blob: 30db660de0e6c7cbffb9a6b1d802e9ec06559e19 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "parser.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right, with the
// return address on top of them. The actual argument count matches the
// formal parameter count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called (ie, ourselves)
// o rsi: our context
// o rbp: our caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-x64.h for its layout.
void FullCodeGenerator::Generate(CompilationInfo* info, Mode mode) {
ASSERT(info_ == NULL);
info_ = info;
SetFunctionPosition(function());
if (mode == PRIMARY) {
__ push(rbp); // Caller's frame pointer.
__ movq(rbp, rsp);
__ push(rsi); // Callee's context.
__ push(rdi); // Callee's JS Function.
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = scope()->num_stack_slots();
if (locals_count == 1) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
} else if (locals_count > 1) {
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
for (int i = 0; i < locals_count; i++) {
__ push(rdx);
}
}
}
bool function_in_register = true;
// Possibly allocate a local context.
if (scope()->num_heap_slots() > 0) {
Comment cmnt(masm_, "[ Allocate local context");
// Argument to NewContext is the function, which is still in rdi.
__ push(rdi);
__ CallRuntime(Runtime::kNewContext, 1);
function_in_register = false;
// Context is returned in both rax and rsi. It replaces the context
// passed to us. It's saved in the stack and kept live in rsi.
__ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Slot* slot = scope()->parameter(i)->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ movq(rax, Operand(rbp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(slot->index());
__ movq(Operand(rsi, context_offset), rax);
// Update the write barrier. This clobbers all involved
// registers, so we have use a third register to avoid
// clobbering rsi.
__ movq(rcx, rsi);
__ RecordWrite(rcx, context_offset, rax, rbx);
}
}
}
// Possibly allocate an arguments object.
Variable* arguments = scope()->arguments()->AsVariable();
if (arguments != NULL) {
// Arguments object must be allocated after the context object, in
// case the "arguments" or ".arguments" variables are in the context.
Comment cmnt(masm_, "[ Allocate arguments object");
if (function_in_register) {
__ push(rdi);
} else {
__ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// The receiver is just before the parameters on the caller's stack.
int offset = scope()->num_parameters() * kPointerSize;
__ lea(rdx,
Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
__ push(rdx);
__ Push(Smi::FromInt(scope()->num_parameters()));
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiver and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
__ CallStub(&stub);
// Store new arguments object in both "arguments" and ".arguments" slots.
__ movq(rcx, rax);
Move(arguments->slot(), rax, rbx, rdx);
Slot* dot_arguments_slot =
scope()->arguments_shadow()->AsVariable()->slot();
Move(dot_arguments_slot, rcx, rbx, rdx);
}
}
{ Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(scope()->declarations());
}
{ Comment cmnt(masm_, "[ Stack check");
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
StackCheckStub stub;
__ CallStub(&stub);
__ bind(&ok);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
{ Comment cmnt(masm_, "[ Body");
ASSERT(loop_depth() == 0);
VisitStatements(function()->body());
ASSERT(loop_depth() == 0);
}
{ Comment cmnt(masm_, "[ return <undefined>;");
// Emit a 'return undefined' in case control fell off the end of the body.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
EmitReturnSequence(function()->end_position());
}
}
void FullCodeGenerator::EmitReturnSequence(int position) {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ jmp(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
CodeGenerator::RecordPositions(masm_, position);
__ RecordJSReturn();
// Do not use the leave instruction here because it is too short to
// patch with the code required by the debugger.
__ movq(rsp, rbp);
__ pop(rbp);
__ ret((scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint. We
// have just generated "movq rsp, rbp; pop rbp; ret k" with length 7
// (3 + 1 + 3).
const int kPadding = Assembler::kJSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
// Check that the size of the code used for returning matches what is
// expected by the debugger.
ASSERT_EQ(Assembler::kJSReturnSequenceLength,
masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
#endif
}
}
void FullCodeGenerator::Apply(Expression::Context context, Register reg) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue:
// Move value into place.
switch (location_) {
case kAccumulator:
if (!reg.is(result_register())) __ movq(result_register(), reg);
break;
case kStack:
__ push(reg);
break;
}
break;
case Expression::kTest:
// For simplicity we always test the accumulator register.
if (!reg.is(result_register())) __ movq(result_register(), reg);
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
if (!reg.is(result_register())) __ movq(result_register(), reg);
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue: {
MemOperand slot_operand = EmitSlotSearch(slot, result_register());
switch (location_) {
case kAccumulator:
__ movq(result_register(), slot_operand);
break;
case kStack:
// Memory operands can be pushed directly.
__ push(slot_operand);
break;
}
break;
}
case Expression::kTest:
Move(result_register(), slot);
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
Move(result_register(), slot);
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ Move(result_register(), lit->handle());
break;
case kStack:
__ Push(lit->handle());
break;
}
break;
case Expression::kTest:
__ Move(result_register(), lit->handle());
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
__ Move(result_register(), lit->handle());
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::ApplyTOS(Expression::Context context) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ Drop(1);
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ pop(result_register());
break;
case kStack:
break;
}
break;
case Expression::kTest:
__ pop(result_register());
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ pop(result_register());
break;
case kStack:
__ movq(result_register(), Operand(rsp, 0));
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::DropAndApply(int count,
Expression::Context context,
Register reg) {
ASSERT(count > 0);
ASSERT(!reg.is(rsp));
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ Drop(count);
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ Drop(count);
if (!reg.is(result_register())) __ movq(result_register(), reg);
break;
case kStack:
if (count > 1) __ Drop(count - 1);
__ movq(Operand(rsp, 0), reg);
break;
}
break;
case Expression::kTest:
__ Drop(count);
if (!reg.is(result_register())) __ movq(result_register(), reg);
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ Drop(count);
if (!reg.is(result_register())) __ movq(result_register(), reg);
break;
case kStack:
if (count > 1) __ Drop(count - 1);
__ movq(result_register(), reg);
__ movq(Operand(rsp, 0), result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context,
Label* materialize_true,
Label* materialize_false) {
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
ASSERT_EQ(materialize_true, materialize_false);
__ bind(materialize_true);
break;
case Expression::kValue: {
Label done;
switch (location_) {
case kAccumulator:
__ bind(materialize_true);
__ Move(result_register(), Factory::true_value());
__ jmp(&done);
__ bind(materialize_false);
__ Move(result_register(), Factory::false_value());
break;
case kStack:
__ bind(materialize_true);
__ Push(Factory::true_value());
__ jmp(&done);
__ bind(materialize_false);
__ Push(Factory::false_value());
break;
}
__ bind(&done);
break;
}
case Expression::kTest:
break;
case Expression::kValueTest:
__ bind(materialize_true);
switch (location_) {
case kAccumulator:
__ Move(result_register(), Factory::true_value());
break;
case kStack:
__ Push(Factory::true_value());
break;
}
__ jmp(true_label_);
break;
case Expression::kTestValue:
__ bind(materialize_false);
switch (location_) {
case kAccumulator:
__ Move(result_register(), Factory::false_value());
break;
case kStack:
__ Push(Factory::false_value());
break;
}
__ jmp(false_label_);
break;
}
}
void FullCodeGenerator::DoTest(Expression::Context context) {
// The value to test is in the accumulator. If the value might be needed
// on the stack (value/test and test/value contexts with a stack location
// desired), then the value is already duplicated on the stack.
ASSERT_NE(NULL, true_label_);
ASSERT_NE(NULL, false_label_);
// In value/test and test/value expression contexts with stack as the
// desired location, there is already an extra value on the stack. Use a
// label to discard it if unneeded.
Label discard;
Label* if_true = true_label_;
Label* if_false = false_label_;
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
case Expression::kValue:
UNREACHABLE();
case Expression::kTest:
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
break;
case kStack:
if_false = &discard;
break;
}
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
break;
case kStack:
if_true = &discard;
break;
}
break;
}
// Emit the inlined tests assumed by the stub.
__ CompareRoot(result_register(), Heap::kUndefinedValueRootIndex);
__ j(equal, if_false);
__ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
__ j(equal, if_true);
__ CompareRoot(result_register(), Heap::kFalseValueRootIndex);
__ j(equal, if_false);
ASSERT_EQ(0, kSmiTag);
__ SmiCompare(result_register(), Smi::FromInt(0));
__ j(equal, if_false);
Condition is_smi = masm_->CheckSmi(result_register());
__ j(is_smi, if_true);
// Save a copy of the value if it may be needed and isn't already saved.
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
case Expression::kValue:
UNREACHABLE();
case Expression::kTest:
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
__ push(result_register());
break;
case kStack:
break;
}
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ push(result_register());
break;
case kStack:
break;
}
break;
}
// Call the ToBoolean stub for all other cases.
ToBooleanStub stub;
__ push(result_register());
__ CallStub(&stub);
__ testq(rax, rax);
// The stub returns nonzero for true. Complete based on the context.
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
case Expression::kValue:
UNREACHABLE();
case Expression::kTest:
__ j(not_zero, true_label_);
__ jmp(false_label_);
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
__ j(zero, &discard);
__ pop(result_register());
__ jmp(true_label_);
break;
case kStack:
__ j(not_zero, true_label_);
break;
}
__ bind(&discard);
__ Drop(1);
__ jmp(false_label_);
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ j(not_zero, &discard);
__ pop(result_register());
__ jmp(false_label_);
break;
case kStack:
__ j(zero, false_label_);
break;
}
__ bind(&discard);
__ Drop(1);
__ jmp(true_label_);
break;
}
}
MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
return Operand(rbp, SlotOffset(slot));
case Slot::CONTEXT: {
int context_chain_length =
scope()->ContextChainLength(slot->var()->scope());
__ LoadContext(scratch, context_chain_length);
return CodeGenerator::ContextOperand(scratch, slot->index());
}
case Slot::LOOKUP:
UNREACHABLE();
}
UNREACHABLE();
return Operand(rax, 0);
}
void FullCodeGenerator::Move(Register destination, Slot* source) {
MemOperand location = EmitSlotSearch(source, destination);
__ movq(destination, location);
}
void FullCodeGenerator::Move(Slot* dst,
Register src,
Register scratch1,
Register scratch2) {
ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented.
ASSERT(!scratch1.is(src) && !scratch2.is(src));
MemOperand location = EmitSlotSearch(dst, scratch1);
__ movq(location, src);
// Emit the write barrier code if the location is in the heap.
if (dst->type() == Slot::CONTEXT) {
int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize;
__ RecordWrite(scratch1, offset, src, scratch2);
}
}
void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
Comment cmnt(masm_, "[ Declaration");
Variable* var = decl->proxy()->var();
ASSERT(var != NULL); // Must have been resolved.
Slot* slot = var->slot();
Property* prop = var->AsProperty();
if (slot != NULL) {
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
if (decl->mode() == Variable::CONST) {
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ movq(Operand(rbp, SlotOffset(slot)), kScratchRegister);
} else if (decl->fun() != NULL) {
VisitForValue(decl->fun(), kAccumulator);
__ movq(Operand(rbp, SlotOffset(slot)), result_register());
}
break;
case Slot::CONTEXT:
// We bypass the general EmitSlotSearch because we know more about
// this specific context.
// The variable in the decl always resides in the current context.
ASSERT_EQ(0, scope()->ContextChainLength(var->scope()));
if (FLAG_debug_code) {
// Check if we have the correct context pointer.
__ movq(rbx,
CodeGenerator::ContextOperand(rsi, Context::FCONTEXT_INDEX));
__ cmpq(rbx, rsi);
__ Check(equal, "Unexpected declaration in current context.");
}
if (decl->mode() == Variable::CONST) {
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ movq(CodeGenerator::ContextOperand(rsi, slot->index()),
kScratchRegister);
// No write barrier since the hole value is in old space.
} else if (decl->fun() != NULL) {
VisitForValue(decl->fun(), kAccumulator);
__ movq(CodeGenerator::ContextOperand(rsi, slot->index()),
result_register());
int offset = Context::SlotOffset(slot->index());
__ movq(rbx, rsi);
__ RecordWrite(rbx, offset, result_register(), rcx);
}
break;
case Slot::LOOKUP: {
__ push(rsi);
__ Push(var->name());
// Declaration nodes are always introduced in one of two modes.
ASSERT(decl->mode() == Variable::VAR ||
decl->mode() == Variable::CONST);
PropertyAttributes attr =
(decl->mode() == Variable::VAR) ? NONE : READ_ONLY;
__ Push(Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (decl->mode() == Variable::CONST) {
__ PushRoot(Heap::kTheHoleValueRootIndex);
} else if (decl->fun() != NULL) {
VisitForValue(decl->fun(), kStack);
} else {
__ Push(Smi::FromInt(0)); // no initial value!
}
__ CallRuntime(Runtime::kDeclareContextSlot, 4);
break;
}
}
} else if (prop != NULL) {
if (decl->fun() != NULL || decl->mode() == Variable::CONST) {
// We are declaring a function or constant that rewrites to a
// property. Use (keyed) IC to set the initial value.
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kStack);
if (decl->fun() != NULL) {
VisitForValue(decl->fun(), kAccumulator);
} else {
__ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex);
}
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// Absence of a test rax instruction following the call
// indicates that none of the load was inlined.
__ nop();
// Value in rax is ignored (declarations are statements). Receiver
// and key on stack are discarded.
__ Drop(2);
}
}
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ push(rsi); // The context is the first argument.
__ Push(pairs);
__ Push(Smi::FromInt(is_eval() ? 1 : 0));
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate =
Compiler::BuildBoilerplate(expr, script(), this);
if (HasStackOverflow()) return;
ASSERT(boilerplate->IsBoilerplate());
// Create a new closure.
__ push(rsi);
__ Push(boilerplate);
__ CallRuntime(Runtime::kNewClosure, 2);
Apply(context_, rax);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr->var(), context_);
}
void FullCodeGenerator::EmitVariableLoad(Variable* var,
Expression::Context context) {
// Four cases: non-this global variables, lookup slots, all other
// types of slots, and parameters that rewrite to explicit property
// accesses on the arguments object.
Slot* slot = var->slot();
Property* property = var->AsProperty();
if (var->is_global() && !var->is_this()) {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in rcx and the global
// object on the stack.
__ push(CodeGenerator::GlobalObject());
__ Move(rcx, var->name());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
// A test rax instruction following the call is used by the IC to
// indicate that the inobject property case was inlined. Ensure there
// is no test rax instruction here.
__ nop();
DropAndApply(1, context, rax);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
Comment cmnt(masm_, "Lookup slot");
__ push(rsi); // Context.
__ Push(var->name());
__ CallRuntime(Runtime::kLoadContextSlot, 2);
Apply(context, rax);
} else if (slot != NULL) {
Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
? "Context slot"
: "Stack slot");
Apply(context, slot);
} else {
Comment cmnt(masm_, "Rewritten parameter");
ASSERT_NOT_NULL(property);
// Rewritten parameter accesses are of the form "slot[literal]".
// Assert that the object is in a slot.
Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
ASSERT_NOT_NULL(object_var);
Slot* object_slot = object_var->slot();
ASSERT_NOT_NULL(object_slot);
// Load the object.
MemOperand object_loc = EmitSlotSearch(object_slot, rax);
__ push(object_loc);
// Assert that the key is a smi.
Literal* key_literal = property->key()->AsLiteral();
ASSERT_NOT_NULL(key_literal);
ASSERT(key_literal->handle()->IsSmi());
// Load the key.
__ Push(key_literal->handle());
// Do a keyed property load.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// Notice: We must not have a "test rax, ..." instruction after the
// call. It is treated specially by the LoadIC code.
__ nop();
// Drop key and object left on the stack by IC, and push the result.
DropAndApply(2, context, rax);
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label done;
// Registers will be used as follows:
// rdi = JS function.
// rbx = literals array.
// rax = regexp literal.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ movq(rax, FieldOperand(rbx, literal_offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &done);
// Create regexp literal using runtime function
// Result will be in rax.
__ push(rbx);
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->pattern());
__ Push(expr->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ bind(&done);
Apply(context_, rax);
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(rdi, JSFunction::kLiteralsOffset));
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->constant_properties());
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateObjectLiteral, 3);
} else {
__ CallRuntime(Runtime::kCreateObjectLiteralShallow, 3);
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in rax.
bool result_saved = false;
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(rax); // Save result on the stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
VisitForValue(value, kAccumulator);
__ Move(rcx, key->handle());
__ movq(rdx, Operand(rsp, 0));
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
__ nop();
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
__ push(Operand(rsp, 0)); // Duplicate receiver.
VisitForValue(key, kStack);
VisitForValue(value, kStack);
__ CallRuntime(Runtime::kSetProperty, 3);
break;
case ObjectLiteral::Property::SETTER:
case ObjectLiteral::Property::GETTER:
__ push(Operand(rsp, 0)); // Duplicate receiver.
VisitForValue(key, kStack);
__ Push(property->kind() == ObjectLiteral::Property::SETTER ?
Smi::FromInt(1) :
Smi::FromInt(0));
VisitForValue(value, kStack);
__ CallRuntime(Runtime::kDefineAccessor, 4);
break;
}
}
if (result_saved) {
ApplyTOS(context_);
} else {
Apply(context_, rax);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
__ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->constant_elements());
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else {
__ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
ZoneList<Expression*>* subexprs = expr->values();
for (int i = 0, len = subexprs->length(); i < len; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (subexpr->AsLiteral() != NULL ||
CompileTimeValue::IsCompileTimeValue(subexpr)) {
continue;
}
if (!result_saved) {
__ push(rax);
result_saved = true;
}
VisitForValue(subexpr, kAccumulator);
// Store the subexpression value in the array's elements.
__ movq(rbx, Operand(rsp, 0)); // Copy of array literal.
__ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ movq(FieldOperand(rbx, offset), result_register());
// Update the write barrier for the array store.
__ RecordWrite(rbx, offset, result_register(), rcx);
}
if (result_saved) {
ApplyTOS(context_);
} else {
Apply(context_, rax);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
Comment cmnt(masm_, "[ Assignment");
ASSERT(expr->op() != Token::INIT_CONST);
// Left-hand side can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->target()->AsProperty();
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the accumulator.
VisitForValue(prop->obj(), kAccumulator);
__ push(result_register());
} else {
VisitForValue(prop->obj(), kStack);
}
break;
case KEYED_PROPERTY:
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kStack);
break;
}
// If we have a compound assignment: Get value of LHS expression and
// store in on top of the stack.
if (expr->is_compound()) {
Location saved_location = location_;
location_ = kStack;
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
Expression::kValue);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(prop);
__ push(result_register());
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(prop);
__ push(result_register());
break;
}
location_ = saved_location;
}
// Evaluate RHS expression.
Expression* rhs = expr->value();
VisitForValue(rhs, kAccumulator);
// If we have a compound assignment: Apply operator.
if (expr->is_compound()) {
Location saved_location = location_;
location_ = kAccumulator;
EmitBinaryOp(expr->binary_op(), Expression::kValue);
location_ = saved_location;
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
context_);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
__ Move(rcx, key->handle());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
}
void FullCodeGenerator::EmitBinaryOp(Token::Value op,
Expression::Context context) {
__ push(result_register());
GenericBinaryOpStub stub(op,
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS);
__ CallStub(&stub);
Apply(context, rax);
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var,
Expression::Context context) {
// Three main cases: non-this global variables, lookup slots, and
// all other types of slots. Left-hand-side parameters that rewrite
// to explicit property accesses do not reach here.
ASSERT(var != NULL);
ASSERT(var->is_global() || var->slot() != NULL);
Slot* slot = var->slot();
if (var->is_global()) {
ASSERT(!var->is_this());
// Assignment to a global variable. Use inline caching for the
// assignment. Right-hand-side value is passed in rax, variable name in
// rcx, and the global object in rdx.
__ Move(rcx, var->name());
__ movq(rdx, CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
Apply(context, rax);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
__ push(result_register()); // Value.
__ push(rsi); // Context.
__ Push(var->name());
__ CallRuntime(Runtime::kStoreContextSlot, 3);
Apply(context, rax);
} else if (var->slot() != NULL) {
switch (slot->type()) {
case Slot::LOCAL:
case Slot::PARAMETER:
__ movq(Operand(rbp, SlotOffset(slot)), result_register());
break;
case Slot::CONTEXT: {
MemOperand target = EmitSlotSearch(slot, rcx);
__ movq(target, result_register());
// RecordWrite may destroy all its register arguments.
__ movq(rdx, result_register());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ RecordWrite(rcx, offset, rdx, rbx);
break;
}
case Slot::LOOKUP:
UNREACHABLE();
break;
}
Apply(context, result_register());
} else {
// Variables rewritten as properties are not treated as variables in
// assignments.
UNREACHABLE();
}
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
__ push(Operand(rsp, kPointerSize)); // Receiver is now under value.
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ Move(rcx, prop->key()->AsLiteral()->handle());
if (expr->ends_initialization_block()) {
__ movq(rdx, Operand(rsp, 0));
} else {
__ pop(rdx);
}
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(rax); // Result of assignment, saved even if not needed.
__ push(Operand(rsp, kPointerSize)); // Receiver is under value.
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(rax);
DropAndApply(1, context_, rax);
} else {
Apply(context_, rax);
}
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
// Receiver is now under the key and value.
__ push(Operand(rsp, 2 * kPointerSize));
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(rax); // Result of assignment, saved even if not needed.
// Receiver is under the key and value.
__ push(Operand(rsp, 2 * kPointerSize));
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(rax);
}
// Receiver and key are still on stack.
DropAndApply(2, context_, rax);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
// Evaluate receiver.
VisitForValue(expr->obj(), kStack);
if (key->IsPropertyName()) {
EmitNamedPropertyLoad(expr);
// Drop receiver left on the stack by IC.
DropAndApply(1, context_, rax);
} else {
VisitForValue(expr->key(), kStack);
EmitKeyedPropertyLoad(expr);
// Drop key and receiver left on the stack by IC.
DropAndApply(2, context_, rax);
}
}
void FullCodeGenerator::EmitCallWithIC(Call* expr,
Handle<Object> name,
RelocInfo::Mode mode) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
__ Move(rcx, name);
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count,
in_loop);
__ Call(ic, mode);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
Apply(context_, rax);
}
void FullCodeGenerator::EmitCallWithStub(Call* expr) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
__ CallStub(&stub);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
DropAndApply(1, context_, rax);
}
void FullCodeGenerator::VisitCall(Call* expr) {
Comment cmnt(masm_, "[ Call");
Expression* fun = expr->expression();
Variable* var = fun->AsVariableProxy()->AsVariable();
if (var != NULL && var->is_possibly_eval()) {
// Call to the identifier 'eval'.
UNREACHABLE();
} else if (var != NULL && !var->is_this() && var->is_global()) {
// Call to a global variable.
// Push global object as receiver for the call IC lookup.
__ push(CodeGenerator::GlobalObject());
EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// Call to a lookup slot.
UNREACHABLE();
} else if (fun->AsProperty() != NULL) {
// Call to an object property.
Property* prop = fun->AsProperty();
Literal* key = prop->key()->AsLiteral();
if (key != NULL && key->handle()->IsSymbol()) {
// Call to a named property, use call IC.
VisitForValue(prop->obj(), kStack);
EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET);
} else {
// Call to a keyed property, use keyed load IC followed by function
// call.
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kStack);
// Record source code position for IC call.
SetSourcePosition(prop->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test rax,..."
// instruction after the call it is treated specially by the LoadIC code.
__ nop();
// Drop key left on the stack by IC.
__ Drop(1);
// Pop receiver.
__ pop(rbx);
// Push result (function).
__ push(rax);
// Push receiver object on stack.
if (prop->is_synthetic()) {
__ movq(rcx, CodeGenerator::GlobalObject());
__ push(FieldOperand(rcx, GlobalObject::kGlobalReceiverOffset));
} else {
__ push(rbx);
}
EmitCallWithStub(expr);
}
} else {
// Call to some other expression. If the expression is an anonymous
// function literal not called in a loop, mark it as one that should
// also use the fast code generator.
FunctionLiteral* lit = fun->AsFunctionLiteral();
if (lit != NULL &&
lit->name()->Equals(Heap::empty_string()) &&
loop_depth() == 0) {
lit->set_try_full_codegen(true);
}
VisitForValue(fun, kStack);
// Load global receiver object.
__ movq(rbx, CodeGenerator::GlobalObject());
__ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Emit function call.
EmitCallWithStub(expr);
}
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push function on the stack.
VisitForValue(expr->expression(), kStack);
// Push global object (receiver).
__ push(CodeGenerator::GlobalObject());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function, arg_count into rdi and rax.
__ Set(rax, arg_count);
// Function is in rsp[arg_count + 1].
__ movq(rdi, Operand(rsp, rax, times_pointer_size, kPointerSize));
Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
__ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
// Replace function on TOS with result in rax, or pop it.
DropAndApply(1, context_, rax);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
if (expr->is_jsruntime()) {
// Prepare for calling JS runtime function.
__ movq(rax, CodeGenerator::GlobalObject());
__ push(FieldOperand(rax, GlobalObject::kBuiltinsOffset));
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
if (expr->is_jsruntime()) {
// Call the JS runtime function using a call IC.
__ Move(rcx, expr->name());
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
__ call(ic, RelocInfo::CODE_TARGET);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
} else {
__ CallRuntime(expr->function(), arg_count);
}
Apply(context_, rax);
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex);
break;
case kStack:
__ PushRoot(Heap::kUndefinedValueRootIndex);
break;
}
break;
case Expression::kTestValue:
// Value is false so it's needed.
switch (location_) {
case kAccumulator:
__ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex);
break;
case kStack:
__ PushRoot(Heap::kUndefinedValueRootIndex);
break;
}
// Fall through.
case Expression::kTest:
case Expression::kValueTest:
__ jmp(false_label_);
break;
}
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
Label materialize_true, materialize_false, done;
// Initially assume a pure test context. Notice that the labels are
// swapped.
Label* if_true = false_label_;
Label* if_false = true_label_;
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
if_true = &done;
if_false = &done;
break;
case Expression::kValue:
if_true = &materialize_false;
if_false = &materialize_true;
break;
case Expression::kTest:
break;
case Expression::kValueTest:
if_false = &materialize_true;
break;
case Expression::kTestValue:
if_true = &materialize_false;
break;
}
VisitForControl(expr->expression(), if_true, if_false);
Apply(context_, if_false, if_true); // Labels swapped.
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (proxy != NULL &&
!proxy->var()->is_this() &&
proxy->var()->is_global()) {
Comment cmnt(masm_, "Global variable");
__ push(CodeGenerator::GlobalObject());
__ Move(rcx, proxy->name());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
// Use a regular load, not a contextual load, to avoid a reference
// error.
__ Call(ic, RelocInfo::CODE_TARGET);
__ movq(Operand(rsp, 0), rax);
} else if (proxy != NULL &&
proxy->var()->slot() != NULL &&
proxy->var()->slot()->type() == Slot::LOOKUP) {
__ push(rsi);
__ Push(proxy->name());
__ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
__ push(rax);
} else {
// This expression cannot throw a reference error at the top level.
VisitForValue(expr->expression(), kStack);
}
__ CallRuntime(Runtime::kTypeof, 1);
Apply(context_, rax);
break;
}
case Token::ADD: {
Comment cmt(masm_, "[ UnaryOperation (ADD)");
VisitForValue(expr->expression(), kAccumulator);
Label no_conversion;
Condition is_smi = masm_->CheckSmi(result_register());
__ j(is_smi, &no_conversion);
__ push(result_register());
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ bind(&no_conversion);
Apply(context_, result_register());
break;
}
case Token::SUB: {
Comment cmt(masm_, "[ UnaryOperation (SUB)");
bool overwrite =
(expr->expression()->AsBinaryOperation() != NULL &&
expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
GenericUnaryOpStub stub(Token::SUB, overwrite);
// GenericUnaryOpStub expects the argument to be in the
// accumulator register rax.
VisitForValue(expr->expression(), kAccumulator);
__ CallStub(&stub);
Apply(context_, rax);
break;
}
case Token::BIT_NOT: {
Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)");
bool overwrite =
(expr->expression()->AsBinaryOperation() != NULL &&
expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
// GenericUnaryOpStub expects the argument to be in the
// accumulator register rax.
VisitForValue(expr->expression(), kAccumulator);
// Avoid calling the stub for Smis.
Label smi, done;
Condition is_smi = masm_->CheckSmi(result_register());
__ j(is_smi, &smi);
// Non-smi: call stub leaving result in accumulator register.
__ CallStub(&stub);
__ jmp(&done);
// Perform operation directly on Smis.
__ bind(&smi);
__ SmiNot(result_register(), result_register());
__ bind(&done);
Apply(context_, result_register());
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
Comment cmnt(masm_, "[ CountOperation");
// Expression can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->expression()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
Location saved_location = location_;
location_ = kAccumulator;
EmitVariableLoad(expr->expression()->AsVariableProxy()->var(),
Expression::kValue);
location_ = saved_location;
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && context_ != Expression::kEffect) {
__ Push(Smi::FromInt(0));
}
VisitForValue(prop->obj(), kStack);
if (assign_type == NAMED_PROPERTY) {
EmitNamedPropertyLoad(prop);
} else {
VisitForValue(prop->key(), kStack);
EmitKeyedPropertyLoad(prop);
}
}
// Call ToNumber only if operand is not a smi.
Label no_conversion;
Condition is_smi;
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &no_conversion);
__ push(rax);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ bind(&no_conversion);
// Save result for postfix expressions.
if (expr->is_postfix()) {
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Do not save result.
break;
case Expression::kValue:
case Expression::kTest:
case Expression::kValueTest:
case Expression::kTestValue:
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(rax);
break;
case NAMED_PROPERTY:
__ movq(Operand(rsp, kPointerSize), rax);
break;
case KEYED_PROPERTY:
__ movq(Operand(rsp, 2 * kPointerSize), rax);
break;
}
break;
}
}
// Inline smi case if we are in a loop.
Label stub_call, done;
if (loop_depth() > 0) {
if (expr->op() == Token::INC) {
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
} else {
__ SmiSubConstant(rax, rax, Smi::FromInt(1));
}
__ j(overflow, &stub_call);
// We could eliminate this smi check if we split the code at
// the first smi check before calling ToNumber.
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &done);
__ bind(&stub_call);
// Call stub. Undo operation first.
if (expr->op() == Token::INC) {
__ SmiSubConstant(rax, rax, Smi::FromInt(1));
} else {
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
}
}
// Call stub for +1/-1.
GenericBinaryOpStub stub(expr->binary_op(),
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS);
stub.GenerateCall(masm_, rax, Smi::FromInt(1));
__ bind(&done);
// Store the value returned in rax.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Expression::kEffect);
// For all contexts except kEffect: We have the result on
// top of the stack.
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
context_);
}
break;
case NAMED_PROPERTY: {
__ Move(rcx, prop->key()->AsLiteral()->handle());
__ pop(rdx);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
if (expr->is_postfix()) {
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
Apply(context_, rax);
}
break;
}
case KEYED_PROPERTY: {
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
if (expr->is_postfix()) {
__ Drop(2); // Result is on the stack under the key and the receiver.
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
DropAndApply(2, context_, rax);
}
break;
}
}
}
void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
Comment cmnt(masm_, "[ BinaryOperation");
switch (expr->op()) {
case Token::COMMA:
VisitForEffect(expr->left());
Visit(expr->right());
break;
case Token::OR:
case Token::AND:
EmitLogicalOperation(expr);
break;
case Token::ADD:
case Token::SUB:
case Token::DIV:
case Token::MOD:
case Token::MUL:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SHL:
case Token::SHR:
case Token::SAR:
VisitForValue(expr->left(), kStack);
VisitForValue(expr->right(), kAccumulator);
EmitBinaryOp(expr->op(), context_);
break;
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false, done;
// Initially assume we are in a test context.
Label* if_true = true_label_;
Label* if_false = false_label_;
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
if_true = &done;
if_false = &done;
break;
case Expression::kValue:
if_true = &materialize_true;
if_false = &materialize_false;
break;
case Expression::kTest:
break;
case Expression::kValueTest:
if_true = &materialize_true;
break;
case Expression::kTestValue:
if_false = &materialize_false;
break;
}
VisitForValue(expr->left(), kStack);
switch (expr->op()) {
case Token::IN:
VisitForValue(expr->right(), kStack);
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
__ j(equal, if_true);
__ jmp(if_false);
break;
case Token::INSTANCEOF: {
VisitForValue(expr->right(), kStack);
InstanceofStub stub;
__ CallStub(&stub);
__ testq(rax, rax);
__ j(zero, if_true); // The stub returns 0 for true.
__ jmp(if_false);
break;
}
default: {
VisitForValue(expr->right(), kAccumulator);
Condition cc = no_condition;
bool strict = false;
switch (expr->op()) {
case Token::EQ_STRICT:
strict = true;
// Fall through.
case Token::EQ:
cc = equal;
__ pop(rdx);
break;
case Token::LT:
cc = less;
__ pop(rdx);
break;
case Token::GT:
// Reverse left and right sizes to obtain ECMA-262 conversion order.
cc = less;
__ movq(rdx, result_register());
__ pop(rax);
break;
case Token::LTE:
// Reverse left and right sizes to obtain ECMA-262 conversion order.
cc = greater_equal;
__ movq(rdx, result_register());
__ pop(rax);
break;
case Token::GTE:
cc = greater_equal;
__ pop(rdx);
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
// The comparison stub expects the smi vs. smi case to be handled
// before it is called.
Label slow_case;
__ JumpIfNotBothSmi(rax, rdx, &slow_case);
__ SmiCompare(rdx, rax);
__ j(cc, if_true);
__ jmp(if_false);
__ bind(&slow_case);
CompareStub stub(cc, strict);
__ CallStub(&stub);
__ testq(rax, rax);
__ j(cc, if_true);
__ jmp(if_false);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
Apply(context_, rax);
}
Register FullCodeGenerator::result_register() { return rax; }
Register FullCodeGenerator::context_register() { return rsi; }
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
ASSERT(IsAligned(frame_offset, kPointerSize));
__ movq(Operand(rbp, frame_offset), value);
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ movq(dst, CodeGenerator::ContextOperand(rsi, context_index));
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
ASSERT(!result_register().is(rdx));
ASSERT(!result_register().is(rcx));
// Cook return address on top of stack (smi encoded Code* delta)
__ movq(rdx, Operand(rsp, 0));
__ Move(rcx, masm_->CodeObject());
__ subq(rdx, rcx);
__ Integer32ToSmi(rdx, rdx);
__ movq(Operand(rsp, 0), rdx);
// Store result register while executing finally block.
__ push(result_register());
}
void FullCodeGenerator::ExitFinallyBlock() {
ASSERT(!result_register().is(rdx));
ASSERT(!result_register().is(rcx));
// Restore result register from stack.
__ pop(result_register());
// Uncook return address.
__ movq(rdx, Operand(rsp, 0));
__ SmiToInteger32(rdx, rdx);
__ Move(rcx, masm_->CodeObject());
__ addq(rdx, rcx);
__ movq(Operand(rsp, 0), rdx);
// And return.
__ ret(0);
}
#undef __
} } // namespace v8::internal