| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Review notes: |
| // |
| // - The use of macros in these inline functions may seem superfluous |
| // but it is absolutely needed to make sure gcc generates optimal |
| // code. gcc is not happy when attempting to inline too deep. |
| // |
| |
| #ifndef V8_OBJECTS_INL_H_ |
| #define V8_OBJECTS_INL_H_ |
| |
| #include "objects.h" |
| #include "contexts.h" |
| #include "conversions-inl.h" |
| #include "heap.h" |
| #include "isolate.h" |
| #include "property.h" |
| #include "spaces.h" |
| #include "v8memory.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| PropertyDetails::PropertyDetails(Smi* smi) { |
| value_ = smi->value(); |
| } |
| |
| |
| Smi* PropertyDetails::AsSmi() { |
| return Smi::FromInt(value_); |
| } |
| |
| |
| PropertyDetails PropertyDetails::AsDeleted() { |
| Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1)); |
| return PropertyDetails(smi); |
| } |
| |
| |
| #define CAST_ACCESSOR(type) \ |
| type* type::cast(Object* object) { \ |
| ASSERT(object->Is##type()); \ |
| return reinterpret_cast<type*>(object); \ |
| } |
| |
| |
| #define INT_ACCESSORS(holder, name, offset) \ |
| int holder::name() { return READ_INT_FIELD(this, offset); } \ |
| void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); } |
| |
| |
| #define ACCESSORS(holder, name, type, offset) \ |
| type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \ |
| void holder::set_##name(type* value, WriteBarrierMode mode) { \ |
| WRITE_FIELD(this, offset, value); \ |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); \ |
| } |
| |
| |
| // GC-safe accessors do not use HeapObject::GetHeap(), but access TLS instead. |
| #define ACCESSORS_GCSAFE(holder, name, type, offset) \ |
| type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \ |
| void holder::set_##name(type* value, WriteBarrierMode mode) { \ |
| WRITE_FIELD(this, offset, value); \ |
| CONDITIONAL_WRITE_BARRIER(HEAP, this, offset, mode); \ |
| } |
| |
| |
| #define SMI_ACCESSORS(holder, name, offset) \ |
| int holder::name() { \ |
| Object* value = READ_FIELD(this, offset); \ |
| return Smi::cast(value)->value(); \ |
| } \ |
| void holder::set_##name(int value) { \ |
| WRITE_FIELD(this, offset, Smi::FromInt(value)); \ |
| } |
| |
| |
| #define BOOL_GETTER(holder, field, name, offset) \ |
| bool holder::name() { \ |
| return BooleanBit::get(field(), offset); \ |
| } \ |
| |
| |
| #define BOOL_ACCESSORS(holder, field, name, offset) \ |
| bool holder::name() { \ |
| return BooleanBit::get(field(), offset); \ |
| } \ |
| void holder::set_##name(bool value) { \ |
| set_##field(BooleanBit::set(field(), offset, value)); \ |
| } |
| |
| |
| bool Object::IsInstanceOf(FunctionTemplateInfo* expected) { |
| // There is a constraint on the object; check. |
| if (!this->IsJSObject()) return false; |
| // Fetch the constructor function of the object. |
| Object* cons_obj = JSObject::cast(this)->map()->constructor(); |
| if (!cons_obj->IsJSFunction()) return false; |
| JSFunction* fun = JSFunction::cast(cons_obj); |
| // Iterate through the chain of inheriting function templates to |
| // see if the required one occurs. |
| for (Object* type = fun->shared()->function_data(); |
| type->IsFunctionTemplateInfo(); |
| type = FunctionTemplateInfo::cast(type)->parent_template()) { |
| if (type == expected) return true; |
| } |
| // Didn't find the required type in the inheritance chain. |
| return false; |
| } |
| |
| |
| bool Object::IsSmi() { |
| return HAS_SMI_TAG(this); |
| } |
| |
| |
| bool Object::IsHeapObject() { |
| return Internals::HasHeapObjectTag(this); |
| } |
| |
| |
| bool Object::IsHeapNumber() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE; |
| } |
| |
| |
| bool Object::IsString() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE; |
| } |
| |
| |
| bool Object::IsSymbol() { |
| if (!this->IsHeapObject()) return false; |
| uint32_t type = HeapObject::cast(this)->map()->instance_type(); |
| // Because the symbol tag is non-zero and no non-string types have the |
| // symbol bit set we can test for symbols with a very simple test |
| // operation. |
| ASSERT(kSymbolTag != 0); |
| ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
| return (type & kIsSymbolMask) != 0; |
| } |
| |
| |
| bool Object::IsConsString() { |
| if (!this->IsHeapObject()) return false; |
| uint32_t type = HeapObject::cast(this)->map()->instance_type(); |
| return (type & (kIsNotStringMask | kStringRepresentationMask)) == |
| (kStringTag | kConsStringTag); |
| } |
| |
| |
| bool Object::IsSeqString() { |
| if (!IsString()) return false; |
| return StringShape(String::cast(this)).IsSequential(); |
| } |
| |
| |
| bool Object::IsSeqAsciiString() { |
| if (!IsString()) return false; |
| return StringShape(String::cast(this)).IsSequential() && |
| String::cast(this)->IsAsciiRepresentation(); |
| } |
| |
| |
| bool Object::IsSeqTwoByteString() { |
| if (!IsString()) return false; |
| return StringShape(String::cast(this)).IsSequential() && |
| String::cast(this)->IsTwoByteRepresentation(); |
| } |
| |
| |
| bool Object::IsExternalString() { |
| if (!IsString()) return false; |
| return StringShape(String::cast(this)).IsExternal(); |
| } |
| |
| |
| bool Object::IsExternalAsciiString() { |
| if (!IsString()) return false; |
| return StringShape(String::cast(this)).IsExternal() && |
| String::cast(this)->IsAsciiRepresentation(); |
| } |
| |
| |
| bool Object::IsExternalTwoByteString() { |
| if (!IsString()) return false; |
| return StringShape(String::cast(this)).IsExternal() && |
| String::cast(this)->IsTwoByteRepresentation(); |
| } |
| |
| |
| StringShape::StringShape(String* str) |
| : type_(str->map()->instance_type()) { |
| set_valid(); |
| ASSERT((type_ & kIsNotStringMask) == kStringTag); |
| } |
| |
| |
| StringShape::StringShape(Map* map) |
| : type_(map->instance_type()) { |
| set_valid(); |
| ASSERT((type_ & kIsNotStringMask) == kStringTag); |
| } |
| |
| |
| StringShape::StringShape(InstanceType t) |
| : type_(static_cast<uint32_t>(t)) { |
| set_valid(); |
| ASSERT((type_ & kIsNotStringMask) == kStringTag); |
| } |
| |
| |
| bool StringShape::IsSymbol() { |
| ASSERT(valid()); |
| ASSERT(kSymbolTag != 0); |
| return (type_ & kIsSymbolMask) != 0; |
| } |
| |
| |
| bool String::IsAsciiRepresentation() { |
| uint32_t type = map()->instance_type(); |
| return (type & kStringEncodingMask) == kAsciiStringTag; |
| } |
| |
| |
| bool String::IsTwoByteRepresentation() { |
| uint32_t type = map()->instance_type(); |
| return (type & kStringEncodingMask) == kTwoByteStringTag; |
| } |
| |
| |
| bool String::HasOnlyAsciiChars() { |
| uint32_t type = map()->instance_type(); |
| return (type & kStringEncodingMask) == kAsciiStringTag || |
| (type & kAsciiDataHintMask) == kAsciiDataHintTag; |
| } |
| |
| |
| bool StringShape::IsCons() { |
| return (type_ & kStringRepresentationMask) == kConsStringTag; |
| } |
| |
| |
| bool StringShape::IsExternal() { |
| return (type_ & kStringRepresentationMask) == kExternalStringTag; |
| } |
| |
| |
| bool StringShape::IsSequential() { |
| return (type_ & kStringRepresentationMask) == kSeqStringTag; |
| } |
| |
| |
| StringRepresentationTag StringShape::representation_tag() { |
| uint32_t tag = (type_ & kStringRepresentationMask); |
| return static_cast<StringRepresentationTag>(tag); |
| } |
| |
| |
| uint32_t StringShape::full_representation_tag() { |
| return (type_ & (kStringRepresentationMask | kStringEncodingMask)); |
| } |
| |
| |
| STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) == |
| Internals::kFullStringRepresentationMask); |
| |
| |
| bool StringShape::IsSequentialAscii() { |
| return full_representation_tag() == (kSeqStringTag | kAsciiStringTag); |
| } |
| |
| |
| bool StringShape::IsSequentialTwoByte() { |
| return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag); |
| } |
| |
| |
| bool StringShape::IsExternalAscii() { |
| return full_representation_tag() == (kExternalStringTag | kAsciiStringTag); |
| } |
| |
| |
| bool StringShape::IsExternalTwoByte() { |
| return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag); |
| } |
| |
| |
| STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) == |
| Internals::kExternalTwoByteRepresentationTag); |
| |
| |
| uc32 FlatStringReader::Get(int index) { |
| ASSERT(0 <= index && index <= length_); |
| if (is_ascii_) { |
| return static_cast<const byte*>(start_)[index]; |
| } else { |
| return static_cast<const uc16*>(start_)[index]; |
| } |
| } |
| |
| |
| bool Object::IsNumber() { |
| return IsSmi() || IsHeapNumber(); |
| } |
| |
| |
| bool Object::IsByteArray() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalPixelArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_PIXEL_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalArray() { |
| if (!Object::IsHeapObject()) |
| return false; |
| InstanceType instance_type = |
| HeapObject::cast(this)->map()->instance_type(); |
| return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE && |
| instance_type <= LAST_EXTERNAL_ARRAY_TYPE); |
| } |
| |
| |
| bool Object::IsExternalByteArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_BYTE_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalUnsignedByteArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalShortArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_SHORT_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalUnsignedShortArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalIntArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_INT_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalUnsignedIntArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_UNSIGNED_INT_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsExternalFloatArray() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map()->instance_type() == |
| EXTERNAL_FLOAT_ARRAY_TYPE; |
| } |
| |
| |
| bool MaybeObject::IsFailure() { |
| return HAS_FAILURE_TAG(this); |
| } |
| |
| |
| bool MaybeObject::IsRetryAfterGC() { |
| return HAS_FAILURE_TAG(this) |
| && Failure::cast(this)->type() == Failure::RETRY_AFTER_GC; |
| } |
| |
| |
| bool MaybeObject::IsOutOfMemory() { |
| return HAS_FAILURE_TAG(this) |
| && Failure::cast(this)->IsOutOfMemoryException(); |
| } |
| |
| |
| bool MaybeObject::IsException() { |
| return this == Failure::Exception(); |
| } |
| |
| |
| bool MaybeObject::IsTheHole() { |
| return !IsFailure() && ToObjectUnchecked()->IsTheHole(); |
| } |
| |
| |
| Failure* Failure::cast(MaybeObject* obj) { |
| ASSERT(HAS_FAILURE_TAG(obj)); |
| return reinterpret_cast<Failure*>(obj); |
| } |
| |
| |
| bool Object::IsJSObject() { |
| return IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE; |
| } |
| |
| |
| bool Object::IsJSContextExtensionObject() { |
| return IsHeapObject() |
| && (HeapObject::cast(this)->map()->instance_type() == |
| JS_CONTEXT_EXTENSION_OBJECT_TYPE); |
| } |
| |
| |
| bool Object::IsMap() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == MAP_TYPE; |
| } |
| |
| |
| bool Object::IsFixedArray() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsDescriptorArray() { |
| return IsFixedArray(); |
| } |
| |
| |
| bool Object::IsDeoptimizationInputData() { |
| // Must be a fixed array. |
| if (!IsFixedArray()) return false; |
| |
| // There's no sure way to detect the difference between a fixed array and |
| // a deoptimization data array. Since this is used for asserts we can |
| // check that the length is zero or else the fixed size plus a multiple of |
| // the entry size. |
| int length = FixedArray::cast(this)->length(); |
| if (length == 0) return true; |
| |
| length -= DeoptimizationInputData::kFirstDeoptEntryIndex; |
| return length >= 0 && |
| length % DeoptimizationInputData::kDeoptEntrySize == 0; |
| } |
| |
| |
| bool Object::IsDeoptimizationOutputData() { |
| if (!IsFixedArray()) return false; |
| // There's actually no way to see the difference between a fixed array and |
| // a deoptimization data array. Since this is used for asserts we can check |
| // that the length is plausible though. |
| if (FixedArray::cast(this)->length() % 2 != 0) return false; |
| return true; |
| } |
| |
| |
| bool Object::IsContext() { |
| if (Object::IsHeapObject()) { |
| Heap* heap = HeapObject::cast(this)->GetHeap(); |
| return (HeapObject::cast(this)->map() == heap->context_map() || |
| HeapObject::cast(this)->map() == heap->catch_context_map() || |
| HeapObject::cast(this)->map() == heap->global_context_map()); |
| } |
| return false; |
| } |
| |
| |
| bool Object::IsCatchContext() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map() == |
| HeapObject::cast(this)->GetHeap()->catch_context_map(); |
| } |
| |
| |
| bool Object::IsGlobalContext() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map() == |
| HeapObject::cast(this)->GetHeap()->global_context_map(); |
| } |
| |
| |
| bool Object::IsJSFunction() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE; |
| } |
| |
| |
| template <> inline bool Is<JSFunction>(Object* obj) { |
| return obj->IsJSFunction(); |
| } |
| |
| |
| bool Object::IsCode() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == CODE_TYPE; |
| } |
| |
| |
| bool Object::IsOddball() { |
| ASSERT(HEAP->is_safe_to_read_maps()); |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE; |
| } |
| |
| |
| bool Object::IsJSGlobalPropertyCell() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() |
| == JS_GLOBAL_PROPERTY_CELL_TYPE; |
| } |
| |
| |
| bool Object::IsSharedFunctionInfo() { |
| return Object::IsHeapObject() && |
| (HeapObject::cast(this)->map()->instance_type() == |
| SHARED_FUNCTION_INFO_TYPE); |
| } |
| |
| |
| bool Object::IsJSValue() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE; |
| } |
| |
| |
| bool Object::IsJSMessageObject() { |
| return Object::IsHeapObject() |
| && (HeapObject::cast(this)->map()->instance_type() == |
| JS_MESSAGE_OBJECT_TYPE); |
| } |
| |
| |
| bool Object::IsStringWrapper() { |
| return IsJSValue() && JSValue::cast(this)->value()->IsString(); |
| } |
| |
| |
| bool Object::IsProxy() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == PROXY_TYPE; |
| } |
| |
| |
| bool Object::IsBoolean() { |
| return IsOddball() && |
| ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); |
| } |
| |
| |
| bool Object::IsJSArray() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE; |
| } |
| |
| |
| bool Object::IsJSRegExp() { |
| return Object::IsHeapObject() |
| && HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE; |
| } |
| |
| |
| template <> inline bool Is<JSArray>(Object* obj) { |
| return obj->IsJSArray(); |
| } |
| |
| |
| bool Object::IsHashTable() { |
| return Object::IsHeapObject() && |
| HeapObject::cast(this)->map() == |
| HeapObject::cast(this)->GetHeap()->hash_table_map(); |
| } |
| |
| |
| bool Object::IsDictionary() { |
| return IsHashTable() && this != |
| HeapObject::cast(this)->GetHeap()->symbol_table(); |
| } |
| |
| |
| bool Object::IsSymbolTable() { |
| return IsHashTable() && this == |
| HeapObject::cast(this)->GetHeap()->raw_unchecked_symbol_table(); |
| } |
| |
| |
| bool Object::IsJSFunctionResultCache() { |
| if (!IsFixedArray()) return false; |
| FixedArray* self = FixedArray::cast(this); |
| int length = self->length(); |
| if (length < JSFunctionResultCache::kEntriesIndex) return false; |
| if ((length - JSFunctionResultCache::kEntriesIndex) |
| % JSFunctionResultCache::kEntrySize != 0) { |
| return false; |
| } |
| #ifdef DEBUG |
| reinterpret_cast<JSFunctionResultCache*>(this)->JSFunctionResultCacheVerify(); |
| #endif |
| return true; |
| } |
| |
| |
| bool Object::IsNormalizedMapCache() { |
| if (!IsFixedArray()) return false; |
| if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) { |
| return false; |
| } |
| #ifdef DEBUG |
| reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify(); |
| #endif |
| return true; |
| } |
| |
| |
| bool Object::IsCompilationCacheTable() { |
| return IsHashTable(); |
| } |
| |
| |
| bool Object::IsCodeCacheHashTable() { |
| return IsHashTable(); |
| } |
| |
| |
| bool Object::IsMapCache() { |
| return IsHashTable(); |
| } |
| |
| |
| bool Object::IsPrimitive() { |
| return IsOddball() || IsNumber() || IsString(); |
| } |
| |
| |
| bool Object::IsJSGlobalProxy() { |
| bool result = IsHeapObject() && |
| (HeapObject::cast(this)->map()->instance_type() == |
| JS_GLOBAL_PROXY_TYPE); |
| ASSERT(!result || IsAccessCheckNeeded()); |
| return result; |
| } |
| |
| |
| bool Object::IsGlobalObject() { |
| if (!IsHeapObject()) return false; |
| |
| InstanceType type = HeapObject::cast(this)->map()->instance_type(); |
| return type == JS_GLOBAL_OBJECT_TYPE || |
| type == JS_BUILTINS_OBJECT_TYPE; |
| } |
| |
| |
| bool Object::IsJSGlobalObject() { |
| return IsHeapObject() && |
| (HeapObject::cast(this)->map()->instance_type() == |
| JS_GLOBAL_OBJECT_TYPE); |
| } |
| |
| |
| bool Object::IsJSBuiltinsObject() { |
| return IsHeapObject() && |
| (HeapObject::cast(this)->map()->instance_type() == |
| JS_BUILTINS_OBJECT_TYPE); |
| } |
| |
| |
| bool Object::IsUndetectableObject() { |
| return IsHeapObject() |
| && HeapObject::cast(this)->map()->is_undetectable(); |
| } |
| |
| |
| bool Object::IsAccessCheckNeeded() { |
| return IsHeapObject() |
| && HeapObject::cast(this)->map()->is_access_check_needed(); |
| } |
| |
| |
| bool Object::IsStruct() { |
| if (!IsHeapObject()) return false; |
| switch (HeapObject::cast(this)->map()->instance_type()) { |
| #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true; |
| STRUCT_LIST(MAKE_STRUCT_CASE) |
| #undef MAKE_STRUCT_CASE |
| default: return false; |
| } |
| } |
| |
| |
| #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ |
| bool Object::Is##Name() { \ |
| return Object::IsHeapObject() \ |
| && HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \ |
| } |
| STRUCT_LIST(MAKE_STRUCT_PREDICATE) |
| #undef MAKE_STRUCT_PREDICATE |
| |
| |
| bool Object::IsUndefined() { |
| return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined; |
| } |
| |
| |
| bool Object::IsNull() { |
| return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull; |
| } |
| |
| |
| bool Object::IsTheHole() { |
| return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole; |
| } |
| |
| |
| bool Object::IsTrue() { |
| return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue; |
| } |
| |
| |
| bool Object::IsFalse() { |
| return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse; |
| } |
| |
| |
| bool Object::IsArgumentsMarker() { |
| return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker; |
| } |
| |
| |
| double Object::Number() { |
| ASSERT(IsNumber()); |
| return IsSmi() |
| ? static_cast<double>(reinterpret_cast<Smi*>(this)->value()) |
| : reinterpret_cast<HeapNumber*>(this)->value(); |
| } |
| |
| |
| MaybeObject* Object::ToSmi() { |
| if (IsSmi()) return this; |
| if (IsHeapNumber()) { |
| double value = HeapNumber::cast(this)->value(); |
| int int_value = FastD2I(value); |
| if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { |
| return Smi::FromInt(int_value); |
| } |
| } |
| return Failure::Exception(); |
| } |
| |
| |
| bool Object::HasSpecificClassOf(String* name) { |
| return this->IsJSObject() && (JSObject::cast(this)->class_name() == name); |
| } |
| |
| |
| MaybeObject* Object::GetElement(uint32_t index) { |
| // GetElement can trigger a getter which can cause allocation. |
| // This was not always the case. This ASSERT is here to catch |
| // leftover incorrect uses. |
| ASSERT(HEAP->IsAllocationAllowed()); |
| return GetElementWithReceiver(this, index); |
| } |
| |
| |
| Object* Object::GetElementNoExceptionThrown(uint32_t index) { |
| MaybeObject* maybe = GetElementWithReceiver(this, index); |
| ASSERT(!maybe->IsFailure()); |
| Object* result = NULL; // Initialization to please compiler. |
| maybe->ToObject(&result); |
| return result; |
| } |
| |
| |
| MaybeObject* Object::GetProperty(String* key) { |
| PropertyAttributes attributes; |
| return GetPropertyWithReceiver(this, key, &attributes); |
| } |
| |
| |
| MaybeObject* Object::GetProperty(String* key, PropertyAttributes* attributes) { |
| return GetPropertyWithReceiver(this, key, attributes); |
| } |
| |
| |
| #define FIELD_ADDR(p, offset) \ |
| (reinterpret_cast<byte*>(p) + offset - kHeapObjectTag) |
| |
| #define READ_FIELD(p, offset) \ |
| (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset))) |
| |
| #define WRITE_FIELD(p, offset, value) \ |
| (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value) |
| |
| // TODO(isolates): Pass heap in to these macros. |
| #define WRITE_BARRIER(object, offset) \ |
| object->GetHeap()->RecordWrite(object->address(), offset); |
| |
| // CONDITIONAL_WRITE_BARRIER must be issued after the actual |
| // write due to the assert validating the written value. |
| #define CONDITIONAL_WRITE_BARRIER(heap, object, offset, mode) \ |
| if (mode == UPDATE_WRITE_BARRIER) { \ |
| heap->RecordWrite(object->address(), offset); \ |
| } else { \ |
| ASSERT(mode == SKIP_WRITE_BARRIER); \ |
| ASSERT(heap->InNewSpace(object) || \ |
| !heap->InNewSpace(READ_FIELD(object, offset)) || \ |
| Page::FromAddress(object->address())-> \ |
| IsRegionDirty(object->address() + offset)); \ |
| } |
| |
| #ifndef V8_TARGET_ARCH_MIPS |
| #define READ_DOUBLE_FIELD(p, offset) \ |
| (*reinterpret_cast<double*>(FIELD_ADDR(p, offset))) |
| #else // V8_TARGET_ARCH_MIPS |
| // Prevent gcc from using load-double (mips ldc1) on (possibly) |
| // non-64-bit aligned HeapNumber::value. |
| static inline double read_double_field(HeapNumber* p, int offset) { |
| union conversion { |
| double d; |
| uint32_t u[2]; |
| } c; |
| c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))); |
| c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))); |
| return c.d; |
| } |
| #define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset) |
| #endif // V8_TARGET_ARCH_MIPS |
| |
| |
| #ifndef V8_TARGET_ARCH_MIPS |
| #define WRITE_DOUBLE_FIELD(p, offset, value) \ |
| (*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value) |
| #else // V8_TARGET_ARCH_MIPS |
| // Prevent gcc from using store-double (mips sdc1) on (possibly) |
| // non-64-bit aligned HeapNumber::value. |
| static inline void write_double_field(HeapNumber* p, int offset, |
| double value) { |
| union conversion { |
| double d; |
| uint32_t u[2]; |
| } c; |
| c.d = value; |
| (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0]; |
| (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1]; |
| } |
| #define WRITE_DOUBLE_FIELD(p, offset, value) \ |
| write_double_field(p, offset, value) |
| #endif // V8_TARGET_ARCH_MIPS |
| |
| |
| #define READ_INT_FIELD(p, offset) \ |
| (*reinterpret_cast<int*>(FIELD_ADDR(p, offset))) |
| |
| #define WRITE_INT_FIELD(p, offset, value) \ |
| (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value) |
| |
| #define READ_INTPTR_FIELD(p, offset) \ |
| (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset))) |
| |
| #define WRITE_INTPTR_FIELD(p, offset, value) \ |
| (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value) |
| |
| #define READ_UINT32_FIELD(p, offset) \ |
| (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) |
| |
| #define WRITE_UINT32_FIELD(p, offset, value) \ |
| (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value) |
| |
| #define READ_SHORT_FIELD(p, offset) \ |
| (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset))) |
| |
| #define WRITE_SHORT_FIELD(p, offset, value) \ |
| (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value) |
| |
| #define READ_BYTE_FIELD(p, offset) \ |
| (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset))) |
| |
| #define WRITE_BYTE_FIELD(p, offset, value) \ |
| (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value) |
| |
| |
| Object** HeapObject::RawField(HeapObject* obj, int byte_offset) { |
| return &READ_FIELD(obj, byte_offset); |
| } |
| |
| |
| int Smi::value() { |
| return Internals::SmiValue(this); |
| } |
| |
| |
| Smi* Smi::FromInt(int value) { |
| ASSERT(Smi::IsValid(value)); |
| int smi_shift_bits = kSmiTagSize + kSmiShiftSize; |
| intptr_t tagged_value = |
| (static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag; |
| return reinterpret_cast<Smi*>(tagged_value); |
| } |
| |
| |
| Smi* Smi::FromIntptr(intptr_t value) { |
| ASSERT(Smi::IsValid(value)); |
| int smi_shift_bits = kSmiTagSize + kSmiShiftSize; |
| return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag); |
| } |
| |
| |
| Failure::Type Failure::type() const { |
| return static_cast<Type>(value() & kFailureTypeTagMask); |
| } |
| |
| |
| bool Failure::IsInternalError() const { |
| return type() == INTERNAL_ERROR; |
| } |
| |
| |
| bool Failure::IsOutOfMemoryException() const { |
| return type() == OUT_OF_MEMORY_EXCEPTION; |
| } |
| |
| |
| AllocationSpace Failure::allocation_space() const { |
| ASSERT_EQ(RETRY_AFTER_GC, type()); |
| return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize) |
| & kSpaceTagMask); |
| } |
| |
| |
| Failure* Failure::InternalError() { |
| return Construct(INTERNAL_ERROR); |
| } |
| |
| |
| Failure* Failure::Exception() { |
| return Construct(EXCEPTION); |
| } |
| |
| |
| Failure* Failure::OutOfMemoryException() { |
| return Construct(OUT_OF_MEMORY_EXCEPTION); |
| } |
| |
| |
| intptr_t Failure::value() const { |
| return static_cast<intptr_t>( |
| reinterpret_cast<uintptr_t>(this) >> kFailureTagSize); |
| } |
| |
| |
| Failure* Failure::RetryAfterGC() { |
| return RetryAfterGC(NEW_SPACE); |
| } |
| |
| |
| Failure* Failure::RetryAfterGC(AllocationSpace space) { |
| ASSERT((space & ~kSpaceTagMask) == 0); |
| return Construct(RETRY_AFTER_GC, space); |
| } |
| |
| |
| Failure* Failure::Construct(Type type, intptr_t value) { |
| uintptr_t info = |
| (static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type; |
| ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info); |
| return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag); |
| } |
| |
| |
| bool Smi::IsValid(intptr_t value) { |
| #ifdef DEBUG |
| bool in_range = (value >= kMinValue) && (value <= kMaxValue); |
| #endif |
| |
| #ifdef V8_TARGET_ARCH_X64 |
| // To be representable as a long smi, the value must be a 32-bit integer. |
| bool result = (value == static_cast<int32_t>(value)); |
| #else |
| // To be representable as an tagged small integer, the two |
| // most-significant bits of 'value' must be either 00 or 11 due to |
| // sign-extension. To check this we add 01 to the two |
| // most-significant bits, and check if the most-significant bit is 0 |
| // |
| // CAUTION: The original code below: |
| // bool result = ((value + 0x40000000) & 0x80000000) == 0; |
| // may lead to incorrect results according to the C language spec, and |
| // in fact doesn't work correctly with gcc4.1.1 in some cases: The |
| // compiler may produce undefined results in case of signed integer |
| // overflow. The computation must be done w/ unsigned ints. |
| bool result = (static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U); |
| #endif |
| ASSERT(result == in_range); |
| return result; |
| } |
| |
| |
| MapWord MapWord::FromMap(Map* map) { |
| return MapWord(reinterpret_cast<uintptr_t>(map)); |
| } |
| |
| |
| Map* MapWord::ToMap() { |
| return reinterpret_cast<Map*>(value_); |
| } |
| |
| |
| bool MapWord::IsForwardingAddress() { |
| return HAS_SMI_TAG(reinterpret_cast<Object*>(value_)); |
| } |
| |
| |
| MapWord MapWord::FromForwardingAddress(HeapObject* object) { |
| Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag; |
| return MapWord(reinterpret_cast<uintptr_t>(raw)); |
| } |
| |
| |
| HeapObject* MapWord::ToForwardingAddress() { |
| ASSERT(IsForwardingAddress()); |
| return HeapObject::FromAddress(reinterpret_cast<Address>(value_)); |
| } |
| |
| |
| bool MapWord::IsMarked() { |
| return (value_ & kMarkingMask) == 0; |
| } |
| |
| |
| void MapWord::SetMark() { |
| value_ &= ~kMarkingMask; |
| } |
| |
| |
| void MapWord::ClearMark() { |
| value_ |= kMarkingMask; |
| } |
| |
| |
| bool MapWord::IsOverflowed() { |
| return (value_ & kOverflowMask) != 0; |
| } |
| |
| |
| void MapWord::SetOverflow() { |
| value_ |= kOverflowMask; |
| } |
| |
| |
| void MapWord::ClearOverflow() { |
| value_ &= ~kOverflowMask; |
| } |
| |
| |
| MapWord MapWord::EncodeAddress(Address map_address, int offset) { |
| // Offset is the distance in live bytes from the first live object in the |
| // same page. The offset between two objects in the same page should not |
| // exceed the object area size of a page. |
| ASSERT(0 <= offset && offset < Page::kObjectAreaSize); |
| |
| uintptr_t compact_offset = offset >> kObjectAlignmentBits; |
| ASSERT(compact_offset < (1 << kForwardingOffsetBits)); |
| |
| Page* map_page = Page::FromAddress(map_address); |
| ASSERT_MAP_PAGE_INDEX(map_page->mc_page_index); |
| |
| uintptr_t map_page_offset = |
| map_page->Offset(map_address) >> kMapAlignmentBits; |
| |
| uintptr_t encoding = |
| (compact_offset << kForwardingOffsetShift) | |
| (map_page_offset << kMapPageOffsetShift) | |
| (map_page->mc_page_index << kMapPageIndexShift); |
| return MapWord(encoding); |
| } |
| |
| |
| Address MapWord::DecodeMapAddress(MapSpace* map_space) { |
| int map_page_index = |
| static_cast<int>((value_ & kMapPageIndexMask) >> kMapPageIndexShift); |
| ASSERT_MAP_PAGE_INDEX(map_page_index); |
| |
| int map_page_offset = static_cast<int>( |
| ((value_ & kMapPageOffsetMask) >> kMapPageOffsetShift) << |
| kMapAlignmentBits); |
| |
| return (map_space->PageAddress(map_page_index) + map_page_offset); |
| } |
| |
| |
| int MapWord::DecodeOffset() { |
| // The offset field is represented in the kForwardingOffsetBits |
| // most-significant bits. |
| uintptr_t offset = (value_ >> kForwardingOffsetShift) << kObjectAlignmentBits; |
| ASSERT(offset < static_cast<uintptr_t>(Page::kObjectAreaSize)); |
| return static_cast<int>(offset); |
| } |
| |
| |
| MapWord MapWord::FromEncodedAddress(Address address) { |
| return MapWord(reinterpret_cast<uintptr_t>(address)); |
| } |
| |
| |
| Address MapWord::ToEncodedAddress() { |
| return reinterpret_cast<Address>(value_); |
| } |
| |
| |
| #ifdef DEBUG |
| void HeapObject::VerifyObjectField(int offset) { |
| VerifyPointer(READ_FIELD(this, offset)); |
| } |
| |
| void HeapObject::VerifySmiField(int offset) { |
| ASSERT(READ_FIELD(this, offset)->IsSmi()); |
| } |
| #endif |
| |
| |
| Heap* HeapObject::GetHeap() { |
| // During GC, the map pointer in HeapObject is used in various ways that |
| // prevent us from retrieving Heap from the map. |
| // Assert that we are not in GC, implement GC code in a way that it doesn't |
| // pull heap from the map. |
| ASSERT(HEAP->is_safe_to_read_maps()); |
| return map()->heap(); |
| } |
| |
| |
| Isolate* HeapObject::GetIsolate() { |
| return GetHeap()->isolate(); |
| } |
| |
| |
| Map* HeapObject::map() { |
| return map_word().ToMap(); |
| } |
| |
| |
| void HeapObject::set_map(Map* value) { |
| set_map_word(MapWord::FromMap(value)); |
| } |
| |
| |
| MapWord HeapObject::map_word() { |
| return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset))); |
| } |
| |
| |
| void HeapObject::set_map_word(MapWord map_word) { |
| // WRITE_FIELD does not invoke write barrier, but there is no need |
| // here. |
| WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_)); |
| } |
| |
| |
| HeapObject* HeapObject::FromAddress(Address address) { |
| ASSERT_TAG_ALIGNED(address); |
| return reinterpret_cast<HeapObject*>(address + kHeapObjectTag); |
| } |
| |
| |
| Address HeapObject::address() { |
| return reinterpret_cast<Address>(this) - kHeapObjectTag; |
| } |
| |
| |
| int HeapObject::Size() { |
| return SizeFromMap(map()); |
| } |
| |
| |
| void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) { |
| v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)), |
| reinterpret_cast<Object**>(FIELD_ADDR(this, end))); |
| } |
| |
| |
| void HeapObject::IteratePointer(ObjectVisitor* v, int offset) { |
| v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset))); |
| } |
| |
| |
| bool HeapObject::IsMarked() { |
| return map_word().IsMarked(); |
| } |
| |
| |
| void HeapObject::SetMark() { |
| ASSERT(!IsMarked()); |
| MapWord first_word = map_word(); |
| first_word.SetMark(); |
| set_map_word(first_word); |
| } |
| |
| |
| void HeapObject::ClearMark() { |
| ASSERT(IsMarked()); |
| MapWord first_word = map_word(); |
| first_word.ClearMark(); |
| set_map_word(first_word); |
| } |
| |
| |
| bool HeapObject::IsOverflowed() { |
| return map_word().IsOverflowed(); |
| } |
| |
| |
| void HeapObject::SetOverflow() { |
| MapWord first_word = map_word(); |
| first_word.SetOverflow(); |
| set_map_word(first_word); |
| } |
| |
| |
| void HeapObject::ClearOverflow() { |
| ASSERT(IsOverflowed()); |
| MapWord first_word = map_word(); |
| first_word.ClearOverflow(); |
| set_map_word(first_word); |
| } |
| |
| |
| double HeapNumber::value() { |
| return READ_DOUBLE_FIELD(this, kValueOffset); |
| } |
| |
| |
| void HeapNumber::set_value(double value) { |
| WRITE_DOUBLE_FIELD(this, kValueOffset, value); |
| } |
| |
| |
| int HeapNumber::get_exponent() { |
| return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> |
| kExponentShift) - kExponentBias; |
| } |
| |
| |
| int HeapNumber::get_sign() { |
| return READ_INT_FIELD(this, kExponentOffset) & kSignMask; |
| } |
| |
| |
| ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset) |
| |
| |
| HeapObject* JSObject::elements() { |
| Object* array = READ_FIELD(this, kElementsOffset); |
| // In the assert below Dictionary is covered under FixedArray. |
| ASSERT(array->IsFixedArray() || array->IsExternalArray()); |
| return reinterpret_cast<HeapObject*>(array); |
| } |
| |
| |
| void JSObject::set_elements(HeapObject* value, WriteBarrierMode mode) { |
| ASSERT(map()->has_fast_elements() == |
| (value->map() == GetHeap()->fixed_array_map() || |
| value->map() == GetHeap()->fixed_cow_array_map())); |
| // In the assert below Dictionary is covered under FixedArray. |
| ASSERT(value->IsFixedArray() || value->IsExternalArray()); |
| WRITE_FIELD(this, kElementsOffset, value); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, mode); |
| } |
| |
| |
| void JSObject::initialize_properties() { |
| ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); |
| WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array()); |
| } |
| |
| |
| void JSObject::initialize_elements() { |
| ASSERT(map()->has_fast_elements()); |
| ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); |
| WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array()); |
| } |
| |
| |
| MaybeObject* JSObject::ResetElements() { |
| Object* obj; |
| { MaybeObject* maybe_obj = map()->GetFastElementsMap(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| set_map(Map::cast(obj)); |
| initialize_elements(); |
| return this; |
| } |
| |
| |
| ACCESSORS(Oddball, to_string, String, kToStringOffset) |
| ACCESSORS(Oddball, to_number, Object, kToNumberOffset) |
| |
| |
| byte Oddball::kind() { |
| return READ_BYTE_FIELD(this, kKindOffset); |
| } |
| |
| |
| void Oddball::set_kind(byte value) { |
| WRITE_BYTE_FIELD(this, kKindOffset, value); |
| } |
| |
| |
| Object* JSGlobalPropertyCell::value() { |
| return READ_FIELD(this, kValueOffset); |
| } |
| |
| |
| void JSGlobalPropertyCell::set_value(Object* val, WriteBarrierMode ignored) { |
| // The write barrier is not used for global property cells. |
| ASSERT(!val->IsJSGlobalPropertyCell()); |
| WRITE_FIELD(this, kValueOffset, val); |
| } |
| |
| |
| int JSObject::GetHeaderSize() { |
| InstanceType type = map()->instance_type(); |
| // Check for the most common kind of JavaScript object before |
| // falling into the generic switch. This speeds up the internal |
| // field operations considerably on average. |
| if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize; |
| switch (type) { |
| case JS_GLOBAL_PROXY_TYPE: |
| return JSGlobalProxy::kSize; |
| case JS_GLOBAL_OBJECT_TYPE: |
| return JSGlobalObject::kSize; |
| case JS_BUILTINS_OBJECT_TYPE: |
| return JSBuiltinsObject::kSize; |
| case JS_FUNCTION_TYPE: |
| return JSFunction::kSize; |
| case JS_VALUE_TYPE: |
| return JSValue::kSize; |
| case JS_ARRAY_TYPE: |
| return JSValue::kSize; |
| case JS_REGEXP_TYPE: |
| return JSValue::kSize; |
| case JS_CONTEXT_EXTENSION_OBJECT_TYPE: |
| return JSObject::kHeaderSize; |
| case JS_MESSAGE_OBJECT_TYPE: |
| return JSMessageObject::kSize; |
| default: |
| UNREACHABLE(); |
| return 0; |
| } |
| } |
| |
| |
| int JSObject::GetInternalFieldCount() { |
| ASSERT(1 << kPointerSizeLog2 == kPointerSize); |
| // Make sure to adjust for the number of in-object properties. These |
| // properties do contribute to the size, but are not internal fields. |
| return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) - |
| map()->inobject_properties(); |
| } |
| |
| |
| int JSObject::GetInternalFieldOffset(int index) { |
| ASSERT(index < GetInternalFieldCount() && index >= 0); |
| return GetHeaderSize() + (kPointerSize * index); |
| } |
| |
| |
| Object* JSObject::GetInternalField(int index) { |
| ASSERT(index < GetInternalFieldCount() && index >= 0); |
| // Internal objects do follow immediately after the header, whereas in-object |
| // properties are at the end of the object. Therefore there is no need |
| // to adjust the index here. |
| return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index)); |
| } |
| |
| |
| void JSObject::SetInternalField(int index, Object* value) { |
| ASSERT(index < GetInternalFieldCount() && index >= 0); |
| // Internal objects do follow immediately after the header, whereas in-object |
| // properties are at the end of the object. Therefore there is no need |
| // to adjust the index here. |
| int offset = GetHeaderSize() + (kPointerSize * index); |
| WRITE_FIELD(this, offset, value); |
| WRITE_BARRIER(this, offset); |
| } |
| |
| |
| // Access fast-case object properties at index. The use of these routines |
| // is needed to correctly distinguish between properties stored in-object and |
| // properties stored in the properties array. |
| Object* JSObject::FastPropertyAt(int index) { |
| // Adjust for the number of properties stored in the object. |
| index -= map()->inobject_properties(); |
| if (index < 0) { |
| int offset = map()->instance_size() + (index * kPointerSize); |
| return READ_FIELD(this, offset); |
| } else { |
| ASSERT(index < properties()->length()); |
| return properties()->get(index); |
| } |
| } |
| |
| |
| Object* JSObject::FastPropertyAtPut(int index, Object* value) { |
| // Adjust for the number of properties stored in the object. |
| index -= map()->inobject_properties(); |
| if (index < 0) { |
| int offset = map()->instance_size() + (index * kPointerSize); |
| WRITE_FIELD(this, offset, value); |
| WRITE_BARRIER(this, offset); |
| } else { |
| ASSERT(index < properties()->length()); |
| properties()->set(index, value); |
| } |
| return value; |
| } |
| |
| |
| int JSObject::GetInObjectPropertyOffset(int index) { |
| // Adjust for the number of properties stored in the object. |
| index -= map()->inobject_properties(); |
| ASSERT(index < 0); |
| return map()->instance_size() + (index * kPointerSize); |
| } |
| |
| |
| Object* JSObject::InObjectPropertyAt(int index) { |
| // Adjust for the number of properties stored in the object. |
| index -= map()->inobject_properties(); |
| ASSERT(index < 0); |
| int offset = map()->instance_size() + (index * kPointerSize); |
| return READ_FIELD(this, offset); |
| } |
| |
| |
| Object* JSObject::InObjectPropertyAtPut(int index, |
| Object* value, |
| WriteBarrierMode mode) { |
| // Adjust for the number of properties stored in the object. |
| index -= map()->inobject_properties(); |
| ASSERT(index < 0); |
| int offset = map()->instance_size() + (index * kPointerSize); |
| WRITE_FIELD(this, offset, value); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); |
| return value; |
| } |
| |
| |
| |
| void JSObject::InitializeBody(int object_size, Object* value) { |
| ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value)); |
| for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { |
| WRITE_FIELD(this, offset, value); |
| } |
| } |
| |
| |
| bool JSObject::HasFastProperties() { |
| return !properties()->IsDictionary(); |
| } |
| |
| |
| int JSObject::MaxFastProperties() { |
| // Allow extra fast properties if the object has more than |
| // kMaxFastProperties in-object properties. When this is the case, |
| // it is very unlikely that the object is being used as a dictionary |
| // and there is a good chance that allowing more map transitions |
| // will be worth it. |
| return Max(map()->inobject_properties(), kMaxFastProperties); |
| } |
| |
| |
| void Struct::InitializeBody(int object_size) { |
| Object* value = GetHeap()->undefined_value(); |
| for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { |
| WRITE_FIELD(this, offset, value); |
| } |
| } |
| |
| |
| bool Object::ToArrayIndex(uint32_t* index) { |
| if (IsSmi()) { |
| int value = Smi::cast(this)->value(); |
| if (value < 0) return false; |
| *index = value; |
| return true; |
| } |
| if (IsHeapNumber()) { |
| double value = HeapNumber::cast(this)->value(); |
| uint32_t uint_value = static_cast<uint32_t>(value); |
| if (value == static_cast<double>(uint_value)) { |
| *index = uint_value; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool Object::IsStringObjectWithCharacterAt(uint32_t index) { |
| if (!this->IsJSValue()) return false; |
| |
| JSValue* js_value = JSValue::cast(this); |
| if (!js_value->value()->IsString()) return false; |
| |
| String* str = String::cast(js_value->value()); |
| if (index >= (uint32_t)str->length()) return false; |
| |
| return true; |
| } |
| |
| |
| Object* FixedArray::get(int index) { |
| ASSERT(index >= 0 && index < this->length()); |
| return READ_FIELD(this, kHeaderSize + index * kPointerSize); |
| } |
| |
| |
| void FixedArray::set(int index, Smi* value) { |
| ASSERT(map() != HEAP->fixed_cow_array_map()); |
| ASSERT(reinterpret_cast<Object*>(value)->IsSmi()); |
| int offset = kHeaderSize + index * kPointerSize; |
| WRITE_FIELD(this, offset, value); |
| } |
| |
| |
| void FixedArray::set(int index, Object* value) { |
| ASSERT(map() != HEAP->fixed_cow_array_map()); |
| ASSERT(index >= 0 && index < this->length()); |
| int offset = kHeaderSize + index * kPointerSize; |
| WRITE_FIELD(this, offset, value); |
| WRITE_BARRIER(this, offset); |
| } |
| |
| |
| WriteBarrierMode HeapObject::GetWriteBarrierMode(const AssertNoAllocation&) { |
| if (GetHeap()->InNewSpace(this)) return SKIP_WRITE_BARRIER; |
| return UPDATE_WRITE_BARRIER; |
| } |
| |
| |
| void FixedArray::set(int index, |
| Object* value, |
| WriteBarrierMode mode) { |
| ASSERT(map() != HEAP->fixed_cow_array_map()); |
| ASSERT(index >= 0 && index < this->length()); |
| int offset = kHeaderSize + index * kPointerSize; |
| WRITE_FIELD(this, offset, value); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); |
| } |
| |
| |
| void FixedArray::fast_set(FixedArray* array, int index, Object* value) { |
| ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map()); |
| ASSERT(index >= 0 && index < array->length()); |
| ASSERT(!HEAP->InNewSpace(value)); |
| WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value); |
| } |
| |
| |
| void FixedArray::set_undefined(int index) { |
| ASSERT(map() != HEAP->fixed_cow_array_map()); |
| set_undefined(GetHeap(), index); |
| } |
| |
| |
| void FixedArray::set_undefined(Heap* heap, int index) { |
| ASSERT(index >= 0 && index < this->length()); |
| ASSERT(!heap->InNewSpace(heap->undefined_value())); |
| WRITE_FIELD(this, kHeaderSize + index * kPointerSize, |
| heap->undefined_value()); |
| } |
| |
| |
| void FixedArray::set_null(int index) { |
| set_null(GetHeap(), index); |
| } |
| |
| |
| void FixedArray::set_null(Heap* heap, int index) { |
| ASSERT(index >= 0 && index < this->length()); |
| ASSERT(!heap->InNewSpace(heap->null_value())); |
| WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value()); |
| } |
| |
| |
| void FixedArray::set_the_hole(int index) { |
| ASSERT(map() != HEAP->fixed_cow_array_map()); |
| ASSERT(index >= 0 && index < this->length()); |
| ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value())); |
| WRITE_FIELD(this, |
| kHeaderSize + index * kPointerSize, |
| GetHeap()->the_hole_value()); |
| } |
| |
| |
| void FixedArray::set_unchecked(int index, Smi* value) { |
| ASSERT(reinterpret_cast<Object*>(value)->IsSmi()); |
| int offset = kHeaderSize + index * kPointerSize; |
| WRITE_FIELD(this, offset, value); |
| } |
| |
| |
| void FixedArray::set_unchecked(Heap* heap, |
| int index, |
| Object* value, |
| WriteBarrierMode mode) { |
| int offset = kHeaderSize + index * kPointerSize; |
| WRITE_FIELD(this, offset, value); |
| CONDITIONAL_WRITE_BARRIER(heap, this, offset, mode); |
| } |
| |
| |
| void FixedArray::set_null_unchecked(Heap* heap, int index) { |
| ASSERT(index >= 0 && index < this->length()); |
| ASSERT(!HEAP->InNewSpace(heap->null_value())); |
| WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value()); |
| } |
| |
| |
| Object** FixedArray::data_start() { |
| return HeapObject::RawField(this, kHeaderSize); |
| } |
| |
| |
| bool DescriptorArray::IsEmpty() { |
| ASSERT(this->length() > kFirstIndex || |
| this == HEAP->empty_descriptor_array()); |
| return length() <= kFirstIndex; |
| } |
| |
| |
| void DescriptorArray::fast_swap(FixedArray* array, int first, int second) { |
| Object* tmp = array->get(first); |
| fast_set(array, first, array->get(second)); |
| fast_set(array, second, tmp); |
| } |
| |
| |
| int DescriptorArray::Search(String* name) { |
| SLOW_ASSERT(IsSortedNoDuplicates()); |
| |
| // Check for empty descriptor array. |
| int nof = number_of_descriptors(); |
| if (nof == 0) return kNotFound; |
| |
| // Fast case: do linear search for small arrays. |
| const int kMaxElementsForLinearSearch = 8; |
| if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) { |
| return LinearSearch(name, nof); |
| } |
| |
| // Slow case: perform binary search. |
| return BinarySearch(name, 0, nof - 1); |
| } |
| |
| |
| int DescriptorArray::SearchWithCache(String* name) { |
| int number = GetIsolate()->descriptor_lookup_cache()->Lookup(this, name); |
| if (number == DescriptorLookupCache::kAbsent) { |
| number = Search(name); |
| GetIsolate()->descriptor_lookup_cache()->Update(this, name, number); |
| } |
| return number; |
| } |
| |
| |
| String* DescriptorArray::GetKey(int descriptor_number) { |
| ASSERT(descriptor_number < number_of_descriptors()); |
| return String::cast(get(ToKeyIndex(descriptor_number))); |
| } |
| |
| |
| Object* DescriptorArray::GetValue(int descriptor_number) { |
| ASSERT(descriptor_number < number_of_descriptors()); |
| return GetContentArray()->get(ToValueIndex(descriptor_number)); |
| } |
| |
| |
| Smi* DescriptorArray::GetDetails(int descriptor_number) { |
| ASSERT(descriptor_number < number_of_descriptors()); |
| return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number))); |
| } |
| |
| |
| PropertyType DescriptorArray::GetType(int descriptor_number) { |
| ASSERT(descriptor_number < number_of_descriptors()); |
| return PropertyDetails(GetDetails(descriptor_number)).type(); |
| } |
| |
| |
| int DescriptorArray::GetFieldIndex(int descriptor_number) { |
| return Descriptor::IndexFromValue(GetValue(descriptor_number)); |
| } |
| |
| |
| JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) { |
| return JSFunction::cast(GetValue(descriptor_number)); |
| } |
| |
| |
| Object* DescriptorArray::GetCallbacksObject(int descriptor_number) { |
| ASSERT(GetType(descriptor_number) == CALLBACKS); |
| return GetValue(descriptor_number); |
| } |
| |
| |
| AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) { |
| ASSERT(GetType(descriptor_number) == CALLBACKS); |
| Proxy* p = Proxy::cast(GetCallbacksObject(descriptor_number)); |
| return reinterpret_cast<AccessorDescriptor*>(p->proxy()); |
| } |
| |
| |
| bool DescriptorArray::IsProperty(int descriptor_number) { |
| return GetType(descriptor_number) < FIRST_PHANTOM_PROPERTY_TYPE; |
| } |
| |
| |
| bool DescriptorArray::IsTransition(int descriptor_number) { |
| PropertyType t = GetType(descriptor_number); |
| return t == MAP_TRANSITION || t == CONSTANT_TRANSITION || |
| t == EXTERNAL_ARRAY_TRANSITION; |
| } |
| |
| |
| bool DescriptorArray::IsNullDescriptor(int descriptor_number) { |
| return GetType(descriptor_number) == NULL_DESCRIPTOR; |
| } |
| |
| |
| bool DescriptorArray::IsDontEnum(int descriptor_number) { |
| return PropertyDetails(GetDetails(descriptor_number)).IsDontEnum(); |
| } |
| |
| |
| void DescriptorArray::Get(int descriptor_number, Descriptor* desc) { |
| desc->Init(GetKey(descriptor_number), |
| GetValue(descriptor_number), |
| PropertyDetails(GetDetails(descriptor_number))); |
| } |
| |
| |
| void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { |
| // Range check. |
| ASSERT(descriptor_number < number_of_descriptors()); |
| |
| // Make sure none of the elements in desc are in new space. |
| ASSERT(!HEAP->InNewSpace(desc->GetKey())); |
| ASSERT(!HEAP->InNewSpace(desc->GetValue())); |
| |
| fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey()); |
| FixedArray* content_array = GetContentArray(); |
| fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue()); |
| fast_set(content_array, ToDetailsIndex(descriptor_number), |
| desc->GetDetails().AsSmi()); |
| } |
| |
| |
| void DescriptorArray::CopyFrom(int index, DescriptorArray* src, int src_index) { |
| Descriptor desc; |
| src->Get(src_index, &desc); |
| Set(index, &desc); |
| } |
| |
| |
| void DescriptorArray::Swap(int first, int second) { |
| fast_swap(this, ToKeyIndex(first), ToKeyIndex(second)); |
| FixedArray* content_array = GetContentArray(); |
| fast_swap(content_array, ToValueIndex(first), ToValueIndex(second)); |
| fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second)); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| int HashTable<Shape, Key>::FindEntry(Key key) { |
| return FindEntry(GetIsolate(), key); |
| } |
| |
| |
| // Find entry for key otherwise return kNotFound. |
| template<typename Shape, typename Key> |
| int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) { |
| uint32_t capacity = Capacity(); |
| uint32_t entry = FirstProbe(Shape::Hash(key), capacity); |
| uint32_t count = 1; |
| // EnsureCapacity will guarantee the hash table is never full. |
| while (true) { |
| Object* element = KeyAt(entry); |
| if (element == isolate->heap()->undefined_value()) break; // Empty entry. |
| if (element != isolate->heap()->null_value() && |
| Shape::IsMatch(key, element)) return entry; |
| entry = NextProbe(entry, count++, capacity); |
| } |
| return kNotFound; |
| } |
| |
| |
| bool NumberDictionary::requires_slow_elements() { |
| Object* max_index_object = get(kMaxNumberKeyIndex); |
| if (!max_index_object->IsSmi()) return false; |
| return 0 != |
| (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask); |
| } |
| |
| uint32_t NumberDictionary::max_number_key() { |
| ASSERT(!requires_slow_elements()); |
| Object* max_index_object = get(kMaxNumberKeyIndex); |
| if (!max_index_object->IsSmi()) return 0; |
| uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value()); |
| return value >> kRequiresSlowElementsTagSize; |
| } |
| |
| void NumberDictionary::set_requires_slow_elements() { |
| set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); |
| } |
| |
| |
| // ------------------------------------ |
| // Cast operations |
| |
| |
| CAST_ACCESSOR(FixedArray) |
| CAST_ACCESSOR(DescriptorArray) |
| CAST_ACCESSOR(DeoptimizationInputData) |
| CAST_ACCESSOR(DeoptimizationOutputData) |
| CAST_ACCESSOR(SymbolTable) |
| CAST_ACCESSOR(JSFunctionResultCache) |
| CAST_ACCESSOR(NormalizedMapCache) |
| CAST_ACCESSOR(CompilationCacheTable) |
| CAST_ACCESSOR(CodeCacheHashTable) |
| CAST_ACCESSOR(MapCache) |
| CAST_ACCESSOR(String) |
| CAST_ACCESSOR(SeqString) |
| CAST_ACCESSOR(SeqAsciiString) |
| CAST_ACCESSOR(SeqTwoByteString) |
| CAST_ACCESSOR(ConsString) |
| CAST_ACCESSOR(ExternalString) |
| CAST_ACCESSOR(ExternalAsciiString) |
| CAST_ACCESSOR(ExternalTwoByteString) |
| CAST_ACCESSOR(JSObject) |
| CAST_ACCESSOR(Smi) |
| CAST_ACCESSOR(HeapObject) |
| CAST_ACCESSOR(HeapNumber) |
| CAST_ACCESSOR(Oddball) |
| CAST_ACCESSOR(JSGlobalPropertyCell) |
| CAST_ACCESSOR(SharedFunctionInfo) |
| CAST_ACCESSOR(Map) |
| CAST_ACCESSOR(JSFunction) |
| CAST_ACCESSOR(GlobalObject) |
| CAST_ACCESSOR(JSGlobalProxy) |
| CAST_ACCESSOR(JSGlobalObject) |
| CAST_ACCESSOR(JSBuiltinsObject) |
| CAST_ACCESSOR(Code) |
| CAST_ACCESSOR(JSArray) |
| CAST_ACCESSOR(JSRegExp) |
| CAST_ACCESSOR(Proxy) |
| CAST_ACCESSOR(ByteArray) |
| CAST_ACCESSOR(ExternalArray) |
| CAST_ACCESSOR(ExternalByteArray) |
| CAST_ACCESSOR(ExternalUnsignedByteArray) |
| CAST_ACCESSOR(ExternalShortArray) |
| CAST_ACCESSOR(ExternalUnsignedShortArray) |
| CAST_ACCESSOR(ExternalIntArray) |
| CAST_ACCESSOR(ExternalUnsignedIntArray) |
| CAST_ACCESSOR(ExternalFloatArray) |
| CAST_ACCESSOR(ExternalPixelArray) |
| CAST_ACCESSOR(Struct) |
| |
| |
| #define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name) |
| STRUCT_LIST(MAKE_STRUCT_CAST) |
| #undef MAKE_STRUCT_CAST |
| |
| |
| template <typename Shape, typename Key> |
| HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) { |
| ASSERT(obj->IsHashTable()); |
| return reinterpret_cast<HashTable*>(obj); |
| } |
| |
| |
| SMI_ACCESSORS(FixedArray, length, kLengthOffset) |
| SMI_ACCESSORS(ByteArray, length, kLengthOffset) |
| |
| INT_ACCESSORS(ExternalArray, length, kLengthOffset) |
| |
| |
| SMI_ACCESSORS(String, length, kLengthOffset) |
| |
| |
| uint32_t String::hash_field() { |
| return READ_UINT32_FIELD(this, kHashFieldOffset); |
| } |
| |
| |
| void String::set_hash_field(uint32_t value) { |
| WRITE_UINT32_FIELD(this, kHashFieldOffset, value); |
| #if V8_HOST_ARCH_64_BIT |
| WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0); |
| #endif |
| } |
| |
| |
| bool String::Equals(String* other) { |
| if (other == this) return true; |
| if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) { |
| return false; |
| } |
| return SlowEquals(other); |
| } |
| |
| |
| MaybeObject* String::TryFlatten(PretenureFlag pretenure) { |
| if (!StringShape(this).IsCons()) return this; |
| ConsString* cons = ConsString::cast(this); |
| if (cons->second()->length() == 0) return cons->first(); |
| return SlowTryFlatten(pretenure); |
| } |
| |
| |
| String* String::TryFlattenGetString(PretenureFlag pretenure) { |
| MaybeObject* flat = TryFlatten(pretenure); |
| Object* successfully_flattened; |
| if (flat->ToObject(&successfully_flattened)) { |
| return String::cast(successfully_flattened); |
| } |
| return this; |
| } |
| |
| |
| uint16_t String::Get(int index) { |
| ASSERT(index >= 0 && index < length()); |
| switch (StringShape(this).full_representation_tag()) { |
| case kSeqStringTag | kAsciiStringTag: |
| return SeqAsciiString::cast(this)->SeqAsciiStringGet(index); |
| case kSeqStringTag | kTwoByteStringTag: |
| return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index); |
| case kConsStringTag | kAsciiStringTag: |
| case kConsStringTag | kTwoByteStringTag: |
| return ConsString::cast(this)->ConsStringGet(index); |
| case kExternalStringTag | kAsciiStringTag: |
| return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index); |
| case kExternalStringTag | kTwoByteStringTag: |
| return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index); |
| default: |
| break; |
| } |
| |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| void String::Set(int index, uint16_t value) { |
| ASSERT(index >= 0 && index < length()); |
| ASSERT(StringShape(this).IsSequential()); |
| |
| return this->IsAsciiRepresentation() |
| ? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value) |
| : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value); |
| } |
| |
| |
| bool String::IsFlat() { |
| switch (StringShape(this).representation_tag()) { |
| case kConsStringTag: { |
| String* second = ConsString::cast(this)->second(); |
| // Only flattened strings have second part empty. |
| return second->length() == 0; |
| } |
| default: |
| return true; |
| } |
| } |
| |
| |
| uint16_t SeqAsciiString::SeqAsciiStringGet(int index) { |
| ASSERT(index >= 0 && index < length()); |
| return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); |
| } |
| |
| |
| void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) { |
| ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode); |
| WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, |
| static_cast<byte>(value)); |
| } |
| |
| |
| Address SeqAsciiString::GetCharsAddress() { |
| return FIELD_ADDR(this, kHeaderSize); |
| } |
| |
| |
| char* SeqAsciiString::GetChars() { |
| return reinterpret_cast<char*>(GetCharsAddress()); |
| } |
| |
| |
| Address SeqTwoByteString::GetCharsAddress() { |
| return FIELD_ADDR(this, kHeaderSize); |
| } |
| |
| |
| uc16* SeqTwoByteString::GetChars() { |
| return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize)); |
| } |
| |
| |
| uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) { |
| ASSERT(index >= 0 && index < length()); |
| return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize); |
| } |
| |
| |
| void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) { |
| ASSERT(index >= 0 && index < length()); |
| WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value); |
| } |
| |
| |
| int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) { |
| return SizeFor(length()); |
| } |
| |
| |
| int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) { |
| return SizeFor(length()); |
| } |
| |
| |
| String* ConsString::first() { |
| return String::cast(READ_FIELD(this, kFirstOffset)); |
| } |
| |
| |
| Object* ConsString::unchecked_first() { |
| return READ_FIELD(this, kFirstOffset); |
| } |
| |
| |
| void ConsString::set_first(String* value, WriteBarrierMode mode) { |
| WRITE_FIELD(this, kFirstOffset, value); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, mode); |
| } |
| |
| |
| String* ConsString::second() { |
| return String::cast(READ_FIELD(this, kSecondOffset)); |
| } |
| |
| |
| Object* ConsString::unchecked_second() { |
| return READ_FIELD(this, kSecondOffset); |
| } |
| |
| |
| void ConsString::set_second(String* value, WriteBarrierMode mode) { |
| WRITE_FIELD(this, kSecondOffset, value); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, mode); |
| } |
| |
| |
| ExternalAsciiString::Resource* ExternalAsciiString::resource() { |
| return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)); |
| } |
| |
| |
| void ExternalAsciiString::set_resource( |
| ExternalAsciiString::Resource* resource) { |
| *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource; |
| } |
| |
| |
| ExternalTwoByteString::Resource* ExternalTwoByteString::resource() { |
| return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)); |
| } |
| |
| |
| void ExternalTwoByteString::set_resource( |
| ExternalTwoByteString::Resource* resource) { |
| *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource; |
| } |
| |
| |
| void JSFunctionResultCache::MakeZeroSize() { |
| set_finger_index(kEntriesIndex); |
| set_size(kEntriesIndex); |
| } |
| |
| |
| void JSFunctionResultCache::Clear() { |
| int cache_size = size(); |
| Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex)); |
| MemsetPointer(entries_start, |
| GetHeap()->the_hole_value(), |
| cache_size - kEntriesIndex); |
| MakeZeroSize(); |
| } |
| |
| |
| int JSFunctionResultCache::size() { |
| return Smi::cast(get(kCacheSizeIndex))->value(); |
| } |
| |
| |
| void JSFunctionResultCache::set_size(int size) { |
| set(kCacheSizeIndex, Smi::FromInt(size)); |
| } |
| |
| |
| int JSFunctionResultCache::finger_index() { |
| return Smi::cast(get(kFingerIndex))->value(); |
| } |
| |
| |
| void JSFunctionResultCache::set_finger_index(int finger_index) { |
| set(kFingerIndex, Smi::FromInt(finger_index)); |
| } |
| |
| |
| byte ByteArray::get(int index) { |
| ASSERT(index >= 0 && index < this->length()); |
| return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); |
| } |
| |
| |
| void ByteArray::set(int index, byte value) { |
| ASSERT(index >= 0 && index < this->length()); |
| WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); |
| } |
| |
| |
| int ByteArray::get_int(int index) { |
| ASSERT(index >= 0 && (index * kIntSize) < this->length()); |
| return READ_INT_FIELD(this, kHeaderSize + index * kIntSize); |
| } |
| |
| |
| ByteArray* ByteArray::FromDataStartAddress(Address address) { |
| ASSERT_TAG_ALIGNED(address); |
| return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag); |
| } |
| |
| |
| Address ByteArray::GetDataStartAddress() { |
| return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize; |
| } |
| |
| |
| uint8_t* ExternalPixelArray::external_pixel_pointer() { |
| return reinterpret_cast<uint8_t*>(external_pointer()); |
| } |
| |
| |
| uint8_t ExternalPixelArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint8_t* ptr = external_pixel_pointer(); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalPixelArray::set(int index, uint8_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint8_t* ptr = external_pixel_pointer(); |
| ptr[index] = value; |
| } |
| |
| |
| void* ExternalArray::external_pointer() { |
| intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset); |
| return reinterpret_cast<void*>(ptr); |
| } |
| |
| |
| void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) { |
| intptr_t ptr = reinterpret_cast<intptr_t>(value); |
| WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr); |
| } |
| |
| |
| int8_t ExternalByteArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| int8_t* ptr = static_cast<int8_t*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalByteArray::set(int index, int8_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| int8_t* ptr = static_cast<int8_t*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| uint8_t ExternalUnsignedByteArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint8_t* ptr = static_cast<uint8_t*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalUnsignedByteArray::set(int index, uint8_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint8_t* ptr = static_cast<uint8_t*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| int16_t ExternalShortArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| int16_t* ptr = static_cast<int16_t*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalShortArray::set(int index, int16_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| int16_t* ptr = static_cast<int16_t*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| uint16_t ExternalUnsignedShortArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint16_t* ptr = static_cast<uint16_t*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalUnsignedShortArray::set(int index, uint16_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint16_t* ptr = static_cast<uint16_t*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| int32_t ExternalIntArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| int32_t* ptr = static_cast<int32_t*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalIntArray::set(int index, int32_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| int32_t* ptr = static_cast<int32_t*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| uint32_t ExternalUnsignedIntArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint32_t* ptr = static_cast<uint32_t*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalUnsignedIntArray::set(int index, uint32_t value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| uint32_t* ptr = static_cast<uint32_t*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| float ExternalFloatArray::get(int index) { |
| ASSERT((index >= 0) && (index < this->length())); |
| float* ptr = static_cast<float*>(external_pointer()); |
| return ptr[index]; |
| } |
| |
| |
| void ExternalFloatArray::set(int index, float value) { |
| ASSERT((index >= 0) && (index < this->length())); |
| float* ptr = static_cast<float*>(external_pointer()); |
| ptr[index] = value; |
| } |
| |
| |
| int Map::visitor_id() { |
| return READ_BYTE_FIELD(this, kVisitorIdOffset); |
| } |
| |
| |
| void Map::set_visitor_id(int id) { |
| ASSERT(0 <= id && id < 256); |
| WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id)); |
| } |
| |
| |
| int Map::instance_size() { |
| return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2; |
| } |
| |
| |
| int Map::inobject_properties() { |
| return READ_BYTE_FIELD(this, kInObjectPropertiesOffset); |
| } |
| |
| |
| int Map::pre_allocated_property_fields() { |
| return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset); |
| } |
| |
| |
| int HeapObject::SizeFromMap(Map* map) { |
| int instance_size = map->instance_size(); |
| if (instance_size != kVariableSizeSentinel) return instance_size; |
| // We can ignore the "symbol" bit becase it is only set for symbols |
| // and implies a string type. |
| int instance_type = static_cast<int>(map->instance_type()) & ~kIsSymbolMask; |
| // Only inline the most frequent cases. |
| if (instance_type == FIXED_ARRAY_TYPE) { |
| return FixedArray::BodyDescriptor::SizeOf(map, this); |
| } |
| if (instance_type == ASCII_STRING_TYPE) { |
| return SeqAsciiString::SizeFor( |
| reinterpret_cast<SeqAsciiString*>(this)->length()); |
| } |
| if (instance_type == BYTE_ARRAY_TYPE) { |
| return reinterpret_cast<ByteArray*>(this)->ByteArraySize(); |
| } |
| if (instance_type == STRING_TYPE) { |
| return SeqTwoByteString::SizeFor( |
| reinterpret_cast<SeqTwoByteString*>(this)->length()); |
| } |
| ASSERT(instance_type == CODE_TYPE); |
| return reinterpret_cast<Code*>(this)->CodeSize(); |
| } |
| |
| |
| void Map::set_instance_size(int value) { |
| ASSERT_EQ(0, value & (kPointerSize - 1)); |
| value >>= kPointerSizeLog2; |
| ASSERT(0 <= value && value < 256); |
| WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value)); |
| } |
| |
| |
| void Map::set_inobject_properties(int value) { |
| ASSERT(0 <= value && value < 256); |
| WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value)); |
| } |
| |
| |
| void Map::set_pre_allocated_property_fields(int value) { |
| ASSERT(0 <= value && value < 256); |
| WRITE_BYTE_FIELD(this, |
| kPreAllocatedPropertyFieldsOffset, |
| static_cast<byte>(value)); |
| } |
| |
| |
| InstanceType Map::instance_type() { |
| return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset)); |
| } |
| |
| |
| void Map::set_instance_type(InstanceType value) { |
| WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value); |
| } |
| |
| |
| int Map::unused_property_fields() { |
| return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset); |
| } |
| |
| |
| void Map::set_unused_property_fields(int value) { |
| WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255)); |
| } |
| |
| |
| byte Map::bit_field() { |
| return READ_BYTE_FIELD(this, kBitFieldOffset); |
| } |
| |
| |
| void Map::set_bit_field(byte value) { |
| WRITE_BYTE_FIELD(this, kBitFieldOffset, value); |
| } |
| |
| |
| byte Map::bit_field2() { |
| return READ_BYTE_FIELD(this, kBitField2Offset); |
| } |
| |
| |
| void Map::set_bit_field2(byte value) { |
| WRITE_BYTE_FIELD(this, kBitField2Offset, value); |
| } |
| |
| |
| void Map::set_non_instance_prototype(bool value) { |
| if (value) { |
| set_bit_field(bit_field() | (1 << kHasNonInstancePrototype)); |
| } else { |
| set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype)); |
| } |
| } |
| |
| |
| bool Map::has_non_instance_prototype() { |
| return ((1 << kHasNonInstancePrototype) & bit_field()) != 0; |
| } |
| |
| |
| void Map::set_function_with_prototype(bool value) { |
| if (value) { |
| set_bit_field2(bit_field2() | (1 << kFunctionWithPrototype)); |
| } else { |
| set_bit_field2(bit_field2() & ~(1 << kFunctionWithPrototype)); |
| } |
| } |
| |
| |
| bool Map::function_with_prototype() { |
| return ((1 << kFunctionWithPrototype) & bit_field2()) != 0; |
| } |
| |
| |
| void Map::set_is_access_check_needed(bool access_check_needed) { |
| if (access_check_needed) { |
| set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded)); |
| } else { |
| set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded)); |
| } |
| } |
| |
| |
| bool Map::is_access_check_needed() { |
| return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0; |
| } |
| |
| |
| void Map::set_is_extensible(bool value) { |
| if (value) { |
| set_bit_field2(bit_field2() | (1 << kIsExtensible)); |
| } else { |
| set_bit_field2(bit_field2() & ~(1 << kIsExtensible)); |
| } |
| } |
| |
| bool Map::is_extensible() { |
| return ((1 << kIsExtensible) & bit_field2()) != 0; |
| } |
| |
| |
| void Map::set_attached_to_shared_function_info(bool value) { |
| if (value) { |
| set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo)); |
| } else { |
| set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo)); |
| } |
| } |
| |
| bool Map::attached_to_shared_function_info() { |
| return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0; |
| } |
| |
| |
| void Map::set_is_shared(bool value) { |
| if (value) { |
| set_bit_field2(bit_field2() | (1 << kIsShared)); |
| } else { |
| set_bit_field2(bit_field2() & ~(1 << kIsShared)); |
| } |
| } |
| |
| bool Map::is_shared() { |
| return ((1 << kIsShared) & bit_field2()) != 0; |
| } |
| |
| |
| JSFunction* Map::unchecked_constructor() { |
| return reinterpret_cast<JSFunction*>(READ_FIELD(this, kConstructorOffset)); |
| } |
| |
| |
| Code::Flags Code::flags() { |
| return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset)); |
| } |
| |
| |
| void Code::set_flags(Code::Flags flags) { |
| STATIC_ASSERT(Code::NUMBER_OF_KINDS <= (kFlagsKindMask >> kFlagsKindShift)+1); |
| // Make sure that all call stubs have an arguments count. |
| ASSERT((ExtractKindFromFlags(flags) != CALL_IC && |
| ExtractKindFromFlags(flags) != KEYED_CALL_IC) || |
| ExtractArgumentsCountFromFlags(flags) >= 0); |
| WRITE_INT_FIELD(this, kFlagsOffset, flags); |
| } |
| |
| |
| Code::Kind Code::kind() { |
| return ExtractKindFromFlags(flags()); |
| } |
| |
| |
| InLoopFlag Code::ic_in_loop() { |
| return ExtractICInLoopFromFlags(flags()); |
| } |
| |
| |
| InlineCacheState Code::ic_state() { |
| InlineCacheState result = ExtractICStateFromFlags(flags()); |
| // Only allow uninitialized or debugger states for non-IC code |
| // objects. This is used in the debugger to determine whether or not |
| // a call to code object has been replaced with a debug break call. |
| ASSERT(is_inline_cache_stub() || |
| result == UNINITIALIZED || |
| result == DEBUG_BREAK || |
| result == DEBUG_PREPARE_STEP_IN); |
| return result; |
| } |
| |
| |
| Code::ExtraICState Code::extra_ic_state() { |
| ASSERT(is_inline_cache_stub()); |
| return ExtractExtraICStateFromFlags(flags()); |
| } |
| |
| |
| PropertyType Code::type() { |
| ASSERT(ic_state() == MONOMORPHIC); |
| return ExtractTypeFromFlags(flags()); |
| } |
| |
| |
| int Code::arguments_count() { |
| ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB); |
| return ExtractArgumentsCountFromFlags(flags()); |
| } |
| |
| |
| int Code::major_key() { |
| ASSERT(kind() == STUB || |
| kind() == TYPE_RECORDING_BINARY_OP_IC || |
| kind() == COMPARE_IC); |
| return READ_BYTE_FIELD(this, kStubMajorKeyOffset); |
| } |
| |
| |
| void Code::set_major_key(int major) { |
| ASSERT(kind() == STUB || |
| kind() == TYPE_RECORDING_BINARY_OP_IC || |
| kind() == COMPARE_IC); |
| ASSERT(0 <= major && major < 256); |
| WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major); |
| } |
| |
| |
| bool Code::optimizable() { |
| ASSERT(kind() == FUNCTION); |
| return READ_BYTE_FIELD(this, kOptimizableOffset) == 1; |
| } |
| |
| |
| void Code::set_optimizable(bool value) { |
| ASSERT(kind() == FUNCTION); |
| WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0); |
| } |
| |
| |
| bool Code::has_deoptimization_support() { |
| ASSERT(kind() == FUNCTION); |
| return READ_BYTE_FIELD(this, kHasDeoptimizationSupportOffset) == 1; |
| } |
| |
| |
| void Code::set_has_deoptimization_support(bool value) { |
| ASSERT(kind() == FUNCTION); |
| WRITE_BYTE_FIELD(this, kHasDeoptimizationSupportOffset, value ? 1 : 0); |
| } |
| |
| |
| int Code::allow_osr_at_loop_nesting_level() { |
| ASSERT(kind() == FUNCTION); |
| return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset); |
| } |
| |
| |
| void Code::set_allow_osr_at_loop_nesting_level(int level) { |
| ASSERT(kind() == FUNCTION); |
| ASSERT(level >= 0 && level <= kMaxLoopNestingMarker); |
| WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level); |
| } |
| |
| |
| unsigned Code::stack_slots() { |
| ASSERT(kind() == OPTIMIZED_FUNCTION); |
| return READ_UINT32_FIELD(this, kStackSlotsOffset); |
| } |
| |
| |
| void Code::set_stack_slots(unsigned slots) { |
| ASSERT(kind() == OPTIMIZED_FUNCTION); |
| WRITE_UINT32_FIELD(this, kStackSlotsOffset, slots); |
| } |
| |
| |
| unsigned Code::safepoint_table_offset() { |
| ASSERT(kind() == OPTIMIZED_FUNCTION); |
| return READ_UINT32_FIELD(this, kSafepointTableOffsetOffset); |
| } |
| |
| |
| void Code::set_safepoint_table_offset(unsigned offset) { |
| ASSERT(kind() == OPTIMIZED_FUNCTION); |
| ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize))); |
| WRITE_UINT32_FIELD(this, kSafepointTableOffsetOffset, offset); |
| } |
| |
| |
| unsigned Code::stack_check_table_offset() { |
| ASSERT(kind() == FUNCTION); |
| return READ_UINT32_FIELD(this, kStackCheckTableOffsetOffset); |
| } |
| |
| |
| void Code::set_stack_check_table_offset(unsigned offset) { |
| ASSERT(kind() == FUNCTION); |
| ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize))); |
| WRITE_UINT32_FIELD(this, kStackCheckTableOffsetOffset, offset); |
| } |
| |
| |
| CheckType Code::check_type() { |
| ASSERT(is_call_stub() || is_keyed_call_stub()); |
| byte type = READ_BYTE_FIELD(this, kCheckTypeOffset); |
| return static_cast<CheckType>(type); |
| } |
| |
| |
| void Code::set_check_type(CheckType value) { |
| ASSERT(is_call_stub() || is_keyed_call_stub()); |
| WRITE_BYTE_FIELD(this, kCheckTypeOffset, value); |
| } |
| |
| |
| ExternalArrayType Code::external_array_type() { |
| ASSERT(is_external_array_load_stub() || is_external_array_store_stub()); |
| byte type = READ_BYTE_FIELD(this, kExternalArrayTypeOffset); |
| return static_cast<ExternalArrayType>(type); |
| } |
| |
| |
| void Code::set_external_array_type(ExternalArrayType value) { |
| ASSERT(is_external_array_load_stub() || is_external_array_store_stub()); |
| WRITE_BYTE_FIELD(this, kExternalArrayTypeOffset, value); |
| } |
| |
| |
| byte Code::type_recording_binary_op_type() { |
| ASSERT(is_type_recording_binary_op_stub()); |
| return READ_BYTE_FIELD(this, kBinaryOpTypeOffset); |
| } |
| |
| |
| void Code::set_type_recording_binary_op_type(byte value) { |
| ASSERT(is_type_recording_binary_op_stub()); |
| WRITE_BYTE_FIELD(this, kBinaryOpTypeOffset, value); |
| } |
| |
| |
| byte Code::type_recording_binary_op_result_type() { |
| ASSERT(is_type_recording_binary_op_stub()); |
| return READ_BYTE_FIELD(this, kBinaryOpReturnTypeOffset); |
| } |
| |
| |
| void Code::set_type_recording_binary_op_result_type(byte value) { |
| ASSERT(is_type_recording_binary_op_stub()); |
| WRITE_BYTE_FIELD(this, kBinaryOpReturnTypeOffset, value); |
| } |
| |
| |
| byte Code::compare_state() { |
| ASSERT(is_compare_ic_stub()); |
| return READ_BYTE_FIELD(this, kCompareStateOffset); |
| } |
| |
| |
| void Code::set_compare_state(byte value) { |
| ASSERT(is_compare_ic_stub()); |
| WRITE_BYTE_FIELD(this, kCompareStateOffset, value); |
| } |
| |
| |
| bool Code::is_inline_cache_stub() { |
| Kind kind = this->kind(); |
| return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND; |
| } |
| |
| |
| Code::Flags Code::ComputeFlags(Kind kind, |
| InLoopFlag in_loop, |
| InlineCacheState ic_state, |
| ExtraICState extra_ic_state, |
| PropertyType type, |
| int argc, |
| InlineCacheHolderFlag holder) { |
| // Extra IC state is only allowed for monomorphic call IC stubs |
| // or for store IC stubs. |
| ASSERT(extra_ic_state == kNoExtraICState || |
| (kind == CALL_IC && (ic_state == MONOMORPHIC || |
| ic_state == MONOMORPHIC_PROTOTYPE_FAILURE)) || |
| (kind == STORE_IC) || |
| (kind == KEYED_STORE_IC)); |
| // Compute the bit mask. |
| int bits = kind << kFlagsKindShift; |
| if (in_loop) bits |= kFlagsICInLoopMask; |
| bits |= ic_state << kFlagsICStateShift; |
| bits |= type << kFlagsTypeShift; |
| bits |= extra_ic_state << kFlagsExtraICStateShift; |
| bits |= argc << kFlagsArgumentsCountShift; |
| if (holder == PROTOTYPE_MAP) bits |= kFlagsCacheInPrototypeMapMask; |
| // Cast to flags and validate result before returning it. |
| Flags result = static_cast<Flags>(bits); |
| ASSERT(ExtractKindFromFlags(result) == kind); |
| ASSERT(ExtractICStateFromFlags(result) == ic_state); |
| ASSERT(ExtractICInLoopFromFlags(result) == in_loop); |
| ASSERT(ExtractTypeFromFlags(result) == type); |
| ASSERT(ExtractExtraICStateFromFlags(result) == extra_ic_state); |
| ASSERT(ExtractArgumentsCountFromFlags(result) == argc); |
| return result; |
| } |
| |
| |
| Code::Flags Code::ComputeMonomorphicFlags(Kind kind, |
| PropertyType type, |
| ExtraICState extra_ic_state, |
| InlineCacheHolderFlag holder, |
| InLoopFlag in_loop, |
| int argc) { |
| return ComputeFlags( |
| kind, in_loop, MONOMORPHIC, extra_ic_state, type, argc, holder); |
| } |
| |
| |
| Code::Kind Code::ExtractKindFromFlags(Flags flags) { |
| int bits = (flags & kFlagsKindMask) >> kFlagsKindShift; |
| return static_cast<Kind>(bits); |
| } |
| |
| |
| InlineCacheState Code::ExtractICStateFromFlags(Flags flags) { |
| int bits = (flags & kFlagsICStateMask) >> kFlagsICStateShift; |
| return static_cast<InlineCacheState>(bits); |
| } |
| |
| |
| Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) { |
| int bits = (flags & kFlagsExtraICStateMask) >> kFlagsExtraICStateShift; |
| return static_cast<ExtraICState>(bits); |
| } |
| |
| |
| InLoopFlag Code::ExtractICInLoopFromFlags(Flags flags) { |
| int bits = (flags & kFlagsICInLoopMask); |
| return bits != 0 ? IN_LOOP : NOT_IN_LOOP; |
| } |
| |
| |
| PropertyType Code::ExtractTypeFromFlags(Flags flags) { |
| int bits = (flags & kFlagsTypeMask) >> kFlagsTypeShift; |
| return static_cast<PropertyType>(bits); |
| } |
| |
| |
| int Code::ExtractArgumentsCountFromFlags(Flags flags) { |
| return (flags & kFlagsArgumentsCountMask) >> kFlagsArgumentsCountShift; |
| } |
| |
| |
| InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) { |
| int bits = (flags & kFlagsCacheInPrototypeMapMask); |
| return bits != 0 ? PROTOTYPE_MAP : OWN_MAP; |
| } |
| |
| |
| Code::Flags Code::RemoveTypeFromFlags(Flags flags) { |
| int bits = flags & ~kFlagsTypeMask; |
| return static_cast<Flags>(bits); |
| } |
| |
| |
| Code* Code::GetCodeFromTargetAddress(Address address) { |
| HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize); |
| // GetCodeFromTargetAddress might be called when marking objects during mark |
| // sweep. reinterpret_cast is therefore used instead of the more appropriate |
| // Code::cast. Code::cast does not work when the object's map is |
| // marked. |
| Code* result = reinterpret_cast<Code*>(code); |
| return result; |
| } |
| |
| |
| Isolate* Map::isolate() { |
| return heap()->isolate(); |
| } |
| |
| |
| Heap* Map::heap() { |
| // NOTE: address() helper is not used to save one instruction. |
| Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_; |
| ASSERT(heap != NULL); |
| ASSERT(heap->isolate() == Isolate::Current()); |
| return heap; |
| } |
| |
| |
| Heap* Code::heap() { |
| // NOTE: address() helper is not used to save one instruction. |
| Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_; |
| ASSERT(heap != NULL); |
| ASSERT(heap->isolate() == Isolate::Current()); |
| return heap; |
| } |
| |
| |
| Isolate* Code::isolate() { |
| return heap()->isolate(); |
| } |
| |
| |
| Heap* JSGlobalPropertyCell::heap() { |
| // NOTE: address() helper is not used to save one instruction. |
| Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_; |
| ASSERT(heap != NULL); |
| ASSERT(heap->isolate() == Isolate::Current()); |
| return heap; |
| } |
| |
| |
| Isolate* JSGlobalPropertyCell::isolate() { |
| return heap()->isolate(); |
| } |
| |
| |
| Object* Code::GetObjectFromEntryAddress(Address location_of_address) { |
| return HeapObject:: |
| FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize); |
| } |
| |
| |
| Object* Map::prototype() { |
| return READ_FIELD(this, kPrototypeOffset); |
| } |
| |
| |
| void Map::set_prototype(Object* value, WriteBarrierMode mode) { |
| ASSERT(value->IsNull() || value->IsJSObject()); |
| WRITE_FIELD(this, kPrototypeOffset, value); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, mode); |
| } |
| |
| |
| MaybeObject* Map::GetFastElementsMap() { |
| if (has_fast_elements()) return this; |
| Object* obj; |
| { MaybeObject* maybe_obj = CopyDropTransitions(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| Map* new_map = Map::cast(obj); |
| new_map->set_has_fast_elements(true); |
| isolate()->counters()->map_slow_to_fast_elements()->Increment(); |
| return new_map; |
| } |
| |
| |
| MaybeObject* Map::GetSlowElementsMap() { |
| if (!has_fast_elements()) return this; |
| Object* obj; |
| { MaybeObject* maybe_obj = CopyDropTransitions(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| Map* new_map = Map::cast(obj); |
| new_map->set_has_fast_elements(false); |
| isolate()->counters()->map_fast_to_slow_elements()->Increment(); |
| return new_map; |
| } |
| |
| |
| ACCESSORS(Map, instance_descriptors, DescriptorArray, |
| kInstanceDescriptorsOffset) |
| ACCESSORS(Map, code_cache, Object, kCodeCacheOffset) |
| ACCESSORS(Map, constructor, Object, kConstructorOffset) |
| |
| ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset) |
| ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset) |
| ACCESSORS_GCSAFE(JSFunction, next_function_link, Object, |
| kNextFunctionLinkOffset) |
| |
| ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset) |
| ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset) |
| ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset) |
| |
| ACCESSORS(JSGlobalProxy, context, Object, kContextOffset) |
| |
| ACCESSORS(AccessorInfo, getter, Object, kGetterOffset) |
| ACCESSORS(AccessorInfo, setter, Object, kSetterOffset) |
| ACCESSORS(AccessorInfo, data, Object, kDataOffset) |
| ACCESSORS(AccessorInfo, name, Object, kNameOffset) |
| ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset) |
| |
| ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset) |
| ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset) |
| ACCESSORS(AccessCheckInfo, data, Object, kDataOffset) |
| |
| ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset) |
| ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset) |
| ACCESSORS(InterceptorInfo, query, Object, kQueryOffset) |
| ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset) |
| ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset) |
| ACCESSORS(InterceptorInfo, data, Object, kDataOffset) |
| |
| ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset) |
| ACCESSORS(CallHandlerInfo, data, Object, kDataOffset) |
| |
| ACCESSORS(TemplateInfo, tag, Object, kTagOffset) |
| ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset) |
| |
| ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset) |
| ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset) |
| ACCESSORS(FunctionTemplateInfo, property_accessors, Object, |
| kPropertyAccessorsOffset) |
| ACCESSORS(FunctionTemplateInfo, prototype_template, Object, |
| kPrototypeTemplateOffset) |
| ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset) |
| ACCESSORS(FunctionTemplateInfo, named_property_handler, Object, |
| kNamedPropertyHandlerOffset) |
| ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object, |
| kIndexedPropertyHandlerOffset) |
| ACCESSORS(FunctionTemplateInfo, instance_template, Object, |
| kInstanceTemplateOffset) |
| ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset) |
| ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset) |
| ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object, |
| kInstanceCallHandlerOffset) |
| ACCESSORS(FunctionTemplateInfo, access_check_info, Object, |
| kAccessCheckInfoOffset) |
| ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset) |
| |
| ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset) |
| ACCESSORS(ObjectTemplateInfo, internal_field_count, Object, |
| kInternalFieldCountOffset) |
| |
| ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset) |
| ACCESSORS(SignatureInfo, args, Object, kArgsOffset) |
| |
| ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset) |
| |
| ACCESSORS(Script, source, Object, kSourceOffset) |
| ACCESSORS(Script, name, Object, kNameOffset) |
| ACCESSORS(Script, id, Object, kIdOffset) |
| ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset) |
| ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset) |
| ACCESSORS(Script, data, Object, kDataOffset) |
| ACCESSORS(Script, context_data, Object, kContextOffset) |
| ACCESSORS(Script, wrapper, Proxy, kWrapperOffset) |
| ACCESSORS(Script, type, Smi, kTypeOffset) |
| ACCESSORS(Script, compilation_type, Smi, kCompilationTypeOffset) |
| ACCESSORS(Script, line_ends, Object, kLineEndsOffset) |
| ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset) |
| ACCESSORS(Script, eval_from_instructions_offset, Smi, |
| kEvalFrominstructionsOffsetOffset) |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex) |
| ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex) |
| ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex) |
| ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex) |
| |
| ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex) |
| ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex) |
| ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex) |
| ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex) |
| #endif |
| |
| ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset) |
| ACCESSORS_GCSAFE(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset) |
| ACCESSORS_GCSAFE(SharedFunctionInfo, initial_map, Object, kInitialMapOffset) |
| ACCESSORS(SharedFunctionInfo, instance_class_name, Object, |
| kInstanceClassNameOffset) |
| ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset) |
| ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset) |
| ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset) |
| ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset) |
| ACCESSORS(SharedFunctionInfo, this_property_assignments, Object, |
| kThisPropertyAssignmentsOffset) |
| |
| BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype, |
| kHiddenPrototypeBit) |
| BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit) |
| BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check, |
| kNeedsAccessCheckBit) |
| BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression, |
| kIsExpressionBit) |
| BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel, |
| kIsTopLevelBit) |
| BOOL_GETTER(SharedFunctionInfo, compiler_hints, |
| has_only_simple_this_property_assignments, |
| kHasOnlySimpleThisPropertyAssignments) |
| BOOL_ACCESSORS(SharedFunctionInfo, |
| compiler_hints, |
| allows_lazy_compilation, |
| kAllowLazyCompilation) |
| |
| |
| #if V8_HOST_ARCH_32_BIT |
| SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count, |
| kFormalParameterCountOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties, |
| kExpectedNofPropertiesOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type, |
| kStartPositionAndTypeOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, function_token_position, |
| kFunctionTokenPositionOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, compiler_hints, |
| kCompilerHintsOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, this_property_assignments_count, |
| kThisPropertyAssignmentsCountOffset) |
| SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset) |
| #else |
| |
| #define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \ |
| STATIC_ASSERT(holder::offset % kPointerSize == 0); \ |
| int holder::name() { \ |
| int value = READ_INT_FIELD(this, offset); \ |
| ASSERT(kHeapObjectTag == 1); \ |
| ASSERT((value & kHeapObjectTag) == 0); \ |
| return value >> 1; \ |
| } \ |
| void holder::set_##name(int value) { \ |
| ASSERT(kHeapObjectTag == 1); \ |
| ASSERT((value & 0xC0000000) == 0xC0000000 || \ |
| (value & 0xC0000000) == 0x000000000); \ |
| WRITE_INT_FIELD(this, \ |
| offset, \ |
| (value << 1) & ~kHeapObjectTag); \ |
| } |
| |
| #define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \ |
| STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \ |
| INT_ACCESSORS(holder, name, offset) |
| |
| |
| PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset) |
| PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, |
| formal_parameter_count, |
| kFormalParameterCountOffset) |
| |
| PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, |
| expected_nof_properties, |
| kExpectedNofPropertiesOffset) |
| PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset) |
| |
| PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset) |
| PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, |
| start_position_and_type, |
| kStartPositionAndTypeOffset) |
| |
| PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, |
| function_token_position, |
| kFunctionTokenPositionOffset) |
| PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, |
| compiler_hints, |
| kCompilerHintsOffset) |
| |
| PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, |
| this_property_assignments_count, |
| kThisPropertyAssignmentsCountOffset) |
| PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, opt_count, kOptCountOffset) |
| #endif |
| |
| |
| int SharedFunctionInfo::construction_count() { |
| return READ_BYTE_FIELD(this, kConstructionCountOffset); |
| } |
| |
| |
| void SharedFunctionInfo::set_construction_count(int value) { |
| ASSERT(0 <= value && value < 256); |
| WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value)); |
| } |
| |
| |
| bool SharedFunctionInfo::live_objects_may_exist() { |
| return (compiler_hints() & (1 << kLiveObjectsMayExist)) != 0; |
| } |
| |
| |
| void SharedFunctionInfo::set_live_objects_may_exist(bool value) { |
| if (value) { |
| set_compiler_hints(compiler_hints() | (1 << kLiveObjectsMayExist)); |
| } else { |
| set_compiler_hints(compiler_hints() & ~(1 << kLiveObjectsMayExist)); |
| } |
| } |
| |
| |
| bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() { |
| return initial_map() != HEAP->undefined_value(); |
| } |
| |
| |
| bool SharedFunctionInfo::optimization_disabled() { |
| return BooleanBit::get(compiler_hints(), kOptimizationDisabled); |
| } |
| |
| |
| void SharedFunctionInfo::set_optimization_disabled(bool disable) { |
| set_compiler_hints(BooleanBit::set(compiler_hints(), |
| kOptimizationDisabled, |
| disable)); |
| // If disabling optimizations we reflect that in the code object so |
| // it will not be counted as optimizable code. |
| if ((code()->kind() == Code::FUNCTION) && disable) { |
| code()->set_optimizable(false); |
| } |
| } |
| |
| |
| bool SharedFunctionInfo::strict_mode() { |
| return BooleanBit::get(compiler_hints(), kStrictModeFunction); |
| } |
| |
| |
| void SharedFunctionInfo::set_strict_mode(bool value) { |
| set_compiler_hints(BooleanBit::set(compiler_hints(), |
| kStrictModeFunction, |
| value)); |
| } |
| |
| |
| ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset) |
| ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset) |
| |
| bool Script::HasValidSource() { |
| Object* src = this->source(); |
| if (!src->IsString()) return true; |
| String* src_str = String::cast(src); |
| if (!StringShape(src_str).IsExternal()) return true; |
| if (src_str->IsAsciiRepresentation()) { |
| return ExternalAsciiString::cast(src)->resource() != NULL; |
| } else if (src_str->IsTwoByteRepresentation()) { |
| return ExternalTwoByteString::cast(src)->resource() != NULL; |
| } |
| return true; |
| } |
| |
| |
| void SharedFunctionInfo::DontAdaptArguments() { |
| ASSERT(code()->kind() == Code::BUILTIN); |
| set_formal_parameter_count(kDontAdaptArgumentsSentinel); |
| } |
| |
| |
| int SharedFunctionInfo::start_position() { |
| return start_position_and_type() >> kStartPositionShift; |
| } |
| |
| |
| void SharedFunctionInfo::set_start_position(int start_position) { |
| set_start_position_and_type((start_position << kStartPositionShift) |
| | (start_position_and_type() & ~kStartPositionMask)); |
| } |
| |
| |
| Code* SharedFunctionInfo::code() { |
| return Code::cast(READ_FIELD(this, kCodeOffset)); |
| } |
| |
| |
| Code* SharedFunctionInfo::unchecked_code() { |
| return reinterpret_cast<Code*>(READ_FIELD(this, kCodeOffset)); |
| } |
| |
| |
| void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) { |
| WRITE_FIELD(this, kCodeOffset, value); |
| ASSERT(!Isolate::Current()->heap()->InNewSpace(value)); |
| } |
| |
| |
| SerializedScopeInfo* SharedFunctionInfo::scope_info() { |
| return reinterpret_cast<SerializedScopeInfo*>( |
| READ_FIELD(this, kScopeInfoOffset)); |
| } |
| |
| |
| void SharedFunctionInfo::set_scope_info(SerializedScopeInfo* value, |
| WriteBarrierMode mode) { |
| WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value)); |
| CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, mode); |
| } |
| |
| |
| Smi* SharedFunctionInfo::deopt_counter() { |
| return reinterpret_cast<Smi*>(READ_FIELD(this, kDeoptCounterOffset)); |
| } |
| |
| |
| void SharedFunctionInfo::set_deopt_counter(Smi* value) { |
| WRITE_FIELD(this, kDeoptCounterOffset, value); |
| } |
| |
| |
| bool SharedFunctionInfo::is_compiled() { |
| return code() != |
| Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile); |
| } |
| |
| |
| bool SharedFunctionInfo::IsApiFunction() { |
| return function_data()->IsFunctionTemplateInfo(); |
| } |
| |
| |
| FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() { |
| ASSERT(IsApiFunction()); |
| return FunctionTemplateInfo::cast(function_data()); |
| } |
| |
| |
| bool SharedFunctionInfo::HasBuiltinFunctionId() { |
| return function_data()->IsSmi(); |
| } |
| |
| |
| BuiltinFunctionId SharedFunctionInfo::builtin_function_id() { |
| ASSERT(HasBuiltinFunctionId()); |
| return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value()); |
| } |
| |
| |
| int SharedFunctionInfo::code_age() { |
| return (compiler_hints() >> kCodeAgeShift) & kCodeAgeMask; |
| } |
| |
| |
| void SharedFunctionInfo::set_code_age(int code_age) { |
| set_compiler_hints(compiler_hints() | |
| ((code_age & kCodeAgeMask) << kCodeAgeShift)); |
| } |
| |
| |
| bool SharedFunctionInfo::has_deoptimization_support() { |
| Code* code = this->code(); |
| return code->kind() == Code::FUNCTION && code->has_deoptimization_support(); |
| } |
| |
| |
| bool JSFunction::IsBuiltin() { |
| return context()->global()->IsJSBuiltinsObject(); |
| } |
| |
| |
| bool JSFunction::NeedsArgumentsAdaption() { |
| return shared()->formal_parameter_count() != |
| SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| } |
| |
| |
| bool JSFunction::IsOptimized() { |
| return code()->kind() == Code::OPTIMIZED_FUNCTION; |
| } |
| |
| |
| bool JSFunction::IsOptimizable() { |
| return code()->kind() == Code::FUNCTION && code()->optimizable(); |
| } |
| |
| |
| bool JSFunction::IsMarkedForLazyRecompilation() { |
| return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile); |
| } |
| |
| |
| Code* JSFunction::code() { |
| return Code::cast(unchecked_code()); |
| } |
| |
| |
| Code* JSFunction::unchecked_code() { |
| return reinterpret_cast<Code*>( |
| Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset))); |
| } |
| |
| |
| void JSFunction::set_code(Code* value) { |
| // Skip the write barrier because code is never in new space. |
| ASSERT(!HEAP->InNewSpace(value)); |
| Address entry = value->entry(); |
| WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry)); |
| } |
| |
| |
| void JSFunction::ReplaceCode(Code* code) { |
| bool was_optimized = IsOptimized(); |
| bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION; |
| |
| set_code(code); |
| |
| // Add/remove the function from the list of optimized functions for this |
| // context based on the state change. |
| if (!was_optimized && is_optimized) { |
| context()->global_context()->AddOptimizedFunction(this); |
| } |
| if (was_optimized && !is_optimized) { |
| context()->global_context()->RemoveOptimizedFunction(this); |
| } |
| } |
| |
| |
| Context* JSFunction::context() { |
| return Context::cast(READ_FIELD(this, kContextOffset)); |
| } |
| |
| |
| Object* JSFunction::unchecked_context() { |
| return READ_FIELD(this, kContextOffset); |
| } |
| |
| |
| SharedFunctionInfo* JSFunction::unchecked_shared() { |
| return reinterpret_cast<SharedFunctionInfo*>( |
| READ_FIELD(this, kSharedFunctionInfoOffset)); |
| } |
| |
| |
| void JSFunction::set_context(Object* value) { |
| ASSERT(value->IsUndefined() || value->IsContext()); |
| WRITE_FIELD(this, kContextOffset, value); |
| WRITE_BARRIER(this, kContextOffset); |
| } |
| |
| ACCESSORS(JSFunction, prototype_or_initial_map, Object, |
| kPrototypeOrInitialMapOffset) |
| |
| |
| Map* JSFunction::initial_map() { |
| return Map::cast(prototype_or_initial_map()); |
| } |
| |
| |
| void JSFunction::set_initial_map(Map* value) { |
| set_prototype_or_initial_map(value); |
| } |
| |
| |
| bool JSFunction::has_initial_map() { |
| return prototype_or_initial_map()->IsMap(); |
| } |
| |
| |
| bool JSFunction::has_instance_prototype() { |
| return has_initial_map() || !prototype_or_initial_map()->IsTheHole(); |
| } |
| |
| |
| bool JSFunction::has_prototype() { |
| return map()->has_non_instance_prototype() || has_instance_prototype(); |
| } |
| |
| |
| Object* JSFunction::instance_prototype() { |
| ASSERT(has_instance_prototype()); |
| if (has_initial_map()) return initial_map()->prototype(); |
| // When there is no initial map and the prototype is a JSObject, the |
| // initial map field is used for the prototype field. |
| return prototype_or_initial_map(); |
| } |
| |
| |
| Object* JSFunction::prototype() { |
| ASSERT(has_prototype()); |
| // If the function's prototype property has been set to a non-JSObject |
| // value, that value is stored in the constructor field of the map. |
| if (map()->has_non_instance_prototype()) return map()->constructor(); |
| return instance_prototype(); |
| } |
| |
| bool JSFunction::should_have_prototype() { |
| return map()->function_with_prototype(); |
| } |
| |
| |
| bool JSFunction::is_compiled() { |
| return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); |
| } |
| |
| |
| int JSFunction::NumberOfLiterals() { |
| return literals()->length(); |
| } |
| |
| |
| Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) { |
| ASSERT(id < kJSBuiltinsCount); // id is unsigned. |
| return READ_FIELD(this, OffsetOfFunctionWithId(id)); |
| } |
| |
| |
| void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id, |
| Object* value) { |
| ASSERT(id < kJSBuiltinsCount); // id is unsigned. |
| WRITE_FIELD(this, OffsetOfFunctionWithId(id), value); |
| WRITE_BARRIER(this, OffsetOfFunctionWithId(id)); |
| } |
| |
| |
| Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) { |
| ASSERT(id < kJSBuiltinsCount); // id is unsigned. |
| return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id))); |
| } |
| |
| |
| void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id, |
| Code* value) { |
| ASSERT(id < kJSBuiltinsCount); // id is unsigned. |
| WRITE_FIELD(this, OffsetOfCodeWithId(id), value); |
| ASSERT(!HEAP->InNewSpace(value)); |
| } |
| |
| |
| Address Proxy::proxy() { |
| return AddressFrom<Address>(READ_INTPTR_FIELD(this, kProxyOffset)); |
| } |
| |
| |
| void Proxy::set_proxy(Address value) { |
| WRITE_INTPTR_FIELD(this, kProxyOffset, OffsetFrom(value)); |
| } |
| |
| |
| ACCESSORS(JSValue, value, Object, kValueOffset) |
| |
| |
| JSValue* JSValue::cast(Object* obj) { |
| ASSERT(obj->IsJSValue()); |
| ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize); |
| return reinterpret_cast<JSValue*>(obj); |
| } |
| |
| |
| ACCESSORS(JSMessageObject, type, String, kTypeOffset) |
| ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset) |
| ACCESSORS(JSMessageObject, script, Object, kScriptOffset) |
| ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset) |
| ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset) |
| SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset) |
| SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset) |
| |
| |
| JSMessageObject* JSMessageObject::cast(Object* obj) { |
| ASSERT(obj->IsJSMessageObject()); |
| ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize); |
| return reinterpret_cast<JSMessageObject*>(obj); |
| } |
| |
| |
| INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset) |
| ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset) |
| ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset) |
| |
| |
| byte* Code::instruction_start() { |
| return FIELD_ADDR(this, kHeaderSize); |
| } |
| |
| |
| byte* Code::instruction_end() { |
| return instruction_start() + instruction_size(); |
| } |
| |
| |
| int Code::body_size() { |
| return RoundUp(instruction_size(), kObjectAlignment); |
| } |
| |
| |
| FixedArray* Code::unchecked_deoptimization_data() { |
| return reinterpret_cast<FixedArray*>( |
| READ_FIELD(this, kDeoptimizationDataOffset)); |
| } |
| |
| |
| ByteArray* Code::unchecked_relocation_info() { |
| return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset)); |
| } |
| |
| |
| byte* Code::relocation_start() { |
| return unchecked_relocation_info()->GetDataStartAddress(); |
| } |
| |
| |
| int Code::relocation_size() { |
| return unchecked_relocation_info()->length(); |
| } |
| |
| |
| byte* Code::entry() { |
| return instruction_start(); |
| } |
| |
| |
| bool Code::contains(byte* pc) { |
| return (instruction_start() <= pc) && |
| (pc <= instruction_start() + instruction_size()); |
| } |
| |
| |
| ACCESSORS(JSArray, length, Object, kLengthOffset) |
| |
| |
| ACCESSORS(JSRegExp, data, Object, kDataOffset) |
| |
| |
| JSRegExp::Type JSRegExp::TypeTag() { |
| Object* data = this->data(); |
| if (data->IsUndefined()) return JSRegExp::NOT_COMPILED; |
| Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex)); |
| return static_cast<JSRegExp::Type>(smi->value()); |
| } |
| |
| |
| int JSRegExp::CaptureCount() { |
| switch (TypeTag()) { |
| case ATOM: |
| return 0; |
| case IRREGEXP: |
| return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value(); |
| default: |
| UNREACHABLE(); |
| return -1; |
| } |
| } |
| |
| |
| JSRegExp::Flags JSRegExp::GetFlags() { |
| ASSERT(this->data()->IsFixedArray()); |
| Object* data = this->data(); |
| Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex)); |
| return Flags(smi->value()); |
| } |
| |
| |
| String* JSRegExp::Pattern() { |
| ASSERT(this->data()->IsFixedArray()); |
| Object* data = this->data(); |
| String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex)); |
| return pattern; |
| } |
| |
| |
| Object* JSRegExp::DataAt(int index) { |
| ASSERT(TypeTag() != NOT_COMPILED); |
| return FixedArray::cast(data())->get(index); |
| } |
| |
| |
| void JSRegExp::SetDataAt(int index, Object* value) { |
| ASSERT(TypeTag() != NOT_COMPILED); |
| ASSERT(index >= kDataIndex); // Only implementation data can be set this way. |
| FixedArray::cast(data())->set(index, value); |
| } |
| |
| |
| JSObject::ElementsKind JSObject::GetElementsKind() { |
| if (map()->has_fast_elements()) { |
| ASSERT(elements()->map() == GetHeap()->fixed_array_map() || |
| elements()->map() == GetHeap()->fixed_cow_array_map()); |
| return FAST_ELEMENTS; |
| } |
| HeapObject* array = elements(); |
| if (array->IsFixedArray()) { |
| // FAST_ELEMENTS or DICTIONARY_ELEMENTS are both stored in a |
| // FixedArray, but FAST_ELEMENTS is already handled above. |
| ASSERT(array->IsDictionary()); |
| return DICTIONARY_ELEMENTS; |
| } |
| ASSERT(!map()->has_fast_elements()); |
| if (array->IsExternalArray()) { |
| switch (array->map()->instance_type()) { |
| case EXTERNAL_BYTE_ARRAY_TYPE: |
| return EXTERNAL_BYTE_ELEMENTS; |
| case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: |
| return EXTERNAL_UNSIGNED_BYTE_ELEMENTS; |
| case EXTERNAL_SHORT_ARRAY_TYPE: |
| return EXTERNAL_SHORT_ELEMENTS; |
| case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: |
| return EXTERNAL_UNSIGNED_SHORT_ELEMENTS; |
| case EXTERNAL_INT_ARRAY_TYPE: |
| return EXTERNAL_INT_ELEMENTS; |
| case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: |
| return EXTERNAL_UNSIGNED_INT_ELEMENTS; |
| case EXTERNAL_PIXEL_ARRAY_TYPE: |
| return EXTERNAL_PIXEL_ELEMENTS; |
| default: |
| break; |
| } |
| } |
| ASSERT(array->map()->instance_type() == EXTERNAL_FLOAT_ARRAY_TYPE); |
| return EXTERNAL_FLOAT_ELEMENTS; |
| } |
| |
| |
| bool JSObject::HasFastElements() { |
| return GetElementsKind() == FAST_ELEMENTS; |
| } |
| |
| |
| bool JSObject::HasDictionaryElements() { |
| return GetElementsKind() == DICTIONARY_ELEMENTS; |
| } |
| |
| |
| bool JSObject::HasExternalArrayElements() { |
| HeapObject* array = elements(); |
| ASSERT(array != NULL); |
| return array->IsExternalArray(); |
| } |
| |
| |
| #define EXTERNAL_ELEMENTS_CHECK(name, type) \ |
| bool JSObject::HasExternal##name##Elements() { \ |
| HeapObject* array = elements(); \ |
| ASSERT(array != NULL); \ |
| if (!array->IsHeapObject()) \ |
| return false; \ |
| return array->map()->instance_type() == type; \ |
| } |
| |
| |
| EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(UnsignedShort, |
| EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(UnsignedInt, |
| EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(Float, |
| EXTERNAL_FLOAT_ARRAY_TYPE) |
| EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE) |
| |
| |
| bool JSObject::HasNamedInterceptor() { |
| return map()->has_named_interceptor(); |
| } |
| |
| |
| bool JSObject::HasIndexedInterceptor() { |
| return map()->has_indexed_interceptor(); |
| } |
| |
| |
| bool JSObject::AllowsSetElementsLength() { |
| bool result = elements()->IsFixedArray(); |
| ASSERT(result == !HasExternalArrayElements()); |
| return result; |
| } |
| |
| |
| MaybeObject* JSObject::EnsureWritableFastElements() { |
| ASSERT(HasFastElements()); |
| FixedArray* elems = FixedArray::cast(elements()); |
| Isolate* isolate = GetIsolate(); |
| if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems; |
| Object* writable_elems; |
| { MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap( |
| elems, isolate->heap()->fixed_array_map()); |
| if (!maybe_writable_elems->ToObject(&writable_elems)) { |
| return maybe_writable_elems; |
| } |
| } |
| set_elements(FixedArray::cast(writable_elems)); |
| isolate->counters()->cow_arrays_converted()->Increment(); |
| return writable_elems; |
| } |
| |
| |
| StringDictionary* JSObject::property_dictionary() { |
| ASSERT(!HasFastProperties()); |
| return StringDictionary::cast(properties()); |
| } |
| |
| |
| NumberDictionary* JSObject::element_dictionary() { |
| ASSERT(HasDictionaryElements()); |
| return NumberDictionary::cast(elements()); |
| } |
| |
| |
| bool String::IsHashFieldComputed(uint32_t field) { |
| return (field & kHashNotComputedMask) == 0; |
| } |
| |
| |
| bool String::HasHashCode() { |
| return IsHashFieldComputed(hash_field()); |
| } |
| |
| |
| uint32_t String::Hash() { |
| // Fast case: has hash code already been computed? |
| uint32_t field = hash_field(); |
| if (IsHashFieldComputed(field)) return field >> kHashShift; |
| // Slow case: compute hash code and set it. |
| return ComputeAndSetHash(); |
| } |
| |
| |
| StringHasher::StringHasher(int length) |
| : length_(length), |
| raw_running_hash_(0), |
| array_index_(0), |
| is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize), |
| is_first_char_(true), |
| is_valid_(true) { } |
| |
| |
| bool StringHasher::has_trivial_hash() { |
| return length_ > String::kMaxHashCalcLength; |
| } |
| |
| |
| void StringHasher::AddCharacter(uc32 c) { |
| // Use the Jenkins one-at-a-time hash function to update the hash |
| // for the given character. |
| raw_running_hash_ += c; |
| raw_running_hash_ += (raw_running_hash_ << 10); |
| raw_running_hash_ ^= (raw_running_hash_ >> 6); |
| // Incremental array index computation. |
| if (is_array_index_) { |
| if (c < '0' || c > '9') { |
| is_array_index_ = false; |
| } else { |
| int d = c - '0'; |
| if (is_first_char_) { |
| is_first_char_ = false; |
| if (c == '0' && length_ > 1) { |
| is_array_index_ = false; |
| return; |
| } |
| } |
| if (array_index_ > 429496729U - ((d + 2) >> 3)) { |
| is_array_index_ = false; |
| } else { |
| array_index_ = array_index_ * 10 + d; |
| } |
| } |
| } |
| } |
| |
| |
| void StringHasher::AddCharacterNoIndex(uc32 c) { |
| ASSERT(!is_array_index()); |
| raw_running_hash_ += c; |
| raw_running_hash_ += (raw_running_hash_ << 10); |
| raw_running_hash_ ^= (raw_running_hash_ >> 6); |
| } |
| |
| |
| uint32_t StringHasher::GetHash() { |
| // Get the calculated raw hash value and do some more bit ops to distribute |
| // the hash further. Ensure that we never return zero as the hash value. |
| uint32_t result = raw_running_hash_; |
| result += (result << 3); |
| result ^= (result >> 11); |
| result += (result << 15); |
| if (result == 0) { |
| result = 27; |
| } |
| return result; |
| } |
| |
| |
| template <typename schar> |
| uint32_t HashSequentialString(const schar* chars, int length) { |
| StringHasher hasher(length); |
| if (!hasher.has_trivial_hash()) { |
| int i; |
| for (i = 0; hasher.is_array_index() && (i < length); i++) { |
| hasher.AddCharacter(chars[i]); |
| } |
| for (; i < length; i++) { |
| hasher.AddCharacterNoIndex(chars[i]); |
| } |
| } |
| return hasher.GetHashField(); |
| } |
| |
| |
| bool String::AsArrayIndex(uint32_t* index) { |
| uint32_t field = hash_field(); |
| if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) { |
| return false; |
| } |
| return SlowAsArrayIndex(index); |
| } |
| |
| |
| Object* JSObject::GetPrototype() { |
| return JSObject::cast(this)->map()->prototype(); |
| } |
| |
| |
| PropertyAttributes JSObject::GetPropertyAttribute(String* key) { |
| return GetPropertyAttributeWithReceiver(this, key); |
| } |
| |
| // TODO(504): this may be useful in other places too where JSGlobalProxy |
| // is used. |
| Object* JSObject::BypassGlobalProxy() { |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return GetHeap()->undefined_value(); |
| ASSERT(proto->IsJSGlobalObject()); |
| return proto; |
| } |
| return this; |
| } |
| |
| |
| bool JSObject::HasHiddenPropertiesObject() { |
| ASSERT(!IsJSGlobalProxy()); |
| return GetPropertyAttributePostInterceptor(this, |
| GetHeap()->hidden_symbol(), |
| false) != ABSENT; |
| } |
| |
| |
| Object* JSObject::GetHiddenPropertiesObject() { |
| ASSERT(!IsJSGlobalProxy()); |
| PropertyAttributes attributes; |
| // You can't install a getter on a property indexed by the hidden symbol, |
| // so we can be sure that GetLocalPropertyPostInterceptor returns a real |
| // object. |
| Object* result = |
| GetLocalPropertyPostInterceptor(this, |
| GetHeap()->hidden_symbol(), |
| &attributes)->ToObjectUnchecked(); |
| return result; |
| } |
| |
| |
| MaybeObject* JSObject::SetHiddenPropertiesObject(Object* hidden_obj) { |
| ASSERT(!IsJSGlobalProxy()); |
| return SetPropertyPostInterceptor(GetHeap()->hidden_symbol(), |
| hidden_obj, |
| DONT_ENUM, |
| kNonStrictMode); |
| } |
| |
| |
| bool JSObject::HasElement(uint32_t index) { |
| return HasElementWithReceiver(this, index); |
| } |
| |
| |
| bool AccessorInfo::all_can_read() { |
| return BooleanBit::get(flag(), kAllCanReadBit); |
| } |
| |
| |
| void AccessorInfo::set_all_can_read(bool value) { |
| set_flag(BooleanBit::set(flag(), kAllCanReadBit, value)); |
| } |
| |
| |
| bool AccessorInfo::all_can_write() { |
| return BooleanBit::get(flag(), kAllCanWriteBit); |
| } |
| |
| |
| void AccessorInfo::set_all_can_write(bool value) { |
| set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value)); |
| } |
| |
| |
| bool AccessorInfo::prohibits_overwriting() { |
| return BooleanBit::get(flag(), kProhibitsOverwritingBit); |
| } |
| |
| |
| void AccessorInfo::set_prohibits_overwriting(bool value) { |
| set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value)); |
| } |
| |
| |
| PropertyAttributes AccessorInfo::property_attributes() { |
| return AttributesField::decode(static_cast<uint32_t>(flag()->value())); |
| } |
| |
| |
| void AccessorInfo::set_property_attributes(PropertyAttributes attributes) { |
| ASSERT(AttributesField::is_valid(attributes)); |
| int rest_value = flag()->value() & ~AttributesField::mask(); |
| set_flag(Smi::FromInt(rest_value | AttributesField::encode(attributes))); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| void Dictionary<Shape, Key>::SetEntry(int entry, |
| Object* key, |
| Object* value) { |
| SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0))); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| void Dictionary<Shape, Key>::SetEntry(int entry, |
| Object* key, |
| Object* value, |
| PropertyDetails details) { |
| ASSERT(!key->IsString() || details.IsDeleted() || details.index() > 0); |
| int index = HashTable<Shape, Key>::EntryToIndex(entry); |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc); |
| FixedArray::set(index, key, mode); |
| FixedArray::set(index+1, value, mode); |
| FixedArray::fast_set(this, index+2, details.AsSmi()); |
| } |
| |
| |
| bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { |
| ASSERT(other->IsNumber()); |
| return key == static_cast<uint32_t>(other->Number()); |
| } |
| |
| |
| uint32_t NumberDictionaryShape::Hash(uint32_t key) { |
| return ComputeIntegerHash(key); |
| } |
| |
| |
| uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) { |
| ASSERT(other->IsNumber()); |
| return ComputeIntegerHash(static_cast<uint32_t>(other->Number())); |
| } |
| |
| |
| MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) { |
| return Isolate::Current()->heap()->NumberFromUint32(key); |
| } |
| |
| |
| bool StringDictionaryShape::IsMatch(String* key, Object* other) { |
| // We know that all entries in a hash table had their hash keys created. |
| // Use that knowledge to have fast failure. |
| if (key->Hash() != String::cast(other)->Hash()) return false; |
| return key->Equals(String::cast(other)); |
| } |
| |
| |
| uint32_t StringDictionaryShape::Hash(String* key) { |
| return key->Hash(); |
| } |
| |
| |
| uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) { |
| return String::cast(other)->Hash(); |
| } |
| |
| |
| MaybeObject* StringDictionaryShape::AsObject(String* key) { |
| return key; |
| } |
| |
| |
| void Map::ClearCodeCache(Heap* heap) { |
| // No write barrier is needed since empty_fixed_array is not in new space. |
| // Please note this function is used during marking: |
| // - MarkCompactCollector::MarkUnmarkedObject |
| ASSERT(!heap->InNewSpace(heap->raw_unchecked_empty_fixed_array())); |
| WRITE_FIELD(this, kCodeCacheOffset, heap->raw_unchecked_empty_fixed_array()); |
| } |
| |
| |
| void JSArray::EnsureSize(int required_size) { |
| ASSERT(HasFastElements()); |
| FixedArray* elts = FixedArray::cast(elements()); |
| const int kArraySizeThatFitsComfortablyInNewSpace = 128; |
| if (elts->length() < required_size) { |
| // Doubling in size would be overkill, but leave some slack to avoid |
| // constantly growing. |
| Expand(required_size + (required_size >> 3)); |
| // It's a performance benefit to keep a frequently used array in new-space. |
| } else if (!GetHeap()->new_space()->Contains(elts) && |
| required_size < kArraySizeThatFitsComfortablyInNewSpace) { |
| // Expand will allocate a new backing store in new space even if the size |
| // we asked for isn't larger than what we had before. |
| Expand(required_size); |
| } |
| } |
| |
| |
| void JSArray::set_length(Smi* length) { |
| set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER); |
| } |
| |
| |
| void JSArray::SetContent(FixedArray* storage) { |
| set_length(Smi::FromInt(storage->length())); |
| set_elements(storage); |
| } |
| |
| |
| MaybeObject* FixedArray::Copy() { |
| if (length() == 0) return this; |
| return GetHeap()->CopyFixedArray(this); |
| } |
| |
| |
| Relocatable::Relocatable(Isolate* isolate) { |
| ASSERT(isolate == Isolate::Current()); |
| isolate_ = isolate; |
| prev_ = isolate->relocatable_top(); |
| isolate->set_relocatable_top(this); |
| } |
| |
| |
| Relocatable::~Relocatable() { |
| ASSERT(isolate_ == Isolate::Current()); |
| ASSERT_EQ(isolate_->relocatable_top(), this); |
| isolate_->set_relocatable_top(prev_); |
| } |
| |
| |
| int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) { |
| return map->instance_size(); |
| } |
| |
| |
| void Proxy::ProxyIterateBody(ObjectVisitor* v) { |
| v->VisitExternalReference( |
| reinterpret_cast<Address *>(FIELD_ADDR(this, kProxyOffset))); |
| } |
| |
| |
| template<typename StaticVisitor> |
| void Proxy::ProxyIterateBody() { |
| StaticVisitor::VisitExternalReference( |
| reinterpret_cast<Address *>(FIELD_ADDR(this, kProxyOffset))); |
| } |
| |
| |
| void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) { |
| typedef v8::String::ExternalAsciiStringResource Resource; |
| v->VisitExternalAsciiString( |
| reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); |
| } |
| |
| |
| template<typename StaticVisitor> |
| void ExternalAsciiString::ExternalAsciiStringIterateBody() { |
| typedef v8::String::ExternalAsciiStringResource Resource; |
| StaticVisitor::VisitExternalAsciiString( |
| reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); |
| } |
| |
| |
| void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) { |
| typedef v8::String::ExternalStringResource Resource; |
| v->VisitExternalTwoByteString( |
| reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); |
| } |
| |
| |
| template<typename StaticVisitor> |
| void ExternalTwoByteString::ExternalTwoByteStringIterateBody() { |
| typedef v8::String::ExternalStringResource Resource; |
| StaticVisitor::VisitExternalTwoByteString( |
| reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); |
| } |
| |
| #define SLOT_ADDR(obj, offset) \ |
| reinterpret_cast<Object**>((obj)->address() + offset) |
| |
| template<int start_offset, int end_offset, int size> |
| void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody( |
| HeapObject* obj, |
| ObjectVisitor* v) { |
| v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, end_offset)); |
| } |
| |
| |
| template<int start_offset> |
| void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj, |
| int object_size, |
| ObjectVisitor* v) { |
| v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, object_size)); |
| } |
| |
| #undef SLOT_ADDR |
| |
| |
| #undef CAST_ACCESSOR |
| #undef INT_ACCESSORS |
| #undef SMI_ACCESSORS |
| #undef ACCESSORS |
| #undef FIELD_ADDR |
| #undef READ_FIELD |
| #undef WRITE_FIELD |
| #undef WRITE_BARRIER |
| #undef CONDITIONAL_WRITE_BARRIER |
| #undef READ_MEMADDR_FIELD |
| #undef WRITE_MEMADDR_FIELD |
| #undef READ_DOUBLE_FIELD |
| #undef WRITE_DOUBLE_FIELD |
| #undef READ_INT_FIELD |
| #undef WRITE_INT_FIELD |
| #undef READ_SHORT_FIELD |
| #undef WRITE_SHORT_FIELD |
| #undef READ_BYTE_FIELD |
| #undef WRITE_BYTE_FIELD |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_OBJECTS_INL_H_ |