Number()); |
| } else if (obj->IsFailure()) { |
| PrintF("<failure>"); |
| } else if (obj->IsUndefined()) { |
| PrintF("<undefined>"); |
| } else if (obj->IsNull()) { |
| PrintF("<null>"); |
| } else if (obj->IsTrue()) { |
| PrintF("<true>"); |
| } else if (obj->IsFalse()) { |
| PrintF("<false>"); |
| } else { |
| PrintF("%p", obj); |
| } |
| } |
| |
| |
| static int StackSize() { |
| int n = 0; |
| for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++; |
| return n; |
| } |
| |
| |
| static void PrintTransition(Object* result) { |
| // indentation |
| { const int nmax = 80; |
| int n = StackSize(); |
| if (n <= nmax) |
| PrintF("%4d:%*s", n, n, ""); |
| else |
| PrintF("%4d:%*s", n, nmax, "..."); |
| } |
| |
| if (result == NULL) { |
| // constructor calls |
| JavaScriptFrameIterator it; |
| JavaScriptFrame* frame = it.frame(); |
| if (frame->IsConstructor()) PrintF("new "); |
| // function name |
| Object* fun = frame->function(); |
| if (fun->IsJSFunction()) { |
| PrintObject(JSFunction::cast(fun)->shared()->name()); |
| } else { |
| PrintObject(fun); |
| } |
| // function arguments |
| // (we are intentionally only printing the actually |
| // supplied parameters, not all parameters required) |
| PrintF("(this="); |
| PrintObject(frame->receiver()); |
| const int length = frame->GetProvidedParametersCount(); |
| for (int i = 0; i < length; i++) { |
| PrintF(", "); |
| PrintObject(frame->GetParameter(i)); |
| } |
| PrintF(") {\n"); |
| |
| } else { |
| // function result |
| PrintF("} -> "); |
| PrintObject(result); |
| PrintF("\n"); |
| } |
| } |
| |
| |
| static Object* Runtime_TraceEnter(Arguments args) { |
| ASSERT(args.length() == 0); |
| NoHandleAllocation ha; |
| PrintTransition(NULL); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_TraceExit(Arguments args) { |
| NoHandleAllocation ha; |
| PrintTransition(args[0]); |
| return args[0]; // return TOS |
| } |
| |
| |
| static Object* Runtime_DebugPrint(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| #ifdef DEBUG |
| if (args[0]->IsString()) { |
| // If we have a string, assume it's a code "marker" |
| // and print some interesting cpu debugging info. |
| JavaScriptFrameIterator it; |
| JavaScriptFrame* frame = it.frame(); |
| PrintF("fp = %p, sp = %p, caller_sp = %p: ", |
| frame->fp(), frame->sp(), frame->caller_sp()); |
| } else { |
| PrintF("DebugPrint: "); |
| } |
| args[0]->Print(); |
| if (args[0]->IsHeapObject()) { |
| HeapObject::cast(args[0])->map()->Print(); |
| } |
| #else |
| // ShortPrint is available in release mode. Print is not. |
| args[0]->ShortPrint(); |
| #endif |
| PrintF("\n"); |
| Flush(); |
| |
| return args[0]; // return TOS |
| } |
| |
| |
| static Object* Runtime_DebugTrace(Arguments args) { |
| ASSERT(args.length() == 0); |
| NoHandleAllocation ha; |
| Top::PrintStack(); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_DateCurrentTime(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 0); |
| |
| // According to ECMA-262, section 15.9.1, page 117, the precision of |
| // the number in a Date object representing a particular instant in |
| // time is milliseconds. Therefore, we floor the result of getting |
| // the OS time. |
| double millis = floor(OS::TimeCurrentMillis()); |
| return Heap::NumberFromDouble(millis); |
| } |
| |
| |
| static Object* Runtime_DateParseString(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(String, str, 0); |
| FlattenString(str); |
| |
| CONVERT_ARG_CHECKED(JSArray, output, 1); |
| RUNTIME_ASSERT(output->HasFastElements()); |
| |
| AssertNoAllocation no_allocation; |
| |
| FixedArray* output_array = FixedArray::cast(output->elements()); |
| RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE); |
| bool result; |
| if (str->IsAsciiRepresentation()) { |
| result = DateParser::Parse(str->ToAsciiVector(), output_array); |
| } else { |
| ASSERT(str->IsTwoByteRepresentation()); |
| result = DateParser::Parse(str->ToUC16Vector(), output_array); |
| } |
| |
| if (result) { |
| return *output; |
| } else { |
| return Heap::null_value(); |
| } |
| } |
| |
| |
| static Object* Runtime_DateLocalTimezone(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| const char* zone = OS::LocalTimezone(x); |
| return Heap::AllocateStringFromUtf8(CStrVector(zone)); |
| } |
| |
| |
| static Object* Runtime_DateLocalTimeOffset(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 0); |
| |
| return Heap::NumberFromDouble(OS::LocalTimeOffset()); |
| } |
| |
| |
| static Object* Runtime_DateDaylightSavingsOffset(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_CHECKED(x, args[0]); |
| return Heap::NumberFromDouble(OS::DaylightSavingsOffset(x)); |
| } |
| |
| |
| static Object* Runtime_NumberIsFinite(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_CHECKED(value, args[0]); |
| Object* result; |
| if (isnan(value) || (fpclassify(value) == FP_INFINITE)) { |
| result = Heap::false_value(); |
| } else { |
| result = Heap::true_value(); |
| } |
| return result; |
| } |
| |
| |
| static Object* Runtime_GlobalReceiver(Arguments args) { |
| ASSERT(args.length() == 1); |
| Object* global = args[0]; |
| if (!global->IsJSGlobalObject()) return Heap::null_value(); |
| return JSGlobalObject::cast(global)->global_receiver(); |
| } |
| |
| |
| static Object* Runtime_CompileString(Arguments args) { |
| HandleScope scope; |
| ASSERT_EQ(2, args.length()); |
| CONVERT_ARG_CHECKED(String, source, 0); |
| CONVERT_ARG_CHECKED(Oddball, is_json, 1) |
| |
| // Compile source string in the global context. |
| Handle<Context> context(Top::context()->global_context()); |
| Compiler::ValidationState validate = (is_json->IsTrue()) |
| ? Compiler::VALIDATE_JSON : Compiler::DONT_VALIDATE_JSON; |
| Handle<JSFunction> boilerplate = Compiler::CompileEval(source, |
| context, |
| true, |
| validate); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| Handle<JSFunction> fun = |
| Factory::NewFunctionFromBoilerplate(boilerplate, context, NOT_TENURED); |
| return *fun; |
| } |
| |
| |
| static ObjectPair Runtime_ResolvePossiblyDirectEval(Arguments args) { |
| ASSERT(args.length() == 3); |
| if (!args[0]->IsJSFunction()) { |
| return MakePair(Top::ThrowIllegalOperation(), NULL); |
| } |
| |
| HandleScope scope; |
| Handle<JSFunction> callee = args.at<JSFunction>(0); |
| Handle<Object> receiver; // Will be overwritten. |
| |
| // Compute the calling context. |
| Handle<Context> context = Handle<Context>(Top::context()); |
| #ifdef DEBUG |
| // Make sure Top::context() agrees with the old code that traversed |
| // the stack frames to compute the context. |
| StackFrameLocator locator; |
| JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); |
| ASSERT(Context::cast(frame->context()) == *context); |
| #endif |
| |
| // Find where the 'eval' symbol is bound. It is unaliased only if |
| // it is bound in the global context. |
| int index = -1; |
| PropertyAttributes attributes = ABSENT; |
| while (true) { |
| receiver = context->Lookup(Factory::eval_symbol(), FOLLOW_PROTOTYPE_CHAIN, |
| &index, &attributes); |
| // Stop search when eval is found or when the global context is |
| // reached. |
| if (attributes != ABSENT || context->IsGlobalContext()) break; |
| if (context->is_function_context()) { |
| context = Handle<Context>(Context::cast(context->closure()->context())); |
| } else { |
| context = Handle<Context>(context->previous()); |
| } |
| } |
| |
| // If eval could not be resolved, it has been deleted and we need to |
| // throw a reference error. |
| if (attributes == ABSENT) { |
| Handle<Object> name = Factory::eval_symbol(); |
| Handle<Object> reference_error = |
| Factory::NewReferenceError("not_defined", HandleVector(&name, 1)); |
| return MakePair(Top::Throw(*reference_error), NULL); |
| } |
| |
| if (!context->IsGlobalContext()) { |
| // 'eval' is not bound in the global context. Just call the function |
| // with the given arguments. This is not necessarily the global eval. |
| if (receiver->IsContext()) { |
| context = Handle<Context>::cast(receiver); |
| receiver = Handle<Object>(context->get(index)); |
| } else if (receiver->IsJSContextExtensionObject()) { |
| receiver = Handle<JSObject>(Top::context()->global()->global_receiver()); |
| } |
| return MakePair(*callee, *receiver); |
| } |
| |
| // 'eval' is bound in the global context, but it may have been overwritten. |
| // Compare it to the builtin 'GlobalEval' function to make sure. |
| if (*callee != Top::global_context()->global_eval_fun() || |
| !args[1]->IsString()) { |
| return MakePair(*callee, Top::context()->global()->global_receiver()); |
| } |
| |
| // Deal with a normal eval call with a string argument. Compile it |
| // and return the compiled function bound in the local context. |
| Handle<String> source = args.at<String>(1); |
| Handle<JSFunction> boilerplate = Compiler::CompileEval( |
| source, |
| Handle<Context>(Top::context()), |
| Top::context()->IsGlobalContext(), |
| Compiler::DONT_VALIDATE_JSON); |
| if (boilerplate.is_null()) return MakePair(Failure::Exception(), NULL); |
| callee = Factory::NewFunctionFromBoilerplate( |
| boilerplate, |
| Handle<Context>(Top::context()), |
| NOT_TENURED); |
| return MakePair(*callee, args[2]); |
| } |
| |
| |
| static Object* Runtime_SetNewFunctionAttributes(Arguments args) { |
| // This utility adjusts the property attributes for newly created Function |
| // object ("new Function(...)") by changing the map. |
| // All it does is changing the prototype property to enumerable |
| // as specified in ECMA262, 15.3.5.2. |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSFunction, func, 0); |
| ASSERT(func->map()->instance_type() == |
| Top::function_instance_map()->instance_type()); |
| ASSERT(func->map()->instance_size() == |
| Top::function_instance_map()->instance_size()); |
| func->set_map(*Top::function_instance_map()); |
| return *func; |
| } |
| |
| |
| // Push an array unto an array of arrays if it is not already in the |
| // array. Returns true if the element was pushed on the stack and |
| // false otherwise. |
| static Object* Runtime_PushIfAbsent(Arguments args) { |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(JSArray, array, args[0]); |
| CONVERT_CHECKED(JSArray, element, args[1]); |
| RUNTIME_ASSERT(array->HasFastElements()); |
| int length = Smi::cast(array->length())->value(); |
| FixedArray* elements = FixedArray::cast(array->elements()); |
| for (int i = 0; i < length; i++) { |
| if (elements->get(i) == element) return Heap::false_value(); |
| } |
| Object* obj = array->SetFastElement(length, element); |
| if (obj->IsFailure()) return obj; |
| return Heap::true_value(); |
| } |
| |
| |
| /** |
| * A simple visitor visits every element of Array's. |
| * The backend storage can be a fixed array for fast elements case, |
| * or a dictionary for sparse array. Since Dictionary is a subtype |
| * of FixedArray, the class can be used by both fast and slow cases. |
| * The second parameter of the constructor, fast_elements, specifies |
| * whether the storage is a FixedArray or Dictionary. |
| * |
| * An index limit is used to deal with the situation that a result array |
| * length overflows 32-bit non-negative integer. |
| */ |
| class ArrayConcatVisitor { |
| public: |
| ArrayConcatVisitor(Handle<FixedArray> storage, |
| uint32_t index_limit, |
| bool fast_elements) : |
| storage_(storage), index_limit_(index_limit), |
| index_offset_(0), fast_elements_(fast_elements) { } |
| |
| void visit(uint32_t i, Handle<Object> elm) { |
| if (i >= index_limit_ - index_offset_) return; |
| uint32_t index = index_offset_ + i; |
| |
| if (fast_elements_) { |
| ASSERT(index < static_cast<uint32_t>(storage_->length())); |
| storage_->set(index, *elm); |
| |
| } else { |
| Handle<NumberDictionary> dict = Handle<NumberDictionary>::cast(storage_); |
| Handle<NumberDictionary> result = |
| Factory::DictionaryAtNumberPut(dict, index, elm); |
| if (!result.is_identical_to(dict)) |
| storage_ = result; |
| } |
| } |
| |
| void increase_index_offset(uint32_t delta) { |
| if (index_limit_ - index_offset_ < delta) { |
| index_offset_ = index_limit_; |
| } else { |
| index_offset_ += delta; |
| } |
| } |
| |
| Handle<FixedArray> storage() { return storage_; } |
| |
| private: |
| Handle<FixedArray> storage_; |
| // Limit on the accepted indices. Elements with indices larger than the |
| // limit are ignored by the visitor. |
| uint32_t index_limit_; |
| // Index after last seen index. Always less than or equal to index_limit_. |
| uint32_t index_offset_; |
| bool fast_elements_; |
| }; |
| |
| |
| template<class ExternalArrayClass, class ElementType> |
| static uint32_t IterateExternalArrayElements(Handle<JSObject> receiver, |
| bool elements_are_ints, |
| bool elements_are_guaranteed_smis, |
| uint32_t range, |
| ArrayConcatVisitor* visitor) { |
| Handle<ExternalArrayClass> array( |
| ExternalArrayClass::cast(receiver->elements())); |
| uint32_t len = Min(static_cast<uint32_t>(array->length()), range); |
| |
| if (visitor != NULL) { |
| if (elements_are_ints) { |
| if (elements_are_guaranteed_smis) { |
| for (uint32_t j = 0; j < len; j++) { |
| Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j)))); |
| visitor->visit(j, e); |
| } |
| } else { |
| for (uint32_t j = 0; j < len; j++) { |
| int64_t val = static_cast<int64_t>(array->get(j)); |
| if (Smi::IsValid(static_cast<intptr_t>(val))) { |
| Handle<Smi> e(Smi::FromInt(static_cast<int>(val))); |
| visitor->visit(j, e); |
| } else { |
| Handle<Object> e( |
| Heap::AllocateHeapNumber(static_cast<ElementType>(val))); |
| visitor->visit(j, e); |
| } |
| } |
| } |
| } else { |
| for (uint32_t j = 0; j < len; j++) { |
| Handle<Object> e(Heap::AllocateHeapNumber(array->get(j))); |
| visitor->visit(j, e); |
| } |
| } |
| } |
| |
| return len; |
| } |
| |
| /** |
| * A helper function that visits elements of a JSObject. Only elements |
| * whose index between 0 and range (exclusive) are visited. |
| * |
| * If the third parameter, visitor, is not NULL, the visitor is called |
| * with parameters, 'visitor_index_offset + element index' and the element. |
| * |
| * It returns the number of visisted elements. |
| */ |
| static uint32_t IterateElements(Handle<JSObject> receiver, |
| uint32_t range, |
| ArrayConcatVisitor* visitor) { |
| uint32_t num_of_elements = 0; |
| |
| switch (receiver->GetElementsKind()) { |
| case JSObject::FAST_ELEMENTS: { |
| Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); |
| uint32_t len = elements->length(); |
| if (range < len) { |
| len = range; |
| } |
| |
| for (uint32_t j = 0; j < len; j++) { |
| Handle<Object> e(elements->get(j)); |
| if (!e->IsTheHole()) { |
| num_of_elements++; |
| if (visitor) { |
| visitor->visit(j, e); |
| } |
| } |
| } |
| break; |
| } |
| case JSObject::PIXEL_ELEMENTS: { |
| Handle<PixelArray> pixels(PixelArray::cast(receiver->elements())); |
| uint32_t len = pixels->length(); |
| if (range < len) { |
| len = range; |
| } |
| |
| for (uint32_t j = 0; j < len; j++) { |
| num_of_elements++; |
| if (visitor != NULL) { |
| Handle<Smi> e(Smi::FromInt(pixels->get(j))); |
| visitor->visit(j, e); |
| } |
| } |
| break; |
| } |
| case JSObject::EXTERNAL_BYTE_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalByteArray, int8_t>( |
| receiver, true, true, range, visitor); |
| break; |
| } |
| case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>( |
| receiver, true, true, range, visitor); |
| break; |
| } |
| case JSObject::EXTERNAL_SHORT_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalShortArray, int16_t>( |
| receiver, true, true, range, visitor); |
| break; |
| } |
| case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>( |
| receiver, true, true, range, visitor); |
| break; |
| } |
| case JSObject::EXTERNAL_INT_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalIntArray, int32_t>( |
| receiver, true, false, range, visitor); |
| break; |
| } |
| case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>( |
| receiver, true, false, range, visitor); |
| break; |
| } |
| case JSObject::EXTERNAL_FLOAT_ELEMENTS: { |
| num_of_elements = |
| IterateExternalArrayElements<ExternalFloatArray, float>( |
| receiver, false, false, range, visitor); |
| break; |
| } |
| case JSObject::DICTIONARY_ELEMENTS: { |
| Handle<NumberDictionary> dict(receiver->element_dictionary()); |
| uint32_t capacity = dict->Capacity(); |
| for (uint32_t j = 0; j < capacity; j++) { |
| Handle<Object> k(dict->KeyAt(j)); |
| if (dict->IsKey(*k)) { |
| ASSERT(k->IsNumber()); |
| uint32_t index = static_cast<uint32_t>(k->Number()); |
| if (index < range) { |
| num_of_elements++; |
| if (visitor) { |
| visitor->visit(index, Handle<Object>(dict->ValueAt(j))); |
| } |
| } |
| } |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| return num_of_elements; |
| } |
| |
| |
| /** |
| * A helper function that visits elements of an Array object, and elements |
| * on its prototypes. |
| * |
| * Elements on prototypes are visited first, and only elements whose indices |
| * less than Array length are visited. |
| * |
| * If a ArrayConcatVisitor object is given, the visitor is called with |
| * parameters, element's index + visitor_index_offset and the element. |
| * |
| * The returned number of elements is an upper bound on the actual number |
| * of elements added. If the same element occurs in more than one object |
| * in the array's prototype chain, it will be counted more than once, but |
| * will only occur once in the result. |
| */ |
| static uint32_t IterateArrayAndPrototypeElements(Handle<JSArray> array, |
| ArrayConcatVisitor* visitor) { |
| uint32_t range = static_cast<uint32_t>(array->length()->Number()); |
| Handle<Object> obj = array; |
| |
| static const int kEstimatedPrototypes = 3; |
| List< Handle<JSObject> > objects(kEstimatedPrototypes); |
| |
| // Visit prototype first. If an element on the prototype is shadowed by |
| // the inheritor using the same index, the ArrayConcatVisitor visits |
| // the prototype element before the shadowing element. |
| // The visitor can simply overwrite the old value by new value using |
| // the same index. This follows Array::concat semantics. |
| while (!obj->IsNull()) { |
| objects.Add(Handle<JSObject>::cast(obj)); |
| obj = Handle<Object>(obj->GetPrototype()); |
| } |
| |
| uint32_t nof_elements = 0; |
| for (int i = objects.length() - 1; i >= 0; i--) { |
| Handle<JSObject> obj = objects[i]; |
| uint32_t encountered_elements = |
| IterateElements(Handle<JSObject>::cast(obj), range, visitor); |
| |
| if (encountered_elements > JSObject::kMaxElementCount - nof_elements) { |
| nof_elements = JSObject::kMaxElementCount; |
| } else { |
| nof_elements += encountered_elements; |
| } |
| } |
| |
| return nof_elements; |
| } |
| |
| |
| /** |
| * A helper function of Runtime_ArrayConcat. |
| * |
| * The first argument is an Array of arrays and objects. It is the |
| * same as the arguments array of Array::concat JS function. |
| * |
| * If an argument is an Array object, the function visits array |
| * elements. If an argument is not an Array object, the function |
| * visits the object as if it is an one-element array. |
| * |
| * If the result array index overflows 32-bit unsigned integer, the rounded |
| * non-negative number is used as new length. For example, if one |
| * array length is 2^32 - 1, second array length is 1, the |
| * concatenated array length is 0. |
| * TODO(lrn) Change length behavior to ECMAScript 5 specification (length |
| * is one more than the last array index to get a value assigned). |
| */ |
| static uint32_t IterateArguments(Handle<JSArray> arguments, |
| ArrayConcatVisitor* visitor) { |
| uint32_t visited_elements = 0; |
| uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number()); |
| |
| for (uint32_t i = 0; i < num_of_args; i++) { |
| Handle<Object> obj(arguments->GetElement(i)); |
| if (obj->IsJSArray()) { |
| Handle<JSArray> array = Handle<JSArray>::cast(obj); |
| uint32_t len = static_cast<uint32_t>(array->length()->Number()); |
| uint32_t nof_elements = |
| IterateArrayAndPrototypeElements(array, visitor); |
| // Total elements of array and its prototype chain can be more than |
| // the array length, but ArrayConcat can only concatenate at most |
| // the array length number of elements. We use the length as an estimate |
| // for the actual number of elements added. |
| uint32_t added_elements = (nof_elements > len) ? len : nof_elements; |
| if (JSArray::kMaxElementCount - visited_elements < added_elements) { |
| visited_elements = JSArray::kMaxElementCount; |
| } else { |
| visited_elements += added_elements; |
| } |
| if (visitor) visitor->increase_index_offset(len); |
| } else { |
| if (visitor) { |
| visitor->visit(0, obj); |
| visitor->increase_index_offset(1); |
| } |
| if (visited_elements < JSArray::kMaxElementCount) { |
| visited_elements++; |
| } |
| } |
| } |
| return visited_elements; |
| } |
| |
| |
| /** |
| * Array::concat implementation. |
| * See ECMAScript 262, 15.4.4.4. |
| * TODO(lrn): Fix non-compliance for very large concatenations and update to |
| * following the ECMAScript 5 specification. |
| */ |
| static Object* Runtime_ArrayConcat(Arguments args) { |
| ASSERT(args.length() == 1); |
| HandleScope handle_scope; |
| |
| CONVERT_CHECKED(JSArray, arg_arrays, args[0]); |
| Handle<JSArray> arguments(arg_arrays); |
| |
| // Pass 1: estimate the number of elements of the result |
| // (it could be more than real numbers if prototype has elements). |
| uint32_t result_length = 0; |
| uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number()); |
| |
| { AssertNoAllocation nogc; |
| for (uint32_t i = 0; i < num_of_args; i++) { |
| Object* obj = arguments->GetElement(i); |
| uint32_t length_estimate; |
| if (obj->IsJSArray()) { |
| length_estimate = |
| static_cast<uint32_t>(JSArray::cast(obj)->length()->Number()); |
| } else { |
| length_estimate = 1; |
| } |
| if (JSObject::kMaxElementCount - result_length < length_estimate) { |
| result_length = JSObject::kMaxElementCount; |
| break; |
| } |
| result_length += length_estimate; |
| } |
| } |
| |
| // Allocate an empty array, will set length and content later. |
| Handle<JSArray> result = Factory::NewJSArray(0); |
| |
| uint32_t estimate_nof_elements = IterateArguments(arguments, NULL); |
| // If estimated number of elements is more than half of length, a |
| // fixed array (fast case) is more time and space-efficient than a |
| // dictionary. |
| bool fast_case = (estimate_nof_elements * 2) >= result_length; |
| |
| Handle<FixedArray> storage; |
| if (fast_case) { |
| // The backing storage array must have non-existing elements to |
| // preserve holes across concat operations. |
| storage = Factory::NewFixedArrayWithHoles(result_length); |
| |
| } else { |
| // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate |
| uint32_t at_least_space_for = estimate_nof_elements + |
| (estimate_nof_elements >> 2); |
| storage = Handle<FixedArray>::cast( |
| Factory::NewNumberDictionary(at_least_space_for)); |
| } |
| |
| Handle<Object> len = Factory::NewNumber(static_cast<double>(result_length)); |
| |
| ArrayConcatVisitor visitor(storage, result_length, fast_case); |
| |
| IterateArguments(arguments, &visitor); |
| |
| result->set_length(*len); |
| // Please note the storage might have changed in the visitor. |
| result->set_elements(*visitor.storage()); |
| |
| return *result; |
| } |
| |
| |
| // This will not allocate (flatten the string), but it may run |
| // very slowly for very deeply nested ConsStrings. For debugging use only. |
| static Object* Runtime_GlobalPrint(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(String, string, args[0]); |
| StringInputBuffer buffer(string); |
| while (buffer.has_more()) { |
| uint16_t character = buffer.GetNext(); |
| PrintF("%c", character); |
| } |
| return string; |
| } |
| |
| // Moves all own elements of an object, that are below a limit, to positions |
| // starting at zero. All undefined values are placed after non-undefined values, |
| // and are followed by non-existing element. Does not change the length |
| // property. |
| // Returns the number of non-undefined elements collected. |
| static Object* Runtime_RemoveArrayHoles(Arguments args) { |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(JSObject, object, args[0]); |
| CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); |
| return object->PrepareElementsForSort(limit); |
| } |
| |
| |
| // Move contents of argument 0 (an array) to argument 1 (an array) |
| static Object* Runtime_MoveArrayContents(Arguments args) { |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(JSArray, from, args[0]); |
| CONVERT_CHECKED(JSArray, to, args[1]); |
| to->SetContent(FixedArray::cast(from->elements())); |
| to->set_length(from->length()); |
| from->SetContent(Heap::empty_fixed_array()); |
| from->set_length(Smi::FromInt(0)); |
| return to; |
| } |
| |
| |
| // How many elements does this array have? |
| static Object* Runtime_EstimateNumberOfElements(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(JSArray, array, args[0]); |
| HeapObject* elements = array->elements(); |
| if (elements->IsDictionary()) { |
| return Smi::FromInt(NumberDictionary::cast(elements)->NumberOfElements()); |
| } else { |
| return array->length(); |
| } |
| } |
| |
| |
| // Returns an array that tells you where in the [0, length) interval an array |
| // might have elements. Can either return keys or intervals. Keys can have |
| // gaps in (undefined). Intervals can also span over some undefined keys. |
| static Object* Runtime_GetArrayKeys(Arguments args) { |
| ASSERT(args.length() == 2); |
| HandleScope scope; |
| CONVERT_ARG_CHECKED(JSObject, array, 0); |
| CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); |
| if (array->elements()->IsDictionary()) { |
| // Create an array and get all the keys into it, then remove all the |
| // keys that are not integers in the range 0 to length-1. |
| Handle<FixedArray> keys = GetKeysInFixedArrayFor(array, INCLUDE_PROTOS); |
| int keys_length = keys->length(); |
| for (int i = 0; i < keys_length; i++) { |
| Object* key = keys->get(i); |
| uint32_t index; |
| if (!Array::IndexFromObject(key, &index) || index >= length) { |
| // Zap invalid keys. |
| keys->set_undefined(i); |
| } |
| } |
| return *Factory::NewJSArrayWithElements(keys); |
| } else { |
| Handle<FixedArray> single_interval = Factory::NewFixedArray(2); |
| // -1 means start of array. |
| single_interval->set(0, Smi::FromInt(-1)); |
| uint32_t actual_length = static_cast<uint32_t>(array->elements()->length()); |
| uint32_t min_length = actual_length < length ? actual_length : length; |
| Handle<Object> length_object = |
| Factory::NewNumber(static_cast<double>(min_length)); |
| single_interval->set(1, *length_object); |
| return *Factory::NewJSArrayWithElements(single_interval); |
| } |
| } |
| |
| |
| // DefineAccessor takes an optional final argument which is the |
| // property attributes (eg, DONT_ENUM, DONT_DELETE). IMPORTANT: due |
| // to the way accessors are implemented, it is set for both the getter |
| // and setter on the first call to DefineAccessor and ignored on |
| // subsequent calls. |
| static Object* Runtime_DefineAccessor(Arguments args) { |
| RUNTIME_ASSERT(args.length() == 4 || args.length() == 5); |
| // Compute attributes. |
| PropertyAttributes attributes = NONE; |
| if (args.length() == 5) { |
| CONVERT_CHECKED(Smi, attrs, args[4]); |
| int value = attrs->value(); |
| // Only attribute bits should be set. |
| ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| attributes = static_cast<PropertyAttributes>(value); |
| } |
| |
| CONVERT_CHECKED(JSObject, obj, args[0]); |
| CONVERT_CHECKED(String, name, args[1]); |
| CONVERT_CHECKED(Smi, flag, args[2]); |
| CONVERT_CHECKED(JSFunction, fun, args[3]); |
| return obj->DefineAccessor(name, flag->value() == 0, fun, attributes); |
| } |
| |
| |
| static Object* Runtime_LookupAccessor(Arguments args) { |
| ASSERT(args.length() == 3); |
| CONVERT_CHECKED(JSObject, obj, args[0]); |
| CONVERT_CHECKED(String, name, args[1]); |
| CONVERT_CHECKED(Smi, flag, args[2]); |
| return obj->LookupAccessor(name, flag->value() == 0); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| static Object* Runtime_DebugBreak(Arguments args) { |
| ASSERT(args.length() == 0); |
| return Execution::DebugBreakHelper(); |
| } |
| |
| |
| // Helper functions for wrapping and unwrapping stack frame ids. |
| static Smi* WrapFrameId(StackFrame::Id id) { |
| ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4))); |
| return Smi::FromInt(id >> 2); |
| } |
| |
| |
| static StackFrame::Id UnwrapFrameId(Smi* wrapped) { |
| return static_cast<StackFrame::Id>(wrapped->value() << 2); |
| } |
| |
| |
| // Adds a JavaScript function as a debug event listener. |
| // args[0]: debug event listener function to set or null or undefined for |
| // clearing the event listener function |
| // args[1]: object supplied during callback |
| static Object* Runtime_SetDebugEventListener(Arguments args) { |
| ASSERT(args.length() == 2); |
| RUNTIME_ASSERT(args[0]->IsJSFunction() || |
| args[0]->IsUndefined() || |
| args[0]->IsNull()); |
| Handle<Object> callback = args.at<Object>(0); |
| Handle<Object> data = args.at<Object>(1); |
| Debugger::SetEventListener(callback, data); |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_Break(Arguments args) { |
| ASSERT(args.length() == 0); |
| StackGuard::DebugBreak(); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* DebugLookupResultValue(Object* receiver, String* name, |
| LookupResult* result, |
| bool* caught_exception) { |
| Object* value; |
| switch (result->type()) { |
| case NORMAL: |
| value = result->holder()->GetNormalizedProperty(result); |
| if (value->IsTheHole()) { |
| return Heap::undefined_value(); |
| } |
| return value; |
| case FIELD: |
| value = |
| JSObject::cast( |
| result->holder())->FastPropertyAt(result->GetFieldIndex()); |
| if (value->IsTheHole()) { |
| return Heap::undefined_value(); |
| } |
| return value; |
| case CONSTANT_FUNCTION: |
| return result->GetConstantFunction(); |
| case CALLBACKS: { |
| Object* structure = result->GetCallbackObject(); |
| if (structure->IsProxy() || structure->IsAccessorInfo()) { |
| value = receiver->GetPropertyWithCallback( |
| receiver, structure, name, result->holder()); |
| if (value->IsException()) { |
| value = Top::pending_exception(); |
| Top::clear_pending_exception(); |
| if (caught_exception != NULL) { |
| *caught_exception = true; |
| } |
| } |
| return value; |
| } else { |
| return Heap::undefined_value(); |
| } |
| } |
| case INTERCEPTOR: |
| case MAP_TRANSITION: |
| case CONSTANT_TRANSITION: |
| case NULL_DESCRIPTOR: |
| return Heap::undefined_value(); |
| default: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Get debugger related details for an object property. |
| // args[0]: object holding property |
| // args[1]: name of the property |
| // |
| // The array returned contains the following information: |
| // 0: Property value |
| // 1: Property details |
| // 2: Property value is exception |
| // 3: Getter function if defined |
| // 4: Setter function if defined |
| // Items 2-4 are only filled if the property has either a getter or a setter |
| // defined through __defineGetter__ and/or __defineSetter__. |
| static Object* Runtime_DebugGetPropertyDetails(Arguments args) { |
| HandleScope scope; |
| |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| |
| // Make sure to set the current context to the context before the debugger was |
| // entered (if the debugger is entered). The reason for switching context here |
| // is that for some property lookups (accessors and interceptors) callbacks |
| // into the embedding application can occour, and the embedding application |
| // could have the assumption that its own global context is the current |
| // context and not some internal debugger context. |
| SaveContext save; |
| if (Debug::InDebugger()) { |
| Top::set_context(*Debug::debugger_entry()->GetContext()); |
| } |
| |
| // Skip the global proxy as it has no properties and always delegates to the |
| // real global object. |
| if (obj->IsJSGlobalProxy()) { |
| obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); |
| } |
| |
| |
| // Check if the name is trivially convertible to an index and get the element |
| // if so. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) { |
| Handle<FixedArray> details = Factory::NewFixedArray(2); |
| details->set(0, Runtime::GetElementOrCharAt(obj, index)); |
| details->set(1, PropertyDetails(NONE, NORMAL).AsSmi()); |
| return *Factory::NewJSArrayWithElements(details); |
| } |
| |
| // Find the number of objects making up this. |
| int length = LocalPrototypeChainLength(*obj); |
| |
| // Try local lookup on each of the objects. |
| Handle<JSObject> jsproto = obj; |
| for (int i = 0; i < length; i++) { |
| LookupResult result; |
| jsproto->LocalLookup(*name, &result); |
| if (result.IsProperty()) { |
| // LookupResult is not GC safe as it holds raw object pointers. |
| // GC can happen later in this code so put the required fields into |
| // local variables using handles when required for later use. |
| PropertyType result_type = result.type(); |
| Handle<Object> result_callback_obj; |
| if (result_type == CALLBACKS) { |
| result_callback_obj = Handle<Object>(result.GetCallbackObject()); |
| } |
| Smi* property_details = result.GetPropertyDetails().AsSmi(); |
| // DebugLookupResultValue can cause GC so details from LookupResult needs |
| // to be copied to handles before this. |
| bool caught_exception = false; |
| Object* raw_value = DebugLookupResultValue(*obj, *name, &result, |
| &caught_exception); |
| if (raw_value->IsFailure()) return raw_value; |
| Handle<Object> value(raw_value); |
| |
| // If the callback object is a fixed array then it contains JavaScript |
| // getter and/or setter. |
| bool hasJavaScriptAccessors = result_type == CALLBACKS && |
| result_callback_obj->IsFixedArray(); |
| Handle<FixedArray> details = |
| Factory::NewFixedArray(hasJavaScriptAccessors ? 5 : 2); |
| details->set(0, *value); |
| details->set(1, property_details); |
| if (hasJavaScriptAccessors) { |
| details->set(2, |
| caught_exception ? Heap::true_value() |
| : Heap::false_value()); |
| details->set(3, FixedArray::cast(*result_callback_obj)->get(0)); |
| details->set(4, FixedArray::cast(*result_callback_obj)->get(1)); |
| } |
| |
| return *Factory::NewJSArrayWithElements(details); |
| } |
| if (i < length - 1) { |
| jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); |
| } |
| } |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_DebugGetProperty(Arguments args) { |
| HandleScope scope; |
| |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| |
| LookupResult result; |
| obj->Lookup(*name, &result); |
| if (result.IsProperty()) { |
| return DebugLookupResultValue(*obj, *name, &result, NULL); |
| } |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Return the property type calculated from the property details. |
| // args[0]: smi with property details. |
| static Object* Runtime_DebugPropertyTypeFromDetails(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(Smi, details, args[0]); |
| PropertyType type = PropertyDetails(details).type(); |
| return Smi::FromInt(static_cast<int>(type)); |
| } |
| |
| |
| // Return the property attribute calculated from the property details. |
| // args[0]: smi with property details. |
| static Object* Runtime_DebugPropertyAttributesFromDetails(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(Smi, details, args[0]); |
| PropertyAttributes attributes = PropertyDetails(details).attributes(); |
| return Smi::FromInt(static_cast<int>(attributes)); |
| } |
| |
| |
| // Return the property insertion index calculated from the property details. |
| // args[0]: smi with property details. |
| static Object* Runtime_DebugPropertyIndexFromDetails(Arguments args) { |
| ASSERT(args.length() == 1); |
| CONVERT_CHECKED(Smi, details, args[0]); |
| int index = PropertyDetails(details).index(); |
| return Smi::FromInt(index); |
| } |
| |
| |
| // Return property value from named interceptor. |
| // args[0]: object |
| // args[1]: property name |
| static Object* Runtime_DebugNamedInterceptorPropertyValue(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| RUNTIME_ASSERT(obj->HasNamedInterceptor()); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| |
| PropertyAttributes attributes; |
| return obj->GetPropertyWithInterceptor(*obj, *name, &attributes); |
| } |
| |
| |
| // Return element value from indexed interceptor. |
| // args[0]: object |
| // args[1]: index |
| static Object* Runtime_DebugIndexedInterceptorElementValue(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| RUNTIME_ASSERT(obj->HasIndexedInterceptor()); |
| CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]); |
| |
| return obj->GetElementWithInterceptor(*obj, index); |
| } |
| |
| |
| static Object* Runtime_CheckExecutionState(Arguments args) { |
| ASSERT(args.length() >= 1); |
| CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); |
| // Check that the break id is valid. |
| if (Debug::break_id() == 0 || break_id != Debug::break_id()) { |
| return Top::Throw(Heap::illegal_execution_state_symbol()); |
| } |
| |
| return Heap::true_value(); |
| } |
| |
| |
| static Object* Runtime_GetFrameCount(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| // Check arguments. |
| Object* result = Runtime_CheckExecutionState(args); |
| if (result->IsFailure()) return result; |
| |
| // Count all frames which are relevant to debugging stack trace. |
| int n = 0; |
| StackFrame::Id id = Debug::break_frame_id(); |
| if (id == StackFrame::NO_ID) { |
| // If there is no JavaScript stack frame count is 0. |
| return Smi::FromInt(0); |
| } |
| for (JavaScriptFrameIterator it(id); !it.done(); it.Advance()) n++; |
| return Smi::FromInt(n); |
| } |
| |
| |
| static const int kFrameDetailsFrameIdIndex = 0; |
| static const int kFrameDetailsReceiverIndex = 1; |
| static const int kFrameDetailsFunctionIndex = 2; |
| static const int kFrameDetailsArgumentCountIndex = 3; |
| static const int kFrameDetailsLocalCountIndex = 4; |
| static const int kFrameDetailsSourcePositionIndex = 5; |
| static const int kFrameDetailsConstructCallIndex = 6; |
| static const int kFrameDetailsDebuggerFrameIndex = 7; |
| static const int kFrameDetailsFirstDynamicIndex = 8; |
| |
| // Return an array with frame details |
| // args[0]: number: break id |
| // args[1]: number: frame index |
| // |
| // The array returned contains the following information: |
| // 0: Frame id |
| // 1: Receiver |
| // 2: Function |
| // 3: Argument count |
| // 4: Local count |
| // 5: Source position |
| // 6: Constructor call |
| // 7: Debugger frame |
| // Arguments name, value |
| // Locals name, value |
| static Object* Runtime_GetFrameDetails(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| |
| // Check arguments. |
| Object* check = Runtime_CheckExecutionState(args); |
| if (check->IsFailure()) return check; |
| CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); |
| |
| // Find the relevant frame with the requested index. |
| StackFrame::Id id = Debug::break_frame_id(); |
| if (id == StackFrame::NO_ID) { |
| // If there are no JavaScript stack frames return undefined. |
| return Heap::undefined_value(); |
| } |
| int count = 0; |
| JavaScriptFrameIterator it(id); |
| for (; !it.done(); it.Advance()) { |
| if (count == index) break; |
| count++; |
| } |
| if (it.done()) return Heap::undefined_value(); |
| |
| // Traverse the saved contexts chain to find the active context for the |
| // selected frame. |
| SaveContext* save = Top::save_context(); |
| while (save != NULL && !save->below(it.frame())) { |
| save = save->prev(); |
| } |
| ASSERT(save != NULL); |
| |
| // Get the frame id. |
| Handle<Object> frame_id(WrapFrameId(it.frame()->id())); |
| |
| // Find source position. |
| int position = it.frame()->code()->SourcePosition(it.frame()->pc()); |
| |
| // Check for constructor frame. |
| bool constructor = it.frame()->IsConstructor(); |
| |
| // Get code and read scope info from it for local variable information. |
| Handle<Code> code(it.frame()->code()); |
| ScopeInfo<> info(*code); |
| |
| // Get the context. |
| Handle<Context> context(Context::cast(it.frame()->context())); |
| |
| // Get the locals names and values into a temporary array. |
| // |
| // TODO(1240907): Hide compiler-introduced stack variables |
| // (e.g. .result)? For users of the debugger, they will probably be |
| // confusing. |
| Handle<FixedArray> locals = Factory::NewFixedArray(info.NumberOfLocals() * 2); |
| for (int i = 0; i < info.NumberOfLocals(); i++) { |
| // Name of the local. |
| locals->set(i * 2, *info.LocalName(i)); |
| |
| // Fetch the value of the local - either from the stack or from a |
| // heap-allocated context. |
| if (i < info.number_of_stack_slots()) { |
| locals->set(i * 2 + 1, it.frame()->GetExpression(i)); |
| } else { |
| Handle<String> name = info.LocalName(i); |
| // Traverse the context chain to the function context as all local |
| // variables stored in the context will be on the function context. |
| while (!context->is_function_context()) { |
| context = Handle<Context>(context->previous()); |
| } |
| ASSERT(context->is_function_context()); |
| locals->set(i * 2 + 1, |
| context->get(ScopeInfo<>::ContextSlotIndex(*code, *name, |
| NULL))); |
| } |
| } |
| |
| // Now advance to the arguments adapter frame (if any). If contains all |
| // the provided parameters and |
| |
| // Now advance to the arguments adapter frame (if any). It contains all |
| // the provided parameters whereas the function frame always have the number |
| // of arguments matching the functions parameters. The rest of the |
| // information (except for what is collected above) is the same. |
| it.AdvanceToArgumentsFrame(); |
| |
| // Find the number of arguments to fill. At least fill the number of |
| // parameters for the function and fill more if more parameters are provided. |
| int argument_count = info.number_of_parameters(); |
| if (argument_count < it.frame()->GetProvidedParametersCount()) { |
| argument_count = it.frame()->GetProvidedParametersCount(); |
| } |
| |
| // Calculate the size of the result. |
| int details_size = kFrameDetailsFirstDynamicIndex + |
| 2 * (argument_count + info.NumberOfLocals()); |
| Handle<FixedArray> details = Factory::NewFixedArray(details_size); |
| |
| // Add the frame id. |
| details->set(kFrameDetailsFrameIdIndex, *frame_id); |
| |
| // Add the function (same as in function frame). |
| details->set(kFrameDetailsFunctionIndex, it.frame()->function()); |
| |
| // Add the arguments count. |
| details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count)); |
| |
| // Add the locals count |
| details->set(kFrameDetailsLocalCountIndex, |
| Smi::FromInt(info.NumberOfLocals())); |
| |
| // Add the source position. |
| if (position != RelocInfo::kNoPosition) { |
| details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position)); |
| } else { |
| details->set(kFrameDetailsSourcePositionIndex, Heap::undefined_value()); |
| } |
| |
| // Add the constructor information. |
| details->set(kFrameDetailsConstructCallIndex, Heap::ToBoolean(constructor)); |
| |
| // Add information on whether this frame is invoked in the debugger context. |
| details->set(kFrameDetailsDebuggerFrameIndex, |
| Heap::ToBoolean(*save->context() == *Debug::debug_context())); |
| |
| // Fill the dynamic part. |
| int details_index = kFrameDetailsFirstDynamicIndex; |
| |
| // Add arguments name and value. |
| for (int i = 0; i < argument_count; i++) { |
| // Name of the argument. |
| if (i < info.number_of_parameters()) { |
| details->set(details_index++, *info.parameter_name(i)); |
| } else { |
| details->set(details_index++, Heap::undefined_value()); |
| } |
| |
| // Parameter value. |
| if (i < it.frame()->GetProvidedParametersCount()) { |
| details->set(details_index++, it.frame()->GetParameter(i)); |
| } else { |
| details->set(details_index++, Heap::undefined_value()); |
| } |
| } |
| |
| // Add locals name and value from the temporary copy from the function frame. |
| for (int i = 0; i < info.NumberOfLocals() * 2; i++) { |
| details->set(details_index++, locals->get(i)); |
| } |
| |
| // Add the receiver (same as in function frame). |
| // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE |
| // THE FRAME ITERATOR TO WRAP THE RECEIVER. |
| Handle<Object> receiver(it.frame()->receiver()); |
| if (!receiver->IsJSObject()) { |
| // If the receiver is NOT a JSObject we have hit an optimization |
| // where a value object is not converted into a wrapped JS objects. |
| // To hide this optimization from the debugger, we wrap the receiver |
| // by creating correct wrapper object based on the calling frame's |
| // global context. |
| it.Advance(); |
| Handle<Context> calling_frames_global_context( |
| Context::cast(Context::cast(it.frame()->context())->global_context())); |
| receiver = Factory::ToObject(receiver, calling_frames_global_context); |
| } |
| details->set(kFrameDetailsReceiverIndex, *receiver); |
| |
| ASSERT_EQ(details_size, details_index); |
| return *Factory::NewJSArrayWithElements(details); |
| } |
| |
| |
| // Copy all the context locals into an object used to materialize a scope. |
| static void CopyContextLocalsToScopeObject(Handle<Code> code, |
| ScopeInfo<>& scope_info, |
| Handle<Context> context, |
| Handle<JSObject> scope_object) { |
| // Fill all context locals to the context extension. |
| for (int i = Context::MIN_CONTEXT_SLOTS; |
| i < scope_info.number_of_context_slots(); |
| i++) { |
| int context_index = |
| ScopeInfo<>::ContextSlotIndex(*code, |
| *scope_info.context_slot_name(i), |
| NULL); |
| |
| // Don't include the arguments shadow (.arguments) context variable. |
| if (*scope_info.context_slot_name(i) != Heap::arguments_shadow_symbol()) { |
| SetProperty(scope_object, |
| scope_info.context_slot_name(i), |
| Handle<Object>(context->get(context_index)), NONE); |
| } |
| } |
| } |
| |
| |
| // Create a plain JSObject which materializes the local scope for the specified |
| // frame. |
| static Handle<JSObject> MaterializeLocalScope(JavaScriptFrame* frame) { |
| Handle<JSFunction> function(JSFunction::cast(frame->function())); |
| Handle<Code> code(function->code()); |
| ScopeInfo<> scope_info(*code); |
| |
| // Allocate and initialize a JSObject with all the arguments, stack locals |
| // heap locals and extension properties of the debugged function. |
| Handle<JSObject> local_scope = Factory::NewJSObject(Top::object_function()); |
| |
| // First fill all parameters. |
| for (int i = 0; i < scope_info.number_of_parameters(); ++i) { |
| SetProperty(local_scope, |
| scope_info.parameter_name(i), |
| Handle<Object>(frame->GetParameter(i)), NONE); |
| } |
| |
| // Second fill all stack locals. |
| for (int i = 0; i < scope_info.number_of_stack_slots(); i++) { |
| SetProperty(local_scope, |
| scope_info.stack_slot_name(i), |
| Handle<Object>(frame->GetExpression(i)), NONE); |
| } |
| |
| // Third fill all context locals. |
| Handle<Context> frame_context(Context::cast(frame->context())); |
| Handle<Context> function_context(frame_context->fcontext()); |
| CopyContextLocalsToScopeObject(code, scope_info, |
| function_context, local_scope); |
| |
| // Finally copy any properties from the function context extension. This will |
| // be variables introduced by eval. |
| if (function_context->closure() == *function) { |
| if (function_context->has_extension() && |
| !function_context->IsGlobalContext()) { |
| Handle<JSObject> ext(JSObject::cast(function_context->extension())); |
| Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS); |
| for (int i = 0; i < keys->length(); i++) { |
| // Names of variables introduced by eval are strings. |
| ASSERT(keys->get(i)->IsString()); |
| Handle<String> key(String::cast(keys->get(i))); |
| SetProperty(local_scope, key, GetProperty(ext, key), NONE); |
| } |
| } |
| } |
| return local_scope; |
| } |
| |
| |
| // Create a plain JSObject which materializes the closure content for the |
| // context. |
| static Handle<JSObject> MaterializeClosure(Handle<Context> context) { |
| ASSERT(context->is_function_context()); |
| |
| Handle<Code> code(context->closure()->code()); |
| ScopeInfo<> scope_info(*code); |
| |
| // Allocate and initialize a JSObject with all the content of theis function |
| // closure. |
| Handle<JSObject> closure_scope = Factory::NewJSObject(Top::object_function()); |
| |
| // Check whether the arguments shadow object exists. |
| int arguments_shadow_index = |
| ScopeInfo<>::ContextSlotIndex(*code, |
| Heap::arguments_shadow_symbol(), |
| NULL); |
| if (arguments_shadow_index >= 0) { |
| // In this case all the arguments are available in the arguments shadow |
| // object. |
| Handle<JSObject> arguments_shadow( |
| JSObject::cast(context->get(arguments_shadow_index))); |
| for (int i = 0; i < scope_info.number_of_parameters(); ++i) { |
| SetProperty(closure_scope, |
| scope_info.parameter_name(i), |
| Handle<Object>(arguments_shadow->GetElement(i)), NONE); |
| } |
| } |
| |
| // Fill all context locals to the context extension. |
| CopyContextLocalsToScopeObject(code, scope_info, context, closure_scope); |
| |
| // Finally copy any properties from the function context extension. This will |
| // be variables introduced by eval. |
| if (context->has_extension()) { |
| Handle<JSObject> ext(JSObject::cast(context->extension())); |
| Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS); |
| for (int i = 0; i < keys->length(); i++) { |
| // Names of variables introduced by eval are strings. |
| ASSERT(keys->get(i)->IsString()); |
| Handle<String> key(String::cast(keys->get(i))); |
| SetProperty(closure_scope, key, GetProperty(ext, key), NONE); |
| } |
| } |
| |
| return closure_scope; |
| } |
| |
| |
| // Iterate over the actual scopes visible from a stack frame. All scopes are |
| // backed by an actual context except the local scope, which is inserted |
| // "artifically" in the context chain. |
| class ScopeIterator { |
| public: |
| enum ScopeType { |
| ScopeTypeGlobal = 0, |
| ScopeTypeLocal, |
| ScopeTypeWith, |
| ScopeTypeClosure, |
| // Every catch block contains an implicit with block (its parameter is |
| // a JSContextExtensionObject) that extends current scope with a variable |
| // holding exception object. Such with blocks are treated as scopes of their |
| // own type. |
| ScopeTypeCatch |
| }; |
| |
| explicit ScopeIterator(JavaScriptFrame* frame) |
| : frame_(frame), |
| function_(JSFunction::cast(frame->function())), |
| context_(Context::cast(frame->context())), |
| local_done_(false), |
| at_local_(false) { |
| |
| // Check whether the first scope is actually a local scope. |
| if (context_->IsGlobalContext()) { |
| // If there is a stack slot for .result then this local scope has been |
| // created for evaluating top level code and it is not a real local scope. |
| // Checking for the existence of .result seems fragile, but the scope info |
| // saved with the code object does not otherwise have that information. |
| Handle<Code> code(function_->code()); |
| int index = ScopeInfo<>::StackSlotIndex(*code, Heap::result_symbol()); |
| at_local_ = index < 0; |
| } else if (context_->is_function_context()) { |
| at_local_ = true; |
| } |
| } |
| |
| // More scopes? |
| bool Done() { return context_.is_null(); } |
| |
| // Move to the next scope. |
| void Next() { |
| // If at a local scope mark the local scope as passed. |
| if (at_local_) { |
| at_local_ = false; |
| local_done_ = true; |
| |
| // If the current context is not associated with the local scope the |
| // current context is the next real scope, so don't move to the next |
| // context in this case. |
| if (context_->closure() != *function_) { |
| return; |
| } |
| } |
| |
| // The global scope is always the last in the chain. |
| if (context_->IsGlobalContext()) { |
| context_ = Handle<Context>(); |
| return; |
| } |
| |
| // Move to the next context. |
| if (context_->is_function_context()) { |
| context_ = Handle<Context>(Context::cast(context_->closure()->context())); |
| } else { |
| context_ = Handle<Context>(context_->previous()); |
| } |
| |
| // If passing the local scope indicate that the current scope is now the |
| // local scope. |
| if (!local_done_ && |
| (context_->IsGlobalContext() || (context_->is_function_context()))) { |
| at_local_ = true; |
| } |
| } |
| |
| // Return the type of the current scope. |
| int Type() { |
| if (at_local_) { |
| return ScopeTypeLocal; |
| } |
| if (context_->IsGlobalContext()) { |
| ASSERT(context_->global()->IsGlobalObject()); |
| return ScopeTypeGlobal; |
| } |
| if (context_->is_function_context()) { |
| return ScopeTypeClosure; |
| } |
| ASSERT(context_->has_extension()); |
| // Current scope is either an explicit with statement or a with statement |
| // implicitely generated for a catch block. |
| // If the extension object here is a JSContextExtensionObject then |
| // current with statement is one frome a catch block otherwise it's a |
| // regular with statement. |
| if (context_->extension()->IsJSContextExtensionObject()) { |
| return ScopeTypeCatch; |
| } |
| return ScopeTypeWith; |
| } |
| |
| // Return the JavaScript object with the content of the current scope. |
| Handle<JSObject> ScopeObject() { |
| switch (Type()) { |
| case ScopeIterator::ScopeTypeGlobal: |
| return Handle<JSObject>(CurrentContext()->global()); |
| break; |
| case ScopeIterator::ScopeTypeLocal: |
| // Materialize the content of the local scope into a JSObject. |
| return MaterializeLocalScope(frame_); |
| break; |
| case ScopeIterator::ScopeTypeWith: |
| case ScopeIterator::ScopeTypeCatch: |
| // Return the with object. |
| return Handle<JSObject>(CurrentContext()->extension()); |
| break; |
| case ScopeIterator::ScopeTypeClosure: |
| // Materialize the content of the closure scope into a JSObject. |
| return MaterializeClosure(CurrentContext()); |
| break; |
| } |
| UNREACHABLE(); |
| return Handle<JSObject>(); |
| } |
| |
| // Return the context for this scope. For the local context there might not |
| // be an actual context. |
| Handle<Context> CurrentContext() { |
| if (at_local_ && context_->closure() != *function_) { |
| return Handle<Context>(); |
| } |
| return context_; |
| } |
| |
| #ifdef DEBUG |
| // Debug print of the content of the current scope. |
| void DebugPrint() { |
| switch (Type()) { |
| case ScopeIterator::ScopeTypeGlobal: |
| PrintF("Global:\n"); |
| CurrentContext()->Print(); |
| break; |
| |
| case ScopeIterator::ScopeTypeLocal: { |
| PrintF("Local:\n"); |
| Handle<Code> code(function_->code()); |
| ScopeInfo<> scope_info(*code); |
| scope_info.Print(); |
| if (!CurrentContext().is_null()) { |
| CurrentContext()->Print(); |
| if (CurrentContext()->has_extension()) { |
| Handle<JSObject> extension = |
| Handle<JSObject>(CurrentContext()->extension()); |
| if (extension->IsJSContextExtensionObject()) { |
| extension->Print(); |
| } |
| } |
| } |
| break; |
| } |
| |
| case ScopeIterator::ScopeTypeWith: { |
| PrintF("With:\n"); |
| Handle<JSObject> extension = |
| Handle<JSObject>(CurrentContext()->extension()); |
| extension->Print(); |
| break; |
| } |
| |
| case ScopeIterator::ScopeTypeCatch: { |
| PrintF("Catch:\n"); |
| Handle<JSObject> extension = |
| Handle<JSObject>(CurrentContext()->extension()); |
| extension->Print(); |
| break; |
| } |
| |
| case ScopeIterator::ScopeTypeClosure: { |
| PrintF("Closure:\n"); |
| CurrentContext()->Print(); |
| if (CurrentContext()->has_extension()) { |
| Handle<JSObject> extension = |
| Handle<JSObject>(CurrentContext()->extension()); |
| if (extension->IsJSContextExtensionObject()) { |
| extension->Print(); |
| } |
| } |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| PrintF("\n"); |
| } |
| #endif |
| |
| private: |
| JavaScriptFrame* frame_; |
| Handle<JSFunction> function_; |
| Handle<Context> context_; |
| bool local_done_; |
| bool at_local_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator); |
| }; |
| |
| |
| static Object* Runtime_GetScopeCount(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| |
| // Check arguments. |
| Object* check = Runtime_CheckExecutionState(args); |
| if (check->IsFailure()) return check; |
| CONVERT_CHECKED(Smi, wrapped_id, args[1]); |
| |
| // Get the frame where the debugging is performed. |
| StackFrame::Id id = UnwrapFrameId(wrapped_id); |
| JavaScriptFrameIterator it(id); |
| JavaScriptFrame* frame = it.frame(); |
| |
| // Count the visible scopes. |
| int n = 0; |
| for (ScopeIterator it(frame); !it.Done(); it.Next()) { |
| n++; |
| } |
| |
| return Smi::FromInt(n); |
| } |
| |
| |
| static const int kScopeDetailsTypeIndex = 0; |
| static const int kScopeDetailsObjectIndex = 1; |
| static const int kScopeDetailsSize = 2; |
| |
| // Return an array with scope details |
| // args[0]: number: break id |
| // args[1]: number: frame index |
| // args[2]: number: scope index |
| // |
| // The array returned contains the following information: |
| // 0: Scope type |
| // 1: Scope object |
| static Object* Runtime_GetScopeDetails(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| |
| // Check arguments. |
| Object* check = Runtime_CheckExecutionState(args); |
| if (check->IsFailure()) return check; |
| CONVERT_CHECKED(Smi, wrapped_id, args[1]); |
| CONVERT_NUMBER_CHECKED(int, index, Int32, args[2]); |
| |
| // Get the frame where the debugging is performed. |
| StackFrame::Id id = UnwrapFrameId(wrapped_id); |
| JavaScriptFrameIterator frame_it(id); |
| JavaScriptFrame* frame = frame_it.frame(); |
| |
| // Find the requested scope. |
| int n = 0; |
| ScopeIterator it(frame); |
| for (; !it.Done() && n < index; it.Next()) { |
| n++; |
| } |
| if (it.Done()) { |
| return Heap::undefined_value(); |
| } |
| |
| // Calculate the size of the result. |
| int details_size = kScopeDetailsSize; |
| Handle<FixedArray> details = Factory::NewFixedArray(details_size); |
| |
| // Fill in scope details. |
| details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type())); |
| details->set(kScopeDetailsObjectIndex, *it.ScopeObject()); |
| |
| return *Factory::NewJSArrayWithElements(details); |
| } |
| |
| |
| static Object* Runtime_DebugPrintScopes(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 0); |
| |
| #ifdef DEBUG |
| // Print the scopes for the top frame. |
| StackFrameLocator locator; |
| JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); |
| for (ScopeIterator it(frame); !it.Done(); it.Next()) { |
| it.DebugPrint(); |
| } |
| #endif |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_GetCFrames(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| Object* result = Runtime_CheckExecutionState(args); |
| if (result->IsFailure()) return result; |
| |
| #if V8_HOST_ARCH_64_BIT |
| UNIMPLEMENTED(); |
| return Heap::undefined_value(); |
| #else |
| |
| static const int kMaxCFramesSize = 200; |
| ScopedVector<OS::StackFrame> frames(kMaxCFramesSize); |
| int frames_count = OS::StackWalk(frames); |
| if (frames_count == OS::kStackWalkError) { |
| return Heap::undefined_value(); |
| } |
| |
| Handle<String> address_str = Factory::LookupAsciiSymbol("address"); |
| Handle<String> text_str = Factory::LookupAsciiSymbol("text"); |
| Handle<FixedArray> frames_array = Factory::NewFixedArray(frames_count); |
| for (int i = 0; i < frames_count; i++) { |
| Handle<JSObject> frame_value = Factory::NewJSObject(Top::object_function()); |
| frame_value->SetProperty( |
| *address_str, |
| *Factory::NewNumberFromInt(reinterpret_cast<int>(frames[i].address)), |
| NONE); |
| |
| // Get the stack walk text for this frame. |
| Handle<String> frame_text; |
| int frame_text_length = StrLength(frames[i].text); |
| if (frame_text_length > 0) { |
| Vector<const char> str(frames[i].text, frame_text_length); |
| frame_text = Factory::NewStringFromAscii(str); |
| } |
| |
| if (!frame_text.is_null()) { |
| frame_value->SetProperty(*text_str, *frame_text, NONE); |
| } |
| |
| frames_array->set(i, *frame_value); |
| } |
| return *Factory::NewJSArrayWithElements(frames_array); |
| #endif // V8_HOST_ARCH_64_BIT |
| } |
| |
| |
| static Object* Runtime_GetThreadCount(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| // Check arguments. |
| Object* result = Runtime_CheckExecutionState(args); |
| if (result->IsFailure()) return result; |
| |
| // Count all archived V8 threads. |
| int n = 0; |
| for (ThreadState* thread = ThreadState::FirstInUse(); |
| thread != NULL; |
| thread = thread->Next()) { |
| n++; |
| } |
| |
| // Total number of threads is current thread and archived threads. |
| return Smi::FromInt(n + 1); |
| } |
| |
| |
| static const int kThreadDetailsCurrentThreadIndex = 0; |
| static const int kThreadDetailsThreadIdIndex = 1; |
| static const int kThreadDetailsSize = 2; |
| |
| // Return an array with thread details |
| // args[0]: number: break id |
| // args[1]: number: thread index |
| // |
| // The array returned contains the following information: |
| // 0: Is current thread? |
| // 1: Thread id |
| static Object* Runtime_GetThreadDetails(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| |
| // Check arguments. |
| Object* check = Runtime_CheckExecutionState(args); |
| if (check->IsFailure()) return check; |
| CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); |
| |
| // Allocate array for result. |
| Handle<FixedArray> details = Factory::NewFixedArray(kThreadDetailsSize); |
| |
| // Thread index 0 is current thread. |
| if (index == 0) { |
| // Fill the details. |
| details->set(kThreadDetailsCurrentThreadIndex, Heap::true_value()); |
| details->set(kThreadDetailsThreadIdIndex, |
| Smi::FromInt(ThreadManager::CurrentId())); |
| } else { |
| // Find the thread with the requested index. |
| int n = 1; |
| ThreadState* thread = ThreadState::FirstInUse(); |
| while (index != n && thread != NULL) { |
| thread = thread->Next(); |
| n++; |
| } |
| if (thread == NULL) { |
| return Heap::undefined_value(); |
| } |
| |
| // Fill the details. |
| details->set(kThreadDetailsCurrentThreadIndex, Heap::false_value()); |
| details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id())); |
| } |
| |
| // Convert to JS array and return. |
| return *Factory::NewJSArrayWithElements(details); |
| } |
| |
| |
| static Object* Runtime_GetBreakLocations(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| Handle<SharedFunctionInfo> shared(fun->shared()); |
| // Find the number of break points |
| Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared); |
| if (break_locations->IsUndefined()) return Heap::undefined_value(); |
| // Return array as JS array |
| return *Factory::NewJSArrayWithElements( |
| Handle<FixedArray>::cast(break_locations)); |
| } |
| |
| |
| // Set a break point in a function |
| // args[0]: function |
| // args[1]: number: break source position (within the function source) |
| // args[2]: number: break point object |
| static Object* Runtime_SetFunctionBreakPoint(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| Handle<SharedFunctionInfo> shared(fun->shared()); |
| CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); |
| RUNTIME_ASSERT(source_position >= 0); |
| Handle<Object> break_point_object_arg = args.at<Object>(2); |
| |
| // Set break point. |
| Debug::SetBreakPoint(shared, source_position, break_point_object_arg); |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| Object* Runtime::FindSharedFunctionInfoInScript(Handle<Script> script, |
| int position) { |
| // Iterate the heap looking for SharedFunctionInfo generated from the |
| // script. The inner most SharedFunctionInfo containing the source position |
| // for the requested break point is found. |
| // NOTE: This might reqire several heap iterations. If the SharedFunctionInfo |
| // which is found is not compiled it is compiled and the heap is iterated |
| // again as the compilation might create inner functions from the newly |
| // compiled function and the actual requested break point might be in one of |
| // these functions. |
| bool done = false; |
| // The current candidate for the source position: |
| int target_start_position = RelocInfo::kNoPosition; |
| Handle<SharedFunctionInfo> target; |
| // The current candidate for the last function in script: |
| Handle<SharedFunctionInfo> last; |
| while (!done) { |
| HeapIterator iterator; |
| for (HeapObject* obj = iterator.next(); |
| obj != NULL; obj = iterator.next()) { |
| if (obj->IsSharedFunctionInfo()) { |
| Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj)); |
| if (shared->script() == *script) { |
| // If the SharedFunctionInfo found has the requested script data and |
| // contains the source position it is a candidate. |
| int start_position = shared->function_token_position(); |
| if (start_position == RelocInfo::kNoPosition) { |
| start_position = shared->start_position(); |
| } |
| if (start_position <= position && |
| position <= shared->end_position()) { |
| // If there is no candidate or this function is within the current |
| // candidate this is the new candidate. |
| if (target.is_null()) { |
| target_start_position = start_position; |
| target = shared; |
| } else { |
| if (target_start_position == start_position && |
| shared->end_position() == target->end_position()) { |
| // If a top-level function contain only one function |
| // declartion the source for the top-level and the function is |
| // the same. In that case prefer the non top-level function. |
| if (!shared->is_toplevel()) { |
| target_start_position = start_position; |
| target = shared; |
| } |
| } else if (target_start_position <= start_position && |
| shared->end_position() <= target->end_position()) { |
| // This containment check includes equality as a function inside |
| // a top-level function can share either start or end position |
| // with the top-level function. |
| target_start_position = start_position; |
| target = shared; |
| } |
| } |
| } |
| |
| // Keep track of the last function in the script. |
| if (last.is_null() || |
| shared->end_position() > last->start_position()) { |
| last = shared; |
| } |
| } |
| } |
| } |
| |
| // Make sure some candidate is selected. |
| if (target.is_null()) { |
| if (!last.is_null()) { |
| // Position after the last function - use last. |
| target = last; |
| } else { |
| // Unable to find function - possibly script without any function. |
| return Heap::undefined_value(); |
| } |
| } |
| |
| // If the candidate found is compiled we are done. NOTE: when lazy |
| // compilation of inner functions is introduced some additional checking |
| // needs to be done here to compile inner functions. |
| done = target->is_compiled(); |
| if (!done) { |
| // If the candidate is not compiled compile it to reveal any inner |
| // functions which might contain the requested source position. |
| CompileLazyShared(target, KEEP_EXCEPTION); |
| } |
| } |
| |
| return *target; |
| } |
| |
| |
| // Change the state of a break point in a script. NOTE: Regarding performance |
| // see the NOTE for GetScriptFromScriptData. |
| // args[0]: script to set break point in |
| // args[1]: number: break source position (within the script source) |
| // args[2]: number: break point object |
| static Object* Runtime_SetScriptBreakPoint(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSValue, wrapper, 0); |
| CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); |
| RUNTIME_ASSERT(source_position >= 0); |
| Handle<Object> break_point_object_arg = args.at<Object>(2); |
| |
| // Get the script from the script wrapper. |
| RUNTIME_ASSERT(wrapper->value()->IsScript()); |
| Handle<Script> script(Script::cast(wrapper->value())); |
| |
| Object* result = Runtime::FindSharedFunctionInfoInScript( |
| script, source_position); |
| if (!result->IsUndefined()) { |
| Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result)); |
| // Find position within function. The script position might be before the |
| // source position of the first function. |
| int position; |
| if (shared->start_position() > source_position) { |
| position = 0; |
| } else { |
| position = source_position - shared->start_position(); |
| } |
| Debug::SetBreakPoint(shared, position, break_point_object_arg); |
| } |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Clear a break point |
| // args[0]: number: break point object |
| static Object* Runtime_ClearBreakPoint(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| Handle<Object> break_point_object_arg = args.at<Object>(0); |
| |
| // Clear break point. |
| Debug::ClearBreakPoint(break_point_object_arg); |
| |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Change the state of break on exceptions |
| // args[0]: boolean indicating uncaught exceptions |
| // args[1]: boolean indicating on/off |
| static Object* Runtime_ChangeBreakOnException(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 2); |
| ASSERT(args[0]->IsNumber()); |
| ASSERT(args[1]->IsBoolean()); |
| |
| // Update break point state |
| ExceptionBreakType type = |
| static_cast<ExceptionBreakType>(NumberToUint32(args[0])); |
| bool enable = args[1]->ToBoolean()->IsTrue(); |
| Debug::ChangeBreakOnException(type, enable); |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Prepare for stepping |
| // args[0]: break id for checking execution state |
| // args[1]: step action from the enumeration StepAction |
| // args[2]: number of times to perform the step, for step out it is the number |
| // of frames to step down. |
| static Object* Runtime_PrepareStep(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| // Check arguments. |
| Object* check = Runtime_CheckExecutionState(args); |
| if (check->IsFailure()) return check; |
| if (!args[1]->IsNumber() || !args[2]->IsNumber()) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| |
| // Get the step action and check validity. |
| StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1])); |
| if (step_action != StepIn && |
| step_action != StepNext && |
| step_action != StepOut && |
| step_action != StepInMin && |
| step_action != StepMin) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| |
| // Get the number of steps. |
| int step_count = NumberToInt32(args[2]); |
| if (step_count < 1) { |
| return Top::Throw(Heap::illegal_argument_symbol()); |
| } |
| |
| // Clear all current stepping setup. |
| Debug::ClearStepping(); |
| |
| // Prepare step. |
| Debug::PrepareStep(static_cast<StepAction>(step_action), step_count); |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Clear all stepping set by PrepareStep. |
| static Object* Runtime_ClearStepping(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 0); |
| Debug::ClearStepping(); |
| return Heap::undefined_value(); |
| } |
| |
| |
| // Creates a copy of the with context chain. The copy of the context chain is |
| // is linked to the function context supplied. |
| static Handle<Context> CopyWithContextChain(Handle<Context> context_chain, |
| Handle<Context> function_context) { |
| // At the bottom of the chain. Return the function context to link to. |
| if (context_chain->is_function_context()) { |
| return function_context; |
| } |
| |
| // Recursively copy the with contexts. |
| Handle<Context> previous(context_chain->previous()); |
| Handle<JSObject> extension(JSObject::cast(context_chain->extension())); |
| return Factory::NewWithContext( |
| CopyWithContextChain(function_context, previous), |
| extension, |
| context_chain->IsCatchContext()); |
| } |
| |
| |
| // Helper function to find or create the arguments object for |
| // Runtime_DebugEvaluate. |
| static Handle<Object> GetArgumentsObject(JavaScriptFrame* frame, |
| Handle<JSFunction> function, |
| Handle<Code> code, |
| const ScopeInfo<>* sinfo, |
| Handle<Context> function_context) { |
| // Try to find the value of 'arguments' to pass as parameter. If it is not |
| // found (that is the debugged function does not reference 'arguments' and |
| // does not support eval) then create an 'arguments' object. |
| int index; |
| if (sinfo->number_of_stack_slots() > 0) { |
| index = ScopeInfo<>::StackSlotIndex(*code, Heap::arguments_symbol()); |
| if (index != -1) { |
| return Handle<Object>(frame->GetExpression(index)); |
| } |
| } |
| |
| if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) { |
| index = ScopeInfo<>::ContextSlotIndex(*code, Heap::arguments_symbol(), |
| NULL); |
| if (index != -1) { |
| return Handle<Object>(function_context->get(index)); |
| } |
| } |
| |
| const int length = frame->GetProvidedParametersCount(); |
| Handle<JSObject> arguments = Factory::NewArgumentsObject(function, length); |
| Handle<FixedArray> array = Factory::NewFixedArray(length); |
| |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < length; i++) { |
| array->set(i, frame->GetParameter(i), mode); |
| } |
| arguments->set_elements(*array); |
| return arguments; |
| } |
| |
| |
| // Evaluate a piece of JavaScript in the context of a stack frame for |
| // debugging. This is accomplished by creating a new context which in its |
| // extension part has all the parameters and locals of the function on the |
| // stack frame. A function which calls eval with the code to evaluate is then |
| // compiled in this context and called in this context. As this context |
| // replaces the context of the function on the stack frame a new (empty) |
| // function is created as well to be used as the closure for the context. |
| // This function and the context acts as replacements for the function on the |
| // stack frame presenting the same view of the values of parameters and |
| // local variables as if the piece of JavaScript was evaluated at the point |
| // where the function on the stack frame is currently stopped. |
| static Object* Runtime_DebugEvaluate(Arguments args) { |
| HandleScope scope; |
| |
| // Check the execution state and decode arguments frame and source to be |
| // evaluated. |
| ASSERT(args.length() == 4); |
| Object* check_result = Runtime_CheckExecutionState(args); |
| if (check_result->IsFailure()) return check_result; |
| CONVERT_CHECKED(Smi, wrapped_id, args[1]); |
| CONVERT_ARG_CHECKED(String, source, 2); |
| CONVERT_BOOLEAN_CHECKED(disable_break, args[3]); |
| |
| // Handle the processing of break. |
| DisableBreak disable_break_save(disable_break); |
| |
| // Get the frame where the debugging is performed. |
| StackFrame::Id id = UnwrapFrameId(wrapped_id); |
| JavaScriptFrameIterator it(id); |
| JavaScriptFrame* frame = it.frame(); |
| Handle<JSFunction> function(JSFunction::cast(frame->function())); |
| Handle<Code> code(function->code()); |
| ScopeInfo<> sinfo(*code); |
| |
| // Traverse the saved contexts chain to find the active context for the |
| // selected frame. |
| SaveContext* save = Top::save_context(); |
| while (save != NULL && !save->below(frame)) { |
| save = save->prev(); |
| } |
| ASSERT(save != NULL); |
| SaveContext savex; |
| Top::set_context(*(save->context())); |
| |
| // Create the (empty) function replacing the function on the stack frame for |
| // the purpose of evaluating in the context created below. It is important |
| // that this function does not describe any parameters and local variables |
| // in the context. If it does then this will cause problems with the lookup |
| // in Context::Lookup, where context slots for parameters and local variables |
| // are looked at before the extension object. |
| Handle<JSFunction> go_between = |
| Factory::NewFunction(Factory::empty_string(), Factory::undefined_value()); |
| go_between->set_context(function->context()); |
| #ifdef DEBUG |
| ScopeInfo<> go_between_sinfo(go_between->shared()->code()); |
| ASSERT(go_between_sinfo.number_of_parameters() == 0); |
| ASSERT(go_between_sinfo.number_of_context_slots() == 0); |
| #endif |
| |
| // Materialize the content of the local scope into a JSObject. |
| Handle<JSObject> local_scope = MaterializeLocalScope(frame); |
| |
| // Allocate a new context for the debug evaluation and set the extension |
| // object build. |
| Handle<Context> context = |
| Factory::NewFunctionContext(Context::MIN_CONTEXT_SLOTS, go_between); |
| context->set_extension(*local_scope); |
| // Copy any with contexts present and chain them in front of this context. |
| Handle<Context> frame_context(Context::cast(frame->context())); |
| Handle<Context> function_context(frame_context->fcontext()); |
| context = CopyWithContextChain(frame_context, context); |
| |
| // Wrap the evaluation statement in a new function compiled in the newly |
| // created context. The function has one parameter which has to be called |
| // 'arguments'. This it to have access to what would have been 'arguments' in |
| // the function being debugged. |
| // function(arguments,__source__) {return eval(__source__);} |
| static const char* source_str = |
| "(function(arguments,__source__){return eval(__source__);})"; |
| static const int source_str_length = StrLength(source_str); |
| Handle<String> function_source = |
| Factory::NewStringFromAscii(Vector<const char>(source_str, |
| source_str_length)); |
| Handle<JSFunction> boilerplate = |
| Compiler::CompileEval(function_source, |
| context, |
| context->IsGlobalContext(), |
| Compiler::DONT_VALIDATE_JSON); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| Handle<JSFunction> compiled_function = |
| Factory::NewFunctionFromBoilerplate(boilerplate, context); |
| |
| // Invoke the result of the compilation to get the evaluation function. |
| bool has_pending_exception; |
| Handle<Object> receiver(frame->receiver()); |
| Handle<Object> evaluation_function = |
| Execution::Call(compiled_function, receiver, 0, NULL, |
| &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| |
| Handle<Object> arguments = GetArgumentsObject(frame, function, code, &sinfo, |
| function_context); |
| |
| // Invoke the evaluation function and return the result. |
| const int argc = 2; |
| Object** argv[argc] = { arguments.location(), |
| Handle<Object>::cast(source).location() }; |
| Handle<Object> result = |
| Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver, |
| argc, argv, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| |
| // Skip the global proxy as it has no properties and always delegates to the |
| // real global object. |
| if (result->IsJSGlobalProxy()) { |
| result = Handle<JSObject>(JSObject::cast(result->GetPrototype())); |
| } |
| |
| return *result; |
| } |
| |
| |
| static Object* Runtime_DebugEvaluateGlobal(Arguments args) { |
| HandleScope scope; |
| |
| // Check the execution state and decode arguments frame and source to be |
| // evaluated. |
| ASSERT(args.length() == 3); |
| Object* check_result = Runtime_CheckExecutionState(args); |
| if (check_result->IsFailure()) return check_result; |
| CONVERT_ARG_CHECKED(String, source, 1); |
| CONVERT_BOOLEAN_CHECKED(disable_break, args[2]); |
| |
| // Handle the processing of break. |
| DisableBreak disable_break_save(disable_break); |
| |
| // Enter the top context from before the debugger was invoked. |
| SaveContext save; |
| SaveContext* top = &save; |
| while (top != NULL && *top->context() == *Debug::debug_context()) { |
| top = top->prev(); |
| } |
| if (top != NULL) { |
| Top::set_context(*top->context()); |
| } |
| |
| // Get the global context now set to the top context from before the |
| // debugger was invoked. |
| Handle<Context> context = Top::global_context(); |
| |
| // Compile the source to be evaluated. |
| Handle<JSFunction> boilerplate = |
| Handle<JSFunction>(Compiler::CompileEval(source, |
| context, |
| true, |
| Compiler::DONT_VALIDATE_JSON)); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| Handle<JSFunction> compiled_function = |
| Handle<JSFunction>(Factory::NewFunctionFromBoilerplate(boilerplate, |
| context)); |
| |
| // Invoke the result of the compilation to get the evaluation function. |
| bool has_pending_exception; |
| Handle<Object> receiver = Top::global(); |
| Handle<Object> result = |
| Execution::Call(compiled_function, receiver, 0, NULL, |
| &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| static Object* Runtime_DebugGetLoadedScripts(Arguments args) { |
| HandleScope scope; |
| ASSERT(args.length() == 0); |
| |
| // Fill the script objects. |
| Handle<FixedArray> instances = Debug::GetLoadedScripts(); |
| |
| // Convert the script objects to proper JS objects. |
| for (int i = 0; i < instances->length(); i++) { |
| Handle<Script> script = Handle<Script>(Script::cast(instances->get(i))); |
| // Get the script wrapper in a local handle before calling GetScriptWrapper, |
| // because using |
| // instances->set(i, *GetScriptWrapper(script)) |
| // is unsafe as GetScriptWrapper might call GC and the C++ compiler might |
| // already have deferenced the instances handle. |
| Handle<JSValue> wrapper = GetScriptWrapper(script); |
| instances->set(i, *wrapper); |
| } |
| |
| // Return result as a JS array. |
| Handle<JSObject> result = Factory::NewJSObject(Top::array_function()); |
| Handle<JSArray>::cast(result)->SetContent(*instances); |
| return *result; |
| } |
| |
| |
| // Helper function used by Runtime_DebugReferencedBy below. |
| static int DebugReferencedBy(JSObject* target, |
| Object* instance_filter, int max_references, |
| FixedArray* instances, int instances_size, |
| JSFunction* arguments_function) { |
| NoHandleAllocation ha; |
| AssertNoAllocation no_alloc; |
| |
| // Iterate the heap. |
| int count = 0; |
| JSObject* last = NULL; |
| HeapIterator iterator; |
| HeapObject* heap_obj = NULL; |
| while (((heap_obj = iterator.next()) != NULL) && |
| (max_references == 0 || count < max_references)) { |
| // Only look at all JSObjects. |
| if (heap_obj->IsJSObject()) { |
| // Skip context extension objects and argument arrays as these are |
| // checked in the context of functions using them. |
| JSObject* obj = JSObject::cast(heap_obj); |
| if (obj->IsJSContextExtensionObject() || |
| obj->map()->constructor() == arguments_function) { |
| continue; |
| } |
| |
| // Check if the JS object has a reference to the object looked for. |
| if (obj->ReferencesObject(target)) { |
| // Check instance filter if supplied. This is normally used to avoid |
| // references from mirror objects (see Runtime_IsInPrototypeChain). |
| if (!instance_filter->IsUndefined()) { |
| Object* V = obj; |
| while (true) { |
| Object* prototype = V->GetPrototype(); |
| if (prototype->IsNull()) { |
| break; |
| } |
| if (instance_filter == prototype) { |
| obj = NULL; // Don't add this object. |
| break; |
| } |
| V = prototype; |
| } |
| } |
| |
| if (obj != NULL) { |
| // Valid reference found add to instance array if supplied an update |
| // count. |
| if (instances != NULL && count < instances_size) { |
| instances->set(count, obj); |
| } |
| last = obj; |
| count++; |
| } |
| } |
| } |
| } |
| |
| // Check for circular reference only. This can happen when the object is only |
| // referenced from mirrors and has a circular reference in which case the |
| // object is not really alive and would have been garbage collected if not |
| // referenced from the mirror. |
| if (count == 1 && last == target) { |
| count = 0; |
| } |
| |
| // Return the number of referencing objects found. |
| return count; |
| } |
| |
| |
| // Scan the heap for objects with direct references to an object |
| // args[0]: the object to find references to |
| // args[1]: constructor function for instances to exclude (Mirror) |
| // args[2]: the the maximum number of objects to return |
| static Object* Runtime_DebugReferencedBy(Arguments args) { |
| ASSERT(args.length() == 3); |
| |
| // First perform a full GC in order to avoid references from dead objects. |
| Heap::CollectAllGarbage(false); |
| |
| // Check parameters. |
| CONVERT_CHECKED(JSObject, target, args[0]); |
| Object* instance_filter = args[1]; |
| RUNTIME_ASSERT(instance_filter->IsUndefined() || |
| instance_filter->IsJSObject()); |
| CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]); |
| RUNTIME_ASSERT(max_references >= 0); |
| |
| // Get the constructor function for context extension and arguments array. |
| JSObject* arguments_boilerplate = |
| Top::context()->global_context()->arguments_boilerplate(); |
| JSFunction* arguments_function = |
| JSFunction::cast(arguments_boilerplate->map()->constructor()); |
| |
| // Get the number of referencing objects. |
| int count; |
| count = DebugReferencedBy(target, instance_filter, max_references, |
| NULL, 0, arguments_function); |
| |
| // Allocate an array to hold the result. |
| Object* object = Heap::AllocateFixedArray(count); |
| if (object->IsFailure()) return object; |
| FixedArray* instances = FixedArray::cast(object); |
| |
| // Fill the referencing objects. |
| count = DebugReferencedBy(target, instance_filter, max_references, |
| instances, count, arguments_function); |
| |
| // Return result as JS array. |
| Object* result = |
| Heap::AllocateJSObject( |
| Top::context()->global_context()->array_function()); |
| if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances); |
| return result; |
| } |
| |
| |
| // Helper function used by Runtime_DebugConstructedBy below. |
| static int DebugConstructedBy(JSFunction* constructor, int max_references, |
| FixedArray* instances, int instances_size) { |
| AssertNoAllocation no_alloc; |
| |
| // Iterate the heap. |
| int count = 0; |
| HeapIterator iterator; |
| HeapObject* heap_obj = NULL; |
| while (((heap_obj = iterator.next()) != NULL) && |
| (max_references == 0 || count < max_references)) { |
| // Only look at all JSObjects. |
| if (heap_obj->IsJSObject()) { |
| JSObject* obj = JSObject::cast(heap_obj); |
| if (obj->map()->constructor() == constructor) { |
| // Valid reference found add to instance array if supplied an update |
| // count. |
| if (instances != NULL && count < instances_size) { |
| instances->set(count, obj); |
| } |
| count++; |
| } |
| } |
| } |
| |
| // Return the number of referencing objects found. |
| return count; |
| } |
| |
| |
| // Scan the heap for objects constructed by a specific function. |
| // args[0]: the constructor to find instances of |
| // args[1]: the the maximum number of objects to return |
| static Object* Runtime_DebugConstructedBy(Arguments args) { |
| ASSERT(args.length() == 2); |
| |
| // First perform a full GC in order to avoid dead objects. |
| Heap::CollectAllGarbage(false); |
| |
| // Check parameters. |
| CONVERT_CHECKED(JSFunction, constructor, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]); |
| RUNTIME_ASSERT(max_references >= 0); |
| |
| // Get the number of referencing objects. |
| int count; |
| count = DebugConstructedBy(constructor, max_references, NULL, 0); |
| |
| // Allocate an array to hold the result. |
| Object* object = Heap::AllocateFixedArray(count); |
| if (object->IsFailure()) return object; |
| FixedArray* instances = FixedArray::cast(object); |
| |
| // Fill the referencing objects. |
| count = DebugConstructedBy(constructor, max_references, instances, count); |
| |
| // Return result as JS array. |
| Object* result = |
| Heap::AllocateJSObject( |
| Top::context()->global_context()->array_function()); |
| if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances); |
| return result; |
| } |
| |
| |
| // Find the effective prototype object as returned by __proto__. |
| // args[0]: the object to find the prototype for. |
| static Object* Runtime_DebugGetPrototype(Arguments args) { |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSObject, obj, args[0]); |
| |
| // Use the __proto__ accessor. |
| return Accessors::ObjectPrototype.getter(obj, NULL); |
| } |
| |
| |
| static Object* Runtime_SystemBreak(Arguments args) { |
| ASSERT(args.length() == 0); |
| CPU::DebugBreak(); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_DebugDisassembleFunction(Arguments args) { |
| #ifdef DEBUG |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| // Get the function and make sure it is compiled. |
| CONVERT_ARG_CHECKED(JSFunction, func, 0); |
| Handle<SharedFunctionInfo> shared(func->shared()); |
| if (!EnsureCompiled(shared, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| func->code()->PrintLn(); |
| #endif // DEBUG |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_DebugDisassembleConstructor(Arguments args) { |
| #ifdef DEBUG |
| HandleScope scope; |
| ASSERT(args.length() == 1); |
| // Get the function and make sure it is compiled. |
| CONVERT_ARG_CHECKED(JSFunction, func, 0); |
| Handle<SharedFunctionInfo> shared(func->shared()); |
| if (!EnsureCompiled(shared, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| shared->construct_stub()->PrintLn(); |
| #endif // DEBUG |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_FunctionGetInferredName(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(JSFunction, f, args[0]); |
| return f->shared()->inferred_name(); |
| } |
| |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| |
| static Object* Runtime_ProfilerResume(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(Smi, smi_modules, args[0]); |
| CONVERT_CHECKED(Smi, smi_tag, args[1]); |
| v8::V8::ResumeProfilerEx(smi_modules->value(), smi_tag->value()); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_ProfilerPause(Arguments args) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_CHECKED(Smi, smi_modules, args[0]); |
| CONVERT_CHECKED(Smi, smi_tag, args[1]); |
| v8::V8::PauseProfilerEx(smi_modules->value(), smi_tag->value()); |
| return Heap::undefined_value(); |
| } |
| |
| #endif // ENABLE_LOGGING_AND_PROFILING |
| |
| // Finds the script object from the script data. NOTE: This operation uses |
| // heap traversal to find the function generated for the source position |
| // for the requested break point. For lazily compiled functions several heap |
| // traversals might be required rendering this operation as a rather slow |
| // operation. However for setting break points which is normally done through |
| // some kind of user interaction the performance is not crucial. |
| static Handle<Object> Runtime_GetScriptFromScriptName( |
| Handle<String> script_name) { |
| // Scan the heap for Script objects to find the script with the requested |
| // script data. |
| Handle<Script> script; |
| HeapIterator iterator; |
| HeapObject* obj = NULL; |
| while (script.is_null() && ((obj = iterator.next()) != NULL)) { |
| // If a script is found check if it has the script data requested. |
| if (obj->IsScript()) { |
| if (Script::cast(obj)->name()->IsString()) { |
| if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) { |
| script = Handle<Script>(Script::cast(obj)); |
| } |
| } |
| } |
| } |
| |
| // If no script with the requested script data is found return undefined. |
| if (script.is_null()) return Factory::undefined_value(); |
| |
| // Return the script found. |
| return GetScriptWrapper(script); |
| } |
| |
| |
| // Get the script object from script data. NOTE: Regarding performance |
| // see the NOTE for GetScriptFromScriptData. |
| // args[0]: script data for the script to find the source for |
| static Object* Runtime_GetScript(Arguments args) { |
| HandleScope scope; |
| |
| ASSERT(args.length() == 1); |
| |
| CONVERT_CHECKED(String, script_name, args[0]); |
| |
| // Find the requested script. |
| Handle<Object> result = |
| Runtime_GetScriptFromScriptName(Handle<String>(script_name)); |
| return *result; |
| } |
| |
| |
| // Determines whether the given stack frame should be displayed in |
| // a stack trace. The caller is the error constructor that asked |
| // for the stack trace to be collected. The first time a construct |
| // call to this function is encountered it is skipped. The seen_caller |
| // in/out parameter is used to remember if the caller has been seen |
| // yet. |
| static bool ShowFrameInStackTrace(StackFrame* raw_frame, Object* caller, |
| bool* seen_caller) { |
| // Only display JS frames. |
| if (!raw_frame->is_java_script()) |
| return false; |
| JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); |
| Object* raw_fun = frame->function(); |
| // Not sure when this can happen but skip it just in case. |
| if (!raw_fun->IsJSFunction()) |
| return false; |
| if ((raw_fun == caller) && !(*seen_caller)) { |
| *seen_caller = true; |
| return false; |
| } |
| // Skip all frames until we've seen the caller. Also, skip the most |
| // obvious builtin calls. Some builtin calls (such as Number.ADD |
| // which is invoked using 'call') are very difficult to recognize |
| // so we're leaving them in for now. |
| return *seen_caller && !frame->receiver()->IsJSBuiltinsObject(); |
| } |
| |
| |
| // Collect the raw data for a stack trace. Returns an array of three |
| // element segments each containing a receiver, function and native |
| // code offset. |
| static Object* Runtime_CollectStackTrace(Arguments args) { |
| ASSERT_EQ(args.length(), 2); |
| Handle<Object> caller = args.at<Object>(0); |
| CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[1]); |
| |
| HandleScope scope; |
| |
| limit = Max(limit, 0); // Ensure that limit is not negative. |
| int initial_size = Min(limit, 10); |
| Handle<JSArray> result = Factory::NewJSArray(initial_size * 3); |
| |
| StackFrameIterator iter; |
| // If the caller parameter is a function we skip frames until we're |
| // under it before starting to collect. |
| bool seen_caller = !caller->IsJSFunction(); |
| int cursor = 0; |
| int frames_seen = 0; |
| while (!iter.done() && frames_seen < limit) { |
| StackFrame* raw_frame = iter.frame(); |
| if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) { |
| frames_seen++; |
| JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); |
| Object* recv = frame->receiver(); |
| Object* fun = frame->function(); |
| Address pc = frame->pc(); |
| Address start = frame->code()->address(); |
| Smi* offset = Smi::FromInt(static_cast<int>(pc - start)); |
| FixedArray* elements = FixedArray::cast(result->elements()); |
| if (cursor + 2 < elements->length()) { |
| elements->set(cursor++, recv); |
| elements->set(cursor++, fun); |
| elements->set(cursor++, offset); |
| } else { |
| HandleScope scope; |
| Handle<Object> recv_handle(recv); |
| Handle<Object> fun_handle(fun); |
| SetElement(result, cursor++, recv_handle); |
| SetElement(result, cursor++, fun_handle); |
| SetElement(result, cursor++, Handle<Smi>(offset)); |
| } |
| } |
| iter.Advance(); |
| } |
| |
| result->set_length(Smi::FromInt(cursor)); |
| return *result; |
| } |
| |
| |
| // Returns V8 version as a string. |
| static Object* Runtime_GetV8Version(Arguments args) { |
| ASSERT_EQ(args.length(), 0); |
| |
| NoHandleAllocation ha; |
| |
| const char* version_string = v8::V8::GetVersion(); |
| |
| return Heap::AllocateStringFromAscii(CStrVector(version_string), NOT_TENURED); |
| } |
| |
| |
| static Object* Runtime_Abort(Arguments args) { |
| ASSERT(args.length() == 2); |
| OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) + |
| Smi::cast(args[1])->value()); |
| Top::PrintStack(); |
| OS::Abort(); |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| static Object* Runtime_DeleteHandleScopeExtensions(Arguments args) { |
| ASSERT(args.length() == 0); |
| HandleScope::DeleteExtensions(); |
| return Heap::undefined_value(); |
| } |
| |
| |
| #ifdef DEBUG |
| // ListNatives is ONLY used by the fuzz-natives.js in debug mode |
| // Exclude the code in release mode. |
| static Object* Runtime_ListNatives(Arguments args) { |
| ASSERT(args.length() == 0); |
| HandleScope scope; |
| Handle<JSArray> result = Factory::NewJSArray(0); |
| int index = 0; |
| #define ADD_ENTRY(Name, argc, ressize) \ |
| { \ |
| HandleScope inner; \ |
| Handle<String> name = \ |
| Factory::NewStringFromAscii( \ |
| Vector<const char>(#Name, StrLength(#Name))); \ |
| Handle<JSArray> pair = Factory::NewJSArray(0); \ |
| SetElement(pair, 0, name); \ |
| SetElement(pair, 1, Handle<Smi>(Smi::FromInt(argc))); \ |
| SetElement(result, index++, pair); \ |
| } |
| RUNTIME_FUNCTION_LIST(ADD_ENTRY) |
| #undef ADD_ENTRY |
| return *result; |
| } |
| #endif |
| |
| |
| static Object* Runtime_Log(Arguments args) { |
| ASSERT(args.length() == 2); |
| CONVERT_CHECKED(String, format, args[0]); |
| CONVERT_CHECKED(JSArray, elms, args[1]); |
| Vector<const char> chars = format->ToAsciiVector(); |
| Logger::LogRuntime(chars, elms); |
| return Heap::undefined_value(); |
| } |
| |
| |
| static Object* Runtime_IS_VAR(Arguments args) { |
| UNREACHABLE(); // implemented as macro in the parser |
| return NULL; |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Implementation of Runtime |
| |
| #define F(name, nargs, ressize) \ |
| { #name, FUNCTION_ADDR(Runtime_##name), nargs, \ |
| static_cast<int>(Runtime::k##name), ressize }, |
| |
| static Runtime::Function Runtime_functions[] = { |
| RUNTIME_FUNCTION_LIST(F) |
| { NULL, NULL, 0, -1, 0 } |
| }; |
| |
| #undef F |
| |
| |
| Runtime::Function* Runtime::FunctionForId(FunctionId fid) { |
| ASSERT(0 <= fid && fid < kNofFunctions); |
| return &Runtime_functions[fid]; |
| } |
| |
| |
| Runtime::Function* Runtime::FunctionForName(const char* name) { |
| for (Function* f = Runtime_functions; f->name != NULL; f++) { |
| if (strcmp(f->name, name) == 0) { |
| return f; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| void Runtime::PerformGC(Object* result) { |
| Failure* failure = Failure::cast(result); |
| if (failure->IsRetryAfterGC()) { |
| // Try to do a garbage collection; ignore it if it fails. The C |
| // entry stub will throw an out-of-memory exception in that case. |
| Heap::CollectGarbage(failure->requested(), failure->allocation_space()); |
| } else { |
| // Handle last resort GC and make sure to allow future allocations |
| // to grow the heap without causing GCs (if possible). |
| Counters::gc_last_resort_from_js.Increment(); |
| Heap::CollectAllGarbage(false); |
| } |
| } |
| |
| |
| } } // namespace v8::internal |