| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2011 the V8 project authors. All rights reserved. |
| |
| #ifndef V8_ASSEMBLER_H_ |
| #define V8_ASSEMBLER_H_ |
| |
| #include "gdb-jit.h" |
| #include "runtime.h" |
| #include "token.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Platform independent assembler base class. |
| |
| class AssemblerBase: public Malloced { |
| public: |
| explicit AssemblerBase(Isolate* isolate) : isolate_(isolate) {} |
| |
| Isolate* isolate() const { return isolate_; } |
| |
| private: |
| Isolate* isolate_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Common double constants. |
| |
| class DoubleConstant: public AllStatic { |
| public: |
| static const double min_int; |
| static const double one_half; |
| static const double minus_zero; |
| static const double negative_infinity; |
| static const double nan; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Labels represent pc locations; they are typically jump or call targets. |
| // After declaration, a label can be freely used to denote known or (yet) |
| // unknown pc location. Assembler::bind() is used to bind a label to the |
| // current pc. A label can be bound only once. |
| |
| class Label BASE_EMBEDDED { |
| public: |
| INLINE(Label()) { Unuse(); } |
| INLINE(~Label()) { ASSERT(!is_linked()); } |
| |
| INLINE(void Unuse()) { pos_ = 0; } |
| |
| INLINE(bool is_bound() const) { return pos_ < 0; } |
| INLINE(bool is_unused() const) { return pos_ == 0; } |
| INLINE(bool is_linked() const) { return pos_ > 0; } |
| |
| // Returns the position of bound or linked labels. Cannot be used |
| // for unused labels. |
| int pos() const; |
| |
| private: |
| // pos_ encodes both the binding state (via its sign) |
| // and the binding position (via its value) of a label. |
| // |
| // pos_ < 0 bound label, pos() returns the jump target position |
| // pos_ == 0 unused label |
| // pos_ > 0 linked label, pos() returns the last reference position |
| int pos_; |
| |
| void bind_to(int pos) { |
| pos_ = -pos - 1; |
| ASSERT(is_bound()); |
| } |
| void link_to(int pos) { |
| pos_ = pos + 1; |
| ASSERT(is_linked()); |
| } |
| |
| friend class Assembler; |
| friend class RegexpAssembler; |
| friend class Displacement; |
| friend class RegExpMacroAssemblerIrregexp; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // NearLabels are labels used for short jumps (in Intel jargon). |
| // NearLabels should be used if it can be guaranteed that the jump range is |
| // within -128 to +127. We already use short jumps when jumping backwards, |
| // so using a NearLabel will only have performance impact if used for forward |
| // jumps. |
| class NearLabel BASE_EMBEDDED { |
| public: |
| NearLabel() { Unuse(); } |
| ~NearLabel() { ASSERT(!is_linked()); } |
| |
| void Unuse() { |
| pos_ = -1; |
| unresolved_branches_ = 0; |
| #ifdef DEBUG |
| for (int i = 0; i < kMaxUnresolvedBranches; i++) { |
| unresolved_positions_[i] = -1; |
| } |
| #endif |
| } |
| |
| int pos() { |
| ASSERT(is_bound()); |
| return pos_; |
| } |
| |
| bool is_bound() { return pos_ >= 0; } |
| bool is_linked() { return !is_bound() && unresolved_branches_ > 0; } |
| bool is_unused() { return !is_bound() && unresolved_branches_ == 0; } |
| |
| void bind_to(int position) { |
| ASSERT(!is_bound()); |
| pos_ = position; |
| } |
| |
| void link_to(int position) { |
| ASSERT(!is_bound()); |
| ASSERT(unresolved_branches_ < kMaxUnresolvedBranches); |
| unresolved_positions_[unresolved_branches_++] = position; |
| } |
| |
| private: |
| static const int kMaxUnresolvedBranches = 8; |
| int pos_; |
| int unresolved_branches_; |
| int unresolved_positions_[kMaxUnresolvedBranches]; |
| |
| friend class Assembler; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Relocation information |
| |
| |
| // Relocation information consists of the address (pc) of the datum |
| // to which the relocation information applies, the relocation mode |
| // (rmode), and an optional data field. The relocation mode may be |
| // "descriptive" and not indicate a need for relocation, but simply |
| // describe a property of the datum. Such rmodes are useful for GC |
| // and nice disassembly output. |
| |
| class RelocInfo BASE_EMBEDDED { |
| public: |
| // The constant kNoPosition is used with the collecting of source positions |
| // in the relocation information. Two types of source positions are collected |
| // "position" (RelocMode position) and "statement position" (RelocMode |
| // statement_position). The "position" is collected at places in the source |
| // code which are of interest when making stack traces to pin-point the source |
| // location of a stack frame as close as possible. The "statement position" is |
| // collected at the beginning at each statement, and is used to indicate |
| // possible break locations. kNoPosition is used to indicate an |
| // invalid/uninitialized position value. |
| static const int kNoPosition = -1; |
| |
| // This string is used to add padding comments to the reloc info in cases |
| // where we are not sure to have enough space for patching in during |
| // lazy deoptimization. This is the case if we have indirect calls for which |
| // we do not normally record relocation info. |
| static const char* kFillerCommentString; |
| |
| // The minimum size of a comment is equal to three bytes for the extra tagged |
| // pc + the tag for the data, and kPointerSize for the actual pointer to the |
| // comment. |
| static const int kMinRelocCommentSize = 3 + kPointerSize; |
| |
| // The maximum size for a call instruction including pc-jump. |
| static const int kMaxCallSize = 6; |
| |
| // The maximum pc delta that will use the short encoding. |
| static const int kMaxSmallPCDelta; |
| |
| enum Mode { |
| // Please note the order is important (see IsCodeTarget, IsGCRelocMode). |
| CONSTRUCT_CALL, // code target that is a call to a JavaScript constructor. |
| CODE_TARGET_CONTEXT, // Code target used for contextual loads and stores. |
| DEBUG_BREAK, // Code target for the debugger statement. |
| CODE_TARGET, // Code target which is not any of the above. |
| EMBEDDED_OBJECT, |
| GLOBAL_PROPERTY_CELL, |
| |
| // Everything after runtime_entry (inclusive) is not GC'ed. |
| RUNTIME_ENTRY, |
| JS_RETURN, // Marks start of the ExitJSFrame code. |
| COMMENT, |
| POSITION, // See comment for kNoPosition above. |
| STATEMENT_POSITION, // See comment for kNoPosition above. |
| DEBUG_BREAK_SLOT, // Additional code inserted for debug break slot. |
| EXTERNAL_REFERENCE, // The address of an external C++ function. |
| INTERNAL_REFERENCE, // An address inside the same function. |
| |
| // add more as needed |
| // Pseudo-types |
| NUMBER_OF_MODES, // must be no greater than 14 - see RelocInfoWriter |
| NONE, // never recorded |
| LAST_CODE_ENUM = CODE_TARGET, |
| LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL |
| }; |
| |
| |
| RelocInfo() {} |
| RelocInfo(byte* pc, Mode rmode, intptr_t data) |
| : pc_(pc), rmode_(rmode), data_(data) { |
| } |
| |
| static inline bool IsConstructCall(Mode mode) { |
| return mode == CONSTRUCT_CALL; |
| } |
| static inline bool IsCodeTarget(Mode mode) { |
| return mode <= LAST_CODE_ENUM; |
| } |
| // Is the relocation mode affected by GC? |
| static inline bool IsGCRelocMode(Mode mode) { |
| return mode <= LAST_GCED_ENUM; |
| } |
| static inline bool IsJSReturn(Mode mode) { |
| return mode == JS_RETURN; |
| } |
| static inline bool IsComment(Mode mode) { |
| return mode == COMMENT; |
| } |
| static inline bool IsPosition(Mode mode) { |
| return mode == POSITION || mode == STATEMENT_POSITION; |
| } |
| static inline bool IsStatementPosition(Mode mode) { |
| return mode == STATEMENT_POSITION; |
| } |
| static inline bool IsExternalReference(Mode mode) { |
| return mode == EXTERNAL_REFERENCE; |
| } |
| static inline bool IsInternalReference(Mode mode) { |
| return mode == INTERNAL_REFERENCE; |
| } |
| static inline bool IsDebugBreakSlot(Mode mode) { |
| return mode == DEBUG_BREAK_SLOT; |
| } |
| static inline int ModeMask(Mode mode) { return 1 << mode; } |
| |
| // Accessors |
| byte* pc() const { return pc_; } |
| void set_pc(byte* pc) { pc_ = pc; } |
| Mode rmode() const { return rmode_; } |
| intptr_t data() const { return data_; } |
| |
| // Apply a relocation by delta bytes |
| INLINE(void apply(intptr_t delta)); |
| |
| // Is the pointer this relocation info refers to coded like a plain pointer |
| // or is it strange in some way (eg relative or patched into a series of |
| // instructions). |
| bool IsCodedSpecially(); |
| |
| // Read/modify the code target in the branch/call instruction |
| // this relocation applies to; |
| // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY |
| INLINE(Address target_address()); |
| INLINE(void set_target_address(Address target)); |
| INLINE(Object* target_object()); |
| INLINE(Handle<Object> target_object_handle(Assembler* origin)); |
| INLINE(Object** target_object_address()); |
| INLINE(void set_target_object(Object* target)); |
| INLINE(JSGlobalPropertyCell* target_cell()); |
| INLINE(Handle<JSGlobalPropertyCell> target_cell_handle()); |
| INLINE(void set_target_cell(JSGlobalPropertyCell* cell)); |
| |
| |
| // Read the address of the word containing the target_address in an |
| // instruction stream. What this means exactly is architecture-independent. |
| // The only architecture-independent user of this function is the serializer. |
| // The serializer uses it to find out how many raw bytes of instruction to |
| // output before the next target. Architecture-independent code shouldn't |
| // dereference the pointer it gets back from this. |
| INLINE(Address target_address_address()); |
| // This indicates how much space a target takes up when deserializing a code |
| // stream. For most architectures this is just the size of a pointer. For |
| // an instruction like movw/movt where the target bits are mixed into the |
| // instruction bits the size of the target will be zero, indicating that the |
| // serializer should not step forwards in memory after a target is resolved |
| // and written. In this case the target_address_address function above |
| // should return the end of the instructions to be patched, allowing the |
| // deserializer to deserialize the instructions as raw bytes and put them in |
| // place, ready to be patched with the target. |
| INLINE(int target_address_size()); |
| |
| // Read/modify the reference in the instruction this relocation |
| // applies to; can only be called if rmode_ is external_reference |
| INLINE(Address* target_reference_address()); |
| |
| // Read/modify the address of a call instruction. This is used to relocate |
| // the break points where straight-line code is patched with a call |
| // instruction. |
| INLINE(Address call_address()); |
| INLINE(void set_call_address(Address target)); |
| INLINE(Object* call_object()); |
| INLINE(void set_call_object(Object* target)); |
| INLINE(Object** call_object_address()); |
| |
| template<typename StaticVisitor> inline void Visit(Heap* heap); |
| inline void Visit(ObjectVisitor* v); |
| |
| // Patch the code with some other code. |
| void PatchCode(byte* instructions, int instruction_count); |
| |
| // Patch the code with a call. |
| void PatchCodeWithCall(Address target, int guard_bytes); |
| |
| // Check whether this return sequence has been patched |
| // with a call to the debugger. |
| INLINE(bool IsPatchedReturnSequence()); |
| |
| // Check whether this debug break slot has been patched with a call to the |
| // debugger. |
| INLINE(bool IsPatchedDebugBreakSlotSequence()); |
| |
| #ifdef ENABLE_DISASSEMBLER |
| // Printing |
| static const char* RelocModeName(Mode rmode); |
| void Print(FILE* out); |
| #endif // ENABLE_DISASSEMBLER |
| #ifdef DEBUG |
| // Debugging |
| void Verify(); |
| #endif |
| |
| static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1; |
| static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION; |
| static const int kDebugMask = kPositionMask | 1 << COMMENT; |
| static const int kApplyMask; // Modes affected by apply. Depends on arch. |
| |
| private: |
| // On ARM, note that pc_ is the address of the constant pool entry |
| // to be relocated and not the address of the instruction |
| // referencing the constant pool entry (except when rmode_ == |
| // comment). |
| byte* pc_; |
| Mode rmode_; |
| intptr_t data_; |
| friend class RelocIterator; |
| }; |
| |
| |
| // RelocInfoWriter serializes a stream of relocation info. It writes towards |
| // lower addresses. |
| class RelocInfoWriter BASE_EMBEDDED { |
| public: |
| RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_data_(0) {} |
| RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc), |
| last_data_(0) {} |
| |
| byte* pos() const { return pos_; } |
| byte* last_pc() const { return last_pc_; } |
| |
| void Write(const RelocInfo* rinfo); |
| |
| // Update the state of the stream after reloc info buffer |
| // and/or code is moved while the stream is active. |
| void Reposition(byte* pos, byte* pc) { |
| pos_ = pos; |
| last_pc_ = pc; |
| } |
| |
| // Max size (bytes) of a written RelocInfo. Longest encoding is |
| // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta. |
| // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12. |
| // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16; |
| // Here we use the maximum of the two. |
| static const int kMaxSize = 16; |
| |
| private: |
| inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta); |
| inline void WriteTaggedPC(uint32_t pc_delta, int tag); |
| inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag); |
| inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag); |
| inline void WriteTaggedData(intptr_t data_delta, int tag); |
| inline void WriteExtraTag(int extra_tag, int top_tag); |
| |
| byte* pos_; |
| byte* last_pc_; |
| intptr_t last_data_; |
| DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter); |
| }; |
| |
| |
| // A RelocIterator iterates over relocation information. |
| // Typical use: |
| // |
| // for (RelocIterator it(code); !it.done(); it.next()) { |
| // // do something with it.rinfo() here |
| // } |
| // |
| // A mask can be specified to skip unwanted modes. |
| class RelocIterator: public Malloced { |
| public: |
| // Create a new iterator positioned at |
| // the beginning of the reloc info. |
| // Relocation information with mode k is included in the |
| // iteration iff bit k of mode_mask is set. |
| explicit RelocIterator(Code* code, int mode_mask = -1); |
| explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1); |
| |
| // Iteration |
| bool done() const { return done_; } |
| void next(); |
| |
| // Return pointer valid until next next(). |
| RelocInfo* rinfo() { |
| ASSERT(!done()); |
| return &rinfo_; |
| } |
| |
| private: |
| // Advance* moves the position before/after reading. |
| // *Read* reads from current byte(s) into rinfo_. |
| // *Get* just reads and returns info on current byte. |
| void Advance(int bytes = 1) { pos_ -= bytes; } |
| int AdvanceGetTag(); |
| int GetExtraTag(); |
| int GetTopTag(); |
| void ReadTaggedPC(); |
| void AdvanceReadPC(); |
| void AdvanceReadData(); |
| void AdvanceReadVariableLengthPCJump(); |
| int GetPositionTypeTag(); |
| void ReadTaggedData(); |
| |
| static RelocInfo::Mode DebugInfoModeFromTag(int tag); |
| |
| // If the given mode is wanted, set it in rinfo_ and return true. |
| // Else return false. Used for efficiently skipping unwanted modes. |
| bool SetMode(RelocInfo::Mode mode) { |
| return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false; |
| } |
| |
| byte* pos_; |
| byte* end_; |
| RelocInfo rinfo_; |
| bool done_; |
| int mode_mask_; |
| DISALLOW_COPY_AND_ASSIGN(RelocIterator); |
| }; |
| |
| |
| //------------------------------------------------------------------------------ |
| // External function |
| |
| //---------------------------------------------------------------------------- |
| class IC_Utility; |
| class SCTableReference; |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| class Debug_Address; |
| #endif |
| |
| |
| // An ExternalReference represents a C++ address used in the generated |
| // code. All references to C++ functions and variables must be encapsulated in |
| // an ExternalReference instance. This is done in order to track the origin of |
| // all external references in the code so that they can be bound to the correct |
| // addresses when deserializing a heap. |
| class ExternalReference BASE_EMBEDDED { |
| public: |
| // Used in the simulator to support different native api calls. |
| enum Type { |
| // Builtin call. |
| // MaybeObject* f(v8::internal::Arguments). |
| BUILTIN_CALL, // default |
| |
| // Builtin call that returns floating point. |
| // double f(double, double). |
| FP_RETURN_CALL, |
| |
| // Direct call to API function callback. |
| // Handle<Value> f(v8::Arguments&) |
| DIRECT_API_CALL, |
| |
| // Direct call to accessor getter callback. |
| // Handle<value> f(Local<String> property, AccessorInfo& info) |
| DIRECT_GETTER_CALL |
| }; |
| |
| typedef void* ExternalReferenceRedirector(void* original, Type type); |
| |
| ExternalReference(Builtins::CFunctionId id, Isolate* isolate); |
| |
| ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate); |
| |
| ExternalReference(Builtins::Name name, Isolate* isolate); |
| |
| ExternalReference(Runtime::FunctionId id, Isolate* isolate); |
| |
| ExternalReference(const Runtime::Function* f, Isolate* isolate); |
| |
| ExternalReference(const IC_Utility& ic_utility, Isolate* isolate); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference(const Debug_Address& debug_address, Isolate* isolate); |
| #endif |
| |
| explicit ExternalReference(StatsCounter* counter); |
| |
| ExternalReference(Isolate::AddressId id, Isolate* isolate); |
| |
| explicit ExternalReference(const SCTableReference& table_ref); |
| |
| // Isolate::Current() as an external reference. |
| static ExternalReference isolate_address(); |
| |
| // One-of-a-kind references. These references are not part of a general |
| // pattern. This means that they have to be added to the |
| // ExternalReferenceTable in serialize.cc manually. |
| |
| static ExternalReference perform_gc_function(Isolate* isolate); |
| static ExternalReference fill_heap_number_with_random_function( |
| Isolate* isolate); |
| static ExternalReference random_uint32_function(Isolate* isolate); |
| static ExternalReference transcendental_cache_array_address(Isolate* isolate); |
| static ExternalReference delete_handle_scope_extensions(Isolate* isolate); |
| |
| // Deoptimization support. |
| static ExternalReference new_deoptimizer_function(Isolate* isolate); |
| static ExternalReference compute_output_frames_function(Isolate* isolate); |
| static ExternalReference global_contexts_list(Isolate* isolate); |
| |
| // Static data in the keyed lookup cache. |
| static ExternalReference keyed_lookup_cache_keys(Isolate* isolate); |
| static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate); |
| |
| // Static variable Factory::the_hole_value.location() |
| static ExternalReference the_hole_value_location(Isolate* isolate); |
| |
| // Static variable Factory::arguments_marker.location() |
| static ExternalReference arguments_marker_location(Isolate* isolate); |
| |
| // Static variable Heap::roots_address() |
| static ExternalReference roots_address(Isolate* isolate); |
| |
| // Static variable StackGuard::address_of_jslimit() |
| static ExternalReference address_of_stack_limit(Isolate* isolate); |
| |
| // Static variable StackGuard::address_of_real_jslimit() |
| static ExternalReference address_of_real_stack_limit(Isolate* isolate); |
| |
| // Static variable RegExpStack::limit_address() |
| static ExternalReference address_of_regexp_stack_limit(Isolate* isolate); |
| |
| // Static variables for RegExp. |
| static ExternalReference address_of_static_offsets_vector(Isolate* isolate); |
| static ExternalReference address_of_regexp_stack_memory_address( |
| Isolate* isolate); |
| static ExternalReference address_of_regexp_stack_memory_size( |
| Isolate* isolate); |
| |
| // Static variable Heap::NewSpaceStart() |
| static ExternalReference new_space_start(Isolate* isolate); |
| static ExternalReference new_space_mask(Isolate* isolate); |
| static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate); |
| |
| // Used for fast allocation in generated code. |
| static ExternalReference new_space_allocation_top_address(Isolate* isolate); |
| static ExternalReference new_space_allocation_limit_address(Isolate* isolate); |
| |
| static ExternalReference double_fp_operation(Token::Value operation, |
| Isolate* isolate); |
| static ExternalReference compare_doubles(Isolate* isolate); |
| static ExternalReference power_double_double_function(Isolate* isolate); |
| static ExternalReference power_double_int_function(Isolate* isolate); |
| |
| static ExternalReference handle_scope_next_address(); |
| static ExternalReference handle_scope_limit_address(); |
| static ExternalReference handle_scope_level_address(); |
| |
| static ExternalReference scheduled_exception_address(Isolate* isolate); |
| |
| // Static variables containing common double constants. |
| static ExternalReference address_of_min_int(); |
| static ExternalReference address_of_one_half(); |
| static ExternalReference address_of_minus_zero(); |
| static ExternalReference address_of_negative_infinity(); |
| static ExternalReference address_of_nan(); |
| |
| static ExternalReference math_sin_double_function(Isolate* isolate); |
| static ExternalReference math_cos_double_function(Isolate* isolate); |
| static ExternalReference math_log_double_function(Isolate* isolate); |
| |
| Address address() const {return reinterpret_cast<Address>(address_);} |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Function Debug::Break() |
| static ExternalReference debug_break(Isolate* isolate); |
| |
| // Used to check if single stepping is enabled in generated code. |
| static ExternalReference debug_step_in_fp_address(Isolate* isolate); |
| #endif |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| // C functions called from RegExp generated code. |
| |
| // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16() |
| static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate); |
| |
| // Function RegExpMacroAssembler*::CheckStackGuardState() |
| static ExternalReference re_check_stack_guard_state(Isolate* isolate); |
| |
| // Function NativeRegExpMacroAssembler::GrowStack() |
| static ExternalReference re_grow_stack(Isolate* isolate); |
| |
| // byte NativeRegExpMacroAssembler::word_character_bitmap |
| static ExternalReference re_word_character_map(); |
| |
| #endif |
| |
| // This lets you register a function that rewrites all external references. |
| // Used by the ARM simulator to catch calls to external references. |
| static void set_redirector(ExternalReferenceRedirector* redirector) { |
| // We can't stack them. |
| ASSERT(Isolate::Current()->external_reference_redirector() == NULL); |
| Isolate::Current()->set_external_reference_redirector( |
| reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector)); |
| } |
| |
| private: |
| explicit ExternalReference(void* address) |
| : address_(address) {} |
| |
| static void* Redirect(Isolate* isolate, |
| void* address, |
| Type type = ExternalReference::BUILTIN_CALL) { |
| ExternalReferenceRedirector* redirector = |
| reinterpret_cast<ExternalReferenceRedirector*>( |
| isolate->external_reference_redirector()); |
| if (redirector == NULL) return address; |
| void* answer = (*redirector)(address, type); |
| return answer; |
| } |
| |
| static void* Redirect(Isolate* isolate, |
| Address address_arg, |
| Type type = ExternalReference::BUILTIN_CALL) { |
| ExternalReferenceRedirector* redirector = |
| reinterpret_cast<ExternalReferenceRedirector*>( |
| isolate->external_reference_redirector()); |
| void* address = reinterpret_cast<void*>(address_arg); |
| void* answer = (redirector == NULL) ? |
| address : |
| (*redirector)(address, type); |
| return answer; |
| } |
| |
| void* address_; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Position recording support |
| |
| struct PositionState { |
| PositionState() : current_position(RelocInfo::kNoPosition), |
| written_position(RelocInfo::kNoPosition), |
| current_statement_position(RelocInfo::kNoPosition), |
| written_statement_position(RelocInfo::kNoPosition) {} |
| |
| int current_position; |
| int written_position; |
| |
| int current_statement_position; |
| int written_statement_position; |
| }; |
| |
| |
| class PositionsRecorder BASE_EMBEDDED { |
| public: |
| explicit PositionsRecorder(Assembler* assembler) |
| : assembler_(assembler) { |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| gdbjit_lineinfo_ = NULL; |
| #endif |
| } |
| |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| ~PositionsRecorder() { |
| delete gdbjit_lineinfo_; |
| } |
| |
| void StartGDBJITLineInfoRecording() { |
| if (FLAG_gdbjit) { |
| gdbjit_lineinfo_ = new GDBJITLineInfo(); |
| } |
| } |
| |
| GDBJITLineInfo* DetachGDBJITLineInfo() { |
| GDBJITLineInfo* lineinfo = gdbjit_lineinfo_; |
| gdbjit_lineinfo_ = NULL; // To prevent deallocation in destructor. |
| return lineinfo; |
| } |
| #endif |
| |
| // Set current position to pos. |
| void RecordPosition(int pos); |
| |
| // Set current statement position to pos. |
| void RecordStatementPosition(int pos); |
| |
| // Write recorded positions to relocation information. |
| bool WriteRecordedPositions(); |
| |
| int current_position() const { return state_.current_position; } |
| |
| int current_statement_position() const { |
| return state_.current_statement_position; |
| } |
| |
| private: |
| Assembler* assembler_; |
| PositionState state_; |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| GDBJITLineInfo* gdbjit_lineinfo_; |
| #endif |
| |
| friend class PreservePositionScope; |
| |
| DISALLOW_COPY_AND_ASSIGN(PositionsRecorder); |
| }; |
| |
| |
| class PreservePositionScope BASE_EMBEDDED { |
| public: |
| explicit PreservePositionScope(PositionsRecorder* positions_recorder) |
| : positions_recorder_(positions_recorder), |
| saved_state_(positions_recorder->state_) {} |
| |
| ~PreservePositionScope() { |
| positions_recorder_->state_ = saved_state_; |
| } |
| |
| private: |
| PositionsRecorder* positions_recorder_; |
| const PositionState saved_state_; |
| |
| DISALLOW_COPY_AND_ASSIGN(PreservePositionScope); |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Utility functions |
| |
| static inline bool is_intn(int x, int n) { |
| return -(1 << (n-1)) <= x && x < (1 << (n-1)); |
| } |
| |
| static inline bool is_int8(int x) { return is_intn(x, 8); } |
| static inline bool is_int16(int x) { return is_intn(x, 16); } |
| static inline bool is_int18(int x) { return is_intn(x, 18); } |
| static inline bool is_int24(int x) { return is_intn(x, 24); } |
| |
| static inline bool is_uintn(int x, int n) { |
| return (x & -(1 << n)) == 0; |
| } |
| |
| static inline bool is_uint2(int x) { return is_uintn(x, 2); } |
| static inline bool is_uint3(int x) { return is_uintn(x, 3); } |
| static inline bool is_uint4(int x) { return is_uintn(x, 4); } |
| static inline bool is_uint5(int x) { return is_uintn(x, 5); } |
| static inline bool is_uint6(int x) { return is_uintn(x, 6); } |
| static inline bool is_uint8(int x) { return is_uintn(x, 8); } |
| static inline bool is_uint10(int x) { return is_uintn(x, 10); } |
| static inline bool is_uint12(int x) { return is_uintn(x, 12); } |
| static inline bool is_uint16(int x) { return is_uintn(x, 16); } |
| static inline bool is_uint24(int x) { return is_uintn(x, 24); } |
| static inline bool is_uint26(int x) { return is_uintn(x, 26); } |
| static inline bool is_uint28(int x) { return is_uintn(x, 28); } |
| |
| static inline int NumberOfBitsSet(uint32_t x) { |
| unsigned int num_bits_set; |
| for (num_bits_set = 0; x; x >>= 1) { |
| num_bits_set += x & 1; |
| } |
| return num_bits_set; |
| } |
| |
| // Computes pow(x, y) with the special cases in the spec for Math.pow. |
| double power_double_int(double x, int y); |
| double power_double_double(double x, double y); |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ASSEMBLER_H_ |