blob: a994f45b1a58a4363212db1c4c069fab04228e52 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "macro-assembler.h"
#include "serialize.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Implementation of CpuFeatures
// The required user mode extensions in X64 are (from AMD64 ABI Table A.1):
// fpu, tsc, cx8, cmov, mmx, sse, sse2, fxsr, syscall
uint64_t CpuFeatures::supported_ = kDefaultCpuFeatures;
uint64_t CpuFeatures::enabled_ = 0;
uint64_t CpuFeatures::found_by_runtime_probing_ = 0;
void CpuFeatures::Probe() {
ASSERT(Heap::HasBeenSetup());
ASSERT(supported_ == kDefaultCpuFeatures);
if (Serializer::enabled()) {
supported_ |= OS::CpuFeaturesImpliedByPlatform();
return; // No features if we might serialize.
}
Assembler assm(NULL, 0);
Label cpuid, done;
#define __ assm.
// Save old rsp, since we are going to modify the stack.
__ push(rbp);
__ pushfq();
__ push(rcx);
__ push(rbx);
__ movq(rbp, rsp);
// If we can modify bit 21 of the EFLAGS register, then CPUID is supported.
__ pushfq();
__ pop(rax);
__ movq(rdx, rax);
__ xor_(rax, Immediate(0x200000)); // Flip bit 21.
__ push(rax);
__ popfq();
__ pushfq();
__ pop(rax);
__ xor_(rax, rdx); // Different if CPUID is supported.
__ j(not_zero, &cpuid);
// CPUID not supported. Clear the supported features in edx:eax.
__ xor_(rax, rax);
__ jmp(&done);
// Invoke CPUID with 1 in eax to get feature information in
// ecx:edx. Temporarily enable CPUID support because we know it's
// safe here.
__ bind(&cpuid);
__ movq(rax, Immediate(1));
supported_ = kDefaultCpuFeatures | (1 << CPUID);
{ Scope fscope(CPUID);
__ cpuid();
// Move the result from ecx:edx to rdi.
__ movl(rdi, rdx); // Zero-extended to 64 bits.
__ shl(rcx, Immediate(32));
__ or_(rdi, rcx);
// Get the sahf supported flag, from CPUID(0x80000001)
__ movq(rax, 0x80000001, RelocInfo::NONE);
__ cpuid();
}
supported_ = kDefaultCpuFeatures;
// Put the CPU flags in rax.
// rax = (rcx & 1) | (rdi & ~1) | (1 << CPUID).
__ movl(rax, Immediate(1));
__ and_(rcx, rax); // Bit 0 is set if SAHF instruction supported.
__ not_(rax);
__ and_(rax, rdi);
__ or_(rax, rcx);
__ or_(rax, Immediate(1 << CPUID));
// Done.
__ bind(&done);
__ movq(rsp, rbp);
__ pop(rbx);
__ pop(rcx);
__ popfq();
__ pop(rbp);
__ ret(0);
#undef __
CodeDesc desc;
assm.GetCode(&desc);
Object* code =
Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB), NULL);
if (!code->IsCode()) return;
LOG(CodeCreateEvent(Logger::BUILTIN_TAG,
Code::cast(code), "CpuFeatures::Probe"));
typedef uint64_t (*F0)();
F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry());
supported_ = probe();
found_by_runtime_probing_ = supported_;
found_by_runtime_probing_ &= ~kDefaultCpuFeatures;
uint64_t os_guarantees = OS::CpuFeaturesImpliedByPlatform();
supported_ |= os_guarantees;
found_by_runtime_probing_ &= ~os_guarantees;
// SSE2 and CMOV must be available on an X64 CPU.
ASSERT(IsSupported(CPUID));
ASSERT(IsSupported(SSE2));
ASSERT(IsSupported(CMOV));
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
// Patch the code at the current PC with a call to the target address.
// Additional guard int3 instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
// Load register with immediate 64 and call through a register instructions
// takes up 13 bytes and int3 takes up one byte.
static const int kCallCodeSize = 13;
int code_size = kCallCodeSize + guard_bytes;
// Create a code patcher.
CodePatcher patcher(pc_, code_size);
// Add a label for checking the size of the code used for returning.
#ifdef DEBUG
Label check_codesize;
patcher.masm()->bind(&check_codesize);
#endif
// Patch the code.
patcher.masm()->movq(r10, target, RelocInfo::NONE);
patcher.masm()->call(r10);
// Check that the size of the code generated is as expected.
ASSERT_EQ(kCallCodeSize,
patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize));
// Add the requested number of int3 instructions after the call.
for (int i = 0; i < guard_bytes; i++) {
patcher.masm()->int3();
}
}
void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
// Patch the code at the current address with the supplied instructions.
for (int i = 0; i < instruction_count; i++) {
*(pc_ + i) = *(instructions + i);
}
// Indicate that code has changed.
CPU::FlushICache(pc_, instruction_count);
}
// -----------------------------------------------------------------------------
// Implementation of Operand
Operand::Operand(Register base, int32_t disp) : rex_(0) {
len_ = 1;
if (base.is(rsp) || base.is(r12)) {
// SIB byte is needed to encode (rsp + offset) or (r12 + offset).
set_sib(times_1, rsp, base);
}
if (disp == 0 && !base.is(rbp) && !base.is(r13)) {
set_modrm(0, base);
} else if (is_int8(disp)) {
set_modrm(1, base);
set_disp8(disp);
} else {
set_modrm(2, base);
set_disp32(disp);
}
}
Operand::Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp) : rex_(0) {
ASSERT(!index.is(rsp));
len_ = 1;
set_sib(scale, index, base);
if (disp == 0 && !base.is(rbp) && !base.is(r13)) {
// This call to set_modrm doesn't overwrite the REX.B (or REX.X) bits
// possibly set by set_sib.
set_modrm(0, rsp);
} else if (is_int8(disp)) {
set_modrm(1, rsp);
set_disp8(disp);
} else {
set_modrm(2, rsp);
set_disp32(disp);
}
}
Operand::Operand(Register index,
ScaleFactor scale,
int32_t disp) : rex_(0) {
ASSERT(!index.is(rsp));
len_ = 1;
set_modrm(0, rsp);
set_sib(scale, index, rbp);
set_disp32(disp);
}
// -----------------------------------------------------------------------------
// Implementation of Assembler.
#ifdef GENERATED_CODE_COVERAGE
static void InitCoverageLog();
#endif
byte* Assembler::spare_buffer_ = NULL;
Assembler::Assembler(void* buffer, int buffer_size)
: code_targets_(100) {
if (buffer == NULL) {
// Do our own buffer management.
if (buffer_size <= kMinimalBufferSize) {
buffer_size = kMinimalBufferSize;
if (spare_buffer_ != NULL) {
buffer = spare_buffer_;
spare_buffer_ = NULL;
}
}
if (buffer == NULL) {
buffer_ = NewArray<byte>(buffer_size);
} else {
buffer_ = static_cast<byte*>(buffer);
}
buffer_size_ = buffer_size;
own_buffer_ = true;
} else {
// Use externally provided buffer instead.
ASSERT(buffer_size > 0);
buffer_ = static_cast<byte*>(buffer);
buffer_size_ = buffer_size;
own_buffer_ = false;
}
// Clear the buffer in debug mode unless it was provided by the
// caller in which case we can't be sure it's okay to overwrite
// existing code in it.
#ifdef DEBUG
if (own_buffer_) {
memset(buffer_, 0xCC, buffer_size); // int3
}
#endif
// Setup buffer pointers.
ASSERT(buffer_ != NULL);
pc_ = buffer_;
reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
last_pc_ = NULL;
current_statement_position_ = RelocInfo::kNoPosition;
current_position_ = RelocInfo::kNoPosition;
written_statement_position_ = current_statement_position_;
written_position_ = current_position_;
#ifdef GENERATED_CODE_COVERAGE
InitCoverageLog();
#endif
}
Assembler::~Assembler() {
if (own_buffer_) {
if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
spare_buffer_ = buffer_;
} else {
DeleteArray(buffer_);
}
}
}
void Assembler::GetCode(CodeDesc* desc) {
// Finalize code (at this point overflow() may be true, but the gap ensures
// that we are still not overlapping instructions and relocation info).
ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap.
// Setup code descriptor.
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
ASSERT(desc->instr_size > 0); // Zero-size code objects upset the system.
desc->reloc_size =
static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer.pos());
desc->origin = this;
Counters::reloc_info_size.Increment(desc->reloc_size);
}
void Assembler::Align(int m) {
ASSERT(IsPowerOf2(m));
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::bind_to(Label* L, int pos) {
ASSERT(!L->is_bound()); // Label may only be bound once.
last_pc_ = NULL;
ASSERT(0 <= pos && pos <= pc_offset()); // Position must be valid.
if (L->is_linked()) {
int current = L->pos();
int next = long_at(current);
while (next != current) {
// Relative address, relative to point after address.
int imm32 = pos - (current + sizeof(int32_t));
long_at_put(current, imm32);
current = next;
next = long_at(next);
}
// Fix up last fixup on linked list.
int last_imm32 = pos - (current + sizeof(int32_t));
long_at_put(current, last_imm32);
}
L->bind_to(pos);
}
void Assembler::bind(Label* L) {
bind_to(L, pc_offset());
}
void Assembler::GrowBuffer() {
ASSERT(buffer_overflow());
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // the new buffer
if (buffer_size_ < 4*KB) {
desc.buffer_size = 4*KB;
} else {
desc.buffer_size = 2*buffer_size_;
}
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if ((desc.buffer_size > kMaximalBufferSize) ||
(desc.buffer_size > Heap::MaxOldGenerationSize())) {
V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
}
// Setup new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.instr_size = pc_offset();
desc.reloc_size =
static_cast<int>((buffer_ + buffer_size_) - (reloc_info_writer.pos()));
// Clear the buffer in debug mode. Use 'int3' instructions to make
// sure to get into problems if we ever run uninitialized code.
#ifdef DEBUG
memset(desc.buffer, 0xCC, desc.buffer_size);
#endif
// Copy the data.
intptr_t pc_delta = desc.buffer - buffer_;
intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
(buffer_ + buffer_size_);
memmove(desc.buffer, buffer_, desc.instr_size);
memmove(rc_delta + reloc_info_writer.pos(),
reloc_info_writer.pos(), desc.reloc_size);
// Switch buffers.
if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
spare_buffer_ = buffer_;
} else {
DeleteArray(buffer_);
}
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
if (last_pc_ != NULL) {
last_pc_ += pc_delta;
}
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// Relocate runtime entries.
for (RelocIterator it(desc); !it.done(); it.next()) {
RelocInfo::Mode rmode = it.rinfo()->rmode();
if (rmode == RelocInfo::INTERNAL_REFERENCE) {
intptr_t* p = reinterpret_cast<intptr_t*>(it.rinfo()->pc());
if (*p != 0) { // 0 means uninitialized.
*p += pc_delta;
}
}
}
ASSERT(!buffer_overflow());
}
void Assembler::emit_operand(int code, const Operand& adr) {
ASSERT(is_uint3(code));
const unsigned length = adr.len_;
ASSERT(length > 0);
// Emit updated ModR/M byte containing the given register.
ASSERT((adr.buf_[0] & 0x38) == 0);
pc_[0] = adr.buf_[0] | code << 3;
// Emit the rest of the encoded operand.
for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
pc_ += length;
}
// Assembler Instruction implementations.
void Assembler::arithmetic_op(byte opcode, Register reg, const Operand& op) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(reg, op);
emit(opcode);
emit_operand(reg, op);
}
void Assembler::arithmetic_op(byte opcode, Register reg, Register rm_reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(reg, rm_reg);
emit(opcode);
emit_modrm(reg, rm_reg);
}
void Assembler::arithmetic_op_16(byte opcode, Register reg, Register rm_reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(reg, rm_reg);
emit(opcode);
emit_modrm(reg, rm_reg);
}
void Assembler::arithmetic_op_16(byte opcode,
Register reg,
const Operand& rm_reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(reg, rm_reg);
emit(opcode);
emit_operand(reg, rm_reg);
}
void Assembler::arithmetic_op_32(byte opcode, Register reg, Register rm_reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(reg, rm_reg);
emit(opcode);
emit_modrm(reg, rm_reg);
}
void Assembler::arithmetic_op_32(byte opcode,
Register reg,
const Operand& rm_reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(reg, rm_reg);
emit(opcode);
emit_operand(reg, rm_reg);
}
void Assembler::immediate_arithmetic_op(byte subcode,
Register dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_modrm(subcode, dst);
emit(src.value_);
} else if (dst.is(rax)) {
emit(0x05 | (subcode << 3));
emitl(src.value_);
} else {
emit(0x81);
emit_modrm(subcode, dst);
emitl(src.value_);
}
}
void Assembler::immediate_arithmetic_op(byte subcode,
const Operand& dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_operand(subcode, dst);
emit(src.value_);
} else {
emit(0x81);
emit_operand(subcode, dst);
emitl(src.value_);
}
}
void Assembler::immediate_arithmetic_op_16(byte subcode,
Register dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66); // Operand size override prefix.
emit_optional_rex_32(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_modrm(subcode, dst);
emit(src.value_);
} else if (dst.is(rax)) {
emit(0x05 | (subcode << 3));
emitw(src.value_);
} else {
emit(0x81);
emit_modrm(subcode, dst);
emitw(src.value_);
}
}
void Assembler::immediate_arithmetic_op_16(byte subcode,
const Operand& dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66); // Operand size override prefix.
emit_optional_rex_32(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_operand(subcode, dst);
emit(src.value_);
} else {
emit(0x81);
emit_operand(subcode, dst);
emitw(src.value_);
}
}
void Assembler::immediate_arithmetic_op_32(byte subcode,
Register dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_modrm(subcode, dst);
emit(src.value_);
} else if (dst.is(rax)) {
emit(0x05 | (subcode << 3));
emitl(src.value_);
} else {
emit(0x81);
emit_modrm(subcode, dst);
emitl(src.value_);
}
}
void Assembler::immediate_arithmetic_op_32(byte subcode,
const Operand& dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
if (is_int8(src.value_)) {
emit(0x83);
emit_operand(subcode, dst);
emit(src.value_);
} else {
emit(0x81);
emit_operand(subcode, dst);
emitl(src.value_);
}
}
void Assembler::immediate_arithmetic_op_8(byte subcode,
const Operand& dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
ASSERT(is_int8(src.value_) || is_uint8(src.value_));
emit(0x80);
emit_operand(subcode, dst);
emit(src.value_);
}
void Assembler::immediate_arithmetic_op_8(byte subcode,
Register dst,
Immediate src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (dst.code() > 3) {
// Use 64-bit mode byte registers.
emit_rex_64(dst);
}
ASSERT(is_int8(src.value_) || is_uint8(src.value_));
emit(0x80);
emit_modrm(subcode, dst);
emit(src.value_);
}
void Assembler::shift(Register dst, Immediate shift_amount, int subcode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint6(shift_amount.value_)); // illegal shift count
if (shift_amount.value_ == 1) {
emit_rex_64(dst);
emit(0xD1);
emit_modrm(subcode, dst);
} else {
emit_rex_64(dst);
emit(0xC1);
emit_modrm(subcode, dst);
emit(shift_amount.value_);
}
}
void Assembler::shift(Register dst, int subcode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xD3);
emit_modrm(subcode, dst);
}
void Assembler::shift_32(Register dst, int subcode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xD3);
emit_modrm(subcode, dst);
}
void Assembler::shift_32(Register dst, Immediate shift_amount, int subcode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint5(shift_amount.value_)); // illegal shift count
if (shift_amount.value_ == 1) {
emit_optional_rex_32(dst);
emit(0xD1);
emit_modrm(subcode, dst);
} else {
emit_optional_rex_32(dst);
emit(0xC1);
emit_modrm(subcode, dst);
emit(shift_amount.value_);
}
}
void Assembler::bt(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src, dst);
emit(0x0F);
emit(0xA3);
emit_operand(src, dst);
}
void Assembler::bts(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src, dst);
emit(0x0F);
emit(0xAB);
emit_operand(src, dst);
}
void Assembler::call(Label* L) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// 1110 1000 #32-bit disp.
emit(0xE8);
if (L->is_bound()) {
int offset = L->pos() - pc_offset() - sizeof(int32_t);
ASSERT(offset <= 0);
emitl(offset);
} else if (L->is_linked()) {
emitl(L->pos());
L->link_to(pc_offset() - sizeof(int32_t));
} else {
ASSERT(L->is_unused());
int32_t current = pc_offset();
emitl(current);
L->link_to(current);
}
}
void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// 1110 1000 #32-bit disp.
emit(0xE8);
emit_code_target(target, rmode);
}
void Assembler::call(Register adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode: FF /2 r64.
if (adr.high_bit()) {
emit_rex_64(adr);
}
emit(0xFF);
emit_modrm(0x2, adr);
}
void Assembler::call(const Operand& op) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode: FF /2 m64.
emit_rex_64(op);
emit(0xFF);
emit_operand(2, op);
}
void Assembler::clc() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF8);
}
void Assembler::cdq() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x99);
}
void Assembler::cmovq(Condition cc, Register dst, Register src) {
if (cc == always) {
movq(dst, src);
} else if (cc == never) {
return;
}
// No need to check CpuInfo for CMOV support, it's a required part of the
// 64-bit architecture.
ASSERT(cc >= 0); // Use mov for unconditional moves.
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode: REX.W 0f 40 + cc /r.
emit_rex_64(dst, src);
emit(0x0f);
emit(0x40 + cc);
emit_modrm(dst, src);
}
void Assembler::cmovq(Condition cc, Register dst, const Operand& src) {
if (cc == always) {
movq(dst, src);
} else if (cc == never) {
return;
}
ASSERT(cc >= 0);
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode: REX.W 0f 40 + cc /r.
emit_rex_64(dst, src);
emit(0x0f);
emit(0x40 + cc);
emit_operand(dst, src);
}
void Assembler::cmovl(Condition cc, Register dst, Register src) {
if (cc == always) {
movl(dst, src);
} else if (cc == never) {
return;
}
ASSERT(cc >= 0);
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode: 0f 40 + cc /r.
emit_optional_rex_32(dst, src);
emit(0x0f);
emit(0x40 + cc);
emit_modrm(dst, src);
}
void Assembler::cmovl(Condition cc, Register dst, const Operand& src) {
if (cc == always) {
movl(dst, src);
} else if (cc == never) {
return;
}
ASSERT(cc >= 0);
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode: 0f 40 + cc /r.
emit_optional_rex_32(dst, src);
emit(0x0f);
emit(0x40 + cc);
emit_operand(dst, src);
}
void Assembler::cmpb_al(Immediate imm8) {
ASSERT(is_int8(imm8.value_) || is_uint8(imm8.value_));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x3c);
emit(imm8.value_);
}
void Assembler::cpuid() {
ASSERT(CpuFeatures::IsEnabled(CPUID));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x0F);
emit(0xA2);
}
void Assembler::cqo() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64();
emit(0x99);
}
void Assembler::decq(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xFF);
emit_modrm(0x1, dst);
}
void Assembler::decq(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xFF);
emit_operand(1, dst);
}
void Assembler::decl(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xFF);
emit_modrm(0x1, dst);
}
void Assembler::decl(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xFF);
emit_operand(1, dst);
}
void Assembler::decb(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (dst.code() > 3) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst);
}
emit(0xFE);
emit_modrm(0x1, dst);
}
void Assembler::decb(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xFE);
emit_operand(1, dst);
}
void Assembler::enter(Immediate size) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xC8);
emitw(size.value_); // 16 bit operand, always.
emit(0);
}
void Assembler::hlt() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF4);
}
void Assembler::idivq(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src);
emit(0xF7);
emit_modrm(0x7, src);
}
void Assembler::idivl(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(src);
emit(0xF7);
emit_modrm(0x7, src);
}
void Assembler::imul(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src);
emit(0xF7);
emit_modrm(0x5, src);
}
void Assembler::imul(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x0F);
emit(0xAF);
emit_modrm(dst, src);
}
void Assembler::imul(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x0F);
emit(0xAF);
emit_operand(dst, src);
}
void Assembler::imul(Register dst, Register src, Immediate imm) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
if (is_int8(imm.value_)) {
emit(0x6B);
emit_modrm(dst, src);
emit(imm.value_);
} else {
emit(0x69);
emit_modrm(dst, src);
emitl(imm.value_);
}
}
void Assembler::imull(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xAF);
emit_modrm(dst, src);
}
void Assembler::incq(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xFF);
emit_modrm(0x0, dst);
}
void Assembler::incq(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xFF);
emit_operand(0, dst);
}
void Assembler::incl(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xFF);
emit_operand(0, dst);
}
void Assembler::int3() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xCC);
}
void Assembler::j(Condition cc, Label* L) {
if (cc == always) {
jmp(L);
return;
} else if (cc == never) {
return;
}
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint4(cc));
if (L->is_bound()) {
const int short_size = 2;
const int long_size = 6;
int offs = L->pos() - pc_offset();
ASSERT(offs <= 0);
if (is_int8(offs - short_size)) {
// 0111 tttn #8-bit disp.
emit(0x70 | cc);
emit((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
emitl(offs - long_size);
}
} else if (L->is_linked()) {
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
emitl(L->pos());
L->link_to(pc_offset() - sizeof(int32_t));
} else {
ASSERT(L->is_unused());
emit(0x0F);
emit(0x80 | cc);
int32_t current = pc_offset();
emitl(current);
L->link_to(current);
}
}
void Assembler::j(Condition cc,
Handle<Code> target,
RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint4(cc));
// 0000 1111 1000 tttn #32-bit disp.
emit(0x0F);
emit(0x80 | cc);
emit_code_target(target, rmode);
}
void Assembler::jmp(Label* L) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (L->is_bound()) {
int offs = L->pos() - pc_offset() - 1;
ASSERT(offs <= 0);
if (is_int8(offs - sizeof(int8_t))) {
// 1110 1011 #8-bit disp.
emit(0xEB);
emit((offs - sizeof(int8_t)) & 0xFF);
} else {
// 1110 1001 #32-bit disp.
emit(0xE9);
emitl(offs - sizeof(int32_t));
}
} else if (L->is_linked()) {
// 1110 1001 #32-bit disp.
emit(0xE9);
emitl(L->pos());
L->link_to(pc_offset() - sizeof(int32_t));
} else {
// 1110 1001 #32-bit disp.
ASSERT(L->is_unused());
emit(0xE9);
int32_t current = pc_offset();
emitl(current);
L->link_to(current);
}
}
void Assembler::jmp(Handle<Code> target, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// 1110 1001 #32-bit disp.
emit(0xE9);
emit_code_target(target, rmode);
}
void Assembler::jmp(Register target) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode FF/4 r64.
if (target.high_bit()) {
emit_rex_64(target);
}
emit(0xFF);
emit_modrm(0x4, target);
}
void Assembler::jmp(const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Opcode FF/4 m64.
emit_optional_rex_32(src);
emit(0xFF);
emit_operand(0x4, src);
}
void Assembler::lea(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x8D);
emit_operand(dst, src);
}
void Assembler::load_rax(void* value, RelocInfo::Mode mode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x48); // REX.W
emit(0xA1);
emitq(reinterpret_cast<uintptr_t>(value), mode);
}
void Assembler::load_rax(ExternalReference ref) {
load_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE);
}
void Assembler::leave() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xC9);
}
void Assembler::movb(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_32(dst, src);
emit(0x8A);
emit_operand(dst, src);
}
void Assembler::movb(Register dst, Immediate imm) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_32(dst);
emit(0xC6);
emit_modrm(0x0, dst);
emit(imm.value_);
}
void Assembler::movb(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_32(src, dst);
emit(0x88);
emit_operand(src, dst);
}
void Assembler::movw(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(src, dst);
emit(0x89);
emit_operand(src, dst);
}
void Assembler::movl(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst, src);
emit(0x8B);
emit_operand(dst, src);
}
void Assembler::movl(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst, src);
emit(0x8B);
emit_modrm(dst, src);
}
void Assembler::movl(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(src, dst);
emit(0x89);
emit_operand(src, dst);
}
void Assembler::movl(const Operand& dst, Immediate value) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xC7);
emit_operand(0x0, dst);
emit(value); // Only 32-bit immediates are possible, not 8-bit immediates.
}
void Assembler::movl(Register dst, Immediate value) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xC7);
emit_modrm(0x0, dst);
emit(value); // Only 32-bit immediates are possible, not 8-bit immediates.
}
void Assembler::movq(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x8B);
emit_operand(dst, src);
}
void Assembler::movq(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x8B);
emit_modrm(dst, src);
}
void Assembler::movq(Register dst, Immediate value) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xC7);
emit_modrm(0x0, dst);
emit(value); // Only 32-bit immediates are possible, not 8-bit immediates.
}
void Assembler::movq(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src, dst);
emit(0x89);
emit_operand(src, dst);
}
void Assembler::movq(Register dst, void* value, RelocInfo::Mode rmode) {
// This method must not be used with heap object references. The stored
// address is not GC safe. Use the handle version instead.
ASSERT(rmode > RelocInfo::LAST_GCED_ENUM);
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xB8 | dst.low_bits());
emitq(reinterpret_cast<uintptr_t>(value), rmode);
}
void Assembler::movq(Register dst, int64_t value, RelocInfo::Mode rmode) {
// Non-relocatable values might not need a 64-bit representation.
if (rmode == RelocInfo::NONE) {
// Sadly, there is no zero or sign extending move for 8-bit immediates.
if (is_int32(value)) {
movq(dst, Immediate(static_cast<int32_t>(value)));
return;
} else if (is_uint32(value)) {
movl(dst, Immediate(static_cast<int32_t>(value)));
return;
}
// Value cannot be represented by 32 bits, so do a full 64 bit immediate
// value.
}
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xB8 | dst.low_bits());
emitq(value, rmode);
}
void Assembler::movq(Register dst, ExternalReference ref) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xB8 | dst.low_bits());
emitq(reinterpret_cast<uintptr_t>(ref.address()),
RelocInfo::EXTERNAL_REFERENCE);
}
void Assembler::movq(const Operand& dst, Immediate value) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xC7);
emit_operand(0, dst);
emit(value);
}
// Loads the ip-relative location of the src label into the target location
// (as a 32-bit offset sign extended to 64-bit).
void Assembler::movl(const Operand& dst, Label* src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xC7);
emit_operand(0, dst);
if (src->is_bound()) {
int offset = src->pos() - pc_offset() - sizeof(int32_t);
ASSERT(offset <= 0);
emitl(offset);
} else if (src->is_linked()) {
emitl(src->pos());
src->link_to(pc_offset() - sizeof(int32_t));
} else {
ASSERT(src->is_unused());
int32_t current = pc_offset();
emitl(current);
src->link_to(current);
}
}
void Assembler::movq(Register dst, Handle<Object> value, RelocInfo::Mode mode) {
// If there is no relocation info, emit the value of the handle efficiently
// (possibly using less that 8 bytes for the value).
if (mode == RelocInfo::NONE) {
// There is no possible reason to store a heap pointer without relocation
// info, so it must be a smi.
ASSERT(value->IsSmi());
movq(dst, reinterpret_cast<int64_t>(*value), RelocInfo::NONE);
} else {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(value->IsHeapObject());
ASSERT(!Heap::InNewSpace(*value));
emit_rex_64(dst);
emit(0xB8 | dst.low_bits());
emitq(reinterpret_cast<uintptr_t>(value.location()), mode);
}
}
void Assembler::movsxbq(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_32(dst, src);
emit(0x0F);
emit(0xBE);
emit_operand(dst, src);
}
void Assembler::movsxwq(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x0F);
emit(0xBF);
emit_operand(dst, src);
}
void Assembler::movsxlq(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x63);
emit_modrm(dst, src);
}
void Assembler::movsxlq(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x63);
emit_operand(dst, src);
}
void Assembler::movzxbq(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x0F);
emit(0xB6);
emit_operand(dst, src);
}
void Assembler::movzxbl(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB6);
emit_operand(dst, src);
}
void Assembler::movzxwq(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x0F);
emit(0xB7);
emit_operand(dst, src);
}
void Assembler::movzxwl(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0xB7);
emit_operand(dst, src);
}
void Assembler::repmovsb() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF3);
emit(0xA4);
}
void Assembler::repmovsw() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66); // Operand size override.
emit(0xF3);
emit(0xA4);
}
void Assembler::repmovsl() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF3);
emit(0xA5);
}
void Assembler::repmovsq() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF3);
emit_rex_64();
emit(0xA5);
}
void Assembler::mul(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src);
emit(0xF7);
emit_modrm(0x4, src);
}
void Assembler::neg(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xF7);
emit_modrm(0x3, dst);
}
void Assembler::negl(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst);
emit(0xF7);
emit_modrm(0x3, dst);
}
void Assembler::neg(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xF7);
emit_operand(3, dst);
}
void Assembler::nop() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x90);
}
void Assembler::not_(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xF7);
emit_modrm(0x2, dst);
}
void Assembler::not_(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst);
emit(0xF7);
emit_operand(2, dst);
}
void Assembler::nop(int n) {
// The recommended muti-byte sequences of NOP instructions from the Intel 64
// and IA-32 Architectures Software Developer's Manual.
//
// Length Assembly Byte Sequence
// 2 bytes 66 NOP 66 90H
// 3 bytes NOP DWORD ptr [EAX] 0F 1F 00H
// 4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
// 5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
// 6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
// 7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
// 8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
// 9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 66 0F 1F 84 00 00 00 00
// 00000000H] 00H
ASSERT(1 <= n);
ASSERT(n <= 9);
EnsureSpace ensure_space(this);
last_pc_ = pc_;
switch (n) {
case 1:
emit(0x90);
return;
case 2:
emit(0x66);
emit(0x90);
return;
case 3:
emit(0x0f);
emit(0x1f);
emit(0x00);
return;
case 4:
emit(0x0f);
emit(0x1f);
emit(0x40);
emit(0x00);
return;
case 5:
emit(0x0f);
emit(0x1f);
emit(0x44);
emit(0x00);
emit(0x00);
return;
case 6:
emit(0x66);
emit(0x0f);
emit(0x1f);
emit(0x44);
emit(0x00);
emit(0x00);
return;
case 7:
emit(0x0f);
emit(0x1f);
emit(0x80);
emit(0x00);
emit(0x00);
emit(0x00);
emit(0x00);
return;
case 8:
emit(0x0f);
emit(0x1f);
emit(0x84);
emit(0x00);
emit(0x00);
emit(0x00);
emit(0x00);
emit(0x00);
return;
case 9:
emit(0x66);
emit(0x0f);
emit(0x1f);
emit(0x84);
emit(0x00);
emit(0x00);
emit(0x00);
emit(0x00);
emit(0x00);
return;
}
}
void Assembler::pop(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (dst.high_bit()) {
emit_rex_64(dst);
}
emit(0x58 | dst.low_bits());
}
void Assembler::pop(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst); // Could be omitted in some cases.
emit(0x8F);
emit_operand(0, dst);
}
void Assembler::popfq() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x9D);
}
void Assembler::push(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (src.high_bit()) {
emit_rex_64(src);
}
emit(0x50 | src.low_bits());
}
void Assembler::push(const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src); // Could be omitted in some cases.
emit(0xFF);
emit_operand(6, src);
}
void Assembler::push(Immediate value) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (is_int8(value.value_)) {
emit(0x6A);
emit(value.value_); // Emit low byte of value.
} else {
emit(0x68);
emitl(value.value_);
}
}
void Assembler::pushfq() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x9C);
}
void Assembler::rdtsc() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x0F);
emit(0x31);
}
void Assembler::ret(int imm16) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint16(imm16));
if (imm16 == 0) {
emit(0xC3);
} else {
emit(0xC2);
emit(imm16 & 0xFF);
emit((imm16 >> 8) & 0xFF);
}
}
void Assembler::setcc(Condition cc, Register reg) {
if (cc > last_condition) {
movb(reg, Immediate(cc == always ? 1 : 0));
return;
}
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint4(cc));
if (reg.code() > 3) { // Use x64 byte registers, where different.
emit_rex_32(reg);
}
emit(0x0F);
emit(0x90 | cc);
emit_modrm(0x0, reg);
}
void Assembler::shld(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src, dst);
emit(0x0F);
emit(0xA5);
emit_modrm(src, dst);
}
void Assembler::shrd(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(src, dst);
emit(0x0F);
emit(0xAD);
emit_modrm(src, dst);
}
void Assembler::xchg(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (src.is(rax) || dst.is(rax)) { // Single-byte encoding
Register other = src.is(rax) ? dst : src;
emit_rex_64(other);
emit(0x90 | other.low_bits());
} else {
emit_rex_64(src, dst);
emit(0x87);
emit_modrm(src, dst);
}
}
void Assembler::store_rax(void* dst, RelocInfo::Mode mode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x48); // REX.W
emit(0xA3);
emitq(reinterpret_cast<uintptr_t>(dst), mode);
}
void Assembler::store_rax(ExternalReference ref) {
store_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE);
}
void Assembler::testb(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (dst.code() > 3 || src.code() > 3) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(dst, src);
}
emit(0x84);
emit_modrm(dst, src);
}
void Assembler::testb(Register reg, Immediate mask) {
ASSERT(is_int8(mask.value_) || is_uint8(mask.value_));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (reg.is(rax)) {
emit(0xA8);
emit(mask.value_); // Low byte emitted.
} else {
if (reg.code() > 3) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg);
}
emit(0xF6);
emit_modrm(0x0, reg);
emit(mask.value_); // Low byte emitted.
}
}
void Assembler::testb(const Operand& op, Immediate mask) {
ASSERT(is_int8(mask.value_) || is_uint8(mask.value_));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(rax, op);
emit(0xF6);
emit_operand(rax, op); // Operation code 0
emit(mask.value_); // Low byte emitted.
}
void Assembler::testb(const Operand& op, Register reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (reg.code() > 3) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg, op);
} else {
emit_optional_rex_32(reg, op);
}
emit(0x84);
emit_operand(reg, op);
}
void Assembler::testl(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(dst, src);
emit(0x85);
emit_modrm(dst, src);
}
void Assembler::testl(Register reg, Immediate mask) {
// testl with a mask that fits in the low byte is exactly testb.
if (is_uint8(mask.value_)) {
testb(reg, mask);
return;
}
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (reg.is(rax)) {
emit(0xA9);
emit(mask);
} else {
emit_optional_rex_32(rax, reg);
emit(0xF7);
emit_modrm(0x0, reg);
emit(mask);
}
}
void Assembler::testl(const Operand& op, Immediate mask) {
// testl with a mask that fits in the low byte is exactly testb.
if (is_uint8(mask.value_)) {
testb(op, mask);
return;
}
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(rax, op);
emit(0xF7);
emit_operand(rax, op); // Operation code 0
emit(mask);
}
void Assembler::testq(const Operand& op, Register reg) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(reg, op);
emit(0x85);
emit_operand(reg, op);
}
void Assembler::testq(Register dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_rex_64(dst, src);
emit(0x85);
emit_modrm(dst, src);
}
void Assembler::testq(Register dst, Immediate mask) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (dst.is(rax)) {
emit_rex_64();
emit(0xA9);
emit(mask);
} else {
emit_rex_64(dst);
emit(0xF7);
emit_modrm(0, dst);
emit(mask);
}
}
// FPU instructions.
void Assembler::fld(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xD9, 0xC0, i);
}
void Assembler::fld1() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xE8);
}
void Assembler::fldz() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xEE);
}
void Assembler::fld_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xD9);
emit_operand(0, adr);
}
void Assembler::fld_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDD);
emit_operand(0, adr);
}
void Assembler::fstp_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xD9);
emit_operand(3, adr);
}
void Assembler::fstp_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDD);
emit_operand(3, adr);
}
void Assembler::fstp(int index) {
ASSERT(is_uint3(index));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDD, 0xD8, index);
}
void Assembler::fild_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(0, adr);
}
void Assembler::fild_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDF);
emit_operand(5, adr);
}
void Assembler::fistp_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(3, adr);
}
void Assembler::fisttp_s(const Operand& adr) {
ASSERT(CpuFeatures::IsEnabled(SSE3));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(1, adr);
}
void Assembler::fisttp_d(const Operand& adr) {
ASSERT(CpuFeatures::IsEnabled(SSE3));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDD);
emit_operand(1, adr);
}
void Assembler::fist_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDB);
emit_operand(2, adr);
}
void Assembler::fistp_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDF);
emit_operand(7, adr);
}
void Assembler::fabs() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xE1);
}
void Assembler::fchs() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xE0);
}
void Assembler::fcos() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xFF);
}
void Assembler::fsin() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xFE);
}
void Assembler::fadd(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xC0, i);
}
void Assembler::fsub(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fisub_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_optional_rex_32(adr);
emit(0xDA);
emit_operand(4, adr);
}
void Assembler::fmul(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fdiv(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xF8, i);
}
void Assembler::faddp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fsubp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xE8, i);
}
void Assembler::fsubrp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xE0, i);
}
void Assembler::fmulp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fdivp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xF8, i);
}
void Assembler::fprem() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xF8);
}
void Assembler::fprem1() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xF5);
}
void Assembler::fxch(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fincstp() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xF7);
}
void Assembler::ffree(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDD, 0xC0, i);
}
void Assembler::ftst() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xE4);
}
void Assembler::fucomp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDD, 0xE8, i);
}
void Assembler::fucompp() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xDA);
emit(0xE9);
}
void Assembler::fucomi(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xDB);
emit(0xE8 + i);
}
void Assembler::fucomip() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xDF);
emit(0xE9);
}
void Assembler::fcompp() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xDE);
emit(0xD9);
}
void Assembler::fnstsw_ax() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xDF);
emit(0xE0);
}
void Assembler::fwait() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x9B);
}
void Assembler::frndint() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xD9);
emit(0xFC);
}
void Assembler::fnclex() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xDB);
emit(0xE2);
}
void Assembler::sahf() {
// TODO(X64): Test for presence. Not all 64-bit intel CPU's have sahf
// in 64-bit mode. Test CpuID.
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x9E);
}
void Assembler::emit_farith(int b1, int b2, int i) {
ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode
ASSERT(is_uint3(i)); // illegal stack offset
emit(b1);
emit(b2 + i);
}
// SSE 2 operations.
void Assembler::movsd(const Operand& dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2); // double
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2); // double
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2); // double
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::cvttss2si(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF3);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_operand(dst, src);
}
void Assembler::cvttsd2si(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2C);
emit_operand(dst, src);
}
void Assembler::cvtlsi2sd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtlsi2sd(XMMRegister dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtqsi2sd(XMMRegister dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_rex_64(dst, src);
emit(0x0F);
emit(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::addsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x58);
emit_sse_operand(dst, src);
}
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x59);
emit_sse_operand(dst, src);
}
void Assembler::subsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x5C);
emit_sse_operand(dst, src);
}
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x5E);
emit_sse_operand(dst, src);
}
void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0f);
emit(0x57);
emit_sse_operand(dst, src);
}
void Assembler::comisd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0f);
emit(0x2f);
emit_sse_operand(dst, src);
}
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0f);
emit(0x2e);
emit_sse_operand(dst, src);
}
void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
Register ireg = { reg.code() };
emit_operand(ireg, adr);
}
void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
}
void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
}
// Relocation information implementations.
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
ASSERT(rmode != RelocInfo::NONE);
// Don't record external references unless the heap will be serialized.
if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
!Serializer::enabled() &&
!FLAG_debug_code) {
return;
}
RelocInfo rinfo(pc_, rmode, data);
reloc_info_writer.Write(&rinfo);
}
void Assembler::RecordJSReturn() {
WriteRecordedPositions();
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::JS_RETURN);
}
void Assembler::RecordComment(const char* msg) {
if (FLAG_debug_code) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
}
}
void Assembler::RecordPosition(int pos) {
ASSERT(pos != RelocInfo::kNoPosition);
ASSERT(pos >= 0);
current_position_ = pos;
}
void Assembler::RecordStatementPosition(int pos) {
ASSERT(pos != RelocInfo::kNoPosition);
ASSERT(pos >= 0);
current_statement_position_ = pos;
}
void Assembler::WriteRecordedPositions() {
// Write the statement position if it is different from what was written last
// time.
if (current_statement_position_ != written_statement_position_) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
written_statement_position_ = current_statement_position_;
}
// Write the position if it is different from what was written last time and
// also different from the written statement position.
if (current_position_ != written_position_ &&
current_position_ != written_statement_position_) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::POSITION, current_position_);
written_position_ = current_position_;
}
}
const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask |
1 << RelocInfo::INTERNAL_REFERENCE |
1 << RelocInfo::JS_RETURN;
} } // namespace v8::internal